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ON THE COMPLEXITY OF PROOF DESKOLEMIZATION

MATTHIAS BAAZ, STEFAN HETZL, AND DANIEL WELLER

Abstract. We consider the following problem: Given a proof of the Skolemization of

a formula F , what is the length of the shortest proof of F? For the restriction of this

question to cut-free proofs we prove corresponding exponential upper and lower bounds.

§1. Introduction. The Skolemization of formulas is a standard technique
in logic. It consists of replacing existential quantifiers by new function symbols
whose arguments reflect the dependencies of the quantifier. The Skolemization of
a formula is satisfiability-equivalent to the original formula. This transformation
has a number of applications, it is for example crucial for automated theorem
proving as the resolution calculus is a quantifier-free formalism.

While Skolemization in a model-theoretic context is viewed as transformation
of the axioms of a theory, in a proof-theoretic context it is used for transforming
a formula that shall be proved. Hence in the context of proof theory, which is
the background of this paper, we remove universal quantifiers in favour of new
function symbols. Thereby a validity-equivalent formula is obtained (which is
sometimes also called the Herbrandization of the original formula).

This transformation of formulas naturally induces a transformation of proofs:
if we are given a proof π of some formula F one can obtain a proof π′ of the
Skolemization of F by simple instantiation of free variables. In fact, the Skolem-
ization of a proof has the effect of decreasing the number of inferences (as some
quantifier inferences can be dropped). Now the following question naturally
arises: If we are given a proof of the Skolemization of F what is the length of the
shortest proof of F? Or in other words: What is the complexity of deskolemiza-
tion?

This question is of practical interest as resolution-based automated theorem
provers output essentially cut-free proofs of skolemized formulas and presenting a
proof of the original input formula to a user must therefore involve an algorithm
for deskolemization. The historically first deskolemization algorithm for prenex
formulas in the cut-free case (via Herbrand-disjunctions) can be found in the
proof of the 2nd ε-theorem [8].

The complexity of deskolemization is also of considerable theoretical interest as
it concerns the impact on proof length of the addition of new function symbols to
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the language. The question of the degree of this impact has been formulated by
P. Pudlák (in a slightly different form) as problem 22 in [5]. A partial solution
has been given by J. Avigad in [1]: theories that allow the encoding of finite
functions have polynomial deskolemization. In this paper we consider a different
type of restriction: instead of restricting the theories we restrict the proofs and
consider the question of the complexity of deskolemization for cut-free proofs.
We prove both an exponential upper and a corresponding exponential lower
bound. Finally we consider an optimized version of Skolemization that even in
the cut-free case has only non-elementary deskolemization.

§2. Preliminaries. We consider first-order formulas over the logical con-
stants ¬,∨,∧,→,∀,∃,>,⊥. An occurrence of ∀ in a formula F is called strong
if it occurs in a positive context (i.e. dominated by an even number of negations
and left-hand sides of implications), and weak otherwise. An analogous defini-
tion is made for ∃. The number of strong quantifiers in a formula F is denoted
by qocc(F ).

We use a variant of the sequent calculus G3c from [11], with the difference
that we add the appropriate axiom for > and that we work in a purely cut-free
setting.

Definition 1 (Sequent calculus). Sequents are pairs of multisets of formulas,
written Γ ` ∆. An LK-proof is a tree built up from the following axioms and
rules: axioms are of the form

A,Γ ` ∆, A
ax ⊥,Γ ` ∆ ax⊥ Γ ` ∆,> ax>

for an atom A. The rules are
A,Γ ` ∆ B,Γ ` ∆

A ∨B,Γ ` ∆
∨l

Γ ` ∆, A,B
Γ ` ∆, A ∨B

∨r
Γ ` ∆, F
¬F,Γ ` ∆

¬l
F,Γ ` ∆

Γ ` ∆,¬F
¬r

and analogously for ∧ and →. Furthermore
Γ ` ∆, (∃x)F, F{x← t}

Γ ` ∆, (∃x)F
∃r

F{x← α},Γ ` ∆
(∃x)F,Γ ` ∆

∃l

where α is a variable which does not occur in F,Γ,∆, the eigenvariable of this
rule. The rules for ∀ are defined analogously. The notions of active, auxiliary,
and main formulas, and the ancestor relation are defined as usual. The quantifier
rules with eigenvariable conditions are called strong quantifier rules, the other
quantifier rules are called weak.

We will use the standard assumption that our LK-proofs are regular, that is:
for every two distinct ∃l inferences ρ, σ in an LK-proof π, the eigenvariables of
ρ and σ are different.

Definition 2 (Proof length). Let π be an LK-proof. Then the length of π,
denoted by |π|, is the number of sequents in π.

Having set up our calculus, we will now introduce Skolemization (for Skolem-
ization in the context of proofs, see also [2, 3]). We postulate a countably infinite
set of Skolem symbols SK = {fn | n ∈ N} and define an operator for structural
Skolemization as follows.
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Definition 3 (Skolemization operators). Let F be a formula and n ∈ N. If
F does not contain strong quantifiers then skn(F ) = F . If F does contain strong
quantifiers, then

skn(F ) = skn+1(FQy{y ← fn(x1, . . . , xk)})

where FQy is F after omission of the leftmost strong quantifier occurrence µ of
Qy, and Q1x1, . . . Qkxk are the weak quantifiers appearing in this order in F
such that µ is in their scope. We call t = fn(x1, . . . , xk) Skolem terms of F , and
we say that t corresponds to µ and vice-versa.

Finally, we define sk(F ) = sk0(F ). If F =
∧

Γ →
∨

∆ and sk(F ) =
∧

Π →∨
Λ we define sk(Γ ` ∆) = Π ` Λ.

The following theorem on proof Skolemization is well-known:

Theorem 1. Let π be an LK-proof of S, then there exists an LK-proof π′ of
sk(S) such that |π′| ≤ |π|.

Proof. The proof from [3] readily adapts to our version of LK: eigenvariables
are replaced by Skolem terms. a
It is also well-known that in the case of F being a prenex formula, from an
LK-proof of sk(F ) we can easily construct an LK-proof of F :

Proposition 1. Let F be a prenex formula and π an LK-proof of ` sk(F ).
Then there exists an LK-proof ψ of ` F such that |ψ| ≤ |π| ∗ (qocc(F ) + 1).

