
CERES in Higher-Order Logic

Stefan Hetzla, Alexander Leitschb,1, Daniel Wellerb,1

a Laboratoire Preuves, Programmes et Systèmes (PPS),
Université Paris Diderot — Paris 7,

175 Rue du Chevaleret, 75013 Paris, France
b Institute of Computer Languages (E185),

Vienna University of Technology,
Favoritenstraße 9, 1040 Vienna, Austria

Abstract

We define a generalization CERESω of the first-order cut-elimination method
CERES to higher-order logic. At the core of CERESω lies the computation of an
(unsatisfiable) set of sequents CS(π) (the characteristic sequent set) from a proof
π of a sequent S. A refutation of CS(π) in a higher-order resolution calculus
can be used to transform cut-free parts of π (the proof projections) into a cut-
free proof of S. An example illustrates the method and shows that CERESω

can produce meaningful cut-free proofs in mathematics that traditional cut-
elimination methods cannot reach.

1. Introduction

Proof analysis is a central mathematical activity which proved crucial to
the development of mathematics. Indeed many mathematical concepts such as
the notion of group or the notion of probability were introduced by analyzing
existing arguments. In some sense the analysis and synthesis of proofs form the
very core of mathematical progress [19].

Cut-elimination introduced by Gentzen [11] is the most prominent form of
proof transformation in logic and plays a key role in automating the analysis of
mathematical proofs. The removal of cuts corresponds to the elimination of in-
termediate statements (lemmas) from proofs, resulting in a purely combinatorial
proof.

In a formal sense Girard’s analysis of van der Waerden’s theorem [13] is the
application of cut-elimination to the (topological) proof of Fürstenberg/Weiss
with the “perspective” of obtaining van der Waerden’s (combinatorial) proof.
Naturally, an application of a complex proof transformation like cut-elimination
by humans requires a goal oriented strategy.

Email addresses: stefan.hetzl@pps.jussieu.fr (Stefan Hetzl), leitsch@logic.at
(Alexander Leitsch), weller@logic.at (Daniel Weller)

1Supported by the Austrian Science Fund (project no. P22028-N13)

Preprint submitted to Elsevier November 2, 2010

The development of the method CERES (cut-elimination by resolution) was
inspired by the idea to fully automate cut-elimination on real mathematical
proofs, with the aim of obtaining new interesting elementary proofs. While a
fully automated treatment proved successful for mathematical proofs of moder-
ate complexity (e.g. the tape proof [3] and the lattice proof [15]), more complex
mathematical proofs required an interactive use of CERES; this way we suc-
cessfully analyzed Füstenberg’s proof of the infinitude of primes (see [4] and [1])
and obtained Euclid’s argument of prime construction. Even in its interactive
use CERES proved to be superior to reductive cut-elimination due to additional
structural information given by the characteristic clause set (see below).

So far the CERES-method was defined within first-order logic. This made
the analysis of Fürstenberg’s proof of the infinitude of primes rather problematic.
In fact the problem could not be formalized as a single proof but only as an
infinite schema of proofs. On the other hand it is shown in [4] that the proof can
be formalized in second-order arithmetic in a simple and natural way. As higher-
order logic is quite close to mathematical practice, the extension of CERES to
higher-order logic became a matter of major importance. An extension to a
(relatively small) subclass of second-order logic was given in [16].

In this paper we define an extension of CERES to higher-order logic. Some
features of the CERES-method like proof Skolemization do not carry over to
higher-order, while others (like proof projection) become much more compli-
cated. To overcome the Skolemization problem we define a calculus LKsk, where
eigenvariables are replaced by Skolem terms (this technique can be also found
in [17]). The proof projections become proofs which may be locally unsound
(due to violations of eigenvariable conditions), but fulfill some global soundness
properties. It is shown that, by the global soundness property, a transformation
into an ordinary LK-proof is possible. The underlying resolution calculus is a
restricted variant of Andrews’ higher-order resolution calculus (see [2]), where
only atomic simplification is admitted. Despite the complicated behavior of
CERES in higher-order logic, the characteristic sequent set CS(π) for a proof π
of a sequent S remains the major advantage of the method. Roughly speaking,
the problem of finding a cut-free proof of S is reduced to finding a resolution
refutation of CS(π). In general, it is easier to refute CS(π) than to prove S
directly in a cut-free way. Hence CERES can be seen as a “semi-semantic”
method of cut-elimination. Furthermore, CERES can find more cut-free proofs
of S than can be found by application of Gentzen-style proof reduction rules.

