
Towards CERES in Higher-Order Logic

Daniel Weller

February 17, 2010

Daniel Weller

Towards CERES in Higher-Order Logic

Motivation

Cut-elimination (Gentzen 1935) makes implicit information in
proofs explicit:

Cut-free proofs have the subformula property.

Cut-elimination is highly non-confluent (Baaz, Hetzl 2010)

Proofs may give rise to non-elementarily many cut-free proofs
with significantly different Herbrand disjunctions.

Daniel Weller

Towards CERES in Higher-Order Logic

Motivation

Interesting application: Mathematical proofs, i.e. proof
mining, extract information from (classical) mathematical
proofs.

Cut-elimination corresponds to the removal of lemmas.

Different technique: Functional interpretation (see e.g.
Kohlenbach 2008).

Daniel Weller

Towards CERES in Higher-Order Logic

Cut-elimination methods in FOL

Reductive methods: Gentzen 1935, Tait 1968.

Based on proof rewrite rules.

Cut-elimination by resolution (CERES): Baaz, Leitsch 2000.

Use resolution to find different cut-free proofs.

Daniel Weller

Towards CERES in Higher-Order Logic

Some properties of CERES

CERES simulates the reductive methods up to an exponential.

Theorem (Baaz, Leitsch 2006)

Let ϕ be an LK-derivation and ψ be an ACNF of ϕ under a cut
reduction relation >R based on R. Then there exists an ACNF χ
of ϕ under CERES such that

l(χ) ≤ l(ϕ) ∗ l(ψ) ∗ 22∗l(ψ) + 2.

Daniel Weller

Towards CERES in Higher-Order Logic

Some properties of CERES

CERES simulates the reductive methods up to an exponential.

There is a non-elementary speed up of CERES over the
reductive methods.

Theorem (Baaz, Leitsch 2000)

There exists a sequence of LK-proofs (ψn)n∈N such that

1 The Gentzen method produces proof trees with
non-elementarily many nodes on ψn.

2 CERES constructs a cut-free proof out of ψn in exponentially
many steps.

Daniel Weller

Towards CERES in Higher-Order Logic

Some properties of CERES

CERES simulates the reductive methods up to an exponential.

There is a non-elementary speed up of CERES over the
reductive methods.

CERES has been used to prove fast cut-elimination for classes
for which the reductive methods cannot be used. (Baaz,
Leitsch 2010?)

Daniel Weller

Towards CERES in Higher-Order Logic

Applying CERES

First idea: Using powerful resolution provers, apply
cut-elimination completely automated.

Partial success: Works fine on simple proofs.

Current Implementation: ANSI C++. (Work-in-progress
implementation: Scala.)

Daniel Weller

Towards CERES in Higher-Order Logic

Applying CERES — examples

Example (The tape proof)

A version of the pigeon hole principle: The “tape proof” due
to C. Urban.

On a tape with infinitely many cells, each labelled either 0 or
1, there are two distinct cells with the same label.

Uses a classical lemma: Either infinitely many cells are
labelled 0, or infinitely many cells are labelled 1.

Analysis in Baaz, Hetzl, Leitsch, Richter, Spohr 2006.

Daniel Weller

Towards CERES in Higher-Order Logic

Applying CERES — examples

Example (The lattice proof)

There are different equivalent formulations of the notion of lattice:

1 〈S ,∩,∪〉 such that ∪ and ∩ are commutative, associative,
idempotent and “inverse”.

2 〈S ,∩,∪〉 such that ∪ and ∩ are commutative, associative,
idempotent and two “absorption laws” hold.

3 A partially ordered set 〈S ,≤〉 such that ∩ is the greatest lower
bound and ∪ is the least upper bound.

One proves (1)→ (2) by proving (1)→ (3) and (3)→ (2).

Analysis in Hetzl, Leitsch, Weller, Woltzenlogel Paleo 2008.

Daniel Weller

Towards CERES in Higher-Order Logic

Applying CERES

First-order theorem provers used in the experiments: Otter,
Prover9.

Problems with more complicated proofs:

Induction.
Theorem provers fail to find refutation automatically.

