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Preliminaries

I classical logic, restrict to ∨,∃,¬
I tree-like LK-proofs

Γ ` ∆,A

Γ ` ∆,A ∨ B
∨1

r

Γ ` ∆,A

Γ ` ∆,B ∨ A
∨2

r

A, Γ ` ∆

Γ ` ∆,¬A
¬r

Γ ` ∆,A

¬A, Γ ` ∆
¬l

Γ ` ∆,A[x ← t]

Γ ` ∆, (∃x)A
∃r

A[x ← α], Γ ` ∆

(∃x)A, Γ ` ∆
∃l

A, Γ ` ∆ B,Π ` Λ

A ∨ B, Γ,Π ` ∆,Λ
∨l

Γ ` ∆,A A,Π ` Λ

Γ,Π ` ∆,Λ
cut

Γ ` ∆
Γ ` ∆,A

wr
Γ ` ∆

A, Γ ` ∆
wl

A,A, Γ ` ∆

A, Γ ` ∆
cl

Γ ` ∆,A,A

Γ ` ∆,A
cr
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I Proof length l(π) = number of sequents in π
I Polarities, strong quantifiers, strong quantifier rules

I If (∃x)F , G ∨ H have positive (negative) polarity, then F , G ,
H have positive (negative) polarity

I If ¬F has positive (negative) polarity, then F has negative
(positive) polarity

I In Γ ` ∆, Γ has negative and ∆ has positive polarity
I Negative (∃x) are called strong, positive (∃x) are called weak
I Rules of LK preserve polarity w.r.t. ancestors
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Why Skolemize?

I Eliminate one type of quantifier

I Often: functions obtained have natural interpretation

Example

(∀x)(∃y)(PRIME (y) ∧ DIV (y , x))
 sk (∀x)(PRIME (f (x)) ∧ DIV (f (x), x))

f (x) is a prime divisor of x
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Proof De-Skolemization

Different Methods

I F a closed formula
I Prefix Skolemization psk(F ) (if F occurs positively)

I compute prefix form FP of F
I if Fi = (∃x1 . . . xn)(∀y)F (y) then

Fi+1 = (∃x1 . . . xn)F (f (x1, . . . , xn))

I Structural Skolemization ssk(F )
I Skolemize “in place”
I if (∃y) is a strong quantifier in Fi in the scope of weak

quantifiers (∃x1), . . . , (∃xn), then Fi+1 is obtained from Fi by
dropping (∃y) and substituting f (x1, . . . , xn) for y

I Unique up to renaming of Skolem functions

I Andrews Skolemization ask(F )
I substitute f (xi1 , . . . , xik ) for y , where the xij are in the scope of

(∃y)
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Different Methods

Definition (Herbrand complexity)

If S is a valid sequent containing only weak quantifiers, then
HC(S) is the minimal length of a Herbrand sequent of S .

Theorem (M. Baaz, A. Leitsch 1994)

There exists a sequence of sequents (Sn) such that for some prefix
Skolemization psk(Sn), HC(psk(Sn)) is non-elementary but
HC(ssk(Sn)) is elementary.

Proposition (M. Baaz, A. Leitsch 1994)

Let S ′ be obtained from a sequent S by antiprenexing via
quantifier shifting. Then HC(ssk(S ′)) ≤ HC(ssk(S)).
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Proof Skolemization

Problem (Proof Skolemization)

Input: LK-proof of S
Output: LK-proof of ssk(S)

Proposition (M. Baaz, A. Leitsch 1999)

Let π be an LK-proof of S. Then there exists an LK-proof πssk of
ssk(S) s.t. l(πssk) ≤ l(π).
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Proof Skolemization

Proof sketch.
Assume S contains negative occurrence of (∃x)A(x). It can be
introduced in π as

1.

A(α), Γ ` ∆

(∃x)A(x), Γ ` ∆
∃l

2.

Γ ` ∆,A

Γ ` ∆,A ∨ B
∨1

r

Γ ` ∆,A

Γ ` ∆,B ∨ A
∨2

r

s.t. (∃x)A(x) is a subformula of B

3.
Γ ` ∆

Γ ` ∆,B
wr

Γ ` ∆
B, Γ ` ∆

wl

s.t. (∃x)A(x) is a subformula of B
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Proof Skolemization

Proof sketch.

