Skolemization, Cut-free proofs and Complexity

Daniel Weller

TU Vienna

September 11, 2011 Workshop ,,Epsilon Calculus and Constructivity"

Daniel Weller (TU Vienna)

Skolemization and Proofs

September 11, 2011 1 / 37

- Setting of this talk: classical first-order logic.
- It is well-known that ,,quantifiers can be eliminated by introduction of fresh functions".
- Known as Skolemization, Herbrandization.

Note: for simplicity, consider only formulas in NNF.

Proposition

For every formula φ there exists a formula ψ that does not contain \forall , such that φ is valid iff ψ is.

 ψ := sk(φ) is obtained from φ by removing ∀ quantifiers and introducing fresh function symbols (Herbrand/Skolem functions).

Note: for simplicity, consider only formulas in NNF.

Proposition

For every formula φ there exists a formula ψ that does not contain \forall , such that φ is valid iff ψ is.

 ψ := sk(φ) is obtained from φ by removing ∀ quantifiers and introducing fresh function symbols (Herbrand/Skolem functions).

Definition

$$\begin{aligned} \operatorname{sk}(L, V) &= L \text{ for literals } L \\ \operatorname{sk}(\varphi \circ \psi, V) &= \operatorname{sk}(\varphi, V) \circ \operatorname{sk}(\psi, V) \text{ for } \circ \in \{\land, \lor\} \\ \operatorname{sk}(\exists x \varphi, V) &= \exists x \operatorname{sk}(\varphi, V, x) \\ \operatorname{sk}(\forall x \varphi, x_1, \dots, x_n) &= \operatorname{sk}(\varphi \{x \leftarrow f(x_1, \dots, x_n)\}, x_1, \dots, x_n) \end{aligned}$$

Note: for simplicity, consider only formulas in NNF.

Proposition

For every formula φ there exists a formula ψ that does not contain \forall , such that φ is valid iff ψ is.

 ψ := sk(φ) is obtained from φ by removing ∀ quantifiers and introducing fresh function symbols (Herbrand/Skolem functions).

Example

$$\operatorname{sk}(\exists x \forall y \ y \ge x) = \exists x \ f(x) \ge x$$

In general, $\varphi \rightarrow sk(\varphi)$ but not vice-versa.

Note: for simplicity, consider only formulas in NNF.

Proposition

For every formula φ there exists a formula ψ that does not contain \forall , such that φ is valid iff ψ is.

- ψ := sk(φ) is obtained from φ by removing ∀ quantifiers and introducing fresh function symbols (Herbrand/Skolem functions).
- Useful when working with (cut-free) proof systems: only have to consider one type of quantifier.

Proposition

The theory $T \cup \{ \forall \vec{x} . \exists y \varphi(\vec{x}, y) \rightarrow \varphi(\vec{x}, f(\vec{x})) \}$ is a conservative extension of T (where the language of T does not contain f).

Note: Here, the \exists quantifier is removed since we operate on an *assumption*.

- In a sense, Skolem functions have no power:
 - $\operatorname{sk}(\varphi)$ is valid iff φ is valid, and
 - adding Skolem axioms yields a conservative extension.
- In another sense, they may have power: How expensive is it to go from a proof with Skolem functions to a proof without?

Question (Pudlák)

Assume that $\forall x \exists y \phi(x, y)$ is provable in predicate logic. Introduce a new function symbol f and an axiom A_{ϕ} which states

 $\forall x\phi(x,f(x)).$

Does there exist a formula ϕ such that the extended system gives a superexponential speed-up over predicate calculus, with respect to number of symbols in proofs?^a

^aFrom P. Clote and J. Krajíček. *Open problems*, Arithmetic, proof theory and computational complexity, 1993.

- In its most general form, the problem is still wide open.
- More generally, in this talk we will discuss

How can Skolem functions be removed from proofs? How does this affect the length of proofs?

• Based on the topic of this workshop, it would be convenient if there was an algorithm based on the ε -calculus.

- Based on the topic of this workshop, it would be convenient if there was an algorithm based on the ε-calculus.
- Luckily, there is!
- It is introduced already in D. Hilbert and P. Bernays, *Grundlagen der Mathematik II*, Springer, 1939.

Hilbert's ε -calculus

Predicate calculus + ε -symbol + ε -formulas

Example

 $\begin{array}{l} \varepsilon \text{-term: } \varepsilon_x \ \forall y \ x \neq s(y). \\ \varepsilon \text{-formula: } \exists x \forall y \ x \neq s(y) \rightarrow \forall z. \varepsilon_x((\forall y)x \neq s(y)) \neq s(z). \end{array}$

Hilbert's ε -calculus

Predicate calculus + ε -symbol + ε -formulas

Example

$$\begin{array}{l} \varepsilon\text{-term: } \varepsilon_x \; \forall y \; x \neq s(y). \\ \varepsilon\text{-formula: } \exists x \forall y \; x \neq s(y) \rightarrow \forall z. \varepsilon_x((\forall y)x \neq s(y)) \neq s(z). \end{array}$$

In general:

 $\exists x \varphi(x) \to \varphi(\varepsilon_x \varphi(x))$

э

We will look for an algorithm solving the following

Problem

Given a proof of φ using Skolem axioms, find a proof of φ that does not use Skolem axioms.

Skolem axioms: $\forall \vec{x} . \exists y \psi(\vec{x}, y) \rightarrow \psi(\vec{x}, f(\vec{x}))$ where f does not occur in ψ . *Proof*: Some proof system with cut (Hilbert-style, sequent calculus, ...)

To solve

Problem

Given a proof of φ using Skolem axioms, find a proof of φ that does not use Skolem axioms.

it is sufficient to solve

Problem

Let φ be an ε -free formula. Given a proof of φ in the ε -calculus, find a proof of φ in the predicate calculus.

From an ε -formula

$$\exists y\psi(\vec{x},y) \to \psi(\vec{x},\varepsilon_y\psi(\vec{x},y))$$

and the explicit definition $f(\vec{x}) = \varepsilon_y \psi(\vec{x},y)$ we can deduce the Skolem axiom

$$\forall \vec{x}. \exists y \psi(\vec{x}, y) \to \psi(\vec{x}, f(\vec{x})).$$

Since explicit definitions can be eliminated (by replacing definiendum by definiens), we can obtain a proof in the ε -calculus.

Theorem (Second ε -Theorem)

If an ε -free formula φ is derivable in the ε -calculus, then φ can be derived in predicate logic (without ε).

Theorem (Second ε -Theorem)

If an ε -free formula φ is derivable in the ε -calculus, then φ can be derived in predicate logic (without ε).

2. Ist \mathfrak{E} eine in F ableitbare Formel, welche kein ε -Symbol enthält, so kann diese aus den Axiomen $\mathfrak{P}_1, \ldots, \mathfrak{P}_t$ ohne Benutzung des ε -Symbols allein mittels des Prädikatenkalkuls abgeleitet werden ("Zweites ε -Theorem").

Figure: Second ε -theorem in ,,Grundlagen der Mathematik".

Proving the second ε -Theorem

Proof sketch.

- It suffices to consider validity-equivalent Skolem normal forms $\varphi = \exists \vec{x} \forall \vec{y} \psi(\vec{x}, \vec{y})$, with ψ quantifier-free.
- **2** From proof of φ get proof of $\exists \vec{x} \psi(\vec{x}, f_1(\vec{x}), \dots, f_n(\vec{x}))$, with f_1, \dots, f_n fresh.
- To this proof, apply the extended first ε -Theorem. Obtain a proof of a Herbrand disjunction $\bigvee_{1 \leq i \leq \ell} \psi(\vec{t_i}, f_1(\vec{t_i}), \dots, f_n(\vec{t_i}))$.
- This proof *does not use* ε -formulas.
- Sy replacing terms f_i(t_i) by fresh variables α_{i,j} in the correct order, obtain a proof of V_{1≤i≤ℓ} ψ(t_i, α_i).
- **(**) Introduce quantifiers to obtain the desired proof of φ .

- We want to eliminate Skolem functions from proofs.
- This reduces to eliminating ε -terms from proofs (by setting $f(\vec{x}) = \varepsilon_y \varphi(\vec{x}, y)$).
- This can be done, but the approach uses the extended first ε -theorem.
- What change in proof length does this induce?

Theorem (Extended first ε -Theorem)

If a formula $\exists \vec{x} \varphi(\vec{x})$, with φ quantifier-free, is derivable in the ε -calculus, then a formula

$$\bigvee_{\mathbf{l}\leqslant i\leqslant n}\varphi(\vec{t_i})$$

is derivable in predicate calculus without the use of bound variables, for some sequences of terms $\vec{t_1}, \ldots, \vec{t_n}$ not containing the ε -symbol.

- We will see: Application of the extended first ε-Theorem may cause a large increase in proof length.
- Therefore, so does application of the second ε -Theorem, and hence this approach to elimination of Skolem functions.

- We will show that the extended first ε -Theorem can be used to do cut-elimination.
- We then apply the following:

Theorem (Orevkov, Statman)

There exists a family of formulas $(\varphi_i)_{i\in\mathbb{N}}$ (of elementary size) such that

- **(**) φ_i have proofs with cut of elementary length, but
- 2) all cut-free proofs of φ_i have non-elementary length.

Non-elementary: 2^{2} i

- Sequent calculus with cut can be translated into predicate calculus.
- Output: Using the extended first ε-Theorem, we get a proof in the predicate calculus which does not use bound variables.
- This proof can be translated into sequent calculus with *quantifier-free* cuts.
- Quantifier-free cuts have (only) exponential elimination.¹

¹(For a more direct proof, see (Moser, Zach 2006)).

- We want to eliminate Skolem functions from proofs.
- This reduces to eliminating ε -terms from proofs (by setting $f(\vec{x}) = \varepsilon_y \varphi(\vec{x}, y)$).
- This can be done, but the approach uses the extended first ε-theorem, which has non-elementary worst-case complexity.
- Can we do better?

- Complexity of algorithm due to the fact that an "essentially cut-free" proof is produced.
- Can cut-elimination be avoided?
- What happens if we consider cut-free proofs right away?

- An algorithm due to Maehara (1955), based on cut-elimination.
- An algorithm due to Shoenfield (2001), based on Herbrand's theorem.
- A better algorithm for a subproblem due to Avigad (2003).
- An algorithm and a lower bound for a problem on cut-free proofs due to Baaz, Hetzl, W (2010).

- An algorithm due to Maehara (1955), based on cut-elimination.
- An algorithm due to Shoenfield (2001), based on Herbrand's theorem.
- A better algorithm for a subproblem due to Avigad (2003).
- An algorithm and a lower bound for a problem on cut-free proofs due to Baaz, Hetzl, W (2010).

Theorem (Avigad 2003)

Suppose Γ codes finite functions. Then Γ has an efficient (i.e. polynomial-time) elimination of Skolem functions.

3

- ∢ ∃ ▶

A set of sentences Γ *codes finite functions* if for each *n* there are

- a definable element, " \emptyset_n ";
- 2) a definable relation, " $x_0, \ldots, x_{n-1} \in dom_n(p)$ ";
- **3** a definable function, " $eval_n(p, x_0, \ldots, x_{n-1})$ "; and
- **3** a definable function, " $p \oplus_n (x_0, \ldots, x_{n-1} \mapsto y)$ ".

such that, for each n, Γ proves

 $\vec{x} \notin dom_n(\emptyset_n)$

A set of sentences Γ codes finite functions if for each *n* there are

• a definable element, "
$$\emptyset_n$$
";

- 2 a definable relation, " $x_0, \ldots, x_{n-1} \in dom_n(p)$ ";
- **③** a definable function, " $eval_n(p, x_0, \dots, x_{n-1})$ "; and
- **a** definable function, " $p \oplus_n (x_0, \ldots, x_{n-1} \mapsto y)$ ". such that, for each n, Γ proves

$$\vec{w} \in dom_n(p \oplus_n (\vec{x} \mapsto y)) \leftrightarrow (\vec{w} \in dom_n(p) \lor \vec{w} = \vec{x})$$

A set of sentences Γ codes finite functions if for each *n* there are

- a definable element, " \emptyset_n ";
- 2 a definable relation, " $x_0, \ldots, x_{n-1} \in dom_n(p)$ ";
- **3** a definable function, " $eval_n(p, x_0, \ldots, x_{n-1})$ "; and
- a definable function, " $p \oplus_n (x_0, \ldots, x_{n-1} \mapsto y)$ ".

such that, for each n, Γ proves

$$eval_n(p \oplus_n (\vec{x} \mapsto y), \vec{x}) = y$$

A set of sentences Γ codes finite functions if for each *n* there are

• a definable element, "
$$\emptyset_n$$
";

- 2 a definable relation, " $x_0, \ldots, x_{n-1} \in dom_n(p)$ ";
- **③** a definable function, " $eval_n(p, x_0, \dots, x_{n-1})$ "; and
- **a** definable function, " $p \oplus_n (x_0, \ldots, x_{n-1} \mapsto y)$ ". such that, for each n, Γ proves

$$\vec{w} \neq \vec{x} \rightarrow eval_n(p \oplus_n (\vec{x} \mapsto y), \vec{w}) = eval_n(p, \vec{w})$$

Theorem (Avigad 2003)

Suppose Γ codes finite functions. Then Γ has an efficient (i.e. polynomial-time) elimination of Skolem functions.

Proof idea.

- For a single Skolem function *f*:
- **2** Define a translation t^p that replaces $f(t_1, \ldots, t_n)$ by $eval_n(p, t_1^p, \ldots, t_n^p)$.
- **3** Define a relation $p \Vdash \varphi$ that replaces terms t in φ by t^p .
- **③** Transform a proof of φ to a proof of $\forall p(Cond(p) \rightarrow p \Vdash \varphi)$, where Cond(p) = "p is an approximation of f".
- Use proofs of $(p \Vdash \varphi) \leftrightarrow \varphi$ and $\Vdash \forall \vec{x}, y(\psi(\vec{x}, y) \rightarrow \psi(\vec{x}, f(\vec{x})))$ to obtain a proof of φ (in the original language).

Theorem (Avigad 2003)

Suppose Γ codes finite functions. Then Γ has an efficient (i.e. polynomial-time) elimination of Skolem functions.

Proof idea.

- I For more than one Skolem function:
- Show that Γ ⊇ {∃x, y(x ≠ y)} has an efficient elimination of *definitions*.
- Trivially, Γ ⊇ {∀x, y(x = y)} has efficient elimination of Skolem functions.
- Use definitions to handle the iteration of the translation efficiently, then apply elimination of definitions.

A D > A A P >

3

- An algorithm due to Maehara (1955), based on cut-elimination.
- An algorithm due to Shoenfield (2001), based on Herbrand's theorem.
- A better algorithm for a subproblem due to Avigad (2003).
- An algorithm and a lower bound for a related problem due to Baaz, Hetzl, W (2010).

- An algorithm due to Maehara (1955), based on cut-elimination.
- An algorithm due to Shoenfield (2001), based on Herbrand's theorem.
- A better algorithm for a subproblem due to Avigad (2003).
- An algorithm and a lower bound for a related problem due to Baaz, Hetzl, W (2010).

- We are interested in the effect of Skolem functions on *cut-free proofs*.
- Cut-free proofs are interesting:
 - Usually generated by automated theorem provers.
 - Efficient extraction of data: Interpolants, Herbrand sequents.
- Here, we look at cut-free *tree-like* proofs.

One can formulate a cut-free version of the problem in Pudlák's question.

Problem

Input: Proof of $(\forall x)\phi(x, f(x)) \vdash \psi$. **Output:** Proof of $(\forall x)(\exists y)\phi(x, y) \vdash \psi$.

But in the cut-free context, the requirement that the quantifier-to-be-skolemized is in prefix position can be bad.

Theorem (Baaz, Leitsch 1994)

There exists a family of formulas $(\varphi_i)_{i \in \mathbb{N}}$ (of elementary size) such that

- **1** $\operatorname{sk}(\varphi_i)$ have proofs of elementary length, but
- 2 there exist prefix forms ψ_i of φ_i such that all cut-free proofs of ψ_i have non-elementary length.

Instead, we consider

Problem (Proof deskolemization)

Input: φ , proof of $sk(\varphi)$. **Output:** Proof of φ .

э

Cut-free proofs

- In the ε -calculus based method for elimination of Skolem functions, we saw how to:
- Given a proof with only quantifier-free cuts of $\exists \vec{x} \psi(\vec{x}, f_1(\vec{x}), \dots, f_n(\vec{x}))$, with f_1, \dots, f_n fresh,
- obtain a proof of $\exists \vec{x} \forall \vec{y} \psi(\vec{x}, \vec{y})$,

Cut-free proofs

- In the ε -calculus based method for elimination of Skolem functions, we saw how to:
- Given a proof with only quantifier-free cuts of $\exists \vec{x} \psi(\vec{x}, f_1(\vec{x}), \dots, f_n(\vec{x}))$, with f_1, \dots, f_n fresh,
- obtain a proof of $\exists \vec{x} \forall \vec{y} \psi(\vec{x}, \vec{y})$, by replacing terms $f_j(\vec{t_i})$ by fresh variables $\alpha_{i,j}$, and introducing quantifiers.

Cut-free proofs

- In the ε -calculus based method for elimination of Skolem functions, we saw how to:
- Given a proof with only quantifier-free cuts of $\exists \vec{x} \psi(\vec{x}, f_1(\vec{x}), \dots, f_n(\vec{x}))$, with f_1, \dots, f_n fresh,
- obtain a proof of $\exists \vec{x} \forall \vec{y} \psi(\vec{x}, \vec{y})$, by replacing terms $f_j(\vec{t_i})$ by fresh variables $\alpha_{i,j}$, and introducing quantifiers.
- Method can be easily extended to obtain a polynomial algorithm for the *prefix case* (Q₁x₁)··· (Q_ny_n)ψ.

• For the infix case, we necessarily have to rearrange the proof:

Proposition

There exists a family of formulas $(\varphi_i)_{i \in \mathbb{N}}$ (of polynomial-size) such that

1 there exist polynomial-length^a proofs of $sk(\varphi_i)$ but

2 all proofs of φ_i have exponential length.

 ${}^{a}\mbox{Here, length} = \mbox{number of sequents.}$ For a more efficient version of $\mbox{sk, it}$ also holds for number of symbols.

• This is essentially due to the eigenvariable condition forcing application of a binary inference.

• But this is the worst that can happen.

Theorem

Let π be a proof of $sk(\varphi)$. Then there exists a proof λ of φ such that $|\lambda| \leq 2^{p(|\pi|)}$ for some polynomial p.

• This result can be lifted to some proofs with cut:

Theorem

Let π be a proof of $sk(\varphi)$ such that for all Skolem terms $f(t_1, \ldots, t_n)$ occurring in cut-formulas, no t_i contains a bound variable. Then there exists a proof λ of φ such that $|\lambda| \leq 2^{p(|\pi|)}$.

- Any cut-free deskolemization algorithm can be lifted to this class of proofs.
- One is reminded of the restriction imposed by (Miller 1983) to obtain *soundness* of Skolemization in higher-order logic.

- The problem of removing Skolem functions from proofs *efficiently* is still open.
- The general algorithms are of non-elementary complexity.
- There exists a polynomial algorithm for a restricted case.
- Concrete open problems:
 - Pudlák's question for theories that *do not* code finite functions.
 - Deskolemization problem, cut-free case: DAG-like proofs.
- Further settings: Non-classical, higher-order, equality.