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The power of functions

Setting of this talk: classical first-order logic.1

,,Quantifiers can be eliminated by introduction of fresh functions”.

Known as Skolemization, Herbrandization.

1For simplicity, officially consider only formulas in NNF.
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The power of functions

Example

Consider an assumption

Dz@xDy .y ¡ x ^ y � z

Its Skolemization is
@x .spxq ¡ x ^ spxq � 0

where s is an uninterpreted function symbol, 0 an uninterpreted constant.
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The power of functions

Proposition

For every formula ϕ,

its Skolemization skpϕq does not contain @ quantifiers, and

ϕ is valid iff skpϕq is.

Useful when working with (cut-free) proof systems: only have to
consider one type of quantifier.

In general, ϕÑ skpϕq but not vice-versa.

We call this proof-theoretic Skolemization.
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The power of functions

Proposition

The theory T Y t@x.Dyϕpx, yq Ñ ϕpx, f pxqqu is a conservative extension of
T (where the language of T does not contain f ).

We call this model-theoretic Skolemization.
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The power of functions

In a sense, Skolem functions have no power:

skpϕq is valid iff ϕ is valid, and
adding Skolem axioms yields a conservative extension.

In another sense, they may have power: How expensive is it to go
from a proof with Skolem functions to a proof without?
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The power of functions

With a focus on logical complexity (number of nodes in the
proof-tree), we discuss various results concerning the deskolemization
problem:

How can Skolem functions be removed from proofs?
How does this affect the length of proofs?
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The rest of this talk

1 A first approach

2 Cut-free tree-like proofs

3 Adding equality
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A first approach

The first algorithm to remove (both model- and proof-theoretic)
Skolem functions from proofs (known to me) was given in D. Hilbert
and P. Bernays, Grundlagen der Mathematik II, Springer, 1939.
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Hilbert’s ε-calculus

Predicate calculus + ε-symbol + ε-formulas

Example

ε-term: εx @y x � spyq.
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Hilbert’s ε-calculus

Predicate calculus + ε-symbol + ε-formulas

Example

ε-term: εx @y x � spyq.

ε-formulas:
Dxϕpxq Ñ ϕpεxϕpxqq
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The problem

We will look for an algorithm solving the following

Problem

Given a proof of ϕ using model-theoretic Skolem axioms, find a proof of ϕ
that does not use these axioms.

Proof: Some proof system with cut (Hilbert-style, sequent calculus, . . .)
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A solution

Problem

Given a proof of ϕ using Skolem axioms, find a proof of ϕ that does not
use Skolem axioms.

1 Consider only ϕ � Dx@yψpx, yq with ψ quantifier-free.

2 Replace Skolem axioms and terms by ε-formulas and ε-terms.

3 Apply proof-theoretic Skolemization: Dxψpx, f1pxq, . . . , fnpxqq.

4 Apply the extended first ε-Theorem. Obtain proof of Herbrand
disjunction

�
1¤i¤` ψpti, f1ptiq, . . . , fnptiqq.

5 This proof does not use ε-formulas.

6 Replace Skolem terms by variables and introduce quantifiers.

Daniel Weller (TU Vienna) Deskolemization of Proofs February 2, 2012 12 / 49



Summary of the approach

Eliminating model-theoretic Skolem functions from proofs reduces to
eliminating ε-terms from proofs.

In the process, we introduce and eliminate proof-theoretic Skolem
functions.

All of this can be done, but the approach uses the extended first
ε-theorem, which has non-elementary worst-case complexity.
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Summary of the approach

Complexity of algorithm due to the fact that an “essentially cut-free”
proof is produced.

But removal of the proof-theoretic Skolem functions from this proof is
polynomial.

In practice, Skolem functions are used differently.

The rest of this talk2 will deal with these uses.

2Except for the next slide.
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Further results on model-theoretic Skolemization

An algorithm due to Maehara (1955), based on cut-elimination.

An algorithm due to Shoenfield (2001), based on Herbrand’s theorem.

A better algorithm for a subproblem due to Avigad (2003).
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Methodology

We are interested in the difference between natural pairs of systems:
One with Skolem functions, one without.