Proof. First, we apply Gentzen’s midsequent theorem [6] to π to obtain an
LK-proof ϕ of ` sk(F ) such that ϕ contains a sequent S such that above S,
only propositional inferences are applied and below S, only weak quantifier in-
ferences are applied. Further, |ϕ| ≤ |π|. The quantifier inferences can then be
reordered such that the strong quantifier inferences (corresponding to the quan-
tifiers that were removed by Skolemization) can be introduced without violating
any eigenvariable conditions. The reordering does not increase proof size since
all quantifier inferences are unary, and at most qocc(F ) ∗ |π| strong quantifier
inferences have to be introduced. This yields the desired LK-proof ψ of ` F . a
Note that this proof, going back to the 2nd ε-theorem [8], does not work in the
more general setting where the quantifiers in F may appear at arbitrary posi-
tions: the mid-sequent theorem does not apply anymore, and the reordering of
quantifier inferences may be more expensive since binary inferences are involved.
It is this problem that we will consider in the next two sections.

§3. The upper bound. A central technique for the upper bound will be
to collect instances of a formula that appear in a proof. To that aim we will
use a variant of expansion trees, introduced by D. Miller in [9] in the setting
of higher-order logic. In fact, what we are going to define as expansion below
corresponds most closely to the Skolem expansion trees of [9]. In order to simplify
the notation we do not use the connective ∧ and → explicitely in this section,
their treatment being analogous to that of ∨ and ¬.

Definition 4. 1. An atom A is an expansion of itself.
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2. If E1 is an expansion of A1 and E2 is an expansion of A2, then E1 ∨ E2 is
an expansion of A1 ∨A2.

3. If E is an expansion of A, then ¬E is a dual expansion of ¬A.
4. If {t1, . . . , tn} is a set of terms and E1, . . . , En are expansions of A{x ←
t1}, . . . , A{x← tn}, then ∃xA+t1 E1 + . . .+tn En is an expansion of ∃xA.

5. If f is a Skolem symbol and E is an expansion of A{x ← f(t1, . . . , tn)},
then ∀xA+f(t1,... ,tn) E is an expansion of ∀xA.

6. ⊥ is an expansion of every formula.
Dual expansions are defined as above switching expansion and dual expansion,

⊥ and > as well as ∀ and ∃. In addition, an expansion or dual expansion E must
satisfy the following two global conditions:

A. Each strong quantifier in A induces an equivalence class of sub-expansions of
E of the form of 5 by considering E1 and E2 as equivalent if they correspond
to the same strong quantifier in A. All elements in an equivalence class use
the same function symbol f which must not appear in A and must be
different from the function symbol of any other equivalence class.

B. Every strong quantifier node in E has the form E0 = QxA′+f(s̄,t1,... ,tn)E1,
for some Skolem symbol f , where the terms t1, . . . , tn are exactly those
introduced for weak quantifiers on the path from the root of E to E0 in
this order and s̄ = s1, . . . , sm is a fixed list of variable-free terms, called
the parameters of E.

Often the parameters will be irrelevant, if they are not we will mention them
explicitely. For an expansion or dual expansion E, the set of Skolem terms
SkTerms(E) is the set of terms f(t1, . . . , tn) that are contained in E at nodes of
the form QxA′ +f(t1,... ,tn) E′ pertaining to strong quantifiers. If E is an expan-
sion or dual expansion of a formula A with parameters s̄ and f(s̄, t1, . . . , tn) ∈
SkTerms(E), then there is a unique strong quantifier node in E with f(s̄, t1, . . . ,
tn) as Skolem term. For suppose there would be two such quantifier nodes, then
the paths from the root of E to these two nodes would split on either a ∨- or an
∃-node. The former is impossible because, by condition A, the Skolem symbol f
designates a unique strong quantifier in A and the latter is impossible because,
by condition B, the terms t1, . . . , tn designate a unique subexpansion of their
respective weak quantifier nodes.

Remark 1. Our expansions differ from Miller’s Skolem expansion trees at sev-
eral points: our convention on naming Skolem symbols corresponds directly to
Skolemization of formulas, we allow ⊥ and > to accomodate weakening conve-
niently, at weak quantifiers we consider a set of terms and we work in the setting
of first-order logic.

In addition to considering expansions of formulas we will also consider expan-
sions of sequents. If S = A1, . . . , An ` B1, . . . , Bm is a sequent, E1, . . . , En are
dual expansions of A1, . . . , An and F1, . . . , Fm are expansions of B1, . . . , Bm,
then E1, . . . , En ` F1, . . . , Fm is called expansion of S if every t ∈ SkTerms(E1,
. . . , En ` F1, . . . , Fm) corresponds to exactly one strong quantifier node in
E1, . . . , En ` F1, . . . , Fm.
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Definition 5. If E is an expansion or dual expansion, then the formula Sh(E)
and the quantifier-free formula Dp(E) are defined as follows:

Sh(E) = E for an atom E

Sh(¬E) = ¬Sh(E)

Sh(E1 ∨ E2) = Sh(E1) ∨ Sh(E2)

Sh(QxA+t1 E1 + . . .+tn En) = QxA.

Dp(E) = E for an atom E

Dp(¬E) = ¬Dp(E)

Dp(E1 ∨ E2) = Dp(E1) ∨Dp(E2)

Dp(∃xA+t1 E1 + . . .+tn En) =
n∨
i=1

Dp(Ei), and

Dp(∀xA+t1 E1 + . . .+tn En) =
n∧
i=1

Dp(Ei).

If S = E1, . . . , En ` F1, . . . , Fm is the expansion of a sequent, then Dp(S) =
¬Dp(E1) ∨ . . . ∨ ¬Dp(En) ∨Dp(F1) ∨ . . . ∨Dp(Fm).

Note that, if E is an expansion of A, then in general Sh(E) 6= A but by
replacing positive occurrence of ⊥ and negative occurrences of > in Sh(E) by
subformulas of A, the formula A can be recovered. An expansion E is called
tautological if Dp(E) is a tautology.

Example 1. E0 = ∀y (P (c) → P (y)) +f(c) P (c) → P (f(c)) is an expansion
of ∀y (P (c)→ P (y)) with parameter c and Skolem symbol f .
E1 = ∃x∀y (P (x)→ P (y)) +c E0 as well as E2 =

∃x∀y(P (x)→ P (y)) +c E0

+f(c) (∀y(P (f(c))→ P (y)) +f(f(c)) P (f(c))→ P (f(f(c))))

are expansions of ∃x∀y (P (x)→ P (y)) but only E2 is tautological.