The method is demonstrated by transforming a proof in second-order arith-
metic using order induction into another one using the least number principle.
The proof transformation is achieved by cut-elimination on the second-order
induction axiom. The analysis by CERESω also shows that a solution can be
found which cannot be obtained by the reductive Gentzen method.

2. Preliminaries

We work in a version of Church’s simple theory of types [8], using the base
types ι, o of individuals and booleans, respectively. The only binding opera-

2

tor in our language is λ, and we assume logical constants ∨o→o→o, ∧o→o→o,
→o→o→o, ¬o→o, ∀(α→o)→o, and ∃(α→o)→o for all types α. As metavariables for
terms we use T,S,R, . . ., for variables we use X,Y,Z, . . ., for formulas we use
F,G,H, . . ., and for lists of formulas we use Γ,∆,Λ,Π, . . . (all possibly with
subscripts). We will not provide type information if it can be inferred from the
context. Terms of type o are called formulas. If the uppermost symbol of a
formula F is not one of the logical constants, then F is called atomic. We con-
sider terms only modulo α-equality, i.e. modulo renaming of bound variables. If
T,S are terms, then we write T > S if S is a proper subterm of T (i.e. S is a
subterm of T and T 6= S).

Our terms will contain Skolem symbols (i.e. function symbols to be intro-
duced by Skolemization). To obtain sound proof systems, we will need to restrict
the terms that can be used: we follow the approach of Miller [17], who provides
a precise definition of such a restriction.

2.1. Sequent calculus

A sequent is a pair of lists of formulas, written Γ ⊢ ∆. While we define
sequents as lists to be able to define occurrences in sequents and proofs, we will
treat them as multisets most of the time. Hence we do not explicitly include
exchange or permutation rules in our calculi. For simplicity, we restrict ourselves
to prooftrees in which all formulas are in β-normal form. Hence we note that
the quantifier rules below include an implicit β-reduction.

Definition 1 (LK rules and proofs). The following figures are the rules of
LK:
Propositional rules:

Γ ⊢ ∆,F

¬F,Γ ⊢ ∆
¬ : l

F,Γ ⊢ ∆

Γ ⊢ ∆,¬F
¬ : r

F,Γ ⊢ ∆ G,Π ⊢ Λ

F ∨G,Γ,Π ⊢ ∆,Λ
∨ : l

Γ ⊢ ∆,F

Γ ⊢ ∆,F ∨G ∨ : r1
Γ ⊢ ∆,G

Γ ⊢ ∆,F ∨G ∨ : r2

Γ ⊢ ∆,F Π ⊢ Λ,G

Γ,Π ⊢ ∆,Λ,F ∧G
∧ : r

F,Γ ⊢ ∆

F ∧G,Γ ⊢ ∆ ∧ : l
1

G,Γ ⊢ ∆

F ∧G,Γ ⊢ ∆ ∧ : l
2

Γ ⊢ ∆,F G,Π ⊢ Λ

F→ G,Γ,Π ⊢ ∆,Λ
→ : l

F,Γ ⊢ ∆,G

Γ ⊢ ∆,F→ G
→ : r

Structural rules:

Γ ⊢ ∆,F,F

Γ ⊢ ∆,F
contr: r

F,F,Γ ⊢ ∆

F,Γ ⊢ ∆
contr: l

Γ ⊢ ∆
F,Γ ⊢ ∆

weak: l
Γ ⊢ ∆

Γ ⊢ ∆,F
weak: r

Γ ⊢ ∆,F F,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
cut

Quantifier rules:

RT,Γ ⊢ ∆

∀R,Γ ⊢ ∆
∀ : l

Γ ⊢ ∆,RX

Γ ⊢ ∆, ∀R
∀ : r

3

Γ ⊢ ∆,RT

Γ ⊢ ∆, ∃R
∃ : r

RX,Γ ⊢ ∆

∃R,Γ ⊢ ∆
∃ : l

The ∀ : r and ∃ : l are called strong quantifier rules. In the strong quantifier
rules, X must not occur free in Γ,∆,R. X is called the eigenvariable of this
rule. In ∀ : l and ∃ : r, T is called the substitution term of the rule.

An LK-proof is a tree formed according to the rules of LK such that all leaves
are of the form F ⊢ F. The formulas in Γ,∆,Π,Λ are called context formulas.
The formulas in the upper sequents which are not context formulas are called
auxiliary formulas, those in the lower sequents are called main formulas. The
auxiliary formulas of a cut rule are also called cut formulas. If π is an LK-proof,
by |π| we denote the number of sequent occurrences in π.

If S is a set of sequents, then an LK-refutation of S is an LK-tree π where
the end-sequent of π is the empty sequent, and the leaves of π are either axioms
F ⊢ F or sequents in S.

A formula occurrence in a sequent or prooftree is a formula together with its
position in the sequent or prooftree. Formula occurrences in prooftrees come
equipped with an ancestor and descendent relation which is defined in the usual
way (see [6]). An end-sequent ancestor (cut ancestor) is an ancestor of a formula
in the end-sequent (a cut formula). An inference ρ in a prooftree is said to
operate on an occurrence ω if ω is an auxiliary or main formula of ρ. An LK-
proof π is called regular if for all ∀ : r inferences ρ with eigenvariable X in π, X
only occurs in the subproof ending in ρ. It is well-known that every LK-proof of
a closed sequent S can be transformed into a regular LK-proof of S by renaming
eigenvariables.

Recall the system T introduced in [8] and used in [2]. T is a Hilbert-
type system for higher-order logic. Using the well-known transformations from
sequent calculi to Hilbert-type systems (see [12, 20]), one can prove a relative
soundness result. If S = Γ ⊢ ∆ is a sequent, then F (S) =

∧

Γ→
∨

∆. If S is a
set of sequents, then F (S) = {F (S) | S ∈ S}.

Proposition 1. If there exists an LK-refutation of S, then there exists a T -
refutation of F (S).

3. CERES

The CERES method in first-order logic is defined via two crucial structures:
the characteristic clause set CL(π), and the proof projections P(π) of some
proof π of S with arbitrary cuts. The proof projections are cut-free parts of π.
One can show that CL(π) is always unsatisfiable. The main transformation of
CERES is to combine a resolution refutation of CL(π) and the cut-free proofs
from P(π) into a proof of S with at most atomic cuts.

In first-order logic, CERES is restricted to proofs of Skolemized sequents,
i.e. sequents not containing ∀ in a positive or ∃ in a negative context. This is
justified by the following well-known proposition:

4

Proposition 2. For every first-order sequent S there exists a Skolemized se-
quent S′ such that S is provable iff S′ is.

Furthermore, constructive proofs of this proposition are known (see e.g. [5]).
The fact about proofs of Skolemized sequents most important to the CERES
method is that inferences with eigenvariable conditions only operate on cut-
ancestors:

Proposition 3. Let π be a first-order LK-proof of a Skolemized sequents S.
Then there does not exist a strong quantifier inference in π that operates on an
end-sequent ancestor.