Two kinds of results:

Transformations: Showing how to go from one system to the other,
along with complexity.
Speed-ups: Lower bounds on the complexity of transformation
algorithms.
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The rest of this talk

1 A first approach

2 Cut-free tree-like proofs

3 Adding equality
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Cut-free proofs

We are interested in the effect of Skolem functions on cut-free proofs.

Cut-free proofs are interesting:

Usually generated by automated theorem provers.
Efficient extraction of data: Interpolants, Herbrand sequents.

Here, we look at cut-free tree-like proofs.
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Cut-free proofs

We consider the “proof-theoretic deskolemization problem”:

Problem

Input: ϕ, proof of skpϕq.
Output: Proof of ϕ.
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A trivial example

ϕ � @xPx Ñ @xPx , skpϕq � @xPx Ñ Pc

Pc $ Pc
$ @xPx Ñ Pc

Ñr ,@l
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The prenex case

We have seen: The cut-free prenex case can be solved with
polynomial expense.

But in the cut-free case, requiring prenex formulas can have bad
consequences.
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The first speed-up

Theorem (Baaz, Leitsch 1994)

There exists a family of formulas pϕi qiPN (of elementary size) such that

1 skpϕi q have cut-free proofs of elementary length, but

2 there exist prefix forms ψi of ϕi such that all cut-free proofs of skpψi q
have non-elementary length.
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Another example

ϕ � pDxPx _ Qq Ñ Dx .pPx _ Qq ^ T ,
skpϕq � pPc _ Qq Ñ Dx .pPx _ Qq ^ T

Pc _ Q $ Pc _ Q $ T

$ pPc _ Qq Ñ Dx .pPx _ Qq ^ T
Ñr , Dr ,^r
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The second speed-up

Proposition

There exists a family of formulas pϕkqkPN (of polynomial size) such that

1 there exist polynomial-length proofs of skpϕi q but

2 all proofs of ϕi have exponential length.
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A matching upper bound

But this is the worst that can happen.

Proposition

Let π be a proof of skpϕq. Then there exists a proof λ of ϕ such that
|λ| ¤ 2pp|π|q for some polynomial p.
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A matching upper bound

But this is the worst that can happen.

Proposition

Let π be a proof of skpϕq. Then there exists a proof λ of ϕ such that
|λ| ¤ 2pp|π|q for some polynomial p.

Proof.

The idea is to extract a Herbrand disjunction D from π which is
polynomial in |π|. Since D is propositional, it has an exponential proof.
This proof can be converted to a proof of ϕ with polynomial expense.
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A matching upper bound

But this is the worst that can happen.

Proposition

Let π be a proof of skpϕq. Then there exists a proof λ of ϕ such that
|λ| ¤ 2pp|π|q for some polynomial p.

Proof.

The idea is to extract a Herbrand disjunction D from π which is
polynomial in |π|. Since D is propositional, it has an exponential proof.
This proof can be converted to a proof of ϕ with polynomial expense.

Since ϕ is infix, one has to use a more involved data structure (expansion
tree proofs due to Miller 1983) instead of Herbrand disjunctions.
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Extending upper bounds

This result can be lifted to some proofs with cut:

Proposition

Let π be a proof of skpϕq such that for all Skolem terms f pt1, . . . , tnq
occurring in cut-formulas, no ti contains a bound variable. Then there
exists a proof λ of ϕ such that |λ| ¤ 2pp|π|q.

Any cut-free deskolemization algorithm can be lifted to this class of
proofs.

One is reminded of the restriction imposed by (Miller 1983) to obtain
soundness of Skolemization in higher-order logic.
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@l

Any cut-free deskolemization algorithm can be lifted to this class of
proofs.
One is reminded of the restriction imposed by (Miller 1983) to obtain
soundness of Skolemization in higher-order logic.

Daniel Weller (TU Vienna) Deskolemization of Proofs February 2, 2012 26 / 49



Extending upper bounds

This result can be lifted to some proofs with cut:

Proposition

Let π be a proof of skpϕq such that for all Skolem terms f pt1, . . . , tnq
occurring in cut-formulas, no ti contains a bound variable. Then there
exists a proof λ of ϕ such that |λ| ¤ 2pp|π|q.

Any cut-free deskolemization algorithm can be lifted to this class of
proofs.

One is reminded of the restriction imposed by (Miller 1983) to obtain
soundness of Skolemization in higher-order logic.

Daniel Weller (TU Vienna) Deskolemization of Proofs February 2, 2012 26 / 49



The rest of this talk

1 A first approach

2 Cut-free tree-like proofs

3 Adding equality
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Adding �

We distinguish the signatures Σ (original) and SK (skolem functions).

We work in proof systems with cut. Analogous results hold in the
cut-free case.
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Adding �

Consider LK-proofs with �:

Allow axioms @x .x � x and

the equality schema

@x, y.x � y ^ Apxq Ñ Apyq

where Apxq is a formula over Σ or Σ Y SK.

Daniel Weller (TU Vienna) Deskolemization of Proofs February 2, 2012 29 / 49



Adding �

Problem

Input: Proof of skpϕq using the equality schema for Σ Y SK.
Output: Proof of ϕ using the equality schema for Σ.
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The third speed-up

Proposition

There exists a family pϕnqnPN of formulas, such that

1 the length of proofs of ϕn necessarily grows in n, but

2 skpϕnq have proofs using the equality schema for Σ Y SK of constant
length.
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Arbitrary speed-up in the presence of �

For the proof, we use results on the generalization of proofs from
(Baaz, Wojtylak 2008).

This requires the notion of proof skeleton.
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Proof Skeletons

Definition

The skeleton of a proof is obtained from a proof by dropping all sequents.

Hence a proof skeleton is a tree labelled with rules of proof. A formula ϕ
is derivable with a proof skeleton Π if Π can be extended to a proof of ϕ.
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Proof Generalization

Theorem (Baaz, Wojtylak 2008)

Let T be a finite extension of LKes containing @x .spxq � x. If Apsnp0qq is
derivable in T with a proof skeleton Π and n is large relative to A and Π,
then Apsnpaqq with a fresh free variable a is derivable in T .

Daniel Weller (TU Vienna) Deskolemization of Proofs February 2, 2012 34 / 49



Proof Generalization

We use the following consequence of this theorem:

Lemma

Let T be a finite extension of LKes containing @x .spxq � x and assume
that there exists a constant c such that snp0q � 0 has a proof π with
length ¤ c for all n. Then a � 0 is derivable in T .
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Proof Generalization

We use the following consequence of this theorem:

Lemma

Let T be a finite extension of LKes containing @x .spxq � x and assume
that there exists a constant c such that snp0q � 0 has a proof π with
length ¤ c for all n. Then a � 0 is derivable in T .

Proof.

By the previous theorem, there exists an n such that snpaq � 0 is provable.
Using @x .spxq � x we prove a � 0.
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Speed-up

Now we can prove

Proposition

There exists a family pϕnqnPN of formulas, such that

1 the length of proofs of ϕn necessarily grows in n, but

2 skpϕnq have proofs using the equality schema for Σ Y SK of constant
length.
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Speed-up

Consider

ϕn �@xpspxq � xq^

@xyDz .px � 0 ^ y � 0 Ñ z � 0q ^ pz � x Ñ y � 0q

Ñ snp0q � 0
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ϕn �@xpspxq � xq^

@xyDz .px � 0 ^ y � 0 Ñ z � 0q ^ pz � x Ñ y � 0q

Ñ snp0q � 0

Since a � 0 is not provable, by the previous lemma we know that
@xpspxq � xq Ñ snp0q � 0 do not have proofs of constant length.
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Ñ snp0q � 0

Since a � 0 is not provable, by the previous lemma we know that
@xpspxq � xq Ñ snp0q � 0 do not have proofs of constant length. Assume
that ϕn has a constant length proof.
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Speed-up

Consider

ϕn �@xpspxq � xq^

@xyDz .px � 0 ^ y � 0 Ñ z � 0q ^ pz � x Ñ y � 0q

Ñ snp0q � 0

Since a � 0 is not provable, by the previous lemma we know that
@xpspxq � xq Ñ snp0q � 0 do not have proofs of constant length. Assume
that ϕn has a constant length proof. Note that
@xyDz .px � 0 ^ y � 0 Ñ z � 0q ^ pz � x Ñ y � 0qq is valid, hence
sp0q � 0 Ñ snp0q � 0 has a constant length proof, contradiction.
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Speed-up

It remains to prove

Proposition

There exists a family pϕnqnPN of formulas, such that

1 the length of proofs of ϕn necessarily grows in n, but

2 skpϕnq have proofs using the equality schema for Σ Y SK of constant
length.
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Speed-up

We have

skpϕnq �@xpspxq � xq^

@xypx � 0 ^ y � 0 Ñ f px , yq � 0q ^ pf px , yq � x Ñ y � 0q

Ñ snp0q � 0

Note that the only binary symbol is f P SK.
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Proving skpϕnq

Define (Yukami’s trick)

t0px , yq � x , tk�1px , yq � f ptkpx , yq, s
kpyqq.