Daniel Weller

Towards CERES in Higher-Order Logic

Fürstenberg’s proof of the infinitude of primes

Example (Fürstenberg’s proof)

Proof of the infinitude of primes by topological means.

Topology is induced by arithmetic progressions over the
integers.

Analysis in Baaz, Hetzl, Leitsch, Richter, Spohr 2008.

Daniel Weller

Towards CERES in Higher-Order Logic

Fürstenberg’s proof

Proof by contradiction: Assume the set of primes has
cardinality k , derive a contradiction.

Induction is used to establish this.

In the experiment, induction is treated via schematization.

Daniel Weller

Towards CERES in Higher-Order Logic

Schematization

Advantages:

Proof in Robinson arithmetic.
The problem of cut-elimination is partitioned into
cut-elimination for k = 0, 1, 2,
Induction is moved to the meta-level.

Disadvantages:

No formal basis (yet), therefore:
The general form of the CERES datastructures for k arbitrary
has to be determined empirically.

Daniel Weller

Towards CERES in Higher-Order Logic

Fürstenberg’s proof

Prover9 finds refutations for k = 0, 1, 2.

It was not clear how to generalize the refutations. (IS THIS
TRUE?)

Manually, a (inductively defined) refutation was found for all
k.

In it, a construction central to Euclid’s original argument
appears: p1 ∗ · · · ∗ pk + 1.

Daniel Weller

Towards CERES in Higher-Order Logic

Post-experiment

Completely automated cut-elimination seems unrealistic:
Instead, apply semi-automatically.

Human effort: Try to understand and refute the characteristic
clause set.

Make easier by moving to more expressive formalism: HOL.

Allows to move induction from meta- to object-level.

Daniel Weller

Towards CERES in Higher-Order Logic

CERES — Method overview

1 Input proof in sequent calculus format.

2 Move to proof format which is more flexible with respect to
structural manipulations (“sequents + skolemization”).

3 Compute characteristic clause set.

4 Refute the clause set.

5 From the refutation, build a proof with at most atomic cuts.

Daniel Weller

Towards CERES in Higher-Order Logic

CERES — Method overview

1 Input proof in sequent calculus format.

2 Move to proof format which is more flexible with respect to
structural manipulations (“sequents + skolemization”).

3 Compute characteristic clause set.

4 Apply subsumption and other pruning techniques to reduce its
size.

5 Refute the clause set.

6 From the refutation, build a proof with at most atomic cuts.

Daniel Weller

Towards CERES in Higher-Order Logic

CERES — central constructions

Input proof π of S .

Characteristic clause set CL(π).

For every C ∈ CL(π), a proof π(C) of C ◦ S (proof
projection).

Daniel Weller

Towards CERES in Higher-Order Logic

The characteristic clause set CL(π)

Intuition: Collect material from the cuts. How depends on the
shape of π.

For every inference ρ in π, CLρ(π) is defined.

Daniel Weller

Towards CERES in Higher-Order Logic

The characteristic clause set CL(π)

For axioms A, CLρ(π) = {c(A)} where c(A) is the
sub-sequent of A consisting of the cut-ancestors,

For unary rules with premise σ, CLρ(π) = CLσ(π).

For binary rules with premises σ1, σ2:

If it operates on cut ancestors, CLρ(π) = CLσ1(π) ∪ CLσ2(π).
Otherwise, CLρ(π) = CLσ1(π)× CLσ2(π).

Daniel Weller

Towards CERES in Higher-Order Logic

The characteristic clause set CL(π)

Theorem

There exists a refutation of CL(π).

Proof sketch.

For every inference ρ with conclusion S in π, we construct a proof
of c(S).

Daniel Weller

Towards CERES in Higher-Order Logic

The characteristic clause set CL(π)

The construction of

the characteristic clause set CL(π) and

its refutation in the sequent calculus

both go through in HOL.

Daniel Weller

Towards CERES in Higher-Order Logic

Constructing an ACNF — in FOL

Theorem

There exists a resolution refutation of CL(π).

Proof.

By soundness of the sequent calculus and completeness of the
resolution calculus.

Daniel Weller

Towards CERES in Higher-Order Logic

Constructing an ACNF — in FOL

π is a proof of S .

We have a resolution refutation γ of CL(π).

We want: A proof of S with at most atomic cuts.

Intuition: Ground resolution refutation is a sequent calculus
refutation with at most atomic cuts!

Combine with proof projections.

Daniel Weller

Towards CERES in Higher-Order Logic

Constructing proof projections — in FOL

We construct proofs of C ◦ S .

Inductive construction analogous to that of CL(π).

Intuition: We take π, but apply only rules that operate on
end-sequent ancestors.

Daniel Weller

Towards CERES in Higher-Order Logic

Constructing proof projections — in FOL

Crucial case: strong quantifier rules

Γ ` ∆,F (α)

Γ ` ∆, (∀x)F (x)
∀r

where α must not occur in Γ,∆,F (x).

If a clause contains α, we cannot apply the rule!

Solution: Proof skolemization.

Daniel Weller

Towards CERES in Higher-Order Logic

CERES — Method overview

1 Input proof in sequent calculus format.

2 Move to proof format which is more flexible with respect to
structural manipulations (“sequents + skolemization”).

3 Compute characteristic clause set.

4 Refute the clause set.

5 From the refutation, build a proof with at most atomic cuts.

Daniel Weller

Towards CERES in Higher-Order Logic

Proof skolemization

Roughly, skolemization sk removes quantifiers (∀x) and
replaces x by a skolem term f (y1, . . . , yn) where f is a fresh
function symbol.

Crucial property of proofs of skolemized sequents: “by the
subformula property”, no strong quantifier rules operate on
end-sequent ancestors.

Proposition

There exists a proof of S ⇐⇒ there exists a proof of sk(S).

Daniel Weller

Towards CERES in Higher-Order Logic

Proof skolemization

In HOL, proof skolemization is possible, but does not yield the
desired property:

The subformula property is modulo “formula substitution”,
not modulo “term substitution”!

Hence quantifiers may not only be introduced in the
end-sequent.

Daniel Weller

Towards CERES in Higher-Order Logic

Comprehension

FT, Γ ` ∆

∀F, Γ ` ∆
∀ : l

where T is a HOL term (and hence may contain quantifiers).

Daniel Weller

Towards CERES in Higher-Order Logic

Approach: Modify the sequent calculus

Define cut-free sequent calculus LKsk that introduces strong
quantifiers from skolem terms.

Replace “eigenfunction” condition by global conditions.

Similar to how strong quantifiers are treated in skolem
expansion trees (Miller 1983).

Hope: In sequent format, structural transformations necessary
for CERES will be easier than with more compact formalisms.

Daniel Weller

Towards CERES in Higher-Order Logic

LKsk — crucial rules

Labelled formulas 〈·〉` where ` is a set of terms.

Γ ` ∆,
〈
F(fS1 . . .Sm)

〉`
Γ ` ∆, 〈∀αF〉`

∀sk : r

〈
FT
〉`,T

, Γ ` ∆

〈∀αF〉` , Γ ` ∆
∀sk : l

f is a Skolem function, ` ⊆ {S1, . . . ,Sm}.

Daniel Weller

Towards CERES in Higher-Order Logic

Regularity

Intuition for usual quantifier rules: Different inferences should
use different variables (regularity).

There are proofs which are not regular: Eigenvariable
condition suffices for soundness.

But: there are transformations which require regularity to
fulfill the eigenvariable condition.

In LKsk, we will use analogies to regularity to ensure
soundness.

Daniel Weller

Towards CERES in Higher-Order Logic

Weak regularity

Introduce notion of weak regularity.

Intuition: If objects have the same name, then they are used
in the same way.

Definition

An LKsk-tree is weakly regular if for every two strong quantifier
inferences ρ1, ρ2: If ρ1, ρ2 have the same skolem term, then they
are homomorphic.

Roughly, two inferences are homomorphic if on the paths starting
at their auxiliary formulas, the same inferences are applied, and
they are joined in a contraction.

Daniel Weller

Towards CERES in Higher-Order Logic

Soundness and completeness

Theorem (Completeness)

For every LK-proof of S, there exists a weakly regular LKskc-tree
of S.

