Deskolemization, Equality and Logical Complexity

Daniel Weller joint work with Matthias Baaz and Stefan Hetzl

TU Vienna

February 2, 2012 Workshop ,,Logical Models of Reasoning and Computation"

Daniel Weller (TU Vienna)

Deskolemization of Proofs

- \bullet Setting of this talk: classical first-order logic. ^1
- ,,Quantifiers can be eliminated by introduction of fresh functions".
- Known as Skolemization, Herbrandization.

¹For simplicity, officially consider only formulas in NNF. \Box >

Daniel Weller (TU Vienna)

Deskolemization of Proofs

Example

Consider an assumption

 $\exists z \forall x \exists y. y > x \land y \neq z$

Its Skolemization is

$$\forall x.s(x) > x \land s(x) \neq 0$$

where s is an uninterpreted function symbol, 0 an uninterpreted constant.

Proposition

- its Skolemization $\mathrm{sk}(\varphi)$ does not contain \forall quantifiers, and
- φ is valid iff $\mathrm{sk}(\varphi)$ is.

Proposition

- its Skolemization $\mathrm{sk}(\varphi)$ does not contain \forall quantifiers, and
- φ is valid iff $sk(\varphi)$ is.
- Useful when working with (cut-free) proof systems: only have to consider one type of quantifier.

Proposition

- its Skolemization $\mathrm{sk}(arphi)$ does not contain orall quantifiers, and
- φ is valid iff $sk(\varphi)$ is.
- Useful when working with (cut-free) proof systems: only have to consider one type of quantifier.
- In general, $\varphi \to \operatorname{sk}(\varphi)$ but not vice-versa.

Proposition

- its Skolemization $\mathrm{sk}(arphi)$ does not contain orall quantifiers, and
- φ is valid iff $sk(\varphi)$ is.
- Useful when working with (cut-free) proof systems: only have to consider one type of quantifier.
- In general, $\varphi \to \operatorname{sk}(\varphi)$ but not vice-versa.
- We call this proof-theoretic Skolemization.

Proposition

The theory $T \cup \{ \forall \mathbf{x} . \exists y \varphi(\mathbf{x}, y) \rightarrow \varphi(\mathbf{x}, f(\mathbf{x})) \}$ is a conservative extension of T (where the language of T does not contain f).

• We call this *model-theoretic Skolemization*.

- In a sense, Skolem functions have no power:
 - $\operatorname{sk}(\varphi)$ is valid iff φ is valid, and
 - adding Skolem axioms yields a conservative extension.
- In another sense, they may have power: How expensive is it to go from a proof with Skolem functions to a proof without?

• With a focus on logical complexity (number of nodes in the proof-tree), we discuss various results concerning the *deskolemization problem*:

How can Skolem functions be removed from proofs? How does this affect the length of proofs?

• The first algorithm to remove (both model- and proof-theoretic) Skolem functions from proofs (known to me) was given in D. Hilbert and P. Bernays, *Grundlagen der Mathematik II*, Springer, 1939.

${\sf Predicate\ calculus} + \varepsilon {\sf -symbol} + \varepsilon {\sf -formulas}$

Example	
ε -term: $\varepsilon_x \forall y \ x \neq s(y)$.	

${\sf Predicate\ calculus} + \varepsilon {\sf -symbol} + \varepsilon {\sf -formulas}$

Example ε -term: $\varepsilon_x \quad \forall y \ x \neq s(y).$

 ε -formulas:

 $\exists x \varphi(x) \to \varphi(\varepsilon_x \varphi(x))$

A 1

3

We will look for an algorithm solving the following

Problem

Given a proof of φ using model-theoretic Skolem axioms, find a proof of φ that does not use these axioms.

Proof: Some proof system with cut (Hilbert-style, sequent calculus, ...)

Problem

Given a proof of φ using Skolem axioms, find a proof of φ that does not use Skolem axioms.

- **(**) Consider only $\varphi = \exists \mathbf{x} \forall \mathbf{y} \psi(\mathbf{x}, \mathbf{y})$ with ψ quantifier-free.
- Peplace Skolem axioms and terms by ε-formulas and ε-terms.
- **3** Apply proof-theoretic Skolemization: $\exists \mathbf{x} \psi(\mathbf{x}, f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$.
- Apply the extended first ε -Theorem. Obtain proof of Herbrand disjunction $\bigvee_{1 \le i \le \ell} \psi(\mathbf{t}_i, f_1(\mathbf{t}_i), \dots, f_n(\mathbf{t}_i))$.
- Solution This proof *does not use* ε -formulas.
- **1** Replace Skolem terms by variables and introduce quantifiers.

- Eliminating model-theoretic Skolem functions from proofs reduces to eliminating ε -terms from proofs.
- In the process, we introduce and eliminate proof-theoretic Skolem functions.
- All of this can be done, but the approach uses the extended first ε-theorem, which has non-elementary worst-case complexity.

- Complexity of algorithm due to the fact that an "essentially cut-free" proof is produced.
- But removal of the proof-theoretic Skolem functions from this proof is polynomial.
- In practice, Skolem functions are used differently.
- The rest of this talk² will deal with these uses.

²Except for the next slide.

- An algorithm due to Maehara (1955), based on cut-elimination.
- An algorithm due to Shoenfield (2001), based on Herbrand's theorem.
- A better algorithm for a subproblem due to Avigad (2003).

- We are interested in the difference between natural pairs of systems: One with Skolem functions, one without.
- Two kinds of results:
 - *Transformations*: Showing how to go from one system to the other, along with complexity.
 - *Speed-ups*: Lower bounds on the complexity of transformation algorithms.

3 Adding equality

- We are interested in the effect of Skolem functions on *cut-free proofs*.
- Cut-free proofs are interesting:
 - Usually generated by automated theorem provers.
 - Efficient extraction of data: Interpolants, Herbrand sequents.

- We are interested in the effect of Skolem functions on *cut-free proofs*.
- Cut-free proofs are interesting:
 - Usually generated by automated theorem provers.
 - Efficient extraction of data: Interpolants, Herbrand sequents.
- Here, we look at cut-free *tree-like* proofs.

We consider the "proof-theoretic deskolemization problem":

Problem
nput: φ , proof of $sk(\varphi)$.
Dutput: Proof of φ .

A trivial example

$$\varphi = \forall x P x \rightarrow \forall x P x, \qquad \operatorname{sk}(\varphi) = \forall x P x \rightarrow P c$$

$$\frac{Pc \vdash Pc}{\vdash \forall x Px \rightarrow Pc} \rightarrow_r, \forall_I$$

э.

-

• • • • • • • •

æ

A trivial example

$$\varphi = \forall x P x \rightarrow \forall x P x, \qquad \operatorname{sk}(\varphi) = \forall x P x \rightarrow P c$$

$$\frac{P\alpha \vdash P\alpha}{\vdash \forall x Px \rightarrow \forall x Px} \rightarrow_r, \forall_r, \forall_l$$

э.

-

• • • • • • • •

æ

- We have seen: The cut-free prenex case can be solved with polynomial expense.
- But in the cut-free case, requiring prenex formulas can have bad consequences.

Theorem (Baaz, Leitsch 1994)

There exists a family of formulas $(\varphi_i)_{i \in \mathbb{N}}$ (of elementary size) such that

- **(**) $sk(\varphi_i)$ have cut-free proofs of elementary length, but
- there exist prefix forms ψ_i of φ_i such that all cut-free proofs of sk(ψ_i) have non-elementary length.

$$\begin{aligned} \varphi &= (\exists x P x \lor Q) \to \exists x. (P x \lor Q) \land T, \\ \mathrm{sk}(\varphi) &= (P c \lor Q) \to \exists x. (P x \lor Q) \land T \end{aligned}$$

$$\frac{Pc \lor Q \vdash Pc \lor Q}{\vdash (Pc \lor Q) \to \exists x. (Px \lor Q) \land T} \to_r, \exists_r, \land_r$$

3

-

• • • • • • • •

æ

$$\begin{aligned} \varphi &= (\exists x P x \lor Q) \to \exists x. (P x \lor Q) \land T, \\ \mathrm{sk}(\varphi) &= (P c \lor Q) \to \exists x. (P x \lor Q) \land T \end{aligned}$$

$$\frac{\exists x Px \lor Q \vdash Pt \lor Q \vdash T}{\vdash (\exists x Px \lor Q) \to \exists x. (Px \lor Q) \land T} \to_r, \exists_r, \land_r$$

Daniel Weller (TU Vienna)

February 2, 2012 23 / 49

3

-

• • • • • • • •

2

$$\begin{aligned} \varphi &= (\exists x P x \lor Q) \to \exists x. (P x \lor Q) \land T, \\ \mathrm{sk}(\varphi) &= (P c \lor Q) \to \exists x. (P x \lor Q) \land T \end{aligned}$$

$$\frac{\exists x P x \vdash \exists x. (P x \lor Q) \land T \quad Q \vdash \exists x. (P x \lor Q) \land T}{\vdash (\exists x P x \lor Q) \rightarrow \exists x. (P x \lor Q) \land T} \rightarrow_r, \lor_l,$$

3

-

• • • • • • • •

2

Proposition

There exists a family of formulas $(\varphi_k)_{k\in\mathbb{N}}$ (of polynomial size) such that

- **(**) there exist polynomial-length proofs of $sk(\varphi_i)$ but
- **2** all proofs of φ_i have exponential length.

A matching upper bound

• But this is the worst that can happen.

Proposition

Let π be a proof of $sk(\varphi)$. Then there exists a proof λ of φ such that $|\lambda| \leq 2^{p(|\pi|)}$ for some polynomial p.

A matching upper bound

• But this is the worst that can happen.

Proposition

Let π be a proof of $sk(\varphi)$. Then there exists a proof λ of φ such that $|\lambda| \leq 2^{p(|\pi|)}$ for some polynomial p.

Proof.

The idea is to extract a Herbrand disjunction D from π which is polynomial in $|\pi|$. Since D is propositional, it has an exponential proof. This proof can be converted to a proof of φ with polynomial expense.

A matching upper bound

• But this is the worst that can happen.

Proposition

Let π be a proof of $sk(\varphi)$. Then there exists a proof λ of φ such that $|\lambda| \leq 2^{p(|\pi|)}$ for some polynomial p.

Proof.

The idea is to extract a Herbrand disjunction D from π which is polynomial in $|\pi|$. Since D is propositional, it has an exponential proof. This proof can be converted to a proof of φ with polynomial expense.

Since φ is infix, one has to use a more involved data structure (*expansion* tree proofs due to Miller 1983) instead of Herbrand disjunctions.

Extending upper bounds

• This result can be lifted to some proofs with cut:

Proposition

Let π be a proof of $sk(\varphi)$ such that for all Skolem terms $f(t_1, \ldots, t_n)$ occurring in cut-formulas, no t_i contains a bound variable. Then there exists a proof λ of φ such that $|\lambda| \leq 2^{p(|\pi|)}$.

Extending upper bounds

• This result can be lifted to some proofs with cut:

Proposition

Let π be a proof of $sk(\varphi)$ such that for all Skolem terms $f(t_1, \ldots, t_n)$ occurring in cut-formulas, no t_i contains a bound variable. Then there exists a proof λ of φ such that $|\lambda| \leq 2^{p(|\pi|)}$.

Proof.

$$\frac{\Gamma \vdash \Delta, C(f(t)) \quad C(f(t)), \Gamma \vdash \Delta}{\Gamma \vdash \Delta} \ \textit{cut}$$

is replaced by

$$\frac{\Gamma \vdash \Delta, C(f(t)) - C(f(t)), \Gamma \vdash \Delta}{C(f(t)) \rightarrow C(f(t)), \Gamma \vdash \Delta} \rightarrow_{I} \rightarrow_{I} \frac{C(f(t)) \rightarrow C(f(t)), \Gamma \vdash \Delta}{\forall x. C(x) \rightarrow C(x), \Gamma \vdash \Delta} \forall_{I}$$

Extending upper bounds

• This result can be lifted to some proofs with cut:

Proposition

Let π be a proof of $sk(\varphi)$ such that for all Skolem terms $f(t_1, \ldots, t_n)$ occurring in cut-formulas, no t_i contains a bound variable. Then there exists a proof λ of φ such that $|\lambda| \leq 2^{p(|\pi|)}$.

- Any cut-free deskolemization algorithm can be lifted to this class of proofs.
- One is reminded of the restriction imposed by (Miller 1983) to obtain *soundness* of Skolemization in higher-order logic.

A first approach

2 Cut-free tree-like proofs

- \bullet We distinguish the signatures Σ (original) and \mathcal{SK} (skolem functions).
- We work in proof systems with cut. Analogous results hold in the cut-free case.

- Consider **LK**-proofs with =:
- Allow axioms $\forall x.x = x$ and
- the equality schema

$$\forall \mathbf{x}, \mathbf{y}. \mathbf{x} = \mathbf{y} \land A(\mathbf{x}) \rightarrow A(\mathbf{y})$$

where $A(\mathbf{x})$ is a formula over Σ or $\Sigma \cup S\mathcal{K}$.

Problem

Input: Proof of $sk(\varphi)$ using the equality schema for $\Sigma \cup SK$. **Output:** Proof of φ using the equality schema for Σ .

3

Proposition

There exists a family $(\varphi_n)_{n\in\mathbb{N}}$ of formulas, such that

- **1** the length of proofs of φ_n necessarily grows in n, but
- **2** $\operatorname{sk}(\varphi_n)$ have proofs using the equality schema for $\Sigma \cup S\mathcal{K}$ of constant length.

- For the proof, we use results on the generalization of proofs from (Baaz, Wojtylak 2008).
- This requires the notion of *proof skeleton*.

Definition

The *skeleton* of a proof is obtained from a proof by dropping all sequents.

Hence a proof skeleton is a tree labelled with rules of proof. A formula φ is *derivable with a proof skeleton* Π if Π can be extended to a proof of φ .

Theorem (Baaz, Wojtylak 2008)

Let T be a finite extension of LK_{es} containing $\forall x.s(x) = x$. If $A(s^n(0))$ is derivable in T with a proof skeleton Π and n is large relative to A and Π , then $A(s^n(a))$ with a fresh free variable a is derivable in T.

We use the following consequence of this theorem:

Lemma

Let T be a finite extension of LK_{es} containing $\forall x.s(x) = x$ and assume that there exists a constant c such that $s^n(0) = 0$ has a proof π with length $\leq c$ for all n. Then a = 0 is derivable in T.

We use the following consequence of this theorem:

Lemma

Let T be a finite extension of LK_{es} containing $\forall x.s(x) = x$ and assume that there exists a constant c such that $s^n(0) = 0$ has a proof π with length $\leq c$ for all n. Then a = 0 is derivable in T.

Proof.

By the previous theorem, there exists an *n* such that $s^n(a) = 0$ is provable. Using $\forall x.s(x) = x$ we prove a = 0. Now we can prove

Proposition

There exists a family $(\varphi_n)_{n\in\mathbb{N}}$ of formulas, such that

• the length of proofs of φ_n necessarily grows in n, but

2 $\operatorname{sk}(\varphi_n)$ have proofs using the equality schema for $\Sigma \cup S\mathcal{K}$ of constant length.

Consider

$$\begin{split} \varphi_n \equiv &\forall x (s(x) = x) \land \\ &\forall xy \exists z. (x = 0 \land y = 0 \rightarrow z = 0) \land (z = x \rightarrow y = 0) \\ &\rightarrow s^n(0) = 0 \end{split}$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Consider

$$\begin{split} \varphi_n \equiv &\forall x (s(x) = x) \land \\ &\forall xy \exists z. (x = 0 \land y = 0 \rightarrow z = 0) \land (z = x \rightarrow y = 0) \\ &\rightarrow s^n(0) = 0 \end{split}$$

Since a = 0 is not provable, by the previous lemma we know that $\forall x(s(x) = x) \rightarrow s^n(0) = 0$ do not have proofs of constant length.

Consider

$$\varphi_n \equiv \forall x (s(x) = x) \land$$

$$\forall xy \exists z. (x = 0 \land y = 0 \rightarrow z = 0) \land (z = x \rightarrow y = 0)$$

$$\rightarrow s^n(0) = 0$$

Since a = 0 is not provable, by the previous lemma we know that $\forall x(s(x) = x) \rightarrow s^n(0) = 0$ do not have proofs of constant length. Assume that φ_n has a constant length proof.

Consider

$$\varphi_n \equiv \forall x (s(x) = x) \land$$

$$\forall xy \exists z. (x = 0 \land y = 0 \rightarrow z = 0) \land (z = x \rightarrow y = 0)$$

$$\rightarrow s^n(0) = 0$$

Since a = 0 is not provable, by the previous lemma we know that $\forall x(s(x) = x) \rightarrow s^n(0) = 0$ do not have proofs of constant length. Assume that φ_n has a constant length proof. Note that $\forall xy \exists z.(x = 0 \land y = 0 \rightarrow z = 0) \land (z = x \rightarrow y = 0))$ is valid, hence $s(0) = 0 \rightarrow s^n(0) = 0$ has a constant length proof, contradiction. It remains to prove

Proposition

There exists a family $(\varphi_n)_{n\in\mathbb{N}}$ of formulas, such that

() the length of proofs of φ_n necessarily grows in n, but

2 $\operatorname{sk}(\varphi_n)$ have proofs using the equality schema for $\Sigma \cup S\mathcal{K}$ of constant length.

We have

$$sk(\varphi_n) \equiv \forall x(s(x) = x) \land$$

$$\forall xy(x = 0 \land y = 0 \rightarrow f(x, y) = 0) \land (f(x, y) = x \rightarrow y = 0)$$

$$\rightarrow s^n(0) = 0$$

Note that the only binary symbol is $f \in SK$.

< 🗗 🕨

3

Define (Yukami's trick)

$$t_0(x,y) \equiv x, \qquad t_{k+1}(x,y) \equiv f(t_k(x,y),s^k(y)).$$

The proof of $\mathrm{sk}(\varphi_{\textit{n}})$ uses the equality schema

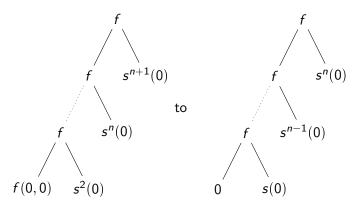
$$f(0,0) = 0 \land s(0) = 0 \to t_n(f(0,0),s(0)) = t_n(0,0)$$

and the reflexivity axiom

$$t_n(f(0,0),s(0)) = f(t_n(0,0),s^n(0)).$$

Proving $sk(\varphi_n)$

It helps to visualize this. If f(0,0) = 0 and s(0) = 0 then the equality schema allows us to go from



The idea is that the equality schema allows replacement on all leaves in the term tree in a single step.

Daniel Weller (TU Vienna)

- Is this necessary? To find out, we can try to sharpen the result.
- Distinguish a natural subclass of the equality schema:
- An equality schema

$$\forall \mathbf{x}, \mathbf{y}.\mathbf{x} = \mathbf{y} \rightarrow f(\mathbf{x}) = f(\mathbf{y}),$$

where *f* is a function symbol is called an *equality axiom*.