The proof of skpϕnq uses the equality schema

f p0, 0q � 0 ^ sp0q � 0 Ñ tnpf p0, 0q, sp0qq � tnp0, 0q

and the reflexivity axiom

tnpf p0, 0q, sp0qq � f ptnp0, 0q, s
np0qq.
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Proving skpϕnq

It helps to visualize this. If f p0, 0q � 0 and sp0q � 0 then the equality
schema allows us to go from

f

f

f

f p0, 0q s2p0q

snp0q

sn�1p0q

to

f

f

f

0 sp0q

sn�1p0q

snp0q

The idea is that the equality schema allows replacement on all leaves in
the term tree in a single step.
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Sharpening the result

Is this necessary? To find out, we can try to sharpen the result.

Distinguish a natural subclass of the equality schema:

An equality schema

@x, y.x � y Ñ f pxq � f pyq,

where f is a function symbol is called an equality axiom.
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Sharpening the result

Proposition

There exists a family pϕnqnPN of formulas, such that

1 the length of proofs of ϕn necessarily grows in n, but

2 skpϕnq have proofs using the equality schema for Σ Y SK of constant
length.
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Sharpening the result

Proposition

There exists a family pϕnqnPN of formulas, such that

1 the length of proofs of skpϕnq using the equality schema for Σ, but
the equality axioms for SK, necessarily grows in n, and

2 skpϕnq have proofs using the equality schema for Σ Y SK of constant
length.
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Sharpening the result

The old proof does not work here: the proof generalization result does
not apply in the presence of f .

Another way: Find an algorithm that removes Skolem axioms from π
such that the length increase is bounded by the length of π.
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Sharpening the result

This is work in progress.

Idea for an algorithm:

Translate a proof of

@x , y .x � y Ñ f pxq � f pyq $ Dx .ϕpx , f pxqq

to a proof of

©

s,t

s � t Ñ f psq � f ptq $
ª

r

ϕpr , f prqq.

Then replace f psq by f ptq or vice-versa.

The problem is that when both s and t are witnesses of Dx the result
is not a Herbrand disjunction anymore.
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A similar result for LJ

We haven shown that there exists an arbitrary speed-up when using
equality schemata for Skolem functions.

There is a somewhat analogous result in the setting of intuitionistic
logic due to (Mints 1998).
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A similar result for LJ

Skolemization for LJ is in general not complete:

There exists unprovable ϕ such that skpϕq is provable.
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A similar result for LJ

Skolemization for LJ is in general not complete:

There exists unprovable ϕ such that skpϕq is provable.

Proposition (Mints)

Let S be a prenex sequent. Then skpSq is LJ-provable iff S is.
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A similar result for LJ

Again, the situation changes when � for Skolem functions is added:

Proposition (Mints)

There exists a prenex sequent S such that skpSq has an LJ� proof, but S
is not provable in LJ�.
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A similar result for LJ

Again, the situation changes when � for Skolem functions is added:

Proposition (Mints)

There exists a prenex sequent S such that skpSq has an LJ� proof, but S
is not provable in LJ�.

Proof.

Take

@zDxPpz , xq $ @z1Dx1@z2Dx2.Ppz1, x1q ^ Ppz2, x2q ^ pz1 � z2 Ñ x1 � x2q

then skpSq is

@zPpz , f pxqq $ Dx1Dx2.Ppc, x1q ^ Ppgpx2q, x2q ^ pc � gpx1q Ñ x1 � x2q.
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Conclusion

There are many interesting open problems regarding Skolem functions
and proofs.

The general algorithms are of non-elementary symbolic complexity.

The use of the equality schema for Skolem functions has an
interesting effect on logical complexity.

Some open problems:

Complexity of the cut-free case for DAG-like proofs.
Sharpening the speed-up on equality schemata.
Consider systems with more assumptions on Skolem functions.
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