Definition 6. For an expansion or dual expansion E its logical complexity
|E| is defined as

|E| = 0 for an atom E

|¬E| = |E|+ 1

|E1 ∨ E2| = |E1|+ |E2|+ 1

|QxA+t1 E1 . . .+tn En| =
n∑
i=1

(|Ei|+ 1) for a quantifier Qx

If Π ` Λ is the expansion of a sequent, then |Π ` Λ| =
∑
E∈Π∪Λ |E|.

For reading out expansions from proofs, the following merge-operation will be
useful. For our purposes it is enough to use it on expansions of formulas without
strong quantifiers and for the sake of simplicity we restrict our definition to this
case.
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Definition 7. If E1 and E2 are expansions of the same formula A without
strong quantifiers, then their union E1 ∪ E2 is again an expansion of A and is
defined as follows:

1. If E1 = ⊥, then E1 ∪ E2 = E2. If E2 = ⊥, then E1 ∪ E2 = E1.
2. If E1 = E′1 ∨E′′1 and E2 = E′2 ∨E′′2 , then E1 ∪E2 = (E′1 ∪E′2)∨ (E′′1 ∪E′′2 ).
3. If E1 = ¬E′1 and E2 = ¬E′2, then E1 ∪ E2 = ¬(E′1 ∪ E′2).
4. If

E1 = ∃xA′ +r1 E1,1 . . .+rk E1,k +s1 F1 . . .+sl Fl and

E2 = ∃xA′ +r1 E2,1 . . .+rk E2,k +t1 G1 . . .+tm Gm

where {s1, . . . , sl} ∩ {t1, . . . , tm} = ∅, then

E1 ∪ E2 = ∃xA′ +r1(E1,1 ∪ E2,1) . . .+rk (E1,k ∪ E2,k)
+s1F1 . . .+sl Fl

+t1G1 . . .+tm Gm

For dual expansions the analogous definition applies where > replaces ⊥ and ∀
replaces ∃. The union of expansions of sequents is defined by componentwise
union.

Note that |E1 ∪ E2| ≤ |E1| + |E2| which can be shown by a straightforward
induction.

Lemma 1. Let E1, E2 be expansions of the same formula without strong quan-
tifiers, then Dp(E1)∨Dp(E2)⇒ Dp(E1∪E2). For dual expansions E1, E2 of the
same formula Dp(E1 ∪E2)⇒ Dp(E1)∨Dp(E2) and for S1, S2 being expansions
of the same sequent Dp(S1) ∨Dp(S2)⇒ Dp(S1 ∪ S2).

Proof. The result on sequents follows directly from the results on formulas
which are proved simultaneously by a straightforward induction on the structure
of the formula of which E1 and E2 are expansions. The most interesting case of
this induction is that of ∨ for dual expansions as it hinders the logical equivalence:
For E1 = E′1 ∨E′′1 and E2 = E′2 ∨E′′2 being dual expansions we have E1 ∪E2 =
(E′1 ∪ E′2) ∨ (E′′1 ∪ E′′2 ), so

Dp(E1 ∪ E2)⇔ (Dp(E′1) ∧Dp(E′2)) ∨ (Dp(E′′1 ) ∧Dp(E′′2 ))

by induction hypothesis and

Dp(E1) ∧Dp(E2)⇔ (Dp(E′1) ∨Dp(E′′1 )) ∧ (Dp(E′2) ∨Dp(E′′2 )).

a

Lemma 2. Let π be a cut-free LK-proof of a sequent Γ ` ∆ which does not
contain any strong quantifiers. Then there is a tautological expansion Π ` Λ of
Γ ` ∆ s.t. |Π ` Λ| ≤ |π|.

Proof. By induction on π: for the case of π being an axiom A,Γ ` ∆, A, or
Γ ` ∆,>, or ⊥,Γ ` ∆ let Π ` Λ be A,>, . . . ,> ` ⊥, . . . ,⊥, A, or >, . . . ,> `
⊥, . . . ,⊥,>, or ⊥,>, . . . ,> ` ⊥, . . . ,⊥ respectively. In any case, Π ` Λ is
tautological and |Π ` Λ| = 0.
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If π has the form
(ψ)

Γ ` ∆, A
¬A,Γ ` ∆

¬l

we obtain a tautological expansion Π ` Λ, E of Γ ` ∆, A from the induction
hypothesis. Then ¬E,Π ` Λ is a tautological expansion of ¬A,Γ ` ∆ and

|¬E,Π ` Λ| = |Π ` Λ, E|+ 1 ≤ |ψ|+ 1 = |π|.

The other unary propositional rules are treated analogously.
If π has the form

(ψ1)
A1,Γ ` ∆

(ψ2)
A2,Γ ` ∆

A1 ∨A2,Γ ` ∆
∨l

we obtain expansions E1,Π1 ` Λ1 and E2,Π2 ` Λ2 of A1,Γ ` ∆ and A2,Γ ` ∆
respectively by induction hypothesis. Let Π ` Λ be E1 ∨ E2,Π1 ∪ Π2 ` Λ1 ∪ Λ2

and observe that, by Lemma 1,

Dp(E1 ∨ E2,Π1 ∪Π2 ` Λ1 ∪ Λ2)

⇐ (¬E1 ∧ ¬E2) ∨Dp(Π1 ` Λ1) ∨Dp(Π2 ` Λ2)

⇐ (¬E1 ∨Dp(Π1 ` Λ1)) ∧ (¬E2 ∨Dp(Π2 ` Λ2))

⇔ Dp(E1,Π1 ` Λ1) ∧Dp(E2,Π2 ` Λ2)

which is tautological by induction hypothesis. Furthermore

|Π ` Λ| = |E1,Π1 ` Λ1|+ |E2,Π2 ` Λ2|+ 1 ≤ |ψ1|+ |ψ2|+ 1 = |π|.