In higher-order logic, this does not hold anymore. Furthermore, it seems that
proof Skolemization used in Proposition 2 cannot be generalized to yield LK-
proofs fulfilling Proposition 3, see [14]. For example, the following LK-proof
proves a sequent that does not contain strong quantifiers, but the proof contains
a strong quantifier inference:

P (β, a) ⊢ P (β, a)
∀ : l

(∀x)P (x, a) ⊢ P (β, a)
∀ : r

(∀x)P (x, a) ⊢ (∀z)P (z, a)

P (c, b) ⊢ P (c, b)
∀ : l

(∀z)P (z, b) ⊢ P (c, b)
→ : l

(∀x)P (x, a), (∀z)P (z, a)→ (∀z)P (z, b) ⊢ P (c, b)
∀ : l λx.(∀z)P (z, x)

(∀x)P (x, a), (∀X)(X(a)→ X(b)) ⊢ P (c, b)
→ : r

(∀X)(X(a)→ X(b)) ⊢ (∀x)P (x, a)→ P (c, b)

Note that the auxiliary formula of the lowermost ∀ : l inference can not be
Skolemized. For this reason, we now introduce a sequent calculus without eigen-
variable conditions.

4. The calculus LKsk

Definition 2 (Labelled sequents). A label is a finite multiset of terms. A la-
belled sequent is a sequent F1, . . . ,Fn ⊢ Fn+1, . . . ,Fm together with labels ℓi for

1 ≤ i ≤ m; we write 〈F1〉
ℓ1 , . . . , 〈Fn〉

ℓn ⊢ 〈Fn+1〉
ℓn+1 , . . . , 〈Fm〉

ℓm . We identify
labelled formulas with empty labels with the respective unlabelled formulas. If S
is a labelled sequent, then the reduct of S is S where all labels are empty. If C is a
set of labelled sequents, then the reduct of C is {S | S a reduct of some S′ ∈ C}.

We extend substitutions to labelled sequents: Let σ be a substitution and
S = 〈F1〉

ℓ1 , . . . , 〈Fn〉
ℓn ⊢ 〈Fn+1〉

ℓn+1 , . . . , 〈Fm〉
ℓm , then

Sσ = 〈F1σ〉
ℓ1σ , . . . , 〈Fnσ〉

ℓnσ ⊢ 〈Fn+1σ〉
ℓn+1σ , . . . , 〈Fmσ〉

ℓmσ
.

Labels such as ours are often used to add (syntactic) information to formulas,
see [10]. They have been used in a setting very similar to ours in [9].

The purpose of the labels will be twofold: first, they will track quantifier in-
stantiation information throughout prooftrees (as expressed in Proposition 4).

5

Second, they will enable us to combine resolution refutations and sequent cal-
culus proofs in a certain way — this will be one of the main constructions of
the CERESω method; see Lemma 3.

From now on, we will only consider labelled sequents, and therefore we
will call them only sequents. Analogously, we will refer to labelled formula
occurrences as formula occurrences. We will denote the union of labels ℓ1 and
ℓ2 by ℓ1, ℓ2. Let T be a term and ℓ a label, then we denote by ℓ,T the union
ℓ ∪ {T}.

Definition 3 (LKsk rules). The following figures are the rules of LKsk:
Labelled quantifier rules:

Γ ⊢ ∆, 〈F(fS1 . . .Sn)〉
ℓ

∀sk : r
Γ ⊢ ∆, 〈∀αF〉

ℓ

where ℓ = S1, . . . ,Sn and, if τ(Si) = αi for 1 ≤ i ≤ n, then f ∈ Kα1,...,αn,α

is a Skolem symbol. An application of this rule is called source inference of
fS1 . . .Sm, and fS1 . . .Sm is called the Skolem term of this inference. Note that
we do not impose an eigenvariable or eigenterm restriction on this rule.