Proof sketch.

We replace eigenvariables by appropriate skolem terms.

Note: We can even construct an LKskc-tree where the skolem
terms of strong quantifier inferences are pairwise different. In
practice, we will want to exploit weak-regularity already here, to
reduce the number of different Skolem functions.

Daniel Weller

Towards CERES in Higher-Order Logic

Soundness and completeness

Theorem (Soundness)

For every weakly regular LKsk-proof π of S, there exists an
LK-proof of S.

Proof sketch.

By structural manipulation (rule permutations and pruning), π is
brought into a form where an “eigenterm condition” holds. Then
Skolem terms are replaced by eigenvariables.

Daniel Weller

Towards CERES in Higher-Order Logic

CERES — Method overview

1 Input proof in sequent calculus format.

2 Move to proof format which is more flexible with respect to
structural manipulations (“sequents + skolemization”).

3 Compute characteristic clause set.

4 Refute the clause set.

5 From the refutation, build a proof with at most atomic cuts.

Daniel Weller

Towards CERES in Higher-Order Logic

Constructing proof projections — in HOL

For all C ∈ CL(π) we can now construct appropriate
LKsk-trees of S ◦ C .

Proposition

Let π be a regular LKskc-proof of S. For every C ∈ CL(π), there
exists a regular LKsk-tree π(C) ∈ P(π) of S ◦ C such that

1 π(C) is S-balanced, and

2 if ω is a formula occurrence in C in the end-sequent of π(C)
with label l then ω has exactly one axiom partner µ, and µ
also has label l , and

3 l(π(C)) ≤ l(π).

Moreover, for all C1,C2 ∈ CL(π), π(C1), π(C2) are Skolem parallel
with respect to S.

Daniel Weller

Towards CERES in Higher-Order Logic

CERES — Method overview

1 Input proof in sequent calculus format.

2 Move to proof format which is more flexible with respect to
structural manipulations (“sequents + skolemization”).

3 Compute characteristic clause set.

4 Refute the clause set.

5 From the refutation, build a proof with at most atomic cuts.

Daniel Weller

Towards CERES in Higher-Order Logic

Daniel Weller

Towards CERES in Higher-Order Logic

Resolution calculus R

Γ ` ∆, 〈¬A〉`

〈A〉` , Γ ` ∆
¬T

〈¬A〉` , Γ ` ∆

Γ ` ∆, 〈A〉`
¬F

Γ ` ∆, 〈A ∨ B〉`

Γ ` ∆, 〈A〉` , 〈B〉`
∨T

〈A ∨ B〉` , Γ ` ∆

〈A〉` , Γ ` ∆
∨F

l

〈A ∨ B〉` , Γ ` ∆

〈B〉` , Γ ` ∆
∨F

r

Γ ` ∆, 〈∀αA〉`

Γ ` ∆, 〈AX〉`,X
∀T

〈∀αA〉` , Γ ` ∆

〈AS〉` , Γ ` ∆
∀F S

S [X← T]
Sub

〈A〉`1 , 〈A〉`2 , Γ ` ∆

〈A〉`1,`2 , Γ ` ∆
SimF

Γ ` ∆, 〈A〉`1 , 〈A〉`2

Γ ` ∆, 〈A〉`1,`2
SimT

Γ ` ∆, 〈A〉`1 〈A〉`2 ,Π ` Λ

Γ,Π ` ∆,Λ
Cut

Daniel Weller

Towards CERES in Higher-Order Logic

Resolution calculus R

Similar to Andrews’ higher-order resolution calculus.

Just like Andrews, we require: Every strong quantifier rule has
a unique Skolem function.

Unlike Andrews, we use resolution trees instead of DAGs!

Completeness?

Daniel Weller

Towards CERES in Higher-Order Logic

Resolution calculus R vs. FOL resolution

Γ ` ∆, 〈¬A〉`

〈A〉` , Γ ` ∆
¬T

〈¬A〉` , Γ ` ∆

Γ ` ∆, 〈A〉`
¬F

Γ ` ∆, 〈A ∨ B〉`

Γ ` ∆, 〈A〉` , 〈B〉`
∨T

〈A ∨ B〉` , Γ ` ∆

〈A〉` , Γ ` ∆
∨F

l

〈A ∨ B〉` , Γ ` ∆

〈B〉` , Γ ` ∆
∨F

r

Γ ` ∆, 〈∀αA〉`

Γ ` ∆, 〈AX〉`,X
∀T

〈∀αA〉` , Γ ` ∆

〈AS〉` , Γ ` ∆
∀F S

S [X← T]
Sub

〈A〉`1 , 〈A〉`2 , Γ ` ∆

〈A〉`1,`2 , Γ ` ∆
SimF

Γ ` ∆, 〈A〉`1 , 〈A〉`2

Γ ` ∆, 〈A〉`1,`2
SimT

Γ ` ∆, 〈A〉`1 〈A〉`2 ,Π ` Λ

Γ,Π ` ∆,Λ
Cut

Daniel Weller

Towards CERES in Higher-Order Logic

Putting things together

In FOL, a ground resolution refutation is essentially an
LK-refutation.

In HOL, things are more complicated due to the CNF rules.

To combine the R-refutation and the projections, we combine
the rules to form LKsk-R-trees.

Daniel Weller

Towards CERES in Higher-Order Logic

Putting things together

The LKsk-projections and the R-refutation of CL(π) are
plugged together to form an LKsk-R-tree of the end-sequent
of π (CERES-proof).

Objective: Convert this LKsk-R-tree into a weakly regular
LKsk-tree.

By the soundness theorem for LKsk, we can then obtain a
cut-free LK-proof.

Daniel Weller

Towards CERES in Higher-Order Logic

From LKsk-R to LKsk

Lemma

Let π be a CERES-proof of S. Then there exists a pre-regular,
cut-free LKsk-R-tree ψ of S.

Proof sketch.

We eliminate the (atomic!) cuts (all R-inferences operate on
cut-ancestors).

1 Shift up the R-inferences.

2 At the leaves:

Convert CNF rules into logical LK-rules,
eliminate cuts,
absorb Sub inferences.

Daniel Weller

Towards CERES in Higher-Order Logic

Permuting up R inference

Inferences are duplicated when shifted over contractions
(former SimT ,SimF inferences).

Crucial case: Duplication of ∀F inferences: they are not
homomorphic!

Introduce another notion of regularity (later in this talk).

Daniel Weller

Towards CERES in Higher-Order Logic

Converting R inferences

〈A ∨ B〉` ` 〈A ∨ B〉`

〈A ∨ B〉` ` 〈A〉` , 〈B〉`
∨T

〈A〉` ` 〈A〉` 〈B〉` ` 〈B〉`

〈A ∨ B〉` ` 〈A〉` , 〈B〉`
∨ : l

〈∀αA〉` ` 〈∀αA〉`

〈∀αA〉` `
〈
AX
〉`,X ∀T

〈
AX
〉`,X ` 〈AX

〉`,X
〈∀αA〉` `

〈
AX
〉`,X ∀sk : l

〈∀αA〉` ` 〈∀αA〉`〈
AS
〉` ` 〈∀αA〉` ∀F

〈
AS
〉` ` 〈AS

〉`〈
AS
〉` ` 〈∀αA〉` ∀sk : r

Daniel Weller

Towards CERES in Higher-Order Logic

Another notion of regularity

Weak regularity: “If objects have the same name, then they
are used in the same way.”

Now: “If objects have the same name, then they are either
used in the same way, or not used together at all.”

Weak+ regularity.

Daniel Weller

Towards CERES in Higher-Order Logic

Weak+ regularity

Define a notion of connectedness of term occurrences via

The occurrence ancestor relation,
contractions, and
weak quantifier rules.

〈A〉`1 , 〈A〉`2 , Γ ` ∆

〈A〉`1,`2 , Γ ` ∆
SimF

Γ ` ∆, 〈∀αA〉`

Γ ` ∆, 〈AX〉`,X
∀T

Daniel Weller

Towards CERES in Higher-Order Logic

Weak+ regularity

Roughly, weak+ regularity requires strong quantifier rules with
the same Skolem term to either be

homorphic or
their Skolem function occurrences to be disconnected in the
term connectedness graph.

