Skolemization, Cut-free proofs and Complexity

Daniel Weller
TU Vienna
September 11, 2011
Workshop ,,Epsilon Calculus and Constructivity"

The power of functions

- Setting of this talk: classical first-order logic.
- It is well-known that ,,quantifiers can be eliminated by introduction of fresh functions".
- Known as Skolemization, Herbrandization.

The power of functions

Note: for simplicity, consider only formulas in NNF.

Proposition

For every formula φ there exists a formula ψ that does not contain \forall, such that φ is valid iff ψ is.

- $\psi:=\operatorname{sk}(\varphi)$ is obtained from φ by removing \forall quantifiers and introducing fresh function symbols (Herbrand/Skolem functions).

The power of functions

Note: for simplicity, consider only formulas in NNF.

Proposition

For every formula φ there exists a formula ψ that does not contain \forall, such that φ is valid iff ψ is.

- $\psi:=\operatorname{sk}(\varphi)$ is obtained from φ by removing \forall quantifiers and introducing fresh function symbols (Herbrand/Skolem functions).

Definition

```
sk}(L,V)=L\mathrm{ for literals L
sk}(\varphi\circ\psi,V)=\operatorname{sk}(\varphi,V)\circ\operatorname{sk}(\psi,V)\mathrm{ for ○ }\in{^, \vee
sk}(\existsx\varphi,V)=\existsx\operatorname{sk}(\varphi,V,x
sk}(\forallx\varphi,\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{})=\operatorname{sk}(\varphi{x\leftarrowf(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{})},\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{}
```


The power of functions

Note: for simplicity, consider only formulas in NNF.

Proposition

For every formula φ there exists a formula ψ that does not contain \forall, such that φ is valid iff ψ is.

- $\psi:=\operatorname{sk}(\varphi)$ is obtained from φ by removing \forall quantifiers and introducing fresh function symbols (Herbrand/Skolem functions).

Example

$$
\operatorname{sk}(\exists x \forall y y \geqslant x)=\exists x f(x) \geqslant x
$$

In general, $\varphi \rightarrow \operatorname{sk}(\varphi)$ but not vice-versa.

The power of functions

Note: for simplicity, consider only formulas in NNF.

Proposition

For every formula φ there exists a formula ψ that does not contain \forall, such that φ is valid iff ψ is.

- $\psi:=\operatorname{sk}(\varphi)$ is obtained from φ by removing \forall quantifiers and introducing fresh function symbols (Herbrand/Skolem functions).
- Useful when working with (cut-free) proof systems: only have to consider one type of quantifier.

The power of functions

Proposition

The theory $T \cup\{\forall \vec{x} \cdot \exists y \varphi(\vec{x}, y) \rightarrow \varphi(\vec{x}, f(\vec{x}))\}$ is a conservative extension of T (where the language of T does not contain f).

Note: Here, the \exists quantifier is removed since we operate on an assumption.

The power of functions

- In a sense, Skolem functions have no power:
- $\operatorname{sk}(\varphi)$ is valid iff φ is valid, and
- adding Skolem axioms yields a conservative extension.
- In another sense, they may have power: How expensive is it to go from a proof with Skolem functions to a proof without?

The power of functions

Question (Pudlák)

Assume that $\forall x \exists y \phi(x, y)$ is provable in predicate logic. Introduce a new function symbol f and an axiom A_{ϕ} which states

$$
\forall x \phi(x, f(x)) .
$$

Does there exist a formula ϕ such that the extended system gives a superexponential speed-up over predicate calculus, with respect to number of symbols in proofs? ${ }^{a}$

[^0]
The power of functions

- In its most general form, the problem is still wide open.
- More generally, in this talk we will discuss

How can Skolem functions be removed from proofs? How does this affect the length of proofs?

The rest of this talk

(1) A first approach
(2) Further results

The first approach

- Based on the topic of this workshop, it would be convenient if there was an algorithm based on the ε-calculus.

The first approach

- Based on the topic of this workshop, it would be convenient if there was an algorithm based on the ε-calculus.
- Luckily, there is!
- It is introduced already in D. Hilbert and P. Bernays, Grundlagen der Mathematik II, Springer, 1939.

Hilbert's ε-calculus

Predicate calculus $+\varepsilon$-symbol $+\varepsilon$-formulas

Example

```
\varepsilon-term: }\mp@subsup{\varepsilon}{x}{}\forallyx\not=s(y)
\varepsilon-formula: }\existsx\forallyx\not=s(y)->\forallz.\mp@subsup{\varepsilon}{x}{}((\forally)x\not=s(y))\not=s(z)
```


Hilbert's ε-calculus

Predicate calculus $+\varepsilon$-symbol $+\varepsilon$-formulas

Example

ε-term: $\varepsilon_{x} \forall y x \neq s(y)$.
ε-formula: $\exists x \forall y x \neq s(y) \rightarrow \forall z . \varepsilon_{x}((\forall y) x \neq s(y)) \neq s(z)$.
In general:

$$
\exists x \varphi(x) \rightarrow \varphi\left(\varepsilon_{x} \varphi(x)\right)
$$

The problem

We will look for an algorithm solving the following

Problem

Given a proof of φ using Skolem axioms, find a proof of φ that does not use Skolem axioms.

Skolem axioms: $\forall \vec{x} \cdot \exists y \psi(\vec{x}, y) \rightarrow \psi(\vec{x}, f(\vec{x}))$ where f does not occur in ψ. Proof: Some proof system with cut (Hilbert-style, sequent calculus, ...)

The problem

To solve

Problem

Given a proof of φ using Skolem axioms, find a proof of φ that does not use Skolem axioms.
it is sufficient to solve

Problem

Let φ be an ε-free formula. Given a proof of φ in the ε-calculus, find a proof of φ in the predicate calculus.

Going ε

From an ε-formula

$$
\exists y \psi(\vec{x}, y) \rightarrow \psi\left(\vec{x}, \varepsilon_{y} \psi(\vec{x}, y)\right)
$$

and the explicit definition $f(\vec{x})=\varepsilon_{y} \psi(\vec{x}, y)$ we can deduce the Skolem axiom

$$
\forall \vec{x} . \exists y \psi(\vec{x}, y) \rightarrow \psi(\vec{x}, f(\vec{x}))
$$

Since explicit definitions can be eliminated (by replacing definiendum by definiens), we can obtain a proof in the ε-calculus.

Removing ε

```
Theorem (Second \varepsilon-Theorem)
If an \varepsilon-free formula }\varphi\mathrm{ is derivable in the }\varepsilon\mathrm{ -calculus, then }\varphi\mathrm{ can be derived in predicate logic (without \(\varepsilon\) ).
```


Removing ε

Theorem (Second ε-Theorem)

If an ε-free formula φ is derivable in the ε-calculus, then φ can be derived in predicate logic (without ε).
2. Ist \mathbb{E} eine in F ableitbare Formel, welche kein ε-Symbol enthält, so kann diese aus den Axiomen $\mathfrak{B}_{1}, \ldots, \mathfrak{B}_{\mathfrak{t}}$ ohne Benutzung des ε-Symbols allein mittels des Prädikatenkalkuls abgeleitet werden (,,Zweites ε-Theorem").

Figure: Second ε-theorem in ,,Grundlagen der Mathematik".

Proving the second ε-Theorem

Proof sketch.

(1) It suffices to consider validity-equivalent Skolem normal forms $\varphi=\exists \vec{x} \forall \vec{y} \psi(\vec{x}, \vec{y})$, with ψ quantifier-free.
(2) From proof of φ get proof of $\exists \vec{x} \psi\left(\vec{x}, f_{1}(\vec{x}), \ldots, f_{n}(\vec{x})\right)$, with f_{1}, \ldots, f_{n} fresh.
(3) To this proof, apply the extended first ε-Theorem. Obtain a proof of a Herbrand disjunction $\bigvee_{1 \leqslant i \leqslant \ell} \psi\left(\vec{t}_{i}, f_{1}\left(\vec{t}_{i}\right), \ldots, f_{n}\left(\vec{t}_{i}\right)\right)$.
(9) This proof does not use ε-formulas.
(0) By replacing terms $f_{j}\left(\vec{t}_{i}\right)$ by fresh variables $\alpha_{i, j}$ in the correct order, obtain a proof of $\bigvee_{1 \leqslant i \leqslant \ell} \psi\left(\overrightarrow{t_{i}}, \overrightarrow{\alpha_{i}}\right)$.
(0) Introduce quantifiers to obtain the desired proof of φ.

Summary of the approach

- We want to eliminate Skolem functions from proofs.
- This reduces to eliminating ε-terms from proofs (by setting $\left.f(\vec{x})=\varepsilon_{y} \varphi(\vec{x}, y)\right)$.
- This can be done, but the approach uses the extended first ε-theorem.
- What change in proof length does this induce?

The first ε-Theorem

Theorem (Extended first ε-Theorem)

If a formula $\exists \vec{x} \varphi(\vec{x})$, with φ quantifier-free, is derivable in the ε-calculus, then a formula

$$
\bigvee_{1 \leqslant i \leqslant n} \varphi\left(\overrightarrow{t_{i}}\right)
$$

is derivable in predicate calculus without the use of bound variables, for some sequences of terms $\overrightarrow{t_{1}}, \ldots, \overrightarrow{t_{n}}$ not containing the ε-symbol.

Complexity of the approach

- We will see: Application of the extended first ε-Theorem may cause a large increase in proof length.
- Therefore, so does application of the second ε-Theorem, and hence this approach to elimination of Skolem functions.

Complexity of the first ε-Theorem

- We will show that the extended first ε-Theorem can be used to do cut-elimination.
- We then apply the following:

Theorem (Orevkov, Statman)

There exists a family of formulas $\left(\varphi_{i}\right)_{i \in \mathbb{N}}$ (of elementary size) such that
(1) φ_{i} have proofs with cut of elementary length, but
(2) all cut-free proofs of φ_{i} have non-elementary length.

Non-elementary: $\left.2^{2 \cdot} .^{2}\right\} i$

Cut-elimination using the first ε-Theorem

(1) Sequent calculus with cut can be translated into predicate calculus.
(2) Using the extended first ε-Theorem, we get a proof in the predicate calculus which does not use bound variables.
(3) This proof can be translated into sequent calculus with quantifier-free cuts.
(9) Quantifier-free cuts have (only) exponential elimination. ${ }^{1}$

[^1]
Summary of the approach

- We want to eliminate Skolem functions from proofs.
- This reduces to eliminating ε-terms from proofs (by setting $\left.f(\vec{x})=\varepsilon_{y} \varphi(\vec{x}, y)\right)$.
- This can be done, but the approach uses the extended first ε-theorem, which has non-elementary worst-case complexity.
- Can we do better?

Summary of the approach

- Complexity of algorithm due to the fact that an "essentially cut-free" proof is produced.
- Can cut-elimination be avoided?
- What happens if we consider cut-free proofs right away?

The rest of this talk

(1) A first approach
(2) Further results

Further results

- An algorithm due to Maehara (1955), based on cut-elimination.
- An algorithm due to Shoenfield (2001), based on Herbrand's theorem.
- A better algorithm for a subproblem due to Avigad (2003).
- An algorithm and a lower bound for a problem on cut-free proofs due to Baaz, Hetzl, W (2010).

Further results

- An algorithm due to Maehara (1955), based on cut-elimination.
- An algorithm due to Shoenfield (2001), based on Herbrand's theorem.
- A better algorithm for a subproblem due to Avigad (2003).
- An algorithm and a lower bound for a problem on cut-free proofs due to Baaz, Hetzl, W (2010).

Avigad's result

Theorem (Avigad 2003)

Suppose 「 codes finite functions. Then 「 has an efficient (i.e. polynomial-time) elimination of Skolem functions.

Coding finite functions

A set of sentences Γ codes finite functions if for each n there are
(1) a definable element, " $\varnothing_{n}{ }^{\prime}$;
(2) a definable relation, " $x_{0}, \ldots, x_{n-1} \in \operatorname{dom}_{n}(p)$ ";
(3) a definable function, "eval ${ }_{n}\left(p, x_{0}, \ldots, x_{n-1}\right)$ "; and
(9) a definable function, " $p \oplus_{n}\left(x_{0}, \ldots, x_{n-1} \mapsto y\right)$ ". such that, for each n, Г proves

$$
\vec{x} \notin \operatorname{dom}_{n}\left(\varnothing_{n}\right)
$$

and such that all definitions and proofs can be constructed in time polynomial in n.

Coding finite functions

A set of sentences Γ codes finite functions if for each n there are
(1) a definable element, " \varnothing_{n} ";
(2) a definable relation, " $x_{0}, \ldots, x_{n-1} \in \operatorname{dom}_{n}(p)$ ";
(3) a definable function, "eval $\left(p, x_{0}, \ldots, x_{n-1}\right)$ "; and
(9) a definable function, " $p \oplus_{n}\left(x_{0}, \ldots, x_{n-1} \mapsto y\right)$ ". such that, for each n, Γ proves

$$
\vec{w} \in \operatorname{dom}_{n}\left(p \oplus_{n}(\vec{x} \mapsto y)\right) \leftrightarrow\left(\vec{w} \in \operatorname{dom}_{n}(p) \vee \vec{w}=\vec{x}\right)
$$

and such that all definitions and proofs can be constructed in time polynomial in n.

Coding finite functions

A set of sentences Γ codes finite functions if for each n there are
(1) a definable element, " \varnothing_{n} ";
(2) a definable relation, " $x_{0}, \ldots, x_{n-1} \in \operatorname{dom}_{n}(p)$ ";
(3) a definable function, "eval ${ }_{n}\left(p, x_{0}, \ldots, x_{n-1}\right)$ "; and
(9) a definable function, " $p \oplus_{n}\left(x_{0}, \ldots, x_{n-1} \mapsto y\right)$ ". such that, for each n, Г proves

$$
\operatorname{eval}_{n}\left(p \oplus_{n}(\vec{x} \mapsto y), \vec{x}\right)=y
$$

and such that all definitions and proofs can be constructed in time polynomial in n.

Coding finite functions

A set of sentences Γ codes finite functions if for each n there are
(1) a definable element, " \varnothing_{n} ";
(2) a definable relation, " $x_{0}, \ldots, x_{n-1} \in \operatorname{dom}_{n}(p)$ ";
(3) a definable function, "eval $\left(p, x_{0}, \ldots, x_{n-1}\right)$ "; and
(9) a definable function, " $p \oplus_{n}\left(x_{0}, \ldots, x_{n-1} \mapsto y\right)$ ". such that, for each n, Γ proves

$$
\vec{w} \neq \vec{x} \rightarrow \operatorname{eval}_{n}\left(p \oplus_{n}(\vec{x} \mapsto y), \vec{w}\right)=\operatorname{eval}_{n}(p, \vec{w})
$$

and such that all definitions and proofs can be constructed in time polynomial in n.

Avigad's result

Theorem (Avigad 2003)

Suppose Γ codes finite functions. Then Γ has an efficient (i.e. polynomial-time) elimination of Skolem functions.

Proof idea.

(1) For a single Skolem function f :
(2) Define a translation t^{p} that replaces $f\left(t_{1}, \ldots, t_{n}\right)$ by $\operatorname{eval}_{n}\left(p, t_{1}^{p}, \ldots, t_{n}^{p}\right)$.
(3) Define a relation $p \Vdash \varphi$ that replaces terms t in φ by t^{p}.
(9) Transform a proof of φ to a proof of $\forall p(\operatorname{Cond}(p) \rightarrow p \Vdash \varphi)$, where Cond $(p)=" p$ is an approximation of f ".
(6) Use proofs of $(p \Vdash \varphi) \leftrightarrow \varphi$ and $\Vdash \forall \vec{x}, y(\psi(\vec{x}, y) \rightarrow \psi(\vec{x}, f(\vec{x})))$ to obtain a proof of φ (in the original language).

Avigad's result

Theorem (Avigad 2003)

Suppose 「 codes finite functions. Then 「 has an efficient (i.e. polynomial-time) elimination of Skolem functions.

Proof idea.

(1) For more than one Skolem function:
(2) Show that $\Gamma \supseteq\{\exists x, y(x \neq y)\}$ has an efficient elimination of definitions.
(3) Trivially, $\Gamma \supseteq\{\forall x, y(x=y)\}$ has efficient elimination of Skolem functions.
(9) Use definitions to handle the iteration of the translation efficiently, then apply elimination of definitions.

Further results

- An algorithm due to Maehara (1955), based on cut-elimination.
- An algorithm due to Shoenfield (2001), based on Herbrand's theorem.
- A better algorithm for a subproblem due to Avigad (2003).
- An algorithm and a lower bound for a related problem due to Baaz, Hetzl, W (2010).

Further results

- An algorithm due to Maehara (1955), based on cut-elimination.
- An algorithm due to Shoenfield (2001), based on Herbrand's theorem.
- A better algorithm for a subproblem due to Avigad (2003).
- An algorithm and a lower bound for a related problem due to Baaz, Hetzl, W (2010).

Cut-free proofs

- We are interested in the effect of Skolem functions on cut-free proofs.
- Cut-free proofs are interesting:
- Usually generated by automated theorem provers.
- Efficient extraction of data: Interpolants, Herbrand sequents.
- Here, we look at cut-free tree-like proofs.

Cut-free proofs

One can formulate a cut-free version of the problem in Pudlák's question.

Problem

Input: Proof of $(\forall x) \phi(x, f(x)) \vdash \psi$.
Output: Proof of $(\forall x)(\exists y) \phi(x, y) \vdash \psi$.
But in the cut-free context, the requirement that the quantifier-to-be-skolemized is in prefix position can be bad.

Cut-free proofs

Theorem (Baaz, Leitsch 1994)

There exists a family of formulas $\left(\varphi_{i}\right)_{i \in \mathbb{N}}$ (of elementary size) such that
(1) $\operatorname{sk}\left(\varphi_{i}\right)$ have proofs of elementary length, but
(2) there exist prefix forms ψ_{i} of φ_{i} such that all cut-free proofs of ψ_{i} have non-elementary length.

Cut-free proofs

Instead, we consider
Problem (Proof deskolemization)
Input: φ, proof of $\operatorname{sk}(\varphi)$.
Output: Proof of φ.

Cut-free proofs

- In the ε-calculus based method for elimination of Skolem functions, we saw how to:
- Given a proof with only quantifier-free cuts of $\exists \vec{x} \psi\left(\vec{x}, f_{1}(\vec{x}), \ldots, f_{n}(\vec{x})\right)$, with f_{1}, \ldots, f_{n} fresh,
- obtain a proof of $\exists \vec{x} \forall \vec{y} \psi(\vec{x}, \vec{y})$,

Cut-free proofs

- In the ε-calculus based method for elimination of Skolem functions, we saw how to:
- Given a proof with only quantifier-free cuts of $\exists \vec{x} \psi\left(\vec{x}, f_{1}(\vec{x}), \ldots, f_{n}(\vec{x})\right)$, with f_{1}, \ldots, f_{n} fresh,
- obtain a proof of $\exists \vec{x} \forall \vec{y} \psi(\vec{x}, \vec{y})$, by replacing terms $f_{j}\left(\vec{t}_{i}\right)$ by fresh variables $\alpha_{i, j}$, and introducing quantifiers.

Cut-free proofs

- In the ε-calculus based method for elimination of Skolem functions, we saw how to:
- Given a proof with only quantifier-free cuts of $\exists \vec{x} \psi\left(\vec{x}, f_{1}(\vec{x}), \ldots, f_{n}(\vec{x})\right)$, with f_{1}, \ldots, f_{n} fresh,
- obtain a proof of $\exists \vec{x} \forall \vec{y} \psi(\vec{x}, \vec{y})$, by replacing terms $f_{j}\left(\vec{t}_{i}\right)$ by fresh variables $\alpha_{i, j}$, and introducing quantifiers.
- Method can be easily extended to obtain a polynomial algorithm for the prefix case $\left(Q_{1} x_{1}\right) \cdots\left(Q_{n} y_{n}\right) \psi$.

Cut-free proofs

- For the infix case, we necessarily have to rearrange the proof:

Proposition

There exists a family of formulas $\left(\varphi_{i}\right)_{i \in \mathbb{N}}$ (of polynomial-size) such that
(1) there exist polynomial-length ${ }^{\text {a }}$ proofs of $\operatorname{sk}\left(\varphi_{i}\right)$ but
(2) all proofs of φ_{i} have exponential length.
${ }^{\text {a }}$ Here, length $=$ number of sequents. For a more efficient version of sk, it also holds for number of symbols.

- This is essentially due to the eigenvariable condition forcing application of a binary inference.

Cut-free proofs

- But this is the worst that can happen.

Theorem

Let π be a proof of $\operatorname{sk}(\varphi)$. Then there exists a proof λ of φ such that $|\lambda| \leqslant 2^{p(|\pi|)}$ for some polynomial p.

An extension

- This result can be lifted to some proofs with cut:

Theorem

Let π be a proof of $\operatorname{sk}(\varphi)$ such that for all Skolem terms $f\left(t_{1}, \ldots, t_{n}\right)$ occurring in cut-formulas, no t_{i} contains a bound variable. Then there exists a proof λ of φ such that $|\lambda| \leqslant 2^{p(|\pi|)}$.

- Any cut-free deskolemization algorithm can be lifted to this class of proofs.
- One is reminded of the restriction imposed by (Miller 1983) to obtain soundness of Skolemization in higher-order logic.

Conclusion

- The problem of removing Skolem functions from proofs efficiently is still open.
- The general algorithms are of non-elementary complexity.
- There exists a polynomial algorithm for a restricted case.
- Concrete open problems:
- Pudlák's question for theories that do not code finite functions.
- Deskolemization problem, cut-free case: DAG-like proofs.
- Further settings: Non-classical, higher-order, equality.

[^0]: ${ }^{\text {a }}$ From P. Clote and J. Krajíček. Open problems, Arithmetic, proof theory and computational complexity, 1993.

[^1]: ${ }^{1}$ (For a more direct proof, see (Moser, Zach 2006)).

