Proof Skolemization and De-Skolemization

Matthias Baaz, Stefan Hetzl, Daniel Weller

Workshop on Logic and Computation, Vienna, 30 June 2009

Preliminaries

- classical logic, restrict to \vee, \exists, \neg
- tree-like LK-proofs

$$
\begin{aligned}
\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \vee B} \vee_{r}^{1} & \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, B \vee A} \vee_{r}^{2} \\
\frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \neg_{r} & \frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta} \neg / \\
\frac{\Gamma \vdash \Delta, A[x \leftarrow t]}{\Gamma \vdash \Delta,(\exists x) A} \exists_{r} & \frac{A[x \leftarrow \alpha], \Gamma \vdash \Delta}{(\exists x) A, \Gamma \vdash \Delta} \exists_{l} \\
\frac{A, \Gamma \vdash \Delta}{A \vee B, \Gamma, \Pi \vdash \Delta, \Lambda} \vee_{I} & \frac{\Gamma \vdash \Delta, A \quad A, \Pi \vdash \Lambda}{\Gamma, \Pi \vdash \Delta, \Lambda} c u t \\
\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} w_{r} & \frac{\Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} w_{l}
\end{aligned} \frac{A, A, \Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} c_{l} \frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A} c_{r}, ~ l
$$

Preliminaries

- classical logic, restrict to \vee, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents

$$
\begin{gathered}
\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \vee B} \vee_{r}^{1} \\
\frac{A, \Gamma \vdash \Delta}{A \vee B, \Gamma, \sqcap \vdash \Delta, \Lambda} \quad B, \sqcap \vdash \wedge \\
\vee_{l} \quad \frac{\Gamma \vdash \Delta, A \quad A, \sqcap \vdash \Lambda}{\Gamma, \sqcap \vdash \Delta, \Lambda} c u t \\
\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} w_{r} \quad \frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A} c_{r}
\end{gathered}
$$

Preliminaries

- classical logic, restrict to \vee, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)=$ number of sequents in π

Preliminaries

- classical logic, restrict to \vee, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)=$ number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules

Preliminaries

- classical logic, restrict to \vee, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)=$ number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules
- If $(\exists x) F, G \vee H$ have positive (negative) polarity, then F, G, H have positive (negative) polarity

Preliminaries

- classical logic, restrict to \vee, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)=$ number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules
- If $(\exists x) F, G \vee H$ have positive (negative) polarity, then F, G, H have positive (negative) polarity
- If $\neg F$ has positive (negative) polarity, then F has negative (positive) polarity

Preliminaries

- classical logic, restrict to \vee, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)=$ number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules
- If $(\exists x) F, G \vee H$ have positive (negative) polarity, then F, G, H have positive (negative) polarity
- If $\neg F$ has positive (negative) polarity, then F has negative (positive) polarity
- In $\Gamma \vdash \Delta, \Gamma$ has negative and Δ has positive polarity

Preliminaries

- classical logic, restrict to \vee, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)=$ number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules
- If $(\exists x) F, G \vee H$ have positive (negative) polarity, then F, G, H have positive (negative) polarity
- If $\neg F$ has positive (negative) polarity, then F has negative (positive) polarity
- In $\Gamma \vdash \Delta$, Γ has negative and Δ has positive polarity
- Negative ($\exists x$) are called strong, positive $(\exists x)$ are called weak

Preliminaries

- classical logic, restrict to \vee, \exists, \neg
- tree-like LK-proofs
- ancestors, descendents
- Proof length $I(\pi)=$ number of sequents in π
- Polarities, strong quantifiers, strong quantifier rules
- If $(\exists x) F, G \vee H$ have positive (negative) polarity, then F, G, H have positive (negative) polarity
- If $\neg F$ has positive (negative) polarity, then F has negative (positive) polarity
- In $\Gamma \vdash \Delta$, Γ has negative and Δ has positive polarity
- Negative ($\exists x$) are called strong, positive ($\exists x$) are called weak
- Rules of LK preserve polarity w.r.t. ancestors

Why Skolemize?

- Eliminate one type of quantifier
- Often: functions obtained have natural interpretation

Example

$$
\begin{array}{ll}
& (\forall x)(\exists y)(\operatorname{PRIME}(y) \wedge \operatorname{DIV}(y, x)) \\
\rightsquigarrow_{\mathrm{sk}} & (\forall x)(\operatorname{PRIME}(f(x)) \wedge \operatorname{DIV}(f(x), x))
\end{array}
$$

$f(x)$ is a prime divisor of x

Different Methods

- F a closed formula
- Prefix Skolemization psk (F) (if F occurs positively)
- compute prefix form F_{P} of F

- Structural Skolemization $\operatorname{ssk}(F)$
- Skolemize "in place"

- Andrews Skolemization ask(F)

\downarrow substitute $f\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for y, where the $x_{i_{j}}$ are in the scope of ($\exists \mathrm{y})$

Different Methods

- F a closed formula
- Prefix Skolemization psk (F) (if F occurs positively)
- compute prefix form F_{P} of F
- if $F_{i}=\left(\exists x_{1} \ldots x_{n}\right)(\forall y) F(y)$ then $F_{i+1}=\left(\exists x_{1} \ldots x_{n}\right) F\left(f\left(x_{1}, \ldots, x_{n}\right)\right)$
- Structural Skolemization $\operatorname{ssk}(F)$
- Skolemize "in place"
- Andrews Skolemization ask(F)
s substitute $f\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for y, where the $x_{i_{j}}$ are in the scope of ($\exists \mathrm{y})$

Different Methods

- F a closed formula
- Prefix Skolemization psk (F) (if F occurs positively)
- compute prefix form F_{p} of F

- Structural Skolemization ssk(F)
- Skolemize "in place"

- Andrews Skolemization ask(F)
- substitute $f\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for y, where the $x_{i_{j}}$ are in the scope of ($\exists \mathrm{y})$

Different Methods

- F a closed formula
- Prefix Skolemization psk (F) (if F occurs positively)
- Structural Skolemization ssk(F)
- Skolemize "in place"
- if $(\exists y)$ is a strong quantifier in F_{i} in the scope of weak quantifiers $\left(\exists x_{1}\right), \ldots,\left(\exists x_{n}\right)$, then F_{i+1} is obtained from F_{i} by dropping ($\exists y$) and substituting $f\left(x_{1}, \ldots, x_{n}\right)$ for y
- Andrews Skolemization ask(F) - substitute $f\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for y, where the x_{i} are in the scope of ($\exists \mathrm{y})$

Different Methods

- F a closed formula
- Prefix Skolemization psk (F) (if F occurs positively)
- Structural Skolemization ssk(F)
- Skolemize "in place"
- if $(\exists y)$ is a strong quantifier in F_{i} in the scope of weak quantifiers $\left(\exists x_{1}\right), \ldots,\left(\exists x_{n}\right)$, then F_{i+1} is obtained from F_{i} by dropping ($\exists y$) and substituting $f\left(x_{1}, \ldots, x_{n}\right)$ for y
- Unique up to renaming of Skolem functions
- Andrews Skolemization ask(F)
- substitute $f\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for y, where the $x_{i_{j}}$ are in the scope of $(\exists y)$

Different Methods

- F a closed formula
- Prefix Skolemization psk (F) (if F occurs positively)
$\begin{aligned} & \text { if } F_{i}=\left(\exists x_{1} \ldots x_{n}\right)(\forall y) F(y) \text { t } \\ & F_{i+1}=\left(\exists x_{1} \ldots x_{n}\right) F\left(f\left(x_{1}, \ldots\right.\right. \\ & \text { ructural Skolemization } \operatorname{ssk}(F)\end{aligned}$
- Skolemize "in place"
- if $(\exists y)$ is a strong quantifier in F_{i} in the scope of weak quantifiers $\left(\exists x_{1}\right), \ldots,\left(\exists x_{n}\right)$, then F_{i+1} is obtained from F_{i} by dropping ($\exists y$) and substituting $f\left(x_{1}, \ldots, x_{n}\right)$ for y
- Unique up to renaming of Skolem functions
- Andrews Skolemization ask(F)
- substitute $f\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for y, where the $x_{i_{j}}$ are in the scope of ($\exists y$)

Different Methods

Definition (Herbrand complexity)

If S is a valid sequent containing only weak quantifiers, then $\mathrm{HC}(S)$ is the minimal length of a Herbrand sequent of S.