The other binary propositional rules are treated analogously.
If π is of the form

(ψ)
Γ ` ∆,∃xA,A{x← t}

Γ ` ∆,∃xA ∃r

we obtain an expansion Π ` Λ,∃xA+t1E1 . . .+tnEn, E of Γ ` ∆,∃xA,A{x← t}
by induction hypothesis. Then Π ` Λ, (∃xA+t1 E1 . . .+tn En) ∪ (∃xA+t E) is
tautological as by Lemma 1

Dp(Π ` Λ,(∃xA+t1 E1 . . .+tn En) ∪ (∃xA+t E))

⇐ Dp(Π ` Λ) ∨Dp(∃xA+t1 E1 . . .+tn En) ∨Dp(∃xA+t E)

⇔ Dp(Π ` Λ,∃xA+t1 E1 . . .+tn En, E)

which is tautological by induction hypothesis. Furthermore

|Π ` Λ,(∃xA+t1 E1 . . .+tn En) ∪ (∃xA+t E)|
≤ |Π ` Λ,∃xA+t1 E1 . . .+tn En|+ |E|+ 1

= |Π ` Λ,∃xA+t1 E1 . . .+tn En, E|+ 1

≤ |ψ|+ 1 = |π|.

The ∀l-rule is treated analogously. a
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We write skd for the operator that is dual to sk, i.e. where the roles of strong
and weak quantifiers are exchanged. A formula F is satifiability-equivalent to
skd(F ).

Lemma 3. Let A be a formula and E be an expansion (or dual expansion) of
A′ = sk(A) (or A′ = skd(A) respectively), then there is an expansion (a dual
expansion) F of A with Dp(E) = Dp(F ) and |F | ≤ |E|qocc(A) + |E|+ qocc(A).

Proof. By induction on A. If A is an atom let F := E.
If A = A1 ∨ A2, then E = E1 ∨ E2 is an expansion of A′ = A′1 ∨ A′2 and by

induction hypothesis we obtain expansions F1 of A1 and F2 of A2 respectively.
Define F := F1 ∨ F2 and observe that Dp(F ) = Dp(E). Furthermore,

|F | ≤ |E1|qocc(A1) + |E1|+ qocc(A1) + |E2|qocc(A2) + |E2|+ qocc(A2) + 1

= qocc(A) + |E|+ |E1|qocc(A1) + |E2|qocc(A2)

≤ qocc(A) + |E|+ |E|qocc(A).

If A = ¬A0, then E = ¬E0 is an expansion of A′ = ¬A′0 and by induction
hypothesis we obtain a dual expansion F0 of A0. Define F := ¬F0 and observe
Dp(F ) = Dp(E) and

|F | ≤ |E0|qocc(A) + |E0|+ qocc(A) + 1

= |E|qocc(A) + |E|.

If A = ∃xA0, then E = ∃xA′0 +t1 E1 . . . +tn En is an expansion of ∃xA′0
hence E1, . . . , En are expansions of A′0{x ← t1}, . . . , A′0{x ← tn} which are
the Skolemizations of A0{x ← t1}, . . . , A0{x ← tn}. From the induction hy-
pothesis we obtain expansions F1, . . . , Fn of A0{x ← t1}, . . . , A0{x ← tn} and
define F := ∃xA0 +t1 F1 . . . +tn Fn. Observe that Dp(F ) =

∨n
i=1 Dp(Fi) =∨n

i=1 Dp(Ei) = Dp(E) and that

|F | ≤
n∑
i=1

(|Ei|qocc(A) + |Ei|+ qocc(A) + 1)

=
n∑
i=1

(|Ei|+ 1)qocc(A) +
n∑
i=1

(|Ei|+ 1)

= qocc(A)|E|+ |E|.

If A = ∀xA0, then E is an expansion of A′0{x← f(t̄)}. We apply the induction
hypothesis to A0{x← f(t̄)} and E to obtain an expansion F0 of A0{x← f(t̄)}.
Define F := ∀xA0 +f(t̄) F0 and observe that Dp(F ) = Dp(F0) = Dp(E) and

|F | ≤ |E|qocc(A0{x← f(t̄)}) + |E|+ qocc(A0{x← f(t̄)}) + 1

= |E|qocc(A) + qocc(A).

The dual cases are analogous. a

Lemma 4. Let S be a sequent and E be an expansion of sk(S), then there is
an expansion F of S with Dp(E) = Dp(F ) and |F | ≤ |E|qocc(S)+ |E|+qocc(S).

Proof. This follows from applying the above Lemma 3 to every formula in S
and the additional observation that every t ∈ SkTerms(F ) designates a unique
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strong quantifier node in F . For suppose there were two strong quantifier nodes
having t as Skolem term, then they must appear in different expansions (or dual
expansions) E1 and E2. This however is impossible as each Skolem symbol in
sk(S) corresponds to a unique strong quantifier in S. a

Definition 8. The calculus LKE works on expansion sequents and is defined
as follows: axioms are of the form

A,Π ` Λ, A, Π ` Λ,>, or ⊥,Π ` Λ

for an atom A. The rules are
E1,Π ` Λ E2,Π ` Λ

E1 ∨ E2,Π ` Λ
∨l

Π ` Λ, E1, E2

Π ` Λ, E1 ∨ E2
∨r

Π ` Λ, E
¬E,Π ` Λ

¬l
E,Π ` Λ

Π ` Λ,¬E
¬r

and analogously for ∧ and →. Furthermore

Π ` Λ,∃xA+t1 E1 . . .+ti−1 Ei−1 +ti+1 Ei+1 . . .+tn En, Ei

Π ` Λ,∃xA+t1 E1 . . .+tn En
∃r

E,Π ` Λ
∃xA+t E,Π ` Λ

∃l

and analogously for ∀r and ∀l.

If ι is an ∃r-inference we write t(ι) for ti and if ι is an ∃l-inference we write t(ι)
for t. The above calculus will (only) be used for a bottom-up proof construction.
The rules of LKE are invertible in the sense that, for every unary rule, Dp(C)⇒
Dp(P ) for C being the conclusion of the rule and P the premise, as well as
Dp(C) ⇒ Dp(P1) ∧ Dp(P2) for P1, P2 for the binary rule with premises P1, P2.
Furthermore, if the conclusion of a rule is an expansion so are its premises (the
converse is not true). The depth of a proof π is the maximal number of inferences
on a branch of π.

Lemma 5. Let π be an LKE-proof of an expansion E, then depth(π) ≤ |E|.

Proof. It is easy to check that a premise of a rule has a logical complexity
which is strictly smaller than that of its conclusion. a

Definition 9. For an expansion E we define the Skolem term ordering ≺E
as s ≺E t if

1. s is a proper subterm of t, or
2. E contains a strong quantifier QxA′ +s E′ and E′ contains a strong quan-

tifier QyA′′ +t E′′.

Note that the above ordering ≺E is wellfounded on any set of terms T : let
M ⊆ T be the set of terms which is minimal w.r.t. the subterm-ordering (which
is well-founded), then there is at least one t ∈M which belongs to an outermost
strong quantifier. This is a minimal term w.r.t. ≺E on T . With � we denote
the reflexive closure of an ordering ≺.

Definition 10. An LKE-proof is called compatible with a term ordering �
if for all quantifier inferences ι1 and ι2 where ι1 is strong and is above ι2 we have
t(ι1) � t(ι2).
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Lemma 6. Every tautological expansion Π ` Λ has an LKE-proof that is com-
patible with �Π`Λ.

Proof. We proceed by induction on the cardinality of SkTerms(Π ` Λ). For
SkTerms(Π ` Λ) = ∅ any bottom-up proof search yields a proof by invertibility of
the rules, so let SkTerms(Π ` Λ) 6= ∅. By well-foundedness of ≺Π`Λ there exists
a ≺Π`Λ-minimal element in SkTerms(Π ` Λ), say f(s̄, t̄) where t̄ = t1, . . . , tn.
Let Qy be the unique strong quantifier in Π ` Λ that is associated to f(s̄, t̄)
and let E be the expansion (or dual expansion) that contains Qy. Then the
weak quantifiers dominating Qy in E are Qx1, . . . , Qxn with terms t1, . . . , tn
respectively. Furthermore Qy is not dominated by a strong quantifier due to
≺Π`Λ-minimality.

A bottom segment of the proof of Π ` Λ is constructed by induction on the
depth of Qy in E: if the outermost connective is propositional, the corresponding
rule is applied, if the outermost connective is a quantifier, then it is one of the
Qxi for 1 ≤ i ≤ n and the weak quantifier rule is applied to the term ti. If the
outermost connective is a strong quantifier, then by the above observation, it
is Qy in which case we apply the corresponding rule yielding the term f(s̄, t̄).
The leaves Π1 ` Λ1, . . . ,Πm ` Λm of the proof segment just constructed are
tautological by the invertibility of the rules and have strictly smaller sets of
Skolem-terms, so we can complete the proof construction by obtaining proofs
π1, . . . , πm of them by induction hypothesis. It remains to prove compatibility
with ≺Π`Λ.

If ι1 is the inference introducing Qy then as ι1 is above ι2, ι2 is introducing
Qxi for an i ∈ {1, . . . , n} and in this case t(ι2) = ti is a proper subterm of
f(s̄, t̄) = t(ι1) hence t(ι1) �Π`Λ t(ι2).

If ι1 is above ι2 and both are in some πi, then by induction hypothesis
t(ι1) �Πi`Λi

t(ι2) hence t(ι1) is not a subterm of t(ι2). Suppose now, for the sake
of contradiction, that t(ι1) �Π`Λ t(ι2), then Π ` Λ must contain a strong quanti-
fier QxA′+t(ι1)E′ and E′ must contain a strong quantifier QyA′′+t(ι2)E′′. But
as both ι1 and ι2 are in πi also Πi ` Λi must contain QxA′+t(ι1)E′ contradicting
t(ι1) �Πi`Λi t(ι2).

If ι1 is in πi and ι2 in the bottom segment, then t(ι1) 6= f(s̄, t̄) because
f(s̄, t̄) /∈ SkTerms(Πi ` Λi). Furthermore both t(ι1) ≺Π`Λ f(s̄, t̄) as well as
t(ι1) ≺Π`Λ tj ≺Π`Λ f(s̄, t̄) for some j ∈ {1, . . . , n} would contradict ≺Π`Λ-
minimality of f(s̄, t̄). a

Lemma 7. Let E be an expansion of a sequent S that does not contain Skolem
symbols and let π be an LKE-proof of E which is compatible with �E. Then
there is an LK-proof ψ of S with depth(ψ) = depth(π).

Proof. It suffices to construct such a proof ψ of Sh(E) as a proof of S can
then be obtained by replacing positive occurrences of ⊥ and negative occurrences
of > by subformulas of S which does not change the depth of the proof.

We proceed by induction on π. The translation of axioms, propositional and
weak quantifier rules are straightforward, so consider a subproof π1 of π of the
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form
(π0)

E0,Π ` Λ

∃xA+f(t̄) E0,Π ` Λ
∃l

By induction on the depth of π1 in π, and using the assumption that S does not
contain Skolem terms, one can show that

SkTerms(Sh(∃xA+f(t̄) E0,Π ` Λ)) ⊆ Subterms({t(ι1), . . . , t(ιn)})

where ι1, . . . , ιn are the quantifier inferences below π1 in π. By compatibility of
π with �E we have f(t̄) �E t(ιi) hence f(t̄) /∈ Subterms({t(ι1), . . . , t(ιn)}.

By induction hypothesis there is an LK-proof ψ0 of Sh(E0,Π ` Λ). Let α be
a fresh variable and ψ′0 be the result of replacing all occurrences of f(t̄) in ψ0 by
α. Let ψ1 be

(ψ0)
Sh(E0,Π ` Λ)

Sh(∃xA+f(t̄) E0,Π ` Λ)
∃l

which is a valid rule application as f(t̄) /∈ Terms(Sh(∃xA+f(t̄) E0,Π ` Λ)). a

Theorem 2. Let S be a sequent that does not contain Skolem symbols and π
be an LK-proof of sk(S), then there is an LK-proof ψ of S with depth(ψ) ≤
|π|qocc(S) + |π|+ qocc(S) and hence |ψ| ≤ 2|π|qocc(S)+|π|+qocc(S).

Proof. By Lemma 2 there is a tautological expansion E of sk(S) s.t. |E| ≤
|π|. By Lemma 4 there is a tautological expansion F of S with |F | ≤ |π|qocc(S)+
|π| + qocc(S). By Lemma 6 there is an LKE-proof χ of F which is compatible
with �F and, by Lemma 5, has depth(χ) ≤ |π|qocc(S) + |π|+ qocc(S). Finally,
by Lemma 7, we obtain an LK-proof ψ of S with depth(ψ) ≤ |π|qocc(S) + |π|+
qocc(S). a
The above upper bound refers to cut-free proofs only. However one can use this
result to obtain a similar upper bound on a class of proofs with cuts as follows.
For the rest of this section, we augment our calculus LK by the following cut-
rule:

Γ ` ∆, A A,Γ ` ∆
Γ ` ∆ cut

Let π be an LK-proof, let α1, . . . , αn be the eigenvariables of π and let T =
{t1 = α1, . . . , tn = αn, tn+1, . . . , tm} be a set of terms. Denote by π̌T the cut-free
proof obtained from π by replacing every cut by an →l-inference followed by ∀l-
inferences to bind all occurrences of terms from T (this is a slightly more general
version of proof transformations that also appear in [2, 4]). If the endsequent of
π is Γ ` ∆, then the endsequent of π̌T is Σ,Γ ` ∆ where

Σ = ∀x1 . . . ∀xm (A1 → A1), . . . , ∀x1 . . . ∀xm (Ak → Ak)

and A1{xi ← ti}mi=1, . . . , Ak{xi ← ti}mi=1 are the cut formulas of π. As there
are at most |π| many cuts we add at most |π||T | new inferences and obtain
|π̌T | ≤ (|T |+ 1)|π|.
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Conversely, if χ is a proof of a sequent Σ,Γ ` ∆ with Σ of the above form,
denote with χ̂ the proof of Γ ` ∆ which is obtained from replacing every →l-
inference pertaining to an (Aj → Aj){xi ← tj,i}ni=1 by a cut and removing the
∀l-inferences. If an ancestor path of a formula in Σ does not contain an →l-
inference, it starts with weakening and is removed without increasing the depth
of the proof, hence depth(χ̂) ≤ depth(χ).

Corollary 1. Let S be a sequent that does not contain Skolem symbols and
π be an LK-proof of sk(S) s.t. every term that starts with a Skolem symbol and
appears in a cut formula of π does not contain a bound variable. Let A1, . . . , Ak
be the cut formulas of π and let c be the number of quantifiers in {A1, . . . , Ak}.
Then there is an LK-proof ψ of S s.t. depth(ψ) ≤ (|π|2qocc(S) + |π| + 1)(c +
qocc(S) + 1) and hence |ψ| ≤ 2(|π|2qocc(S)+|π|+1)(c+qocc(S)+1).

Proof. Let S = Γ ` ∆ and sk(S) = Γ′ ` ∆′. Let T = {t1 = α1, . . . , tn =
αn, tn+1, . . . , tm} where {α1, . . . , αn} are the eigenvariables of π and {tn+1, . . . ,
tm} are all Skolem terms of π that do not contain bound variables. Now |T | ≤
|π|qocc(Γ ` ∆) because every Skolem term t ∈ T starts with a certain Skolem
symbol f of which there are qocc(Γ ` ∆) many. Furthermore, for each f the
number of different f(t̄)’s is bound by the number of paths of weak quantifier
inferences corresponding to the weak quantifiers that bind variables in f(x̄) in
Γ ` ∆, i.e. by the number of weak quantifier inferences which are uppermost in
such paths, i.e. by |π|.

Now ψ0 = π̌T is a cut-free proof of Σ,Γ′ ` ∆′ and Σ does not contain Skolem
symbols. Let ψ1 be the proof of Σ′,Γ′ ` ∆′ obtained from skolemizing ψ0. Note
that Σ′,Γ′ ` ∆′ is a skolemization of Σ,Γ ` ∆ which does not contain Skolem
symbols. Therefore we can apply Theorem 2 to obtain a cut-free proof ψ2 of
Σ,Γ ` ∆ with

depth(ψ2) ≤ |ψ1|qocc(Σ,Γ ` ∆) + |ψ1|+ qocc(Σ,Γ ` ∆)

≤ (|π|2qocc(S) + |π|+ 1)(c+ qocc(S) + 1)

Finally ψ = ψ̂2 is a proof of Γ ` ∆ with depth(ψ) ≤ depth(ψ2). a
The above corollary provides a necessary condition for a super-exponential lower
bound: to contain Skolem terms with bound variables. Note that in the context
of Skolemization in higher-order logic, a similar condition was formulated in [9]:
essentially, it also forbids the application of Skolem symbols to terms containing
bound variables. There, the condition was formulated for soundness (without it,
the Skolemization of the axiom of choice becomes provable), while in our setting,
it concerns complexity.

§4. A lower bound. For our lower bound, we consider the language L =
{P1, P2, . . . , G0, G1, G2 . . . } where the Pi are one-place predicate symbols and
the Gi are zero-place predicate symbols. The following sequence will be central
to proving the lower bound:

1. R0 = G0 → G0.
2. For N > 0, RN = ((∃xN )PN (xN )∨GN )→ (∃yN )((PN (yN )∨GN )∧RN−1).
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Definition 11. Let F be a formula, then the size of F , denoted by ||F ||, is
defined as the number of (logical and non-logical) symbols in F .

The sizes of the formulas are moderate, but their proofs are long:

Proposition 2. ||RN || = 16 ∗N + 4.

Theorem 3. For all LK-proofs π of ` RN , |π| ≥ 2N+1.

Proof. We proceed by induction on N :
1. N = 0. Then π:

G0 ` G0 →r` G0 → G0

is the shortest LK proof of ` R0. Note that |π| = 2.
2. N > 0. We will describe the shortest LK proof π of RN , arguing at

every step that there is only one way to apply the rules. We will also give
countermodels to show that some rules are not applicable, for this purpose
we will give interpretations M with domain M = {a, b}. The induction
hypothesis (IH) is: all proofs ψ of ` RN−1 are such that |ψ| ≥ 2N . π has
the form

π1 π2 ∨l (2)
(∃xN )PN (xN ) ∨GN ` (∃yN )((PN (yN ) ∨GN ) ∧RN−1)

→r (1)
` ((∃xN )PN (xN ) ∨GN )→ (∃yN )((PN (yN ) ∨GN ) ∧RN−1)

because in step (1), only→r is applicable. In step (2), ∃r is not applicable,
as ((∃xN )PN (xN ))∨GN ` ((PN (s)∨GN )∧RN−1) is not valid for any term
s. To see this, set GMN = f, and if sM = a set PMN = {b} (and analogously
if sM = b). Therefore we have to apply ∨l.
π1 is

(ψ)
PN (αN ) ` (∃yN )((PN (yN ) ∨GN ) ∧RN−1)

∃l (3)
(∃xN )PN (xN ) ` (∃yN )((PN (yN ) ∨GN ) ∧RN−1)

because in step (3), ∃r cannot be applied: the countermodel from the pre-
vious paragraph is also a countermodel here. So ∃l has to be applied. We
claim that |ψ| ≥ 2N . This follows by (IH) and the following:

Lemma 8. Let π be a proof of PN (αN ) ` (∃yN )((PN (yN )∨GN )∧RN−1).
Then there exists a proof ψ of ` RN−1 such that |ψ| ≤ |π|.

which we will prove later. This completes the argument for π1.
The end-sequent of π2 is GN ` (∃yN )((PN (yN )∨GN )∧RN−1). We claim

that |π2| ≥ 2N . This follows by (IH) and the following:

Lemma 9. Let π be a proof of GN ` (∃yN )((PN (yN ) ∨ GN ) ∧ RN−1).
Then there exists a proof ψ of ` RN−1 such that |ψ| ≤ |π|.

which we will also prove later.
Hence we find that for some constant k,

|π| = k + |ψ|+ |π2| ≥ k + 2 ∗ 2N = k + 2N+1 ≥ 2N+1.

a
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We will use the following result from [11], which also holds for our modified
version of G3c:

Proposition 3. For all A,Γ,∆
1. If π is an LK-proof of A,A,Γ ` ∆ then there exists an LK-proof ψ of
A,Γ ` ∆ such that |ψ| ≤ |π|.

