
A Clausal Approach to Proof Analysis in
Second-Order Logic ?

Stefan Hetzl1, Alexander Leitsch1, Daniel Weller1, and
Bruno Woltzenlogel Paleo1

{hetzl, leitsch, weller, bruno}@logic.at
Institute of Computer Languages (E185),

Vienna University of Technology,
Favoritenstraße 9, 1040 Vienna, Austria

Abstract. This work defines an extension CERES2 of the first-order
cut-elimination method CERES to the subclass of sequent calculus proofs
in second-order logic using quantifier-free comprehension. This extension
is motivated by the fact that cut-elimination can be used as a tool to
extract information from real mathematical proofs, and often a crucial
part of such proofs is the definition of sets by formulas. This is expressed
by the comprehension axiom scheme, which is representable in second-
order logic. At the core of CERES2 lies the production of a set of clauses
CL(ϕ) from a proof ϕ that is always unsatisfiable. From a resolution
refutation γ of CL(ϕ), a proof without essential cuts can be constructed.
The main theoretical obstacle in the extension of CERES to second-order
logic is the construction of this proof from γ. This issue is solved for the
subclass considered in this paper. Moreover, we discuss the problems that
have to be solved to extend CERES2 to the complete class of second-
order proofs. Finally, the method is applied to a simple mathematical
proof that involves induction and comprehension and the resulting proof
is analyzed.

1 Introduction

The discipline of proof mining deals with the extraction of information from
formal proofs. Different methods have been applied successfully (see [1], [2]).
This work considers the approach of using (partial) cut-elimination to extract
hidden information from proofs.

The first-order cut-elimination method CERES (cut-elimination by resolution)
has several advantages over the traditional reductive cut-elimination methods:
The main computational advantage is that the reductive methods are sub-
sumed by CERES (i.e. every proof obtained by a reductive method can also
be obtained by CERES, see [2]), and secondly, a non-elementary speed-up over
Gentzen’s method by the use of CERES is possible (see [3]). Another, purely
proof-theoretic, advantage is that a CERES method for a proof system provides

? Supported by the Austrian Science Fund (project P19875)

a strong regularity theorem on the structure of cut-free proofs: The result of
applying CERES is a proof which is composed of instances of (otherwise un-
changed) parts of the original proof. This knowledge about the cut-free proofs
cannot be obtained by traditional reductive methods as they perturb the struc-
ture of the proof. The CERES method has been implemented in the CERES
system1. In this paper, we present the extension of CERES to CERES2, a cut-
elimination method for second-order logic, which is based on a set of clauses that
is extracted from a proof with cuts, the characteristic clause set.

The benefits of CERES2 over traditional cut-elimination methods are two-
fold: Firstly, the characteristic clause set can be regarded as the kernel of the
proof with cuts and as such can provide valuable information that a human could
not easily read off of a formal proof (for some evidence supporting this, see [4]
and [5]). Secondly, due to the use of a resolution calculus at the core of CERES2,
theoretical and practical advances in higher-order theorem proving may enhance
the power of the method.

An inherent limitation of the CERES method (and indeed of all first-order
cut-elimination procedures) is that proofs that use comprehension cannot be
handled in a straightforward way, as comprehension is essentially a second-order
property. In CERES2, we will be able to handle such proofs in a natural way.
The subclass of proofs we are considering here is the class of proofs where com-
prehension is restricted to quantifier-free formulas. This choice is motivated in
part by the fact that converting a resolution refutation to a sequent calculus
proof in the presence of arbitrary comprehension (and, therefore, skolemization)
is problematic. Indeed, it turns out that, in CERES2, the construction of proof
projections is a highly complicated matter, in contrast to the first-order case.

Note that, due to lack of space, detailed proofs are not developed here, but
can be found in [6].

2 The second-order language

Here, we consider a monadic second-order logic based on Church’s simply typed
λ-calculus [7] and fix the set of base types BT := {ι, o}, where ι denotes the type
of individuals and o the boolean type. The set T of types is built in the usual
inductive way over the BT . In contrast to the second-order logic as defined in
e.g. [8], we include in the language more objects of order ≤ 2 to allow skolem-
ization, although quantification is restricted to individuals and unary predicates
on individuals (i.e. variables of types ι and ι→ o).

We assume given a set of symbols S together with a function τ : S 7→ T
assigning types to symbols, where S can be partitioned into the sets V (individual
variables), CS (individual constants), FSn (function symbols), PCn (predicate
constants), PV (unary predicate variables) s.t.

1. For all x ∈ V , τ(x) = ι,
2. for all c ∈ CS , τ(c) = ι,

1 http://www.logic.at/ceres

3. for all f ∈ FSn, n ≥ 1: τ(f) = t1 → . . .→ tn → ι where for 1 ≤ i ≤ n, ti = ι
or ti = ι→ o,

4. for all P ∈ PCn, n ≥ 0: τ(P) = t1 → . . . → tn → o where for 1 ≤ i ≤ n,
ti = ι or ti = ι→ o,

5. for all X ∈ PV , τ(X) = ι→ o.

We additionally require that each member of this partition is countably infi-
nite. We define PC :=

⋃
i≥0 PC i and FS :=

⋃
i≥1 FS i. The set of expressions E

is defined inductively in the usual way over the set of symbols together with the
symbols ¬,∧,∨,→,∃,∀, λ, ., (,) (keeping in mind the restriction on the order of
the types and on the types of the quantified variables). We use infix notation for
familiar function symbols and predicates (e.g. +,=).

Definition 1. The set of second-order formulas or simply formulas SOF :=
{F | F ∈ E , τ(F) = o}. If F ∈ SOF, F ≡ P (t1, . . . , tn), P ∈ PC ∪ PV , then F
is called atomic.

For atomic formulas P (t1, . . . , tn) we may also write t1 ∈ P (t2, . . . , tn). We
define the set of lambda terms LT := {t | t ∈ E , t ≡ λx.F, τ(F) = o} and the set
of terms T := {t | t ∈ E , τ(t) = ι}. Polarity of subexpressions w.r.t. formulas and
sequents, strong and weak quantifiers, the scope of quantifiers, closed formulas,
β-reduction are defined as usual. We assume a variable convention (i.e. variables
are renamed appropriately to avoid conflicts).

As proof system for the input and output proofs of the CERES2 method,
we use the sequent calculus LKDe2. This calculus is based on LK2 as defined
in [9], which consists of the usual structural, propositional, and first-order rules
together with second-order quantifier introduction rules that incorporate com-
prehension. LKDe2 extends LK2 by rules for first-order equality handling:

Γ ` ∆, s = t Π ` Λ, A[s]

Γ, Π ` ∆, Λ, A[t]
=: r1

Γ ` ∆, t = s Π ` Λ, A[s]

Γ, Π ` ∆, Λ, A[t]
=: r2

LKDe2 also includes the rules =: l1 and =: l2, and rules for the introduction
of definitions (for details, see [10]). All the rules in LKDe2 are multiplicative.
As axioms we allow the usual tautological sequents A ` A for an atomic formula
A as well as arbitrary atomic sequents without second-order variables (which is
useful for conveniently axiomatizing a background theory). Additionally, if C is a
set of atomic sequents, then we say that π is an LKDe2-proof from C if for every
initial sequent S of π, S is either an axiom, or S is in C. As an intermediary
calculus for the construction of a resolution refutation, we use the resolution
calculus discussed in the next section.

3 The second-order resolution calculus

In this section, we briefly present the resolution calculus we will need for the
CERES2 method. Note that in second-order logic, in contrast to first-order logic,
clauses are not closed under substitution, so the transformation of a formula to

clause form has to be incorporated into the calculus, instead of being used just
in a preprocessing step.

To use a resolution calculus with CERES2, it must be possible to use the
resolution refutation of a particular set of clauses (the characteristic clause set,
see Section 4) as the skeleton of an LKDe2-proof that contains no non-atomic
cuts. Intuitively, the following requirements arise:

1. Only literals (i.e. atomic formulas and their negations) may be resolved.
2. It must be possible to produce a propositional resolution refutation from

instances of the refuted set of clauses.

Requirement 1 stems from the fact that CERES2 is a cut-elimination method,
and the resolution rule will be translated to the cut rule in LKDe2. Requirement
2 is due to the fact that substitution is integrated in the resolution calculus, while
this is not the case with LKDe2.

The resolution calculus we are considering here is a restricted version of the
higher-order resolution calculus defined by P.B. Andrews in [11].

Definition 2. We define a clause as a sequent C := A1, . . . , An ` B1, . . . , Bm
with Ai, Bi atomic.

In this paper, the transformation to conjunctive normal form (CNF) is the stan-
dard transformation that preserves logical equivalence.

Definition 3. Let F be a quantifier-free formula. Let, modulo commutativity
and associativity of ∨, CNF(F) ≡ (¬A1

1 ∨ . . . ∨ ¬A1
k1
∨ B1

1 ∨ . . . ∨ B1
l1

) ∧ . . . ∧
(¬An1 ∨ . . .∨¬Ankn

∨Bn1 ∨ . . .∨Bnln). For i ∈ {1, . . . , n}, define the atomic sequent
Ci ≡ Ai1, . . . , A

i
ki
` Bi1, . . . , Bili . Then the clause form of F is defined as the set

{C1, . . . , Cn}.
Let S ≡ F1, . . . , Fn ` G1, . . . , Gm be a quantifier-free sequent, then the clause

form of S is defined as the clause form of (F1 ∧ . . . ∧ Fn)→ (G1 ∨ . . . ∨Gm).

A substitution is a pair of mappings: The first maps variables to terms, while the
second maps predicate variables to lambda terms. The result of the application
of a substitution σ to an expression e is e after replacing all variables by the
respective terms and all predicate variables by the respective lambda terms and
reducing to β-normal form, this will be denoted by eσ. A substitution is called
quantifier-free if all the (lambda-)terms are quantifier-free.

Definition 4. We define the application of a quantifier-free substitution σ to a
set of clauses C = {C1, . . . , Cn}, denoted S(C, σ), as the clause form of the set of
quantifier-free sequents {C1σ, . . . , Cnσ}. Note that this includes transformation
to CNF, therefore |S(C, σ)| ≥ |C|.

With this definition, we can state the rules of our resolution calculus.

Definition 5. In the following, C,D are clauses.

1. C is called instance of D if there exists a quantifier-free substitution σ s.t.
C ∈ S({D}, σ).

2. C is called p-reduct of D if C is D after omission of some multiply occuring
atomic formulas on either side of the sequent.

3. Let L be an atom formula, C ≡ Γ,L ` ∆ and D ≡ Γ ′ ` L,∆′, then the
clause Γ, Γ ′ ` ∆,∆′ is called a resolvent of {C,D}.

Note that we defined resolution without the principle of most general unification
(mgu). While the mgu-principle is vital to proof search, the proof transformations
in CERES and CERES2 require resolution proofs after application of global
unifiers. Of course, this definition does not exclude the use of mgu-based provers
in the phase of proof search.

Additionally, we use paramodulation rules that allow equality reasoning on
the term level. The paramodulation rules are just the restrictions of the equa-
tional rules of LKDe2 to atomic sequents. With this, we can define the notion
of a deduction in this calculus:
Definition 6. Let C be a set of clauses and let C be a clause. A sequence
C1, . . . , Cn is called an R-deduction of C from C if it fulfills the following con-
ditions: Cn ≡ C and for all i = 1, . . . , n:
– Ci ∈ C or
– Ci is an instance or a p-reduct of Cj for some j < i or
– Ci is a resolvent of {Cj , Ck} for some j, k < i or
– Ci is the result of paramodulation of {Cj , Ck} for j, k < i.

