Proof Skolemization and De-Skolemization

Matthias Baaz, Stefan Hetzl, Daniel Weller

Workshop on Logic and Computation, Vienna, 30 June 2009

向下 イヨト イヨト

Preliminaries

- \blacktriangleright classical logic, restrict to \lor, \exists, \neg
- tree-like LK-proofs

$$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \lor B} \lor_{r}^{1} \qquad \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, B \lor A} \lor_{r}^{2} \\
\frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \neg_{r} \qquad \frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta} \neg_{l} \\
\frac{\Gamma \vdash \Delta, A[x \leftarrow t]}{\Gamma \vdash \Delta, (\exists x)A} \exists_{r} \qquad \frac{A[x \leftarrow \alpha], \Gamma \vdash \Delta}{(\exists x)A, \Gamma \vdash \Delta} \exists_{l} \\
\frac{A, \Gamma \vdash \Delta}{A \lor B, \Gamma, \Pi \vdash \Delta, \Lambda} \lor_{l} \qquad \frac{\Gamma \vdash \Delta, A \land A, \Pi \vdash \Lambda}{\Gamma, \Pi \vdash \Delta, \Lambda} cut \\
\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} w_{r} \qquad \frac{\Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} w_{l} \qquad \frac{A, A, \Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} c_{l} \qquad \frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta} c_{r}$$

・ 回 と ・ ヨ と ・ モ と …

æ

Preliminaries

- ▶ classical logic, restrict to \lor, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents

$$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \lor B} \lor_{r}^{1}$$

$$\frac{A, \Gamma \vdash \Delta}{A \lor B, \Gamma, \Pi \vdash \Delta, \Lambda} \lor_{I} \qquad \frac{\Gamma \vdash \Delta, A \land A, \Pi \vdash \Lambda}{\Gamma, \Pi \vdash \Delta, \Lambda} cut$$

$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} w_{r} \qquad \frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A} c_{r}$$

・日・ ・ ヨ ・ ・ ヨ ・ ・

æ

Preliminaries

- classical logic, restrict to \lor, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)$ = number of sequents in π

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Preliminaries

- classical logic, restrict to \lor, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)$ = number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules

(日本) (日本) (日本)

- classical logic, restrict to \lor, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)$ = number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules
 - If (∃x)F, G ∨ H have positive (negative) polarity, then F, G, H have positive (negative) polarity

- classical logic, restrict to \lor, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)$ = number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules
 - If (∃x)F, G ∨ H have positive (negative) polarity, then F, G, H have positive (negative) polarity
 - If ¬F has positive (negative) polarity, then F has negative (positive) polarity

- ▶ classical logic, restrict to \lor, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)$ = number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules
 - If (∃x)F, G ∨ H have positive (negative) polarity, then F, G, H have positive (negative) polarity
 - If ¬F has positive (negative) polarity, then F has negative (positive) polarity
 - ▶ In $\Gamma \vdash \Delta$, Γ has negative and Δ has positive polarity

- classical logic, restrict to \lor, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)$ = number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules
 - If (∃x)F, G ∨ H have positive (negative) polarity, then F, G, H have positive (negative) polarity
 - If ¬F has positive (negative) polarity, then F has negative (positive) polarity
 - ▶ In $\Gamma \vdash \Delta$, Γ has negative and Δ has positive polarity
 - ▶ Negative $(\exists x)$ are called *strong*, positive $(\exists x)$ are called *weak*

- classical logic, restrict to \lor, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)$ = number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules
 - If (∃x)F, G ∨ H have positive (negative) polarity, then F, G, H have positive (negative) polarity
 - If ¬F has positive (negative) polarity, then F has negative (positive) polarity
 - ▶ In $\Gamma \vdash \Delta$, Γ has negative and Δ has positive polarity
 - ▶ Negative $(\exists x)$ are called *strong*, positive $(\exists x)$ are called *weak*

・ロン ・回と ・ヨン ・ヨン

Rules of LK preserve polarity w.r.t. ancestors

Why Skolemize?

- Eliminate one type of quantifier
- Often: functions obtained have natural interpretation

Example

 $(\forall x)(\exists y)(PRIME(y) \land DIV(y, x))$ $\rightsquigarrow_{sk} (\forall x)(PRIME(f(x)) \land DIV(f(x), x))$

f(x) is a prime divisor of x

伺 と く き と く き と

- F a closed formula
- Prefix Skolemization psk(F) (if F occurs positively)
 - compute prefix form F_P of F
 - if $F_i = (\exists x_1 \dots x_n)(\forall y)F(y)$ then $F_{i+1} = (\exists x_1 \dots x_n)F(f(x_1, \dots, x_n))$

Structural Skolemization ssk(F)

- Skolemize "in place"
- If (∃y) is a strong quantifier in F_i in the scope of weak quantifiers (∃x₁),...,(∃x_n), then F_{i+1} is obtained from F_i by dropping (∃y) and substituting f(x₁,...,x_n) for y
- Unique up to renaming of Skolem functions
- Andrews Skolemization ask(F)
 - substitute f(x_{i1},...,x_{ik}) for y, where the x_{ij} are in the scope of (∃y)

イロン イヨン イヨン イヨン

- F a closed formula
- Prefix Skolemization psk(F) (if F occurs positively)
 - compute prefix form F_P of F
 - if $F_i = (\exists x_1 \dots x_n)(\forall y)F(y)$ then $F_{i+1} = (\exists x_1 \dots x_n)F(f(x_1, \dots, x_n))$

Structural Skolemization ssk(F)

- Skolemize "in place"
- if $(\exists y)$ is a strong quantifier in F_i in the scope of weak quantifiers $(\exists x_1), \ldots, (\exists x_n)$, then F_{i+1} is obtained from F_i by dropping $(\exists y)$ and substituting $f(x_1, \ldots, x_n)$ for y
- Unique up to renaming of Skolem functions
- Andrews Skolemization ask(F)
 - substitute f(x_{i1},...,x_{ik}) for y, where the x_{ij} are in the scope of (∃y)

- F a closed formula
- Prefix Skolemization psk(F) (if F occurs positively)
 - compute prefix form F_P of F
 - if $F_i = (\exists x_1 \dots x_n)(\forall y)F(y)$ then $F_{i+1} = (\exists x_1 \dots x_n)F(f(x_1, \dots, x_n))$
- Structural Skolemization ssk(F)
 - Skolemize "in place"
 - if $(\exists y)$ is a strong quantifier in F_i in the scope of weak quantifiers $(\exists x_1), \ldots, (\exists x_n)$, then F_{i+1} is obtained from F_i by dropping $(\exists y)$ and substituting $f(x_1, \ldots, x_n)$ for y
 - Unique up to renaming of Skolem functions
- Andrews Skolemization ask(F)
 - Substitute f(x_{i1},...,x_{ik}) for y, where the x_{ij} are in the scope of (∃y)

- F a closed formula
- Prefix Skolemization psk(F) (if F occurs positively)
 - compute prefix form F_P of F
 - if $F_i = (\exists x_1 \dots x_n)(\forall y)F(y)$ then $F_{i+1} = (\exists x_1 \dots x_n)F(f(x_1, \dots, x_n))$

Structural Skolemization ssk(F)

- Skolemize "in place"
- If (∃y) is a strong quantifier in F_i in the scope of weak quantifiers (∃x₁),...,(∃x_n), then F_{i+1} is obtained from F_i by dropping (∃y) and substituting f(x₁,...,x_n) for y

Unique up to renaming of Skolem functions

Andrews Skolemization ask(F)

Substitute f(x_{i1},...,x_{ik}) for y, where the x_{ij} are in the scope of (∃y)

- F a closed formula
- Prefix Skolemization psk(F) (if F occurs positively)
 - compute prefix form F_P of F
 - if $F_i = (\exists x_1 \dots x_n)(\forall y)F(y)$ then $F_{i+1} = (\exists x_1 \dots x_n)F(f(x_1, \dots, x_n))$

Structural Skolemization ssk(F)

- Skolemize "in place"
- If (∃y) is a strong quantifier in F_i in the scope of weak quantifiers (∃x₁),...,(∃x_n), then F_{i+1} is obtained from F_i by dropping (∃y) and substituting f(x₁,...,x_n) for y
- Unique up to renaming of Skolem functions

Andrews Skolemization ask(F)

Substitute f(x_{i1},...,x_{ik}) for y, where the x_{ij} are in the scope of (∃y)

- F a closed formula
- Prefix Skolemization psk(F) (if F occurs positively)
 - compute prefix form F_P of F
 - if $F_i = (\exists x_1 \dots x_n)(\forall y)F(y)$ then $F_{i+1} = (\exists x_1 \dots x_n)F(f(x_1, \dots, x_n))$
- Structural Skolemization ssk(F)
 - Skolemize "in place"
 - if (∃y) is a strong quantifier in F_i in the scope of weak quantifiers (∃x₁),..., (∃x_n), then F_{i+1} is obtained from F_i by dropping (∃y) and substituting f(x₁,...,x_n) for y
 - Unique up to renaming of Skolem functions
- Andrews Skolemization ask(F)
 - ▶ substitute $f(x_{i_1}, ..., x_{i_k})$ for y, where the x_{i_j} are in the scope of $(\exists y)$

Definition (Herbrand complexity)

If S is a valid sequent containing only weak quantifiers, then HC(S) is the minimal length of a Herbrand sequent of S.

Theorem (M. Baaz, A. Leitsch 1994)

There exists a sequence of sequents (S_n) such that for some prefix Skolemization $psk(S_n)$, $HC(psk(S_n))$ is non-elementary but $HC(ssk(S_n))$ is elementary.

Proposition (M. Baaz, A. Leitsch 1994)

Let S' be obtained from a sequent S by antiprenexing via quantifier shifting. Then $HC(ssk(S')) \leq HC(ssk(S))$.

Proof Skolemization

Problem (Proof Skolemization) Input: LK-proof of S Output: LK-proof of ssk(S)

A 3 >

æ

Problem (Proof Skolemization)

Input: **LK**-proof of S Output: **LK**-proof of ssk(S)

Proposition (M. Baaz, A. Leitsch 1999)

Let π be an LK-proof of S. Then there exists an LK-proof π_{ssk} of ssk(S) s.t. $I(\pi_{ssk}) \leq I(\pi)$.

Proof sketch.

Assume S contains negative occurrence of $(\exists x)A(x)$. It can be introduced in π as

1.
$$\frac{A(\alpha), \Gamma \vdash \Delta}{(\exists x)A(x), \Gamma \vdash \Delta} \exists_{l}$$
2.
$$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \lor B} \lor_{r}^{1} \qquad \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, B \lor A} \lor_{r}^{2}$$
s.t.
$$(\exists x)A(x) \text{ is a subformula of } B$$
3.
$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, B} w_{r} \qquad \frac{\Gamma \vdash \Delta}{B, \Gamma \vdash \Delta} w_{l}$$
s.t.
$$(\exists x)A(x) \text{ is a subformula of } B$$

・ 回 と ・ ヨ と ・ ヨ と

Proof sketch.

$$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \lor B[(\exists x)A(x)]} \lor_r^1$$

replaced by

 $\frac{\Gamma\vdash\Delta,A}{\Gamma\vdash\Delta,A\vee B[A(t)]}\,\vee^1_r$

where A(t) is Skolemization of $(\exists x)A(x)$ in S. Modify descendents of $A \lor B$ appropriately.

伺 とう ヨン うちょう

Proof sketch.

$$\frac{A(\alpha), \Gamma \vdash \Delta}{(\exists x)A(x), \Gamma \vdash \Delta} \exists_I$$

Let ρ be the sequence of descendents from $(\exists x)A(x)$. Let t_1, \ldots, t_n be the terms introduced on ρ by \exists_r rules. Let f be the Skolem symbol of the Skolemization of $(\exists x)A(x)$ in S. Replace proof of $(\exists x)A(x), \Gamma \vdash \Delta$ by $A(f(t_1, \ldots, t_n)), \Gamma \vdash \Delta$, modify descendents accordingly.

向下 イヨト イヨト

Properties of Skolemized proofs

- Observe: Only ancestors of the end-sequent are modified
- Ancestors of cut-formulas are never ancestors of the end-sequent
- Obtain: In Skolemized proofs,
 - 1. all strong quantifier rules operate on cut-ancestors
 - 2. no strong quantifier rules operate on end-sequent ancestors
- Cut-free proofs are closed under substitution

向下 イヨト イヨト

$$\frac{\Gamma \vdash \Delta, (\exists x) P(x) \quad (\exists x) P(x), \Pi \vdash \Lambda}{\Gamma, \Pi \vdash \Delta, \Lambda} cut$$

a valid inference, but Skolemizing the cut-formulas yields

$$\frac{\Gamma\vdash\Delta,(\exists x)P(x)\quad P(c),\Pi\vdash\Lambda}{\Gamma,\Pi\vdash\Delta,\Lambda} \text{ not a cut}$$

・ロン ・回と ・ヨン ・ヨン

æ

Summary & Application

- Prefix vs. Structural: Structural wins
- Efficient structural proof Skolemization exists
- Application CERES

伺 とう きょう とう とう

æ

- Original language \mathcal{L} , set of Skolem symbols $\mathcal{SK} = \{f_1, f_2, \ldots\}$
- J. Avigad 2003
 - Theory contains axioms $\forall \vec{x}, y(F_i(\vec{x}, y) \rightarrow F_i(\vec{x}, f_i(\vec{x})))$
 - Have proof in $\mathcal{L} \cup \mathcal{SK}$ of formula G in \mathcal{L}
 - Want proof in L of G
 - Result: If the theory allows coding of finite functions and we allow cuts, then this is possible with polynomial size increase

伺下 イヨト イヨト

- Original language \mathcal{L} , set of Skolem symbols $\mathcal{SK} = \{f_1, f_2, \ldots\}$
- J. Avigad 2003
- H. de Nivelle 2003
 - \blacktriangleright Have a resolution proof in $\mathcal{L} \cup \mathcal{SK}$
 - Introduce Skolem relations $SK_R = \{R_{f_1}, R_{f_2}, \ldots\}$
 - Want a resolution proof in $\mathcal{L} \cup \mathcal{SK}_R$
 - Result: Possible with polynomial size increase

伺下 イヨト イヨト

- ▶ Original language \mathcal{L} , set of Skolem symbols $\mathcal{SK} = \{f_1, f_2, \ldots\}$
- J. Avigad 2003
- H. de Nivelle 2003
- Our version:

Problem (Proof De-skolemization)

Input: Sequent S, cut-free LK -proof of $\mathrm{ssk}(S)$ Output: cut-free LK -proof of S

高 とう ヨン うまと

Definition

 \mathcal{QMON} is the class of $\mathbf{LK}\bot\text{-proofs}\ \pi$ such that

- 1. the end-sequent of π is a QM-sequent and
- 2. all cut-formulas are monotone.

 \mathcal{QMON}^* is the class of right-normal $\mathcal{QMON}\text{-}\mathsf{proofs}.$

Proposition (M. Baaz, A. Leitsch 1999)

Let $\pi \in \mathcal{QMON}^*$ be a contraction-normalized cut-free proof of a sequent S containing weak quantifiers only. Let S' be any sequent s.t. S is the Skolemization of S'. Then there exists a cut-free proof π' of S' with $l(\pi') \leq (\operatorname{quocc}(S') + 1)l(\pi)$, where quocc denotes the number of quantifier-occurrences.

Theorem

Let S be a closed sequent, and let π be a proof of ssk(S). Then there exists a proof φ of S such that $l(\varphi) < 3^{(quocc(ssk(S))+1)/(\pi)+1}$.

向下 イヨト イヨト

Proof sketch.

Skolem terms of the form $f(t_1, \ldots, t_n)$: *f*-Skolem terms.

Skolem terms not containing bound variables: free Skolem terms.

Idea: Eliminate Skolem terms one-by-one.

End-sequent of π : $\Gamma \vdash \Delta$, G[C(t)]. *t* is *f*-Skolem term.

Want proof of $\Gamma \vdash \Delta$, $G[(\exists y)C(y)]$.

If there are no free *f*-Skolem terms in ψ , then all ancestors of C(t) are introduced by weakening. Modify weakenings to get proof of $\Gamma \vdash \Delta$, $G[(\exists y)C(y)]$.

Proof sketch.

Assume there is a free f-Skolem term t' that is maximal w.r.t. term inclusion. Construct proof of either

 $\Gamma \vdash \Delta, G[(\exists y)C(y)],$

or

$$\Gamma \vdash \Delta, G[C(t)], G[(\exists y)C(y)]$$

depending on whether there is only one free f-Skolem term or more.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof sketch.

- Goal: $\Gamma \vdash \Delta$, G[C(t)], $G[(\exists y)C(y)]$
- First step: construct proof of $C(t')\sigma$, $\Gamma \vdash \Delta$, G[C(t)] by projection method

Idea: Apply rules introducing the connectives from C, then if C contains t', do not apply rules introducing connectives from G. σ is the substitution induced by the \exists_r we do not apply. Length of resulting proof $\leq l(\pi)$.

Proof sketch. Goal: $\Gamma \vdash \Delta$, G[C(t)], $G[(\exists y)C(y)]$ Have: $C(t')\sigma$, $\Gamma \vdash \Delta$, G[C(t)]Replace t' by a new variable α . By assumption Γ , Δ , G[C(t)]closed, and by construction all occurrences of t' indicated in C(t'). Hence we can apply \exists_l and get a proof of

$$(\exists y)C(y)\sigma, \Gamma \vdash \Delta, G[C(t)]$$

which has length $\leq l(\pi) + 1$. To do: introduce connectives from *G*.

伺 ト イミト イミト

Proof sketch.

Goal: $\Gamma \vdash \Delta$, G[C(t)], $G[(\exists y)C(y)]$ Have: $(\exists y)C(y)\sigma$, $\Gamma \vdash \Delta$, G[C(t)]

Most complicated part of proof. We know from π which rules to apply to get $G[(\exists y)C(y)]$. The complication arises from applying binary rules which introduce new material through the context. In particular, t' may be re-introduced in this way. It turns out that all of these occurrences are eliminated by \exists_r rules, so after constructing the desired proof, we can again replace t' by a new variable to completely eliminate it from the proof.

Proof sketch.

Have: $\Gamma \vdash \Delta$, G[C(t)], $G[(\exists y)C(y)]$

In addition to the proof obtained by the projection method, we apply at most $l(\pi)$ many rules. In the end, we have to apply at most $l(\pi)$ many contraction rules due to duplications due to context formulas. Hence our proof has length $\leq 3l(\pi)$. We have eliminated a free *f*-Skolem term, and there are at most $n = \text{quocc}(\text{ssk}(S))l(\pi)$ many such terms. After repeating the construction, we again have to insert at most *n* contractions and have obtained a proof φ of *S*. Finally we get $l(\varphi) < 3^{(\text{quocc}(\text{ssk}(S))+1)l(\pi)+1}$.

- Calculus LK_p
- Weakening restricted to be directly below axioms

$$\frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \lor B} \lor_{r}^{c}$$

$$\frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \neg_{r} \qquad \frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta} \neg_{l}$$

$$\frac{\Gamma \vdash \Delta, (\exists x)A, A[x \leftarrow t]}{\Gamma \vdash \Delta, (\exists x)A} \exists_{r}^{c} \qquad \frac{A[x \leftarrow \alpha], \Gamma \vdash \Delta}{(\exists x)A, \Gamma \vdash \Delta} \exists_{l}$$

$$\frac{A, \Gamma, \Pi \vdash \Delta, \Lambda \quad B, \Gamma', \Pi \vdash \Delta', \Lambda}{A \lor B, \Gamma, \Gamma', \Pi \vdash \Delta, \Delta', \Lambda} \lor_{l}^{c}$$

$$\frac{\Gamma \vdash \Delta}{\Pi, \Gamma \vdash \Delta, \Lambda} w_{*}$$

・回 ・ ・ ヨ ・ ・ ヨ ・

- Calculus LK_p
- Weakening restricted to be directly below axioms
- Polynomially equivalent to the usual formulations of LK

回 と く ヨ と く ヨ と

æ

Theorem

There exists a sequence of sequents (S_N) such that

- 1. for all LK_p -proofs π of S_N , $I(\pi) \ge 2^N + c$ for some constant c, and
- 2. there exists an LK_p -proof π_{ssk} of $\mathrm{ssk}(S_N)$ such that $l(\pi_{\mathrm{ssk}}) \leq k * N + c$ for some constants c, k.

向下 イヨト イヨト

Proof sketch. Take S_N to be $\vdash R_N$, where

$$\begin{array}{rcl} R_0 = & G_0 \rightarrow G_0 \\ R_n = & ((\exists x_n) P_n(x_n) \lor G_n) \rightarrow (\exists y_n) ((P_n(y_n) \lor G_n) \land R_{n-1}) \end{array}$$

Idea: Consider arbitrary \mathbf{LK}_p -proof π of S_N . As \mathbf{LK}_p is rather "deterministic", there are not many possible ways to apply its rules.

向下 イヨト イヨト

Lower bound

1. Only \rightarrow_r applicable

$\frac{(\exists x_N)P_N(x_N) \lor G_N \vdash (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1})}{\vdash ((\exists x_N)P_N(x_N) \lor G_N) \to (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1})} \to_r$

(《圖》 《문》 《문》 - 문

Lower bound

- 1. Only \rightarrow_r applicable
- 2. \exists_r not applicable (countermodel!), must apply \lor_l^c . Possibilities for π_1, π_2 :

2.1
$$(\exists x_N) P_N(x_N) \vdash$$
 for π_1 : \notin
2.2 $G_N \vdash$ for π_2 : \notin

$$\frac{\pi_1 \quad \pi_2}{(\exists x_N) P_N(x_N) \lor G_N \vdash (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1})} \lor_l^c}{((\exists x_N) P_N(x_N) \lor G_N) \to (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1})} \to_r^c$$

(《圖》 《문》 《문》 - 문

- 1. Only \rightarrow_r applicable
- 2. \exists_r not applicable (countermodel!), must apply \lor_l^c . Possibilities for π_1, π_2 :

2.1
$$(\exists x_N)P_N(x_N) \vdash \text{ for } \pi_1: \notin$$

2.2 $G_N \vdash \text{ for } \pi_2: \notin$

2.3
$$(\exists x_N)P_N(x_N) \vdash (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1})$$
 for π_1 ,
 $G_N \vdash (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1})$ for π_2 .

$$\frac{\pi_1 \quad \pi_2}{(\exists x_N) P_N(x_N) \lor G_N \vdash (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1})} \lor_l^c} (\exists x_N) P_N(x_N) \lor G_N) \to (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1})} \to r$$

・ 回 と ・ ヨ と ・ ヨ と

Lower bound

1. Again \exists_r is not applicable, must apply \exists_l .

$$\frac{P_N(\alpha_N) \vdash (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1})}{(\exists x_N)P_N(x_N) \vdash (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1})} \exists_I$$

(ロ) (同) (E) (E) (E)

- 1. Again \exists_r is not applicable, must apply \exists_l .
- 2. Only applicable rule is \exists_r , instantiating some term t.

$$\frac{P_{N}(\alpha_{N}) \vdash (P_{N}(t) \lor G_{N}) \land R_{N-1}, (\exists y_{N})((P_{N}(y_{N}) \lor G_{N}) \land R_{N-1})}{P_{N}(\alpha_{N}) \vdash (\exists y_{N})((P_{N}(y_{N}) \lor G_{N}) \land R_{N-1})} \exists_{I}} \exists_{I}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

- 1. Again \exists_r is not applicable, must apply \exists_l .
- 2. Only applicable rule is \exists_r , instantiating some term *t*.
- 3. Two \exists_r never need to be applied consecutively on the same formula. We have to apply \wedge_r .

$$\frac{\begin{array}{c} \pi_{1}^{1} & \pi_{1}^{2} \\ \hline P_{N}(\alpha_{N}) \vdash (P_{N}(t) \lor G_{N}) \land R_{N-1}, (\exists y_{N})((P_{N}(y_{N}) \lor G_{N}) \land R_{N-1}) \\ \hline \hline P_{N}(\alpha_{N}) \vdash (\exists y_{N})((P_{N}(y_{N}) \lor G_{N}) \land R_{N-1}) \\ \hline (\exists x_{N})P_{N}(x_{N}) \vdash (\exists y_{N})((P_{N}(y_{N}) \lor G_{N}) \land R_{N-1}) \\ \hline \end{array}} \exists_{I}$$

▲□→ ▲ 国 → ▲ 国 →

- 1. Again \exists_r is not applicable, must apply \exists_l .
- 2. Only applicable rule is \exists_r , instantiating some term t.
- 3. Two \exists_r never need to be applied consecutively on the same formula. We have to apply \wedge_r .
- 4. Right subproof must be $\vdash R_{N-1}$. Otherwise we have to prove either
 - 4.1 ⊢ $(\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1}), R_{N-1}$. Neither P_N nor G_N occur in R_{N-1} , so a proof of this is at least as long as the shortest proof of ⊢ R_{N-1} .
 - 4.2 $P_N(\alpha_N) \vdash R_{N-1}$. P_N does not occur in R_{N-1} , so a proof of this is at least as long as the shortest proof of $\vdash R_{N-1}$.
 - 4.3 $P_N(\alpha_N) \vdash (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1}), R_{N-1}$. P_N does not occur in R_{N-1} , so we have to prove $P_N(\alpha_N) \vdash (\exists y_N)((P_N(y_N) \lor G_N) \land R_{N-1})$, but then the shortest proof must contain itself: \oint .

The argument for π_2 is similar. We obtain that π_1 , π_2 must both contain proofs of $\vdash R_{N-1}$, hence by induction we get that $l(\pi) \ge 2^N + c$ for some constant c.

・ロン ・回 と ・ ヨ と ・ ヨ と

Now we give the short
$$\mathsf{LK}_{p}$$
-proof of $\operatorname{ssk}(S_N)$.
Set $s_n^N = f_n(y_N, y_{N-1}, \dots, y_{n+1})$, then $\operatorname{ssk}(S_N)$ is $\vdash K_N^N$ where

$$\begin{array}{lll} \mathcal{K}_0^N = & \mathcal{G}_0 \to \mathcal{G}_0 \\ \mathcal{K}_n^N = & (\mathcal{P}_n(s_n^N) \vee \mathcal{G}_n) \to (\exists y_n)((\mathcal{P}_n(y_n) \vee \mathcal{G}_n) \wedge \mathcal{K}_{n-1}^N) \end{array}$$

Let σ be any substitution, then we give a proof of $\vdash K_n^N \sigma$.

(ロ) (同) (E) (E) (E)

$$\frac{\overline{P_{n}(s_{n}^{N}\sigma) \vee G_{n} \vdash P_{n}(s_{n}^{N}\sigma) \vee G_{n}}}{P_{n}(s_{n}^{N}\sigma) \vee G_{n} \vdash (P_{n}(s_{n}^{N}\sigma) \vee G_{n}) \wedge K_{n-1}^{N}\sigma\{y_{n} \leftarrow s_{n}^{N}\sigma\}}{\frac{P_{n}(s_{n}^{N}\sigma) \vee G_{n} \vdash (P_{n}(s_{n}^{N}\sigma) \vee G_{n}) \wedge K_{n-1}^{N}\sigma\{y_{n} \leftarrow s_{n}^{N}\sigma\}}{P_{n}(s_{n}^{N}\sigma) \vee G_{n} \vdash (\exists y_{n})((P_{n}(y_{n}) \vee G_{n}) \wedge K_{n-1}^{N}\sigma)}} \exists_{r}^{c} + w_{r}}$$

By induction hypothesis, we have a proof of $\vdash K_{n-1}^N \sigma \{ y_n \leftarrow s_n^N \sigma \}$ of length $\leq k * (n-1) + c$, so this proof has length $\leq k * n + c$. \Box

(4回) (注) (注) (注) (注)

Summary & Application

- Efficient de-Skolemization impossible in tree-like LK
- Application CERES: Elimination of single cuts

▲圖▶ ▲屋▶ ▲屋▶ ---

æ

Future Work

- Complexity of de-Skolemization in DAG-like LK
- Complexity of de-Skolemization w.r.t. CERES
- Does the de-Skolemization proof work with Andrews Skolemization?

向下 イヨト イヨト