2. If π is an LK-proof of Γ ` ∆, A,A then there exists an LK-proof ψ of
Γ ` ∆, A such that |ψ| ≤ |π|.

Now, we are ready to give the missing proofs:
Proof of Lemma 8. First, note that for all axioms A,Γ ` ∆, A in π, it holds

that A 6= GN (because GN occurs only in one polarity), and if A = PN (s) for
some term s then A occurs in a subproof ϕ1 of the form

(ϕ1)
Π ` Λ, PN (s) ∨GN

(ϕ2)
Π ` Λ, RN−1 ∧r

Π ` Λ, (PN (s) ∨GN ) ∧RN−1

in π (because the indicated occurrence of PN (yN ) in the end-sequent is the
only positive occurrence of PN in the end-sequent). Call such subproofs ϕ1 of
π degenerate, and call inferences occuring in degenerate subproofs degenerate.
Further, call an occurrence in π replaceable if it is an ancestor of the occurrence
of (∃yN )((PN (yN ) ∨ GN ) ∧ RN−1) in the end-sequent of π that (still) contains
the indicated disjunction.

Let ρ be an inference in π with conclusion Γ ` ∆,Θ, where Θ are the replace-
able occurrences (note that this is general as replaceable occurrences can only
occur on the rhs). By induction on the height of ρ, we will define a proof πρ
of Γ ` ∆, RN−1, . . . , RN−1 if ρ is not degenerate. Otherwise πρ is undefined.
Hence we only consider inferences ρ which are not degenerate:

1. If ρ is an axiom A,Π ` Λ, A, then replaceable occurrences occur at most
in Π,Λ (otherwise ρ would be degenerate by the argument given above).
Hence we may replace those occurrences by RN−1 to obtain a suitable
axiom to take for πρ.

2. If ρ does not operate on replaceable occurrences then we obtain πρ from the
proofs πρ1 (πρ2) obtained by induction hypothesis by applying ρ. Note that
since ρ is not degenerate by assumption and does not operate on replaceable
occurrences, ρ1 (and ρ2) are also not degenerate.

3. If ρ is an ∧r inference operating on a replaceble occurrence with premises
ρ1, ρ2, then ρ is of the form:

(ϕ1)
Γ ` ∆, PN (s) ∨GN

(ϕ2)
Γ ` ∆,Θ, RN−1 ∧r

Γ ` ∆,Θ, (PN (s) ∨GN ) ∧RN−1

Note that ϕ2 is degenerate only if the proof ending in ρ is, which is not
the case by assumption. Hence we set πρ = πρ2 which is a proof of Γ `
∆, RN−1, . . . , RN−1 by induction hypothesis.
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4. If ρ is an ∨r inference operating on a replaceable occurrence, then it is
degenerate and hence we do not treat this case.

5. If ρ is an ∃r inference operating on a replaceable occurrence with premise
ρ′ then ρ is of the form

(ϕ)
Γ ` ∆,Θ, (PN (s) ∨GN ) ∧RN−1, (∃yN )((PN (yN ) ∨GN ) ∧RN−1)

∃rΓ ` ∆,Θ, (∃yN )((PN (yN ) ∨GN ) ∧RN−1)

Again ϕ is degenerate only if the subproof ending in ρ is, which is not
the case by assumption. Hence we may set πρ = πρ′ which is a proof of
Γ ` ∆, RN−1, . . . , RN−1 by induction hypothesis.

Observe that if ρ0 is the last inference in π then πρ0 is a proof of PN (αN ) `
RN−1, . . . , RN−1 and by construction, |πρ0 | ≤ |π|. As PN (αN ) occurs only in
one polarity, πρ0 can easily be transformed into a proof ψ of ` RN−1, . . . , RN−1

such that |ψ| ≤ |πρ0 |. Finally, we apply Proposition 3 multiple times to obtain
the desired LK-proof of ` RN−1. a
Lemma 9 is proved analogously.

While RN has only long proofs, its Skolemization has short proofs. The
Skolemization of RN is SNN where for all N and for all n ≤ N we define

1. SN0 = G0 → G0.
2. For n > 0,

SNn = (Pn(fN−n(yN , yN−1, . . . , yn+1)) ∨Gn)→ (∃yn)((Pn(yn) ∨Gn) ∧ SNn−1)

Theorem 4. There exists an LK proof π of ` sk(RN ) such that |π| ≤ k∗N+c
for some constants c, k.

Proof. Let N,n ∈ N such that N ≥ n. Let

sNn = fN−n(yN , yN−1, . . . , yn+1)
σNn = {yN ← sNN , yN−1 ← sNN−1σ

N
N−1, . . . , yn+1 ← sNn+1σ

N
n+1}.

Observe that sNN is a Skolem constant, and that for all 0 < n < N , sNn σ
N
n is

a closed term. Therefore the range of σNn consists of closed terms and hence
σNn {yn ← sNn σ

N
n } = σNn−1.

We will construct LK proofs π of Γ ` ∆, SNn σ
N
n for all N ≥ n and multisets

of formulas Γ,∆, such that |π| ≤ k ∗ n + c, by induction on n. For reasons of
clarity, we will (mostly) not write down the contexts Γ,∆ explicitly — they are
only needed because our calculus does not have rules for weakening.

1. n = 0. Observe that S0
0 = G0 → G0 = S0

0σ for all substitutions σ. Take as
π

G0 ` G0 →r` G0 → G0

and note that |π| = 2.
2. n > 0, N > 0. Let π be
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Pn(sNn σ
N
n ) ` ∆, Pn(sNn σ

N
n ) Gn ` ∆, Gn ∨l

Pn(sNn σ
N
n ) ∨Gn ` ∆, Pn(sNn σ

N
n ), Gn ∨r

Pn(sNn σ
N
n ) ∨Gn ` ∆, (Pn(yn) ∨Gn)σNn−1

(π(IH))

Γ ` ∆, SNn−1σ
N
n−1 ∧cr

Pn(sNn σ
N
n ) ∨Gn ` ∆, ((Pn(yn) ∨Gn) ∧ SNn−1)σNn {yn ← sNn σ

N
n } ∃r

Pn(sNn σ
N
n ) ∨Gn ` ((∃yn)((Pn(yn) ∨Gn) ∧ SNn−1))σNn →r

` ((Pn(sNn ) ∨Gn)→ (∃yn)((Pn(yn) ∨Gn) ∧ SNn−1))σNn
where π(IH) is a proof of Γ ` ∆, SNn−1σ

N
n−1 such that |π(IH)| ≤ k∗(n−1)+c

obtained by applying the induction hypothesis. Then for some constant
l ≤ k,

|π| = l + |π(IH)| ≤ l + k(n− 1) + c ≤ kn+ c.

a
In the above lower bound, the assumption of working in a cut-free setting is
necessary.

Proposition 4. There are proofs πN with cuts of ` RN s.t. |πN | = k ∗N + c
for some constants k, c.

Proof. The sequents

(∃xN )PN (xN ) ∨GN ` (∃zN )(PN (zN ) ∨GN )

have constant-length proofs ψN . Let π0 be
G0 ` G0

` G0 → G0

→l

and πN for N > 0 be

ψN

....
(∃zN )(PN (zN ) ∨GN ) ` (∃yN )((PN (yN ) ∨GN ) ∧RN−1)

(∃xN )PN (xN ) ∨GN ` (∃yN )((PN (yN ) ∨GN ) ∧RN−1)
cut

` RN
→r

a

§5. sm-Skolemization. In this section, we consider an alternative Skolem-
ization that, even in the cut-free case, does not have an elementary elimination of
Skolem symbols. This optimized version sm-Skolemization of structural Skolem-
ization allows minimization of quantifier scope. This is analogous to the δ+ rule
for free variable semantic tableaux introduced in [7].

Definition 12. We define a rewrite relation →sm on formulas that “pushes
quantifiers down”:

(∀x)¬F →sm ¬(∃x)F,
(∀x)(F ∨G)→sm (∀x)F ∨G, (∀x)(G ∨ F )→sm G ∨ (∀x)F

provided that x is not free in G, and so on for the other cases and connectives.
If F →∗sm G then sk(G) is an sm-Skolemization of F . This definition is extended
to sequents in the obvious way.
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Clearly, in general sm-Skolemization creates smaller Skolem terms than struc-
tural Skolemization. Using results from [2], we show that there may be a non-
elementary difference in cut-free proof complexity between a formula and its
sm-Skolemization. For this purpose, we define the functions e, s by e(0, k) =
k, e(n+ 1, k) = 2e(n,k), s(n) = e(n, 1).

Theorem 5. There exist sequences of sequents Sn,Mn and constants c, d such
that for all n

1. Mn is an sm-Skolemization of Sn, and
2. there exists a cut-free proof πn of Mn s.t. |πn| ≤ e(c, n) (i. e. elementary),

and
3. for all cut-free proofs πn of Sn, |πn| ≥ s(n− d) (i. e. non-elementary).

Proof. Consider the sequence of sequents Tn Statman uses to show the
non-elementary complexity of cut-elimination in [10]. Statman constructs short
proofs with cut πn of Tn. Consider the end-sequent T ′n of π̌nT where T is the
set of eigenvariables of πn. We take sk(T ′n) for Mn. For Sn we take a certain
“bad prenexification” of T ′n, constructed as the witness for e) in Theorem 4.1
in [2]. Since Sn is a prenexification of T ′n, Sn →∗sm T ′n, which shows 1. Further,
2. follows from d), and 3. follows from e) and c)1 of the aformentioned Theorem.
The bounds there are stated in terms of the Herbrand complexity HC(S), which
is the number of formulas of a minimal Herbrand sequent of S. But since we
can (using the techniques described in this paper) go from Herbrand sequents to
proofs and back with at most exponential expense, we get the desired bounds. a

§6. Conclusion. We would like to stress that the complexity considerations
in this paper do not depend so much on Skolemization per se but rather on the
rigidity of the eigenvariable conditions and the form of the proof. The eigen-
variable conditions can be more relaxed, e.g. for sequent calculus variants of
Hilbert’s ε-calculus or a sequent calculus that uses Henkin constants instead of
eigenvariables. The length of cut-free proofs in such calculi corresponds to that
of skolemized cut-free proofs which allows to repeat the complexity results of
this paper. In case the format of the proof is changed from tree-like to dag-like
the questions remain open.

The question about the complexity of deskolemization of proofs with cuts in
the general case is left open. Among the main obstacles seems to be the difficulty
of proving lower bounds for proofs with cuts. Another open question posed in
the cut-free and general case is the complexity of deskolemization in presence of
identity axioms for the Skolem functions. This question is interesting because
it is connected to an assymmetry between model-theoretic and proof-theoretic
Skolemization. In model theory identity axioms for Skolem functions are always
assumed as one intends to work algebraically in the open extension. In proof
theory already existing proofs are skolemized and therefore identity axioms for
Skolem functions are never used.

Acknowledgements. The authors would like to thank Bruno Woltzenlogel
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1c) is Statman’s result.



18 MATTHIAS BAAZ, STEFAN HETZL, AND DANIEL WELLER

REFERENCES

[1] Jeremy Avigad, Eliminating definitions and skolem functions in first-order logic, ACM
Transactions on Computational Logic, vol. 4 (2003), no. 3, pp. 402–415.

[2] Matthias Baaz and Alexander Leitsch, Skolemization and proof complexity, Fun-
damenta Informaticae, vol. 20 (1994), no. 4, pp. 353–379.

[3] , Cut normal forms and proof complexity, Annals of Pure and Applied Logic,

vol. 97 (1999), pp. 127–177.

[4] Matthias Baaz and Alexander Leitsch, Cut-elimination and redundancy-elimination
by resolution, Journal of Symbolic Computation, vol. 29 (2000), no. 2, pp. 149–176.
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