An R-deduction of the empty sequent ` from C is called an R-refutation of C.
Finally, we state some lemmas that show that R-deductions can be transformed
to LKDe2-proofs. These will be useful for showing the effectiveness of the
CERES2 method in the next section.
Lemma 1. Let C ≡ Γ ` ∆ be a clause, D be a set of clauses, ψ be a LKDe2-
proof of Γ,Π ` Λ,∆ from D with only quantifier-free cuts, let σ be a quantifier-
free substitution whose domain contains no variable which occurs free in Π ∪ Λ
and let Γ ∗ ` ∆∗ ∈ S({C}, σ). Then we can construct an LKDe2-proof ψ∗

of Γ ∗,Π ` Λ,∆∗ from S(D, σ) with only quantifier-free cuts and with |ψ∗| ≤
|ψ|+ρ(|Γσ ` ∆σ|), where ρ is exponential if σ substitutes for a predicate variable
in D, and polynomial otherwise.

Proof. By simulating the conjunctive normal form transformation in LKDe2

using cuts. For a complete proof, see [6].

Note that this result is weaker than the corresponding result in first-order logic:
the proofs constructed in that setting do not contain any cuts. Still, as our
interest is the extraction of information, this result suffices, as quantifier-free
cuts do not contain interesting mathematical information.
Lemma 2. Let R be an R-deduction of Γ ` ∆ from a set of clauses C. Then
there exists an LKDe2-proof ψ of Γ ` ∆ from D containing quantifier-free cuts
only, where D = {D | D ∈ S(C, σ) for some quantifier-free σ}.
Proof. By using Lemma 1 to replace instantiations, replacing resolution with
cut, replacing paramodulation by the equality rules, and replacing p-reducts by
contractions. For a full proof, see [6].

4 The CERES2 cut-elimination method

We now define the CERES2 method, which will turn out to be a cut-elimination
method for LKDe2-proofs using quantifier-free comprehension.

Definition 7. Let (R) be a weak second-order quantifier rule

A{X ← λx.F}, Γ ` ∆
(∀X)A,Γ ` ∆ ∀2 : l

Γ ` ∆,A{X ← λx.F}
Γ ` ∆, (∃X)A ∃2 : r

then (R) is called quantifier-free if F does not contain quantifiers. We call an
LKDe2-proof π a QFC-proof if all its weak second-order quantifier rule appli-
cations are quantifier-free.

Note that as we allow non-tautological axioms, it is not in general possible
to eliminate all cuts. This leads to the following notion: An LKDe2-proof π is
called in atomic cut normal form (ACNF) if all cut-formulas of π are atomic. An
important technical tool in the CERES2 method is the skolemization of proofs:
this transformation removes strong quantifier rules from proofs and replaces the
respective variables by Skolem terms.

Definition 8. Let ψ be an LKDe2-proof. If the active formulas of all strong
quantifier rules in ψ are ancestors of cut-formulas, then ψ is said to be in Skolem
form.

The following proposition shows that from a QFC-proof, we can indeed obtain
a proof in Skolem form. Proofs in Skolem form allow the definition of proof
projections by leaving out rules from the proof, as no eigenvariable violations
can occur by doing so. This will be necessary to construct sound proofs in Def-
inition 10. We use the structural skolemization operator sk on formulas and
sequents, where sk replaces the strongly quantified variables by Skolem terms
and drops the corresponding quantifiers (see [12]).

Proposition 1. For every QFC-proof ψ of S there exists a QFC-proof ψ′ of
sk(S) in Skolem form.

Proof. We obtain ψ′ from ψ by dropping the strong quantifier rules going into
the end-sequent and, on the path to the end-sequent, replacing the strongly
quantified variables by the respective Skolem terms. For example, if S contains
a positive occurrence α of (∀X)A(X) and the premise of the ∀2 : r introducing
this quantifier is Π ` Λ,A′(Θ) and t1, . . . , tn are the (lambda-)terms eliminated
by introductions of weak quantifiers dominating α and the corresponding skolem
term in sk(S) is λz.P (z, x1, . . . , xn), then we remove the ∀2 : r rule, replace its
premise by Π ` Λ,A′(λz.P (z, t1, . . . , tn)), and modify the path to the end-
sequent so that the occurrences of t1, . . . , tn in the Skolem term are eliminated
by the weak quantifier rules. For a full proof, see [6].

Note that in this context, skolemization indeed does preserve validity (in contrast
to what is observed in [13]), because the proposition we just stated generates a

proof of the skolemized formula from a proof of the unskolemized formula. As
LKDe2 is sound, the transformation is validity preserving. We now define some
notation that will be useful in describing CERES2.

Definition 9. Let ρ be a unary rule, σ a binary rule, ψ, χ QFC-proofs, then
ρ(ψ) is the QFC-proof obtained by applying ρ to the end-sequent of ψ, and
σ(ψ, χ) is the proof obtained from the proofs ψ and χ by applying σ.

Let P,Q be sets of QFC-proofs. Then PΓ`∆ := {ψΓ`∆ | ψ ∈ P}, where
ψΓ`∆ is ψ followed by weakenings adding Γ ` ∆, and P ×σ Q := {σ(ψ, χ) | ψ ∈
P, χ ∈ Q}.

Let C = {Γ1 ` ∆1, . . . , Γm ` ∆m}, D = {Π1 ` Λ1, . . . ,Πn ` Λn} be sets of
clauses, then C ×D := {Γi,Πj ` ∆i, Λj | i ≤ m, j ≤ n}.
We can now define the main parts of the CERES2-method: the characteristic
clause set and the set of proof projections of a proof π. The former will be
always unsatisfiable and give rise to a resolution refutation, while the latter will
allow the resolution refutation to be transformed into a proof of the end-sequent
of π.

Definition 10. Let π be a QFC-proof in Skolem form. For each rule ρ in π,
we define a set of cut-free QFC-proofs, the set of projections Pρ(π) of π, and a
set of clauses, the characteristic clause set CLρ(π) of π, at the position of ρ.

– If ρ corresponds to an initial sequent, let Γ1 ` ∆1 be the part of it which
consists of ancestors of cut formulas, let Γ2 ` ∆2 be the part which consists
of ancestors of the end-sequent of π and define

Pρ(π) := {Γ1, Γ2 ` ∆2,∆1}
CLρ(π) := {Γ1 ` ∆1}.

– If ρ is a unary rule with immediate predecessor ρ′ with Pρ′(π) = {ψ1, . . . , ψn},
distinguish:
(a) The active formulas of ρ are ancestors of cut formulas. Then

Pρ(π) := Pρ′(π)

(b) The active formulas of ρ are ancestors of the end-sequent. Then

Pρ(π) := {ρ(ψ1), . . . , ρ(ψn)}

Note that by assumption, all strong quantifier rules go into cuts, so ρ
cannot be a strong quantifier rule, so no eigenvariable violation can occur
here.

In any case, CLρ(π) := CLρ′(π).
– Let ρ be a binary rule with immediate predecessors ρ1 and ρ2.

(a) If the active formulas of ρ are ancestors of cut-formulas, let Γi ` ∆i

be the ancestors of the end-sequent in the conclusion sequent of ρi and
define

Pρ(π) := Pρ1(π)Γ2`∆2 ∪ Pρ2(π)Γ1`∆1

For the characteristic clause set, define

CLρ(π) := CLρ1(π) ∪ CLρ2(π)

(b) If the active formulas of ρ are ancestors of the end-sequent, then

Pρ(π) := Pρ1(π)×ρ Pρ2(π).

For the characteristic clause set, define

CLρ(π) := CLρ1(π)× CLρ2(π)

The set of projections of π, P(π) is defined as Pρ0(π), and the characteristic
clause set of π, CL(π) is defined as CLρ0(π), where ρ0 is the last rule of π.

Example 1. Consider the proof ψ:

a ∈ Θ ` a ∈ Θ ¬ : r
` a ∈ Θ, a /∈ Θ

b ∈ Θ ` b ∈ Θ
¬ : l

b /∈ Θ, b ∈ Θ `
→: l

b ∈ Θ, a /∈ Θ → b /∈ Θ ` a ∈ Θ
∀2 : l

b ∈ Θ, (∀X)(a ∈ X → b ∈ X) ` a ∈ Θ
→: r

(∀X)(a ∈ X → b ∈ X) ` b ∈ Θ → a ∈ Θ
∀2 : r

(∀X)(a ∈ X → b ∈ X) ` (∀X)(b ∈ X → a ∈ X)

b ∈ P ` b ∈ P a ∈ P ` a ∈ P
→: l

b ∈ P → a ∈ P, b ∈ P ` a ∈ P
→: r

b ∈ P → a ∈ P ` b ∈ P → a ∈ P
∀2 : l

(∀X)(b ∈ X → a ∈ X) ` b ∈ P → a ∈ P
cut

(∀X)(a ∈ X → b ∈ X) ` b ∈ P → a ∈ P

where X,Θ are predicate variables, a, b are individual constants, P is a predicate
constant, and the lambda terms used in the ∀2 : l rules are λx.x /∈ Θ and
λx.x ∈ P . Then

CL(ψ) = ({` a ∈ Θ} × {b ∈ Θ `}) ∪ {` b ∈ P} ∪ {a ∈ P `}
= {b ∈ Θ ` a ∈ Θ; ` b ∈ P ; a ∈ P `}

and P(ψ) contains, among others, the proof

a ∈ Θ ` a ∈ Θ ¬ : r
` a ∈ Θ, a /∈ Θ

b ∈ Θ ` b ∈ Θ
¬ : l

b /∈ Θ, b ∈ Θ `
→: l

b ∈ Θ, a /∈ Θ → b /∈ Θ ` a ∈ Θ
∀2 : l

b ∈ Θ, (∀X)(a ∈ X → b ∈ X) ` a ∈ Θ
w : r

b ∈ Θ, (∀X)(a ∈ X → b ∈ X) ` b ∈ P → a ∈ P, a ∈ Θ

Note that for the soundness of Definition 10, we need the assumption that π is in
Skolem form: if this were not the case, violations of eigenvariable conditions could
appear in the projections. We will now prove the main properties of CERES2.

Lemma 3. Let π be a QFC-proof in Skolem form. Then there exists an R-
refutation of CL(π).

Proof. Analogous to the proof of unsatisfiability of CL(π) for first-order logic
in [3] by removing all rules of π except the ancestors of the cuts, and removing
all formula occurrences in π except the ancestors of cuts, we construct a QFC-
proof ψ of ` from CL(π).

As we know from e.g. [14], reductive cut-elimination in second-order logic
terminates, so we can apply it to ψ to eliminate all non-atomic cuts and obtain
a proof ψ′ of `. First, note that ψ′ consists of atomic cut, contraction and
permutation: weakening is automatically eliminated by cut-elimination. Denote

the set of initial sequents of a proof ϕ by init(ϕ). We will show that ψ′ can be
transformed into a proof ψ∗ s.t. init(ψ∗) consists of quantifier-free instances of
clauses in C. We can then take D as init(ψ∗). We proceed by induction on the
cut-elimination of ψ to obtain ψ′. As induction invariant, we take the following:
ψ′ can be transformed into a QFC-proof ψ∗ s.t. init(ψ∗) consists of quantifier-
free instances of clauses in C. For the base case, we take ψ∗ = ψ, so as init(ψ) =
init(ψ∗) and ψ uses quantifier free comprehension, the invariant holds.

1. The cut-eliminiation performs a rank reduction on ψ. Then the initial se-
quents of ψ and ψ′ coincide, except when performing rank reduction over
a contraction: Here, we perform adequate renamings of eigenvariables in ψ′

to keep regularity and take ψ∗ = ψ′. Clearly, init(ψ∗) consists of init(ψ)
together with some renamed variants of clauses in init(ψ), and the lambda
terms of the weak second-order quantifier rules are not changed, so the in-
variant holds.

2. The cut-elimination performs a grade reduction on ψ. The most interest-
ing subcase is: The grade reduction is performed on second-order quantifier
rules. Let σ = {X ← λx.F} be the substitution that is applied by the cut-
elimination. By (IH), σ is quantifier-free. Let init(ψ) = {Γ1 ` ∆1, . . . , Γn `
∆n}. Then

init(ψ′) = {(Γ1 ` ∆1)σ, . . . , (Γn ` ∆n)σ}

is a set of propositional sequents, so for 1 ≤ i ≤ n, we have cut-free proofs
ϕi of (Γi ` ∆i)σ from S({Γi ` ∆i}, σ). Then take ψ∗ to be ψ′ where the
leafs are replaced by the respective ϕi, then

init(ψ) = S({Γ1 ` ∆1}, σ) ∪ . . . ∪ S({Γn ` ∆n}, σ)

and the first part of the invariant holds. For the second part, note that as σ
is quantifier-free and no new second-order quantifier rules are introduced in
this step, all second-order quantifier rules are still quantifier-free.

ψ∗ readily gives rise to an R-refutation of CL(π): First, derive the necessary
instances of clauses in CL(π) used as leaves of ψ∗ using instantiation, then, when-
ever atomic cuts are used in ψ∗, apply resolution, and whenever contractions are
used in ψ∗, apply p-reduction.

Note that this lemma is just a theoretical tool to show the existence of a suitable
refutation — in practice, the reductive methods used in the proof of the lemma
are not used (as can be seen in the analysis of the example in Section 5).

We are now ready to define the CERES2 method and state our central result.

Definition 11. Let π be a QFC-proof of S. Then the CERES2 method is the
following algorithm:

1. Compute a QFC-proof πsk of sk(S).
2. Compute CL(πsk), P(πsk).
3. Compute an R-refutation γ of CL(πsk).
4. Convert γ into an LKDe2-proof γ′ of ` from CL(πsk).

5. Plug instances of the proofs in P(πsk) into the leaves of γ′ to obtain a proof
ψ of sk(S) containing quantifier-free cuts only.

6. Perform quantifier-free cut-elimination on ψ to obtain a proof ϕ of sk(S)
containing no non-atomic cuts.

Let us remark here that in step 6, any method for cut-elimination for quantifier-
free cuts can be used (e.g. reductive methods, “zero-th order” CERES). Further-
more, considering that the instantiations of quantifiers are the core information
in a proof, one can even leave out this step as the instantiations in ϕ and ψ
coincide.

Theorem 1. Let π be a QFC-proof of S. Then the CERES2 method transforms
π into an LKDe2-proof ϕ of sk(S) such that ϕ is in atomic-cut normal form.

Proof. Using Proposition 1, we convert π to πsk. By Lemma 3, there exists an
R-refutation γ of CL(πsk). By Lemma 2, from γ we can construct an LKDe2-
refutation γ′ of CL(πsk). Every initial sequent of γ′ is either a sequent A ` A,
an axiom, or an instance C∗ of some C ∈ CL(πsk) under a substitution σ. Let
C ≡ Π ` Λ and sk(S) ≡ Γ ` ∆, then by Definition 10 we have a cut-free
QFC-proof ψC of Γ,Π ` Λ,∆. Let C∗ ≡ Π∗ ` Λ∗, then by Lemma 1, we can
construct LKDe2-proofs ψC∗ of Γ,Π∗ ` Λ∗,∆ that contain quantifier-free cuts
only. By plugging these proofs onto the leaves of γ′ and adding contractions at
the end, we obtain an LKDe2-proof of Γ ` ∆ containing quantifier-free cuts
only. By applying cut-elimination to this proof, we obtain the desired proof ϕ.

4.1 Extending CERES2

This work defines a method for cut-elimination for QFC-proofs. A natural ques-
tion is then, whether the method can be extended to stronger comprehension. In
the previous section, it was stated that skolemization is an important technical
tool in the context of the method, as it removes strong quantifier introduction
rules and because of this allows the definition of proof projections without caus-
ing violations of eigenvariable conditions.

When considering comprehension involving quantifiers, proof skolemization
has to be modified to achieve the same effect: it is not enough to skolemize the
end-sequent, as the active formulas of strong quantifier rules may be ancestors
of formulas removed by weak second-order quantifier rules and therefore, the
corresponding strong quantifiers will not be present in the end-sequent.

A tempting idea is, then, to simply skolemize the formulas that disappear
into weak second-order quantifier rules. This approach is investigated in [6] and
it turns out that weak quantifier rules cannot be skolemized within LKDe2 in
most cases; the class where this is possible is only slightly larger than QFC and
looks rather unnatural. So either we have to extend proof skolemization to more
involved proof transformations or new techniques for dealing with projections
containing strong quantifier rules have to be developed. A promising approach
is to use strong quantifier rules which introduce a quantifier not from a free
variable but from a Skolem term as in [13].

5 CERES2 Example

We will now apply the CERES2 method to a QFC-proof ϕ. The proof under
consideration is a proof of the theorem

∑n
i=0 i = n(n+1)

2 by the least number
principle. As axioms the proof uses elementary axioms of arithmetic such as
associativity and commutativity of + and ∗, axioms for the neutral elements 0
and 1, and distributivity. The following axioms represent the recursive definition
of the series:

` Σ(n+ 1) = Σ(n) + (n+ 1) ; ` Σ(0) = 0

We write 2 for 1 + 1. In the proof, ? denotes the ancestors of a cut, double lines
indicate applications of propositional rules, and structural rules except cut are
omitted.

ϕ :=

ϕ1

.

.

.

LNP ` IND?

ϕ2

.

.

.

IND? ` (∀n)2 ∗Σ(n) = n ∗ (n+ 1)
cut

LNP ` (∀n)2 ∗Σ(n) = n ∗ (n+ 1)

where

LNP ≡ (∀Y)((∃z)z ∈ Y → 0 ∈ Y ∨ (∃z)(z /∈ Y ∧ z + 1 ∈ Y))
IND ≡ (∀X)(0 ∈ X ∧ (∀y)(y ∈ X → y + 1 ∈ X)→ (∀y)y ∈ X)

This proof uses the fact that the least number principle implies induction as a
lemma; the use of this lemma will be removed by application of the CERES2

method, yielding a new proof that shows that the least number principle implies
the theorem, without the use of induction.

The proof ϕ1 specified below is exactly the proof of this lemma, and it is
a formalization of the following argument: Assume the least number principle,
and assume that for an arbitrary set X , 0 ∈ X and if y ∈ X , then y + 1 ∈ X ,
and assume for contradiction that X 6= N. Then the set X̄ = {x | x /∈ X} (or
λx.x /∈ X in the lambda notation) is not empty, so by the least number principle
either

1. 0 ∈ X̄ . But 0 ∈ X by assumption, so 0 /∈ X̄ .
2. There is a z s.t. z /∈ X̄ and z + 1 ∈ X̄ . But then z ∈ X and by assumption
z + 1 ∈ X , so z + 1 /∈ X̄ .

So ϕ1 is

y0 ∈ X0 ` y0 ∈ X?
0

∀ : r, ∃ : r
` (∀y)y ∈ X?

0 , (∃z)z /∈ X0 ϕ1
1 →: l

0 ∈ X?
0 , (∀y)(y ∈ X0 → y + 1 ∈ X0)

?,LNPσ ` (∀y)y ∈ X?
0

∀2 : l λx.x /∈ X0
LNP ` 0 ∈ X0 ∧ (∀y)(y ∈ X0 → y + 1 ∈ X0) → (∀y)y ∈ X?

0
∀2 : r

LNP ` IND?

where

LNPσ ≡ (∃z)z /∈ X0 → 0 /∈ X0 ∨ (∃z)(¬z /∈ X0 ∧ z + 1 /∈ X0)

The proof ϕ1
1 is

0 ∈ X?
0 ` 0 ∈ X0

¬ : l
0 ∈ X?

0 , 0 /∈ X0 `

z0 ∈ X0 ` z0 ∈ X?
0 z0 + 1 ∈ X?

0 ` z0 + 1 ∈ X0

z0 ∈ X0 → z0 + 1 ∈ X?
0 ,¬z0 /∈ X0 ∧ z0 + 1 /∈ X0 `

∃, ∀ : l
(∀y)(y ∈ X0 → y + 1 ∈ X0)

?, (∃z)(¬z /∈ X0 ∧ z + 1 /∈ X0) `
∨ : l

0 ∈ X?
0 , (∀y)(y ∈ X0 → y + 1 ∈ X0)

?, 0 /∈ X0 ∨ (∃z)(¬z /∈ X0 ∧ z + 1 /∈ X0) `

This completes the left hand side of the cut, showing that the least number
principle implies induction. The right hand side of the cut is a formalization of
the following induction proof of

∑n
i=0 i = n(n+1)

2 : The induction base is trivial.
For the induction step we want to show

n+1∑
i=0

i = n+ 1 +
n∑
i=0

i =
(n+ 1)((n+ 1) + 1)

2

By the induction hypothesis this reduces to showing

n+ 1 +
n(n+ 1)

2
=

(n+ 1)((n+ 1) + 1)
2

which clearly holds.
The formalization of this argument is the proof ϕ2:

ϕ1
2

2 ∗Σ(n0) = n0 ∗ (n0 + 1)? ` 2 ∗Σ(n0) = n0 ∗ (n0 + 1)
∀ : r, ∀ : l

(∀x)2 ∗Σ(x) = x ∗ (x+ 1)? ` (∀n)2 ∗Σ(n) = n ∗ (n+ 1)
→: l

IND?
σ ` (∀n)2 ∗Σ(n) = n ∗ (n+ 1)

∀2 : l λx.2 ∗Σ(x) = x ∗ (x+ 1)
IND? ` (∀n)2 ∗Σ(n) = n ∗ (n+ 1)

where

INDσ ≡ 2 ∗Σ(0) = 0 ∗ (0 + 1) ∧ (∀x)(2 ∗Σ(x) = x ∗ (x+ 1)→
2 ∗Σ(x+ 1) = (x+ 1) ∗ ((x+ 1) + 1))→ (∀x)2 ∗Σ(x) = x ∗ (x+ 1)

We continue with ϕ1
2 — from this point on, we will omit ? as all formula occur-

rences in the following proofs are cut ancestors:

` Σ(0) = 0

` 2 ∗ 0 = 0 ` 0 = 0 ∗ (0 + 1)
=: r2

` 2 ∗ 0 = 0 ∗ (0 + 1)
=: r2

` 2 ∗Σ(0) = 0 ∗ (0 + 1) ϕ2
2 ∧

` 2 ∗Σ(0) = 0 ∗ (0 + 1) ∧ (∀x)(2 ∗Σ(x) = x ∗ (x+ 1) → 2 ∗Σ(x+ 1) = (x+ 1) ∗ ((x+ 1) + 1))

Note that the left branch of ϕ1
2 proves the induction base. The proof ϕ2

2 will in
turn show the induction step:

` Σ(x0 + 1) = Σ(x0) + (x0 + 1) ϕ=
1 =: r2

2 ∗Σ(x0) = x0 ∗ (x0 + 1) ` 2 ∗Σ(x0 + 1) = (x0 + 1) ∗ ((x0 + 1) + 1)
∀ : r

` (∀x)(2 ∗Σ(x) = x ∗ (x+ 1) → 2 ∗Σ(x+ 1) = (x+ 1) ∗ ((x+ 1) + 1))

where ϕ=
1 is a proof of

2 ∗Σ(x0) = x0 ∗ (x0 + 1) ` 2 ∗ (Σ(x0) + (x0 + 1)) = (x0 + 1) ∗ ((x0 + 1) + 1)

using purely equational reasoning. This completes the proof ϕ.
Skolemization of ϕ (for details on proof skolemization, refer to the proof of

Proposition 1 in [6]) yields a proof ϕsk of the sequent

(∀Y)((∃z)z ∈ Y → 0 ∈ Y ∨ (f(Y) /∈ Y ∧ f(Y) + 1 ∈ Y)) ` 2 ∗Σ(s) = s ∗ (s+ 1)

where f, s are the Skolem symbols. In the proof, the Skolem term f(λx.x /∈
X0) replaces the eigenvariable z0 and the Skolem term s replaces the eigenvari-
able n0.

Remark 1. In all models of arithmetic and the left hand side of the sequent, a
suitable interpretation of f will be a function γ : P (N) 7→ N such that for all
S ∈ P (N) with S 6= ∅, 0 /∈ S, we have γ(S) = min(S)− 1. This is an example for
the natural interpretation of Skolem symbols, which in practice is often possible.

The characteristic clause set CL(ϕsk) can be written as:

CL(ϕsk) = CL(ϕ1
sk) ∪ CL(ϕ2

sk)

CL(ϕ1
sk) = ({0 ∈ X0 `} × {` f(λx.x /∈ X0) ∈ X0; f(λx.x /∈ X0) + 1 ∈ X0 `})

×{` y0 ∈ X0}

CL(ϕ2
sk) = {2 ∗Σ(s) = s ∗ (s+ 1) `} ∪ {` Σ(x0 + 1) = Σ(x0) + (x0 + 1)}

∪{2 ∗Σ(x0) = x0 ∗ (x0 + 1) ` 2 ∗Σ(x0) = x0 ∗ (x0 + 1)}
∪{` Σ(0) = 0} ∪ PAX S

where PAX S is the set of axioms of arithmetic that are used in the proof ϕ1
2.

Modulo subsumption and tautology deletion, the characteristic clause set is:

CL(ϕsk) = { 0 ∈ X0 ` f(λx.x /∈ X0) ∈ X0, y0 ∈ X0; (I1)
0 ∈ X0, f(λx.x /∈ X0) + 1 ∈ X0 ` y0 ∈ X0; (I2)
2 ∗Σ(s) = s ∗ (s+ 1) `; (T1)
` Σ(x0 + 1) = Σ(x0) + (x0 + 1); (S1)
` Σ(0) = 0} (S2)
∪PAX ′

S

where PAX ′
S is PAX S after subsumption and tautology deletion.

5.1 Refutation of the characteristic clause set

We now define a resolution refutation of the characteristic clause set CL(ϕsk),
using the resolution calculus from Section 3.

The clauses (I1) and (I2) correspond to the induction axiom, while the clause
(T1) is the negated theorem. For the refutation we will need the following in-
stances of the induction clauses produced from the substitution
σ = 〈{y0 ← s}, {X0 ← λx.2 ∗Σ(x) = x ∗ (x+ 1)}〉:

(I1′) 2 ∗Σ(0) = 0 ∗ (0 + 1)
` 2 ∗Σ(f(T)) = f(T) ∗ (f(T) + 1), 2 ∗Σ(s) = s ∗ (s+ 1)

(I2′) 2 ∗Σ(0) = 0 ∗ (0 + 1), 2 ∗Σ(f(T) + 1) = (f(T) + 1) ∗ ((f(T) + 1) + 1)
` 2 ∗Σ(s) = s ∗ (s+ 1)

where T ≡ λx.¬2 ∗Σ(x) = x ∗ (x+ 1). We start by deriving the induction base
using resolution, for this we need the clauses

(A1) ` 2 ∗ 0 = 0 ; (A2) ` 0 = 0 ∗ (0 + 1)

Note that (A1), (A2) ∈ PAX S . We now use paramodulation from (S2) into (A1)
to derive

(IB1) ` 2 ∗Σ(0) = 0

Paramodulation from (IB1) into (A2) then yields

(IB) ` 2 ∗Σ(0) = 0 ∗ (0 + 1)

We now resolve both (I1′) and (I2′) first with (IB) and then with (T1) to obtain

(IH) ` 2 ∗Σ(f(T)) = f(T) ∗ (f(T) + 1)
(IG) 2 ∗Σ(f(T) + 1) = (f(T) + 1) ∗ ((f(T) + 1) + 1) `

Note that (IH) corresponds to the induction hypothesis in the original proof,
while (IG) is the negation of what was proved in the induction step. Towards a
contradiction, we paramodulate (IG) with an instance of the second part of the
definition of the series, (S1), and get

(C1) 2 ∗ (Σ(f(T)) + (f(T) + 1)) = (f(T) + 1) ∗ ((f(T) + 1) + 1) `

From clauses from PAX S , it is easy to derive (using paramodulation exclusively)
the clause

(C2) ` 2 ∗ (Σ(x0) + (x0 + 1)) = 2 ∗Σ(x0) + 2 ∗ (x0 + 1)

Paramodulation from an instance of (C2) into (C1) yields

(C3) 2 ∗Σ(f(T)) + 2 ∗ (f(T) + 1) = (f(T) + 1) ∗ ((f(T) + 1) + 1) `

We can now use paramodulation to obtain from (C3) and (IH) the clause

(C4) (f(T) ∗ (f(T) + 1)) + 2 ∗ (f(T) + 1) = (f(T) + 1) ∗ ((f(T) + 1) + 1) `

which is a wrong arithmetical statement. From clauses in PAX S it is now easy
to derive the dual clause (modulo substitution)

(C5) ` x0 ∗ (x0 + 1) + 2 ∗ (x0 + 1) = (x0 + 1) ∗ ((x0 + 1) + 1)

We can now resolve (C4) with an instance of (C5) to obtain the empty se-
quent and complete the refutation. Note that although the clauses used in the
refutation correspond to the induction axiom, the proof constructed from the
refutation will be a proof by the least number principle. This will become clear
in the next section.

5.2 Interpretation of the ACNF

In this section we will indicate the construction of the ACNF from the refutation
of CL(ϕsk) produced in the previous section. We will not give the full ACNF in
this section, as it is too large to display comfortably, but we will discuss its key
features.

The key information of a cut-free proof lies in the instantiations of the quan-
tifiers (the other information just pertains to propositional reasoning and struc-
tural manipulation of sequents), so we will investigate a projection that contains
such instantiations, namely the projection ϕ[(I1)] to the clause

(I1) ≡ 0 ∈ X0 ` f(S) ∈ X0, y0 ∈ X0

where S ≡ λx.x /∈ X0:

y0 ∈ X0 ` y0 ∈ X0 ¬ : r
` y0 /∈ X0, y0 ∈ X0

∃ : r
` (∃z)z /∈ X0, y0 ∈ X0 ψ

→: l
0 ∈ X0, (∃z)z /∈ X0 → (0 /∈ X0 ∨ (¬f(S) /∈ X0 ∧ f(S) + 1 /∈ X0)) ` ∆

∀2 : l λx.x /∈ X0
0 ∈ X0, (∀Y)((∃z)z ∈ Y → (0 ∈ Y ∨ (f(Y) /∈ Y ∧ f(Y) + 1 ∈ Y))) ` ∆

where ∆ ≡ f(S) ∈ X0, y0 ∈ X0 and ψ only consists of propositional inferences
from tautological initial sequents. In the refutation, the instance of (I1) un-
der the substitution σ = 〈{y0 ← s}, {X0 ← λx.2 ∗Σ(x) = x ∗ (x+ 1)}〉 is used,
therefore the projection used in the construction of the ACNF is ϕ[(I1)]σ (cf.
Lemma 1). This yields a projection with a rule application ∀2 : l λx.¬(2∗Σ(x) =
x ∗ (x+ 1)). This use of comprehension is the key point in the argument of the
ACNF: while the proof by induction showed that the formula holds for all n (or
in other words, all n are in the set X), the proof by the least number property
shows that the negation of the formula holds for no n (or that X̄ is empty).

It is interesting to note that no matter what theorem is proved by induction
in the input proof, the proof of LNP ` IND remains the same and therefore
also (I1) and ϕ[(I1)] remain unchanged. So as long as the clause (I1) is used in
the resolution refutation, the resulting ACNF will contain the above argument
where only the definition of the set X differs.

6 Future Work and Acknowledgment

There is still much to be done: We are working on extending CERES2 to larger
classes of proofs and investigating the use of existing higher-order resolution cal-
culi (see e.g. [15]) with CERES2. For semi-automated application of the method,
it will be necessary to replace the unrestricted substitution of our resolution cal-
culus by unification (see e.g. [16]). Also, the existing ANSI C++ implementation
of CERES is being extended to CERES2. This will allow practical application
of the method to larger and more interesting proofs.

Finally, we would like to thank the anonymous referees for their helpful com-
ments and suggestions for improvement of this paper.

References

1. Kohlenbach, U.: Effective bounds from ineffective proofs in analysis: an application
of functional interpretation and majorization. Journal of Symbolic Logic 57(4)
(1992) 1239–1273

2. Baaz, M., Leitsch, A.: Towards a clausal analysis of cut-elimination. Journal of
Symbolic Computation 41 (2006) 381–410

3. Baaz, M., Leitsch, A.: Cut-elimination and Redundancy-elimination by Resolution.
Journal of Symbolic Computation 29(2) (2000) 149–176

4. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: Ceres: An Analysis of
Fürstenberg’s Proof of the Infinity of Primes. Theoretical Computer Science 403
(2008) 160–175

5. Hetzl, S.: Characteristic Clause Sets and Proof Transformations. PhD thesis,
Vienna University of Technology (2007)

6. Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: CERES in second-order
logic. Technical report, Vienna University of Technology (2008) available at
http://www.logic.at/ceres/downloads/docs/report_ceres2.pdf.

7. Church, A.: A formulation of the simple theory of types. JSL 5(2) (1940) 56–68
8. Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic. 4th edn. Cam-

bridge University Press, Cambridge, UK (2002)
9. Takeuti, G.: Proof Theory. Volume 81 of Studies in Logic and the Foundations of

Mathematics. North-Holland Publishing Co. (1975)
10. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: Proof transformation by

CERES. In: LNAI. Volume 4108., MKM, Springer Berlin (2006) 82–93
11. Andrews, P.B.: Resolution in Type Theory. Journal of Symbolic Logic 36(3) (1971)

414–432
12. Baaz, M., Leitsch, A.: Cut normal forms and proof complexity. Annals of Pure

and Applied Logic 97 (1999) 127–177
13. Miller, D.A.: A compact representation of proofs. Studia Logica 46(4) (1987)

347–370
14. Danos, V., Joinet, J.B., Schellinx, H.: A New Deconstructive Logic: Linear Logic.

Journal of Symbolic Logic 62(3) (1997) 755–807
15. Benzmüller, C.: Comparing approaches to resolution based higher-order theorem

proving. Synthese 133(1–2) (2002) 203–335
16. Dowek, G.: Higher-order unification and matching. In: Handbook of automated

reasoning. Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The
Netherlands (2001) 1009–1062