Daniel Weller

Towards CERES in Higher-Order Logic

Soundness

Theorem

Let π be a weakly+ regular, proper LKsk-tree of S. Then there
exists a weakly-regular, proper LKsk-tree of S.

Proof sketch.

By renaming Skolem symbols modulo homomorphism equivalence
classes.

Daniel Weller

Towards CERES in Higher-Order Logic

From LKsk-R to LKsk

Lemma

Let π be a CERES-proof of S. Then there exists a pre-regular,
cut-free LKsk-R-tree ψ of S.

Proof sketch.

We eliminate the (atomic!) cuts (all R-inferences operate on
cut-ancestors).

1 Shift up the R-inferences.

2 At the leaves:

Convert CNF rules into logical LK-rules,
eliminate cuts,
absorb Sub inferences.

Daniel Weller

Towards CERES in Higher-Order Logic

Duplication of ∀F inferences

〈∀αA〉`1 , 〈∀αA〉`2 , Γ ` ∆

〈∀αA〉`1,`2 , Γ ` ∆
SimF

〈
AS
〉`1,`2 , Γ ` ∆

∀F

〈∀αA〉`1 , 〈∀αA〉`2 , Γ ` ∆〈
AS
〉`1 , 〈∀αA〉`2 , Γ ` ∆

∀F

〈
AS
〉`1 , 〈AS

〉`2 , Γ ` ∆
∀F

〈
AS
〉`1,`2 , Γ ` ∆

SimF

∀F inferences not disconnected, but weakly disconnected: all
connections go through a contraction!

This property is preserved throughout the transformation.

Daniel Weller

Towards CERES in Higher-Order Logic

From weakly disconnected to weakly+ regular

All non-homomorphic strong quantifier inferences are weakly
disconnected, and the LKsk-tree is cut-free.

 we shift contraction inferences down: Now all such
inferences are disconnected!

Apply previous soundness theorems.

Daniel Weller

Towards CERES in Higher-Order Logic

Completeness of CERES in HOL

Method is not yet proven complete.

We would like to have

Proposition

If there exists an LK-refutation of CL(π), then there exists an
R-refutation of CL(π).

Cannot directly use Andrews’ completeness for V-complexes:
our calculus has subtle differences:

Tree vs. DAG.
Labels vs. free variables.

Daniel Weller

Towards CERES in Higher-Order Logic

Strategies for proving completeness

Syntactically: transform Andrews’ refutations into
R-refutations.

Semantically: Give direct completeness proof of R w.r.t.
V-complexes.

Daniel Weller

Towards CERES in Higher-Order Logic

Implementing CERES for HOL

As mentioned: we want to apply CERES to analyze proofs
from mathematics.

Old C++ implementation of CERES for FOL had several
drawbacks:

The FO language was central to the implementation.
Hard-to-use reference-counting memory management.
Implementation of recursive algorithms with the visitor design
pattern lead to lots of “boilerplate code”.

New implementation in Scala.

Daniel Weller

Towards CERES in Higher-Order Logic

Implementing CERES for HOL

Scala combines functional and object-oriented programming.

Well suited for our purposes:

Efficiency not a priority.
Functional constructs allow easy implementation of algorithms.
Object orientation allows structuring of code in a natural way.
Built for HOL from the ground up.

Scala compiles to Java bytcode: Platform independence, may
re-use Java libraries.

Daniel Weller

Towards CERES in Higher-Order Logic

State of implementation

LK, LKskc and LKsk X

Transformation from LK to LKskc X

Construction of CL(π) X

Daniel Weller

Towards CERES in Higher-Order Logic

Current experiment

Formalization of Fürstenberg’s proof of the infinitude of
primes in second-order arithmetic (actually ACA0).

How does the induction behave on the object level?

How does the modified subformula property affect the method
in practice?

Daniel Weller

Towards CERES in Higher-Order Logic

Future work

Prove completeness of CERES.

Check whether (skolem) expansion tree proofs can be
extracted directly from LKsk-R-trees — implementation of
soundness theorems can then be circumvented.

Daniel Weller

Towards CERES in Higher-Order Logic