Γ ` ∆,A

Γ ` ∆,A ∨ B[(∃x)A(x)]
∨1

r

replaced by

Γ ` ∆,A

Γ ` ∆,A ∨ B[A(t)]
∨1

r

where A(t) is Skolemization of (∃x)A(x) in S .
Modify descendents of A ∨ B appropriately.
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Proof Skolemization

Proof sketch.

A(α), Γ ` ∆

(∃x)A(x), Γ ` ∆
∃l

Let ρ be the sequence of descendents from (∃x)A(x). Let
t1, . . . , tn be the terms introduced on ρ by ∃r rules. Let f be the
Skolem symbol of the Skolemization of (∃x)A(x) in S . Replace
proof of (∃x)A(x), Γ ` ∆ by A(f (t1, . . . , tn)), Γ ` ∆, modify
descendents accordingly.
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Properties of Skolemized proofs

I Observe: Only ancestors of the end-sequent are modified

I Ancestors of cut-formulas are never ancestors of the
end-sequent

I Obtain: In Skolemized proofs,

1. all strong quantifier rules operate on cut-ancestors
2. no strong quantifier rules operate on end-sequent ancestors

I Cut-free proofs are closed under substitution
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Skolemizing cut?

Γ ` ∆, (∃x)P(x) (∃x)P(x),Π ` Λ

Γ,Π ` ∆,Λ
cut

a valid inference, but Skolemizing the cut-formulas yields

Γ ` ∆, (∃x)P(x) P(c),Π ` Λ

Γ,Π ` ∆,Λ
not a cut
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Summary & Application

I Prefix vs. Structural: Structural wins

I Efficient structural proof Skolemization exists

I Application CERES
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Proof De-Skolemization

I Original language L, set of Skolem symbols SK = {f1, f2, . . .}
I J. Avigad 2003

I Theory contains axioms ∀~x , y(Fi (~x , y)→ Fi (~x , fi (~x)))
I Have proof in L ∪ SK of formula G in L
I Want proof in L of G
I Result: If the theory allows coding of finite functions and we

allow cuts, then this is possible with polynomial size increase

I H. de Nivelle 2003

I Our version:
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Proof De-Skolemization

I Original language L, set of Skolem symbols SK = {f1, f2, . . .}
I J. Avigad 2003
I H. de Nivelle 2003

I Have a resolution proof in L ∪ SK
I Introduce Skolem relations SKR = {Rf1 ,Rf2 , . . .}
I Want a resolution proof in L ∪ SKR

I Result: Possible with polynomial size increase

I Our version:
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Proof De-Skolemization

I Original language L, set of Skolem symbols SK = {f1, f2, . . .}
I J. Avigad 2003

I H. de Nivelle 2003

I Our version:

Problem (Proof De-skolemization)

Input: Sequent S, cut-free LK-proof of ssk(S)
Output: cut-free LK-proof of S
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Upper bound

Definition
QMON is the class of LK⊥-proofs π such that

1. the end-sequent of π is a QM-sequent and

2. all cut-formulas are monotone.

QMON ∗ is the class of right-normal QMON -proofs.

Proposition (M. Baaz, A. Leitsch 1999)

Let π ∈ QMON ∗ be a contraction-normalized cut-free proof of a
sequent S containing weak quantifiers only. Let S ′ be any sequent
s.t. S is the Skolemization of S ′. Then there exists a cut-free proof
π′ of S ′ with l(π′) ≤ (quocc(S ′) + 1)l(π), where quocc denotes
the number of quantifier-occurrences.
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Upper bound

Theorem
Let S be a closed sequent, and let π be a proof of ssk(S). Then
there exists a proof ϕ of S such that l(ϕ) < 3(quocc(ssk(S))+1)l(π)+1.
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Upper bound

Proof sketch.
Skolem terms of the form f (t1, . . . , tn): f -Skolem terms.
Skolem terms not containing bound variables: free Skolem terms.
Idea: Eliminate Skolem terms one-by-one.
End-sequent of π: Γ ` ∆,G [C (t)]. t is f -Skolem term.
Want proof of Γ ` ∆,G [(∃y)C (y)].
If there are no free f -Skolem terms in ψ, then all ancestors of C (t)
are introduced by weakening. Modify weakenings to get proof of
Γ ` ∆,G [(∃y)C (y)].
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Upper bound

Proof sketch.
Assume there is a free f -Skolem term t ′ that is maximal w.r.t.
term inclusion. Construct proof of either

Γ ` ∆,G [(∃y)C (y)],

or
Γ ` ∆,G [C (t)],G [(∃y)C (y)]

depending on whether there is only one free f -Skolem term or
more.
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Upper bound

Proof sketch.
Goal: Γ ` ∆,G [C (t)],G [(∃y)C (y)]
First step: construct proof of C (t ′)σ, Γ ` ∆,G [C (t)] by projection
method
Idea: Apply rules introducing the connectives from C , then if C
contains t ′, do not apply rules introducing connectives from G . σ
is the substitution induced by the ∃r we do not apply.
Length of resulting proof ≤ l(π).
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Upper bound

Proof sketch.
Goal: Γ ` ∆,G [C (t)],G [(∃y)C (y)]
Have: C (t ′)σ, Γ ` ∆,G [C (t)]
Replace t ′ by a new variable α. By assumption Γ,∆,G [C (t)]
closed, and by construction all occurrences of t ′ indicated in C (t ′).
Hence we can apply ∃l and get a proof of

(∃y)C (y)σ, Γ ` ∆,G [C (t)]

which has length ≤ l(π) + 1.
To do: introduce connectives from G .
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Upper bound

Proof sketch.
Goal: Γ ` ∆,G [C (t)],G [(∃y)C (y)]
Have: (∃y)C (y)σ, Γ ` ∆,G [C (t)]
Most complicated part of proof. We know from π which rules to
apply to get G [(∃y)C (y)]. The complication arises from applying
binary rules which introduce new material through the context. In
particular, t ′ may be re-introduced in this way. It turns out that all
of these occurrences are eliminated by ∃r rules, so after
constructing the desired proof, we can again replace t ′ by a new
variable to completely eliminate it from the proof.
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Upper bound

Proof sketch.
Have: Γ ` ∆,G [C (t)],G [(∃y)C (y)]
In addition to the proof obtained by the projection method, we
apply at most l(π) many rules. In the end, we have to apply at
most l(π) many contraction rules due to duplications due to
context formulas. Hence our proof has length ≤ 3l(π). We have
eliminated a free f -Skolem term, and there are at most
n = quocc(ssk(S))l(π) many such terms. After repeating the
construction, we again have to insert at most n contractions and
have obtained a proof ϕ of S . Finally we get
l(ϕ) < 3(quocc(ssk(S))+1)l(π)+1.
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Lower bound

I Calculus LKp

I Weakening restricted to be directly below axioms

Γ ` ∆,A,B

Γ ` ∆,A ∨ B
∨c

r

A, Γ ` ∆

Γ ` ∆,¬A
¬r

Γ ` ∆,A

¬A, Γ ` ∆
¬l

Γ ` ∆, (∃x)A,A[x ← t]

Γ ` ∆, (∃x)A
∃cr

A[x ← α], Γ ` ∆

(∃x)A, Γ ` ∆
∃l

A, Γ,Π ` ∆,Λ B, Γ′,Π ` ∆′,Λ

A ∨ B, Γ, Γ′,Π ` ∆,∆′,Λ
∨c

l

Γ ` ∆
Π, Γ ` ∆,Λ

w∗

I Polynomially equivalent to the usual formulations of LK
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Lower bound

Theorem
There exists a sequence of sequents (SN) such that

1. for all LKp-proofs π of SN , l(π) ≥ 2N + c for some constant
c, and

2. there exists an LKp-proof πssk of ssk(SN) such that
l(πssk) ≤ k ∗ N + c for some constants c , k.
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Lower bound

Proof sketch.
Take SN to be ` RN , where

R0 = G0 → G0

Rn = ((∃xn)Pn(xn) ∨ Gn)→ (∃yn)((Pn(yn) ∨ Gn) ∧ Rn−1)

Idea: Consider arbitrary LKp-proof π of SN . As LKp is rather
“deterministic”, there are not many possible ways to apply its rules.
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Lower bound

1. Only →r applicable

2. ∃r not applicable (countermodel!), must apply ∨c
l .

(∃xN)PN(xN) ∨ GN ` (∃yN)((PN(yN) ∨ GN) ∧ RN−1) →r
` ((∃xN)PN(xN) ∨ GN)→ (∃yN)((PN(yN) ∨ GN) ∧ RN−1)
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Lower bound

1. Only →r applicable

2. ∃r not applicable (countermodel!), must apply ∨c
l .

Possibilities for π1, π2:

2.1 (∃xN)PN(xN) ` for π1:  
2.2 GN ` for π2:  

2.3 (∃xN)PN(xN) ` (∃yN)((PN(yN) ∨ GN) ∧ RN−1) for π1,
GN ` (∃yN)((PN(yN) ∨ GN) ∧ RN−1) for π2.

π1 π2 ∨c
l(∃xN)PN(xN) ∨ GN ` (∃yN)((PN(yN) ∨ GN) ∧ RN−1) →r

((∃xN)PN(xN) ∨ GN)→ (∃yN)((PN(yN) ∨ GN) ∧ RN−1)
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Lower bound

1. Again ∃r is not applicable, must apply ∃l .

2. Only applicable rule is ∃r , instantiating some term t.

3. Two ∃r never need to be applied consecutively on the same
formula. We have to apply ∧r .

PN(αN) ` (∃yN)((PN(yN) ∨ GN) ∧ RN−1) ∃l
(∃xN)PN(xN) ` (∃yN)((PN(yN) ∨ GN) ∧ RN−1)
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2. Only applicable rule is ∃r , instantiating some term t.

3. Two ∃r never need to be applied consecutively on the same
formula. We have to apply ∧r .

π1
1 π2

1 ∧r
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Lower bound

1. Again ∃r is not applicable, must apply ∃l .
2. Only applicable rule is ∃r , instantiating some term t.
3. Two ∃r never need to be applied consecutively on the same

formula. We have to apply ∧r .
4. Right subproof must be ` RN−1. Otherwise we have to prove

either
4.1 ` (∃yN)((PN(yN) ∨ GN) ∧ RN−1),RN−1. Neither PN nor GN

occur in RN−1, so a proof of this is at least as long as the
shortest proof of ` RN−1.

4.2 PN(αN) ` RN−1. PN does not occur in RN−1, so a proof of
this is at least as long as the shortest proof of ` RN−1.

4.3 PN(αN) ` (∃yN)((PN(yN) ∨ GN) ∧ RN−1),RN−1. PN does not
occur in RN−1, so we have to prove
PN(αN) ` (∃yN)((PN(yN) ∨ GN) ∧ RN−1), but then the
shortest proof must contain itself:  .

π1
1 π2

1 ∧r
PN(αN) ` (PN(t) ∨ GN) ∧ RN−1, (∃yN)((PN(yN) ∨ GN) ∧ RN−1) ∃crPN(αN) ` (∃yN)((PN(yN) ∨ GN) ∧ RN−1) ∃l

(∃xN)PN(xN) ` (∃yN)((PN(yN) ∨ GN) ∧ RN−1)

Matthias Baaz, Stefan Hetzl, Daniel Weller Proof Skolemization and De-Skolemization



Proof Skolemization
Proof De-Skolemization

Lower bound

The argument for π2 is similar. We obtain that π1, π2 must both
contain proofs of ` RN−1, hence by induction we get that
l(π) ≥ 2N + c for some constant c .
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Lower bound

Now we give the short LKp-proof of ssk(SN).
Set sN

n = fn(yN , yN−1, . . . , yn+1), then ssk(SN) is ` KN
N where

KN
0 = G0 → G0

KN
n = (Pn(s

N
n ) ∨ Gn)→ (∃yn)((Pn(yn) ∨ Gn) ∧ KN

n−1)

Let σ be any substitution, then we give a proof of ` KN
n σ.
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Lower bound

. . . ∨c
r

Pn(s
N
n σ) ∨ Gn ` Pn(s

N
n σ) ∨ Gn ` KN

n−1σ{yn ← sN
n σ} ∧c

r
Pn(s

N
n σ) ∨ Gn ` (Pn(s

N
n σ) ∨ Gn) ∧ KN

n−1σ{yn ← sN
n σ} ∃cr + wr

Pn(s
N
n σ) ∨ Gn ` (∃yn)((Pn(yn) ∨ Gn) ∧ KN

n−1σ) →r
` (Pn(s

N
n σ) ∨ Gn)→ (∃yn)((Pn(yn) ∨ Gn) ∧ KN

n−1σ)

By induction hypothesis, we have a proof of ` KN
n−1σ{yn ← sN

n σ}
of length ≤ k ∗ (n−1)+ c , so this proof has length ≤ k ∗n+ c .
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Summary & Application

I Efficient de-Skolemization impossible in tree-like LK

I Application CERES: Elimination of single cuts
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Future Work

I Complexity of de-Skolemization in DAG-like LK

I Complexity of de-Skolemization w.r.t. CERES

I Does the de-Skolemization proof work with Andrews
Skolemization?
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