Proposition

There exists a family $(\varphi_n)_{n\in\mathbb{N}}$ of formulas, such that

- **1** the length of proofs of φ_n necessarily grows in n, but
- **2** $\operatorname{sk}(\varphi_n)$ have proofs using the equality schema for $\Sigma \cup S\mathcal{K}$ of constant length.

Proposition

There exists a family $(\varphi_n)_{n\in\mathbb{N}}$ of formulas, such that

- the length of proofs of sk(φ_n) using the equality schema for Σ, but the equality axioms for SK, necessarily grows in n, and
- **2** $\operatorname{sk}(\varphi_n)$ have proofs using the equality schema for $\Sigma \cup S\mathcal{K}$ of constant length.

- The old proof does not work here: the proof generalization result does not apply in the presence of *f*.
- Another way: Find an algorithm that removes Skolem axioms from π such that the length increase is bounded by the length of π.

Sharpening the result

- This is work in progress.
- Idea for an algorithm:
- Translate a proof of

$$\forall x, y. x = y \to f(x) = f(y) \vdash \exists x. \varphi(x, f(x))$$

to a proof of

$$\bigwedge_{s,t} s = t \to f(s) = f(t) \vdash \bigvee_r \varphi(r, f(r)).$$

Sharpening the result

- This is work in progress.
- Idea for an algorithm:
- Translate a proof of

$$\forall x, y.x = y \to f(x) = f(y) \vdash \exists x.\varphi(x, f(x))$$

to a proof of

$$\bigwedge_{s,t} s = t \to f(s) = f(t) \vdash \bigvee_r \varphi(r, f(r)).$$

• Then replace f(s) by f(t) or vice-versa.

Sharpening the result

- This is work in progress.
- Idea for an algorithm:
- Translate a proof of

$$\forall x, y.x = y \to f(x) = f(y) \vdash \exists x.\varphi(x, f(x))$$

to a proof of

$$\bigwedge_{s,t} s = t \to f(s) = f(t) \vdash \bigvee_r \varphi(r, f(r)).$$

- Then replace f(s) by f(t) or vice-versa.
- The problem is that when both *s* and *t* are witnesses of ∃*x* the result is not a Herbrand disjunction anymore.

- We haven shown that there exists an arbitrary speed-up when using equality schemata for Skolem functions.
- There is a somewhat analogous result in the setting of intuitionistic logic due to (Mints 1998).

- Skolemization for LJ is in general not complete:
- There exists unprovable φ such that $\mathrm{sk}(\varphi)$ is provable.

- Skolemization for LJ is in general not complete:
- \bullet There exists unprovable φ such that ${\rm sk}(\varphi)$ is provable.

Proposition (Mints)

Let S be a prenex sequent. Then sk(S) is LJ-provable iff S is.

• Again, the situation changes when = for Skolem functions is added:

Proposition (Mints)

There exists a prenex sequent S such that sk(S) has an $LJ_{=}$ proof, but S is not provable in $LJ_{=}$.

A similar result for $\ensuremath{\text{LJ}}$

• Again, the situation changes when = for Skolem functions is added:

Proposition (Mints)

There exists a prenex sequent S such that sk(S) has an $LJ_{=}$ proof, but S is not provable in $LJ_{=}$.

Proof.

Take

$$\forall z \exists x P(z, x) \vdash \forall z_1 \exists x_1 \forall z_2 \exists x_2. P(z_1, x_1) \land P(z_2, x_2) \land (z_1 = z_2 \rightarrow x_1 = x_2)$$

then sk(S) is

 $\forall z P(z, f(x)) \vdash \exists x_1 \exists x_2. P(c, x_1) \land P(g(x_2), x_2) \land (c = g(x_1) \rightarrow x_1 = x_2).$

- There are many interesting open problems regarding Skolem functions and proofs.
- The general algorithms are of non-elementary symbolic complexity.
- The use of the equality schema for Skolem functions has an interesting effect on logical complexity.
- Some open problems:
 - Complexity of the cut-free case for DAG-like proofs.
 - Sharpening the speed-up on equality schemata.
 - Consider systems with more assumptions on Skolem functions.