Theorem (M. Baaz, A. Leitsch 1994)
There exists a sequence of sequents $\left(S_{n}\right)$ such that for some prefix Skolemization $\operatorname{psk}\left(S_{n}\right), \operatorname{HC}\left(\operatorname{psk}\left(S_{n}\right)\right)$ is non-elementary but $\operatorname{HC}\left(\operatorname{ssk}\left(S_{n}\right)\right)$ is elementary.

Proposition (M. Baaz, A. Leitsch 1994)
Let S^{\prime} be obtained from a sequent S by antiprenexing via quantifier shifting. Then $\mathrm{HC}\left(\operatorname{ssk}\left(S^{\prime}\right)\right) \leq \mathrm{HC}(\operatorname{ssk}(S))$.

Proof Skolemization

Problem (Proof Skolemization)
 Input: LK-proof of S
 Output: LK-proof of $\operatorname{ssk}(S)$

Proof Skolemization

Problem (Proof Skolemization)
Input: LK-proof of S
Output: LK-proof of ssk(S)
Proposition (M. Baaz, A. Leitsch 1999)
Let π be an LK-proof of S. Then there exists an LK-proof $\pi_{\text {ssk }}$ of $\operatorname{ssk}(S)$ s.t. $I\left(\pi_{\text {ssk }}\right) \leq I(\pi)$.

Proof Skolemization

Proof sketch.

Assume S contains negative occurrence of $(\exists x) A(x)$. It can be introduced in π as

1. $\frac{A(\alpha), \Gamma \vdash \Delta}{(\exists x) A(x), \Gamma \vdash \Delta} \exists_{l}$
2. $\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \vee B} \vee_{r}^{1} \quad \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, B \vee A} \vee_{r}^{2}$
s.t. $(\exists x) A(x)$ is a subformula of B
3. $\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, B} w_{r} \quad \frac{\Gamma \vdash \Delta}{B, \Gamma \vdash \Delta} w_{l}$
s.t. $(\exists x) A(x)$ is a subformula of B

Proof Skolemization

Proof sketch.
$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \vee B[(\exists x) A(x)]} \vee_{r}^{1}$
replaced by
$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \vee B[A(t)]} \vee_{r}^{1}$
where $A(t)$ is Skolemization of $(\exists x) A(x)$ in S.
Modify descendents of $A \vee B$ appropriately.

Proof Skolemization

Proof sketch.
$\frac{A(\alpha), \Gamma \vdash \Delta}{(\exists x) A(x), \Gamma \vdash \Delta} \exists_{l}$
Let ρ be the sequence of descendents from $(\exists x) A(x)$. Let t_{1}, \ldots, t_{n} be the terms introduced on ρ by \exists_{r} rules. Let f be the Skolem symbol of the Skolemization of $(\exists x) A(x)$ in S. Replace proof of $(\exists x) A(x), \Gamma \vdash \Delta$ by $A\left(f\left(t_{1}, \ldots, t_{n}\right)\right), \Gamma \vdash \Delta$, modify descendents accordingly.

Properties of Skolemized proofs

- Observe: Only ancestors of the end-sequent are modified
- Ancestors of cut-formulas are never ancestors of the end-sequent
- Obtain: In Skolemized proofs,

1. all strong quantifier rules operate on cut-ancestors
2. no strong quantifier rules operate on end-sequent ancestors

- Cut-free proofs are closed under substitution

Skolemizing cut?

$$
\frac{\Gamma \vdash \Delta,(\exists x) P(x)(\exists x) P(x), \Pi \vdash \Lambda}{\Gamma, \Pi \vdash \Delta, \Lambda} c u t
$$

a valid inference, but Skolemizing the cut-formulas yields

$$
\frac{\Gamma \vdash \Delta,(\exists x) P(x) \quad P(c), \Pi \vdash \Lambda}{\Gamma, \Pi \vdash \Delta, \Lambda} \text { not a cut }
$$

Summary \& Application

- Prefix vs. Structural: Structural wins
- Efficient structural proof Skolemization exists
- Application CERES

Proof De-Skolemization

- Original language \mathcal{L}, set of Skolem symbols $\mathcal{S K}=\left\{f_{1}, f_{2}, \ldots\right\}$
- J. Avigad 2003
- Theory contains axioms $\forall \vec{x}, y\left(F_{i}(\vec{x}, y) \rightarrow F_{i}\left(\vec{x}, f_{i}(\vec{x})\right)\right)$
- Have proof in $\mathcal{L} \cup \mathcal{S K}$ of formula G in \mathcal{L}
- Want proof in \mathcal{L} of G
- Result: If the theory allows coding of finite functions and we allow cuts, then this is possible with polynomial size increase

Proof De-Skolemization

- Original language \mathcal{L}, set of Skolem symbols $\mathcal{S K}=\left\{f_{1}, f_{2}, \ldots\right\}$
- J. Avigad 2003
- H. de Nivelle 2003
- Have a resolution proof in $\mathcal{L} \cup \mathcal{S K}$
- Introduce Skolem relations $\mathcal{S} \mathcal{K}_{R}=\left\{R_{f_{1}}, R_{f_{2}}, \ldots\right\}$
- Want a resolution proof in $\mathcal{L} \cup \mathcal{S K}_{R}$
- Result: Possible with polynomial size increase

Proof De-Skolemization

- Original language \mathcal{L}, set of Skolem symbols $\mathcal{S K}=\left\{f_{1}, f_{2}, \ldots\right\}$
- J. Avigad 2003
- H. de Nivelle 2003
- Our version:

Problem (Proof De-skolemization)

Input: Sequent S, cut-free LK-proof of $\operatorname{ssk}(S)$
Output: cut-free LK-proof of S

Upper bound

Definition

$\mathcal{Q} \mathcal{M O N}$ is the class of $\mathbf{L K} \perp$-proofs π such that

1. the end-sequent of π is a $Q M$-sequent and
2. all cut-formulas are monotone.
$\mathcal{Q} \mathcal{M O} \mathcal{N}^{*}$ is the class of right-normal $\mathcal{Q M O \mathcal { N }}$-proofs.
Proposition (M. Baaz, A. Leitsch 1999)
Let $\pi \in \mathcal{Q} \mathcal{M O} \mathcal{N}^{*}$ be a contraction-normalized cut-free proof of a sequent S containing weak quantifiers only. Let S^{\prime} be any sequent s.t. S is the Skolemization of S^{\prime}. Then there exists a cut-free proof π^{\prime} of S^{\prime} with $I\left(\pi^{\prime}\right) \leq\left(\right.$ quocc $\left.\left(S^{\prime}\right)+1\right) I(\pi)$, where quocc denotes the number of quantifier-occurrences.

Upper bound

Theorem
Let S be a closed sequent, and let π be a proof of $\operatorname{ssk}(S)$. Then there exists a proof φ of S such that $I(\varphi)<3^{(q u o c c(\operatorname{ssk}(S))+1) I(\pi)+1}$.

Upper bound

Proof sketch.
Skolem terms of the form $f\left(t_{1}, \ldots, t_{n}\right)$: f-Skolem terms.
Skolem terms not containing bound variables: free Skolem terms. Idea: Eliminate Skolem terms one-by-one.
End-sequent of π : $\Gamma \vdash \Delta, G[C(t)]$. t is f-Skolem term.
Want proof of $\Gamma \vdash \Delta, G[(\exists y) C(y)]$.
If there are no free f-Skolem terms in ψ, then all ancestors of $C(t)$ are introduced by weakening. Modify weakenings to get proof of $\Gamma \vdash \Delta, G[(\exists y) C(y)]$.

Upper bound

Proof sketch.

Assume there is a free f-Skolem term t^{\prime} that is maximal w.r.t. term inclusion. Construct proof of either

$$
\ulcorner\vdash \Delta, G[(\exists y) C(y)],
$$

or

$$
\ulcorner\vdash \Delta, G[C(t)], G[(\exists y) C(y)]
$$

depending on whether there is only one free f-Skolem term or more.

Upper bound

Proof sketch.
Goal: $\Gamma \vdash \Delta, G[C(t)], G[(\exists y) C(y)]$
First step: construct proof of $C\left(t^{\prime}\right) \sigma, \Gamma \vdash \Delta, G[C(t)]$ by projection method
Idea: Apply rules introducing the connectives from C, then if C contains t^{\prime}, do not apply rules introducing connectives from G. σ is the substitution induced by the \exists_{r} we do not apply.
Length of resulting proof $\leq I(\pi)$.

Upper bound

Proof sketch.
Goal: $\Gamma \vdash \Delta, G[C(t)], G[(\exists y) C(y)]$
Have: $C\left(t^{\prime}\right) \sigma, \Gamma \vdash \Delta, G[C(t)]$
Replace t^{\prime} by a new variable α. By assumption Г, $\Delta, G[C(t)]$ closed, and by construction all occurrences of t^{\prime} indicated in $C\left(t^{\prime}\right)$. Hence we can apply \exists, and get a proof of

$$
(\exists y) C(y) \sigma, \Gamma \vdash \Delta, G[C(t)]
$$

which has length $\leq I(\pi)+1$.
To do: introduce connectives from G.

Upper bound

Proof sketch.
Goal: $\Gamma \vdash \Delta, G[C(t)], G[(\exists y) C(y)]$ Have: $(\exists y) C(y) \sigma, \Gamma \vdash \Delta, G[C(t)]$
Most complicated part of proof. We know from π which rules to apply to get $G[(\exists y) C(y)]$. The complication arises from applying binary rules which introduce new material through the context. In particular, t^{\prime} may be re-introduced in this way. It turns out that all of these occurrences are eliminated by \exists_{r} rules, so after constructing the desired proof, we can again replace t^{\prime} by a new variable to completely eliminate it from the proof.

Upper bound

Proof sketch.
Have: $\Gamma \vdash \Delta, G[C(t)], G[(\exists y) C(y)]$
In addition to the proof obtained by the projection method, we apply at most $I(\pi)$ many rules. In the end, we have to apply at most $I(\pi)$ many contraction rules due to duplications due to context formulas. Hence our proof has length $\leq 3 /(\pi)$. We have eliminated a free f-Skolem term, and there are at most $n=$ quocc $(\operatorname{ssk}(S)) I(\pi)$ many such terms. After repeating the construction, we again have to insert at most n contractions and have obtained a proof φ of S. Finally we get
$I(\varphi)<3^{(\operatorname{quocc}(\operatorname{ssk}(S))+1) /(\pi)+1}$.

Lower bound

- Calculus $\mathbf{L K}_{p}$
- Weakening restricted to be directly below axioms

$$
\begin{gathered}
\frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \vee B} \vee_{r}^{c} \\
\frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \neg_{r} \quad \frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta} \neg_{I} \\
\frac{\Gamma \vdash \Delta,(\exists x) A, A[x \leftarrow t]}{\Gamma \vdash \Delta,(\exists x) A} \exists_{r}^{c} \quad \frac{A[x \leftarrow \alpha], \Gamma \vdash \Delta}{(\exists x) A, \Gamma \vdash \Delta} \exists_{l} \\
\frac{A, \Gamma, \Pi \vdash \Delta, \Lambda \quad B, \Gamma^{\prime}, \Pi \vdash \Delta^{\prime}, \Lambda}{A \vee B, \Gamma, \Gamma^{\prime}, \Pi \vdash \Delta, \Delta^{\prime}, \Lambda} \vee_{I}^{c} \\
\frac{\Gamma \vdash \Delta}{\Pi, \Gamma \vdash \Delta, \Lambda} w_{*}
\end{gathered}
$$

Lower bound

- Calculus $\mathbf{L K}_{p}$
- Weakening restricted to be directly below axioms
- Polynomially equivalent to the usual formulations of LK

Lower bound

Theorem

There exists a sequence of sequents $\left(S_{N}\right)$ such that 1. for all $\mathbf{L K}_{p}$-proofs π of $S_{N}, I(\pi) \geq 2^{N}+c$ for some constant c, and
2. there exists an $\mathbf{L K}_{p}$-proof $\pi_{\text {ssk }}$ of $\operatorname{ssk}\left(S_{N}\right)$ such that $I\left(\pi_{\text {ssk }}\right) \leq k * N+c$ for some constants c, k.

Lower bound

Proof sketch.
Take S_{N} to be $\vdash R_{N}$, where

$$
\begin{aligned}
& R_{0}=G_{0} \rightarrow G_{0} \\
& R_{n}=\left(\left(\exists x_{n}\right) P_{n}\left(x_{n}\right) \vee G_{n}\right) \rightarrow\left(\exists y_{n}\right)\left(\left(P_{n}\left(y_{n}\right) \vee G_{n}\right) \wedge R_{n-1}\right)
\end{aligned}
$$

Idea: Consider arbitrary $\mathbf{L K}_{p}$-proof π of S_{N}. As $\mathbf{L K}_{p}$ is rather "deterministic", there are not many possible ways to apply its rules.

Lower bound

1. Only \rightarrow_{r} applicable

$$
\frac{\left(\exists x_{N}\right) P_{N}\left(x_{N}\right) \vee G_{N} \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)}{\vdash\left(\left(\exists x_{N}\right) P_{N}\left(x_{N}\right) \vee G_{N}\right) \rightarrow\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)} \rightarrow_{r}
$$

Lower bound

1. Only \rightarrow_{r} applicable
2. \exists_{r} not applicable (countermodel!), must apply \vee_{l}^{c}. Possibilities for π_{1}, π_{2} :
$2.1\left(\exists x_{N}\right) P_{N}\left(x_{N}\right) \vdash$ for π_{1} : 夕
$2.2 G_{N} \vdash$ for π_{2} : 亿
$\frac{\frac{\pi_{1}}{\frac{\pi_{2}}{\left(\exists x_{N}\right) P_{N}\left(x_{N}\right) \vee G_{N} \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)}} \vee_{1}^{c}}{\left(\left(\exists x_{N}\right) P_{N}\left(x_{N}\right) \vee G_{N}\right) \rightarrow\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)} \rightarrow_{r}$

Lower bound

1. Only \rightarrow_{r} applicable
2. \exists_{r} not applicable (countermodel!), must apply \vee_{l}^{c}.

Possibilities for π_{1}, π_{2} :
$2.1\left(\exists x_{N}\right) P_{N}\left(x_{N}\right) \vdash$ for π_{1} : 夕
$2.2 G_{N} \vdash$ for π_{2} : 亿
$2.3\left(\exists x_{N}\right) P_{N}\left(x_{N}\right) \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)$ for π_{1}, $G_{N} \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)$ for π_{2}.

$$
\frac{\frac{\pi_{1}}{\left(\exists x_{N}\right) P_{N}\left(x_{N}\right) \vee G_{N} \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)} \vee_{1}^{c}}{\left(\left(\exists x_{N}\right) P_{N}\left(x_{N}\right) \vee G_{N}\right) \rightarrow\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)} \rightarrow_{r}
$$

Lower bound

1. Again \exists_{r} is not applicable, must apply $\exists_{/}$.

$$
\frac{P_{N}\left(\alpha_{N}\right) \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)}{\left(\exists x_{N}\right) P_{N}\left(x_{N}\right) \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)} \exists_{l}
$$

Lower bound

1. Again \exists_{r} is not applicable, must apply $\exists_{/}$.
2. Only applicable rule is \exists_{r}, instantiating some term t.

$$
\frac{P_{N}\left(\alpha_{N}\right) \vdash\left(P_{N}(t) \vee G_{N}\right) \wedge R_{N-1},\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)}{\frac{P_{N}\left(\alpha_{N}\right) \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)}{\left(\exists x_{N}\right) P_{N}\left(x_{N}\right) \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)} \exists_{r}^{c}}
$$

Lower bound

1. Again \exists_{r} is not applicable, must apply $\exists_{/}$.
2. Only applicable rule is \exists_{r}, instantiating some term t.
3. Two \exists_{r} never need to be applied consecutively on the same formula. We have to apply \wedge_{r}.

$$
\frac{\pi_{1}^{1} \pi_{1}^{2}}{\frac{P_{N}\left(\alpha_{N}\right) \vdash\left(P_{N}(t) \vee G_{N}\right) \wedge R_{N-1},\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)}{P_{N}\left(\alpha_{N}\right) \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)}} \wedge_{r}^{c} \exists_{r}^{c}
$$

Lower bound

1. Again \exists_{r} is not applicable, must apply $\exists_{/}$.
2. Only applicable rule is \exists_{r}, instantiating some term t.
3. Two \exists_{r} never need to be applied consecutively on the same formula. We have to apply \wedge_{r}.
4. Right subproof must be $\vdash R_{N-1}$. Otherwise we have to prove either
$4.1 \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right), R_{N-1}$. Neither P_{N} nor G_{N} occur in R_{N-1}, so a proof of this is at least as long as the shortest proof of $\vdash R_{N-1}$.
4.2 $P_{N}\left(\alpha_{N}\right) \vdash R_{N-1}$. P_{N} does not occur in R_{N-1}, so a proof of this is at least as long as the shortest proof of $\vdash R_{N-1}$.
$4.3 P_{N}\left(\alpha_{N}\right) \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right), R_{N-1}$. P_{N} does not occur in R_{N-1}, so we have to prove $P_{N}\left(\alpha_{N}\right) \vdash\left(\exists y_{N}\right)\left(\left(P_{N}\left(y_{N}\right) \vee G_{N}\right) \wedge R_{N-1}\right)$, but then the shortest proof must contain itself: \downarrow.

Lower bound

The argument for π_{2} is similar. We obtain that π_{1}, π_{2} must both contain proofs of $\vdash R_{N-1}$, hence by induction we get that $I(\pi) \geq 2^{N}+c$ for some constant c.

Lower bound

Now we give the short $\mathbf{L K}_{p}$-proof of $\operatorname{ssk}\left(S_{N}\right)$.
Set $s_{n}^{N}=f_{n}\left(y_{N}, y_{N-1}, \ldots, y_{n+1}\right)$, then $\operatorname{ssk}\left(S_{N}\right)$ is $\vdash K_{N}^{N}$ where

$$
\begin{aligned}
& K_{0}^{N}=G_{0} \rightarrow G_{0} \\
& K_{n}^{N}=\left(P_{n}\left(s_{n}^{N}\right) \vee G_{n}\right) \rightarrow\left(\exists y_{n}\right)\left(\left(P_{n}\left(y_{n}\right) \vee G_{n}\right) \wedge K_{n-1}^{N}\right)
\end{aligned}
$$

Let σ be any substitution, then we give a proof of $\vdash K_{n}^{N} \sigma$.

Lower bound

$$
\frac{\frac{\ldots}{P_{n}\left(s_{n}^{N} \sigma\right) \vee G_{n} \vdash P_{n}\left(s_{n}^{N} \sigma\right) \vee G_{n}} \vee_{r}^{c} \vdash K_{n-1}^{N} \sigma\left\{y_{n} \leftarrow s_{n}^{N} \sigma\right\}}{P_{n}\left(s_{n}^{N} \sigma\right) \vee G_{n} \vdash\left(P_{n}\left(s_{n}^{N} \sigma\right) \vee G_{n}\right) \wedge K_{n-1}^{N} \sigma\left\{y_{n} \leftarrow s_{n}^{N} \sigma\right\}} \wedge_{r}^{c} \exists_{r}^{c}+w_{r}
$$

By induction hypothesis, we have a proof of $\vdash K_{n-1}^{N} \sigma\left\{y_{n} \leftarrow s_{n}^{N} \sigma\right\}$ of length $\leq k *(n-1)+c$, so this proof has length $\leq k * n+c$.

Summary \& Application

- Efficient de-Skolemization impossible in tree-like LK
- Application CERES: Elimination of single cuts

Future Work

- Complexity of de-Skolemization in DAG-like LK
- Complexity of de-Skolemization w.r.t. CERES
- Does the de-Skolemization proof work with Andrews Skolemization?

