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Cut-Introduction (reminder)

Aim: Shorten a proof by introducing a cut (i.e. a lemma).

Method (previous talk):
1 Represent a (large) set of terms by a (small) grammar.
2 Compute an appropriate cut-formula.

This talk: find a good cut-formula.

Daniel Weller () The structure of the solution space in algorithmic cut-introductionSeptember 16, 2013 3 / 20



The problem

There always exists an appropriate cut-formula: canonical solution C .

C is optimal w.r.t. quantifier-complexity of generated proofs.

In practice: Propositional part of proofs important as well.
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Better solutions

First approach: find a small cut-formula/solution for a given grammar.

Towards this, we investigate the structure of the set of solutions.
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Solutions (reminder)

Definition

Given a formula F pxq and sets of terms U,S , a solution is formula G pxq
such that the sequent

ľ

uPU

F puq,G pαq Ą
ľ

sPS

G psq Ñ

is valid (u may contain α).

Induced by a proof of @xF pxq Ñ.

U, S represents a grammar introducing one Π1-cut.

We may assume:
Ź

tPT F ptq Ñ valid for T “ turαzss | u P U, s P Su.
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The structure of the solution space

Since α is an eigenvariable/constant, the problem is purely
propositional.

We denote by |ù the propositional consequence relation.
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The structure of the solution space

Consider the boolean algebra F of formulas (modulo equivalence) and

the set S of solutions.

How is S situated in F?
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The structure of the solution space

Theorem

If C is the canonical solution and A an arbitrary solution then C |ù A.

If A,B are solutions and A |ù D |ù B, then D is a solution.

If A,B are solutions then A ˝ B is a solution for ˝ P t^,_u.

If Apxq is a solution in CNF and A1pxq is obtained from Apxq by
removing all clauses that do not contain x, then A1 is a solution.
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The structure of the solution space

S is a bounded convex sublattice with K “ C pαq!

canonical solution C pαq
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Looking for solutions

canonical solution C pαq
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Looking for solutions

canonical solution C pαq

simplified TAUT-check!
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Two concrete algorithms

We search for solutions that are implied by other solutions.

How do we look for consequences algorithmically?

Two algorithms based on resolution, starting with the canonical
solution.
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Two concrete algorithms

SFS is based on

computing the deductive closure Dp¨q of a CNF via resolution and
checking subsets of this closure.

Theorem

F P SFSpDpC qq for all minimal solutions F (in CNF), where C is the
canonical solution in CNF.

Proof.

By a completeness theorem of (Lee 1967).
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Two concrete algorithms

SFF is based on forgetful resolution.

Forgetful resolution deletes the parent clauses of every resolution step.

This is of course incomplete — but fast.

Interestingly, this produces nice cut-formulas on some examples.1

1See G. Reis’ talk after the coffee break.
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Example (forgetful resolution)

Example

Consider
S : Pa,@x pPx Ą Pfxq Ñ Pf 4a

with the grammar tα, f αu ˝ ta, f 2au. The canonical solution is

C pxq : Pa^ pPx Ą Pfxq ^ pPfx Ą Pf 2xq ^  Pf 4a.

By deletion of x-free clauses we obtain

C 1pxq : pPx Ą Pfxq ^ pPfx Ą Pf 2xq.

We have FpC 1pxqq “ tPx Ą Pf 2xu. It suffices to check whether

Pa,Pa Ą Pf 2a,Pf 2a Ą Pf 4a Ñ Pf 4a

is valid, which is the case. Search terminates since FpPx Ą Pf 2xq “ H.
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Going to multiple cuts

To introduce n cuts, we have to find formulas F1, . . . ,Fn.

Finding optimal solutions seems to be very hard.

But: it is possible to lift the algorithms from the 1-cut case by
iteration (but optimality is not guaranteed).

First, F1 is generated by 1-CI,

then F2 is generated by 1-CI (from a problem based on F1), . . .
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An exponential speed-up

Consider again the sequence from the previous talk:

Sn : Pa,@xpPx Ą Pfxq Ñ Pf 2n`1
a.

Its shortest cut-free proofs admit a grammar

Gn : tα1, f α1u ˝α1 tα2, f
2α2u ˝α2 ¨ ¨ ¨ ˝ tαn, f

2n´1
αnu ˝αn ta, f

2nau.

inducing n cuts.
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Going to multiple cuts

Both algorithms generate the solution

rX1zλx .Px Ą Pf 2x , . . . ,Xnzλx .Px Ą Pf 2nxs.

From this solution, a proof with n cuts is constructed.

This proof: linear vs. cut-free: exponential length!
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Conclusion

Several properties of the solution space help to guide search.

Two concrete algorithms: one complete, one incomplete but faster.

Even the incomplete one may yield an exponential compression.

Future work: Empirical comparison of the algorithms.
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