Transforming and Analyzing Proofs in the CERES-system

S. Hetzl
A. Leitsch
D. Weller
B. Woltzenlogel Paleo

KEAPPA, 22 November 2008

Outline

System Overview

The CERES System Writing Proofs
Transforming proofs
System demonstration

Future Work

Purpose

- Proof transformations
- In particular: cut-elimination by resolution
- Goal: obtain new (analytic) proofs from known ones

Overview

S. Hetzl, A. Leitsch, D. Weller, B. Woltzenlogel Paleo

Proofs in the CERES-system

LK

- Proof calculus: sequent calculus LK

Example

Rules for \wedge :

$$
\begin{gathered}
\stackrel{\Gamma \vdash \Delta, A \quad \Pi \vdash \wedge, B}{\Gamma, \Pi \vdash \Delta, \Lambda, A \wedge B} \wedge: r \\
\frac{A, \Gamma \vdash \Delta}{A \wedge B, \Gamma \vdash \Delta} \wedge: I 1 \quad \frac{A, \Gamma \vdash \Delta}{B \wedge A, \Gamma \vdash \Delta} \wedge: I 2
\end{gathered}
$$

LKDe

- Additional rules for easier proof formalization

LKDe

- Additional rules for easier proof formalization
- Definition introduction

$$
\frac{A\left(t_{1}, \ldots, t_{k}\right), \Gamma \vdash \Delta}{P\left(t_{1}, \ldots, t_{k}\right), \Gamma \vdash \Delta} \operatorname{def}_{P}: I
$$

LKDe

- Additional rules for easier proof formalization
- Definition introduction
- Equality handling

$$
\frac{\Gamma_{1} \vdash \Delta_{1}, s=t \quad A[s], \Gamma_{2} \vdash \Delta_{2}}{A[t], \Gamma_{1}, \Gamma_{2} \vdash \Delta_{1}, \Delta_{2}}=: / 1
$$

Writing LKDe proofs

- Specialized language: HandyLK
- Why not Isabelle, Coq, etc.?
- Higher-order logic vs. first-order method
- Proof assistants focus on existance of proof, not proof object itself

The HandyLK language

- Between natural language and sequent calculus
- closer to sequent calculus
- Supports many-sorted first-order language

HandyLK example - predicate definitions

- define predicate I by all n ex $\mathrm{k} \mathrm{f}(\mathrm{n}+\mathrm{k})=\mathrm{x}$;
- $\forall x(I(x) \leftrightarrow \forall n \exists k f(n+k)=x)$

HandyLK example - predicate definitions

- define predicate I by all n ex $\mathrm{k} \mathrm{f}(\mathrm{n}+\mathrm{k})=\mathrm{x}$;
- $\forall x(I(x) \leftrightarrow \forall n \exists k f(n+k)=x)$
- with undef I

$$
:- \text { all } n \text { ex } k f(n+k)=0 ;
$$

$$
\frac{\Gamma \vdash \Delta, \forall n \exists k f(n+k)=0}{\Gamma \vdash \Delta, I(0)} \operatorname{def}_{l}: r
$$

HandyLK features

- Prove propositional tautologies automatically
- Define proofs recursively
- Define proofs with parameters that can be instantiated

Storing proofs - XML

- Proof transformations do not work directly on HandyLK proofs
- Compiled by HLK to LKDe in XML
- proofdatabase.dtd allows storage of proofs as DAGs
- Formulas, terms stored as trees

The CERES method

- Clause set CL (π) is extracted from LKDe-proof π
- $\mathrm{CL}(\pi)$ is refuted by a resolution theorem prover
- Resolution refutation is converted to an LK refutation γ
- γ is composed with material from π : LKDe-proof ψ
- ψ contains at most atomic cuts

System demonstration

Background: Tape with infinitely many cells where each cell is labelled 0 or 1 .

Theorem
There are two distinct cells that are labelled the same.
Lemma
Either infinitely many cells are labelled 0, or infinitely many cells are labelled 1.

System demonstration

Simplified Herbrand Sequent

$$
\begin{aligned}
& f\left(p_{1}\right)=0 \vee f\left(p_{1}\right)=1, f\left(p_{2}\right)=0 \vee f\left(p_{2}\right)=1, f\left(p_{3}\right)=0 \vee f\left(p_{3}\right)=1, \\
& f\left(p_{4}\right)=0 \vee f\left(p_{4}\right)=1, f\left(p_{5}\right)=0 \vee f\left(p_{5}\right)=1, f\left(p_{6}\right)=0 \vee f\left(p_{6}\right)=1, \\
& f\left(p_{7}\right)=0 \vee f\left(p_{7}\right)=1 \\
& \vdash \\
& p_{1} \neq p_{2} \wedge f\left(p_{1}\right)=f\left(p_{2}\right), p_{3} \neq p_{1} \wedge f\left(p_{3}\right)=f\left(p_{1}\right), \\
& p_{3} \neq p_{2} \wedge f\left(p_{3}\right)=f\left(p_{2}\right), p_{1} \neq p_{4} \wedge f\left(p_{1}\right)=f\left(p_{4}\right), \\
& p_{5} \neq p_{6} \wedge f\left(p_{5}\right)=f\left(p_{6}\right), p_{7} \neq p_{5} \wedge f\left(p_{7}\right)=f\left(p_{5}\right), \\
& p_{7} \neq p_{6} \wedge f\left(p_{7}\right)=f\left(p_{6}\right), p_{4} \neq p_{7} \wedge f\left(p_{4}\right)=f\left(p_{7}\right) .
\end{aligned}
$$

where the p_{i} are distinct positions on the tape.

Even More Simplified Herbrand Sequent

$$
\begin{aligned}
& f\left(p_{1}\right)=0 \vee f\left(p_{1}\right)=1, f\left(p_{2}\right)=0 \vee f\left(p_{2}\right)=1, f\left(p_{3}\right)=0 \vee f\left(p_{3}\right)=1, \\
& \vdash \\
& p_{1} \neq p_{2} \wedge f\left(p_{1}\right)=f\left(p_{2}\right) \\
& p_{3} \neq p_{1} \wedge f\left(p_{3}\right)=f\left(p_{1}\right) \\
& p_{3} \neq p_{2} \wedge f\left(p_{3}\right)=f\left(p_{2}\right)
\end{aligned}
$$

where the p_{i} are distinct positions on the tape.

Future Work

- Extend CERES method to fragments of higher-order logic
- Enhance HLK by term-rewriting features to handle equational aspects of proofs
- Long term: Use existing proof assistants
- Simplify Herbrand sequent automatically