〈FT〉ℓ,T ,Γ ⊢ ∆
∀sk : l

〈∀αF〉
ℓ
,Γ ⊢ ∆

T is called the substitution term of this inference. The ∃sk : l and ∃sk : r rules
are defined analogously. The ∀sk : r and ∃sk : l rules will be called strong labelled
quantifier rules, and the ∀sk : l and ∃sk : r will be called weak labelled quantifier
rules. The other rules of LK are transferred directly to LKsk:
Propositional rules:

〈F〉ℓ ,Γ ⊢ ∆ 〈G〉ℓ ,Π ⊢ Λ

〈F ∨G〉ℓ ,Γ,Π ⊢ ∆,Λ
∨ : l

Γ ⊢ ∆, 〈F〉ℓ

Γ ⊢ ∆, 〈F ∨G〉ℓ
∨ : r1

The rest of the propositional rules of LK are adapted analogously.
Structural rules:

Γ ⊢ ∆, 〈F〉ℓ , 〈F〉ℓ

Γ ⊢ ∆, 〈F〉ℓ
contr : r

Γ ⊢ ∆

Γ ⊢ ∆, 〈F〉ℓ
weak: r

and analogously for contr: l and weak: l. An LKsk-tree is a tree formed accord-
ing to the rules of LKsk, such that all leaves are of the form 〈F〉ℓ1 ⊢ 〈F〉ℓ2 for

some formula F and some labels ℓ1, ℓ2. The axiom partner of 〈F〉ℓ1 is defined to

be 〈F〉ℓ2 , and vice-versa. Let π be an LKsk-tree with end-sequent S. If S does
not contain Skolem terms or free variables, and all labels in S are empty, then
S is called proper. If the end-sequent of π is proper, we say that π is proper.

Note that LKsk is a cut-free calculus.

6

Example 1. The following figure shows a proper LKsk-tree of a valid sequent:

〈S(f(λx.¬S(x)))〉λx.¬S(x) ⊢ 〈S(f(λx.¬S(x)))〉λx.¬S(x)

¬ : l
〈¬S(f(λx.¬S(x)))〉λx.¬S(x)

, 〈S(f(λx.¬S(x)))〉λx.¬S(x) ⊢
¬ : r

〈S(f(λx.¬S(x)))〉λx.¬S(x) ⊢ 〈¬¬S(f(λx.¬S(x)))〉λx.¬S(x)

→ : r
⊢ 〈S(f(λx.¬S(x)))→ ¬¬S(f(λx.¬S(x)))〉λx.¬S(x)

∀sk : r
⊢ 〈(∀z)(S(z)→ ¬¬S(z))〉λx.¬S(x)

∃sk : r
⊢ 〈(∃Y)(∀z)(S(z)→ ¬Y (z))〉

∀sk : r
⊢ 〈(∀X)(∃Y)(∀z)(X(z)→ ¬Y (z))〉

where S ∈ Kι→o, f ∈ Kι→o,ι, and the substitution term of the ∃sk : r is
λx.¬S(x). Note that although the labels in the axiom coincide, this is not
required in general.

So far, we have not called the trees built up using the rules of LKsk proofs. The
reason is that without further restrictions, LKsk-trees are unsound:

Example 2. Consider the following LKsk-tree of (∃x)P (x) ⊢ (∀x)P (x):

P (s) ⊢ P (s)
∃sk : l

(∃x)P (x) ⊢ P (s)
∀sk : r

(∃x)P (x) ⊢ (∀x)P (x)

where s ∈ Kι. The source of unsoundness in this example stems from the fact
that in LKsk-trees, it is possible to use the same Skolem term for distinct and
“unrelated” strong quantifier inferences.

Towards introducing our global soundness condition, which will be more general
than the eigenvariable condition of LK, we introduce some definitions and facts
about occurrences in LKsk-trees.

Proposition 4. Let ω be a formula occurrence in a proper LKsk-tree π with
label {T1, . . . ,Tn}. Then T1, . . . ,Tn are exactly the substitution terms of the
weak labelled quantifier inferences operating on descendents of ω.

Proof. By induction on the number of sequents between ω and the end-sequent
of π. If ω occurs in the end-sequent, then it has no descendents and, as π is
proper, ω has the empty label.

Assume ω occurs in the premise of an inference. Denote the direct descendent
of ω by ω′. If ω occurs in the context, then ω has the same label as ω′, the weak
labelled quantifier inferences operating on descendents of ω are the same as those
operating on descendents of ω′, so we conclude with the induction hypothesis. If
ω is the auxiliary formula of a propositional inference, a contraction inference,
or a strong labelled quantifier inference, the argument is analogous. Finally,
assume ω is the auxiliary formula of a weak labelled quantifier inference ρ with
substitution term T, and that the label of ω is T1, . . . ,Tn,T. Then the label

7

of ω′ is T1, . . . ,Tn, and by (IH) these are exactly the substitution terms of the
weak labelled quantifier inferences ρ1, . . . , ρn operating on descendents of ω′.
Then the weak labelled quantifier inferences operating on descendents of ω are
ρ1, . . . , ρn, ρ, and hence the label of ω is as desired. �

Definition 4 (Paths). Let µ be a sequence of formula occurrences µ1, . . . , µn

in an LKsk-tree. If for all 1 ≤ i < n, µi is an immediate ancestor (immediate
descendent) of µi+1, then µ is called a downwards (upwards) path. If µ is a
downwards (upwards) path ending in an occurrence in the end-sequent (a leaf),
then µ is called maximal.

Definition 5 (Homomorphic paths). If ω is a formula occurrence, then de-
note by F (ω) the formula at ω. If µ is a sequence of formula occurrences, we
define F (µ) as µ where every formula occurrence ω is replaced by F (ω), and
repetitions are ommited. Two sequences of formula occurrences µ, ν are called
homomorphic if F (µ) = F (ν).

Example 3. Consider the LKsk-tree π:

〈R(a, f(a))〉a ⊢ 〈R(a, f(a))〉a
¬ : r

⊢ 〈R(a, f(a))〉a , 〈¬R(a, f(a))〉a

∨ : r2
⊢ 〈R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a

∨ : r1
⊢ 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a

contr: r
⊢ 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a

∀sk : r
⊢ 〈(∀y)(R(a, y) ∨ ¬R(a, y))〉a

∃sk : r
⊢ (∃x)(∀y)(R(x, y) ∨ ¬R(x, y))

π contains the following maximal downwards paths µ1, µ2:

µ1 = 〈R(a, f(a))〉a , 〈¬R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ,
〈R(a, f(a)) ∨ ¬R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ,
〈(∀y)(R(a, y) ∨ ¬R(a, y))〉a , (∃x)(∀y)(R(x, y) ∨ ¬R(x, y))

µ2 = 〈R(a, f(a))〉a , 〈R(a, f(a))〉a , 〈R(a, f(a))〉a ,
〈R(a, f(a)) ∨ ¬R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ,
〈(∀y)(R(a, y) ∨ ¬R(a, y))〉a , (∃x)(∀y)(R(x, y) ∨ ¬R(x, y))

F (µ1) = 〈R(a, f(a))〉a , 〈¬R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ,
〈(∀y)(R(a, y) ∨ ¬R(a, y))〉a , (∃x)(∀y)(R(x, y) ∨ ¬R(x, y))

F (µ2) = 〈R(a, f(a))〉a , 〈R(a, f(a)) ∨ ¬R(a, f(a))〉a ,
〈(∀y)(R(a, y) ∨ ¬R(a, y))〉a , (∃x)(∀y)(R(x, y) ∨ ¬R(x, y))

Proposition 5. Let π be a proper LKsk-tree, let ρ be a strong labelled quantifier
inference in π with Skolem term S and auxiliary formula α, and let µ be a
maximal downwards path starting at α. Then FV(S) = FV(µ).

8

Proof. As π is proper, its end-sequent does not contain free variables. Hence
all free variables in µ are contained in substitution terms of weak labelled quan-
tifier inferences, and they are exactly the free variables of S by Proposition 4.
�

Proposition 6. Let α1, α2 be formula occurrences. If there exists a downwards
path from α1 to α2, then it is unique.

Proof. Every formula occurrence has at most one direct descendent. �

Corollary 1. If α is a formula occurrence, then there exists a unique maximal
downwards path starting at α.

Our investigation of paths allows us to define a relation between inferences in a
tree that, through paths, are connected in a strong sense.

Definition 6 (Homomorphic inferences). Let α1, α2 be formula occurrences
in an LKsk-tree π. Let c be a contraction inference below both α1, α2 with aux-
iliary occurrences γ1, γ2. Then α1, α2 are homomorphic in c if the downwards
paths α1, . . . , γ1 and α2, . . . , γ2 exist and are homomorphic. α1, α2 are called
homomorphic if there exists a c such that they are homomorphic in c.

Let ρ1, ρ2 be inferences of the same type with auxiliary formula occurrences
α1
1 (α2

1) and α
1
2 (α2

2). ρ1, ρ2 are called homomorphic if there exists a contraction
inference c such that α1

1 and α1
2 are homomorphic in c and α2

1 and α2
2 are

homomorphic in c. Call this contraction inference the uniting contraction of
ρ1, ρ2.

Example 4. Consider the following LKsk-tree π:

〈P (s)〉s ⊢ P (s)
∀sk : l

(∀x)P (x) ⊢ P (s)
∀sk : r (1)

(∀x)P (x) ⊢ (∀x)P (x)

〈P (s)〉s ⊢ P (s)
∀sk : r (3)

〈P (s)〉s ⊢ (∀x)P (x)
∀sk : l

(∀x)P (x) ⊢ (∀x)P (x)
∨ : l

(∀x)P (x) ∨ (∀x)P (x) ⊢ (∀x)P (x), (∀x)P (x)
contr: r (2)

(∀x)P (x) ∨ (∀x)P (x) ⊢ (∀x)P (x)

The inferences (1), (3) in π are homomorphic, and (2) is their uniting contrac-
tion. More concretely, let µ be the path from the auxiliary formula of (1) to the
auxiliary formula of (2). Let ν be the path from the auxiliary formula of (3) to
the auxiliary formula of (2). Then F (µ) = P (s), (∀x)P (x) = F (ν).

On the other hand, consider π′:

〈P (s1)〉
s1 ⊢ P (s1)

∀sk : l
(∀x)P (x) ⊢ P (s1)

∀sk : r (1)
(∀x)P (x) ⊢ (∀x)P (x)

〈P (s2)〉
s2 ⊢ P (s2)

∀sk : r (3)
〈P (s2)〉

s2 ⊢ (∀x)P (x)
∀sk : l

(∀x)P (x) ⊢ (∀x)P (x)
∨ : l

(∀x)P (x) ∨ (∀x)P (x) ⊢ (∀x)P (x), (∀x)P (x)
contr: r (2)

(∀x)P (x) ∨ (∀x)P (x) ⊢ (∀x)P (x)

9

In π′, there are no homomorphic inferences because the auxiliary formulas of the
∀sk : r applications differ: Define µ, ν as above, then F (µ) = P (s1), (∀x)P (x) 6=
P (s2), (∀x)P (x) = F (ν).

The previous example motivates the following statement about homomorphic
quantifier inferences.

Proposition 7. If two strong labelled quantifier inferences are homomorphic,
they have identical Skolem terms.

Proof. Denote the two strong labelled quantifier inferences applications by ρ1,
ρ2. Then there exist homomorphic paths p1, p2 starting at the auxiliary formulas
of ρ1, ρ2 respectively. The second elements of p1, p2 are the main formula
occurrences of ρ1, ρ2 respectively. As p1, p2 are homomorphic the formula lists
induced by them are equal, therefore ρ1, ρ2 have the same auxiliary and main
formulas and therefore their Skolem terms are identical. �

Proposition 8. The homomorphism relation on inferences is a partial equiva-
lence relation.

Proof. The homomorphism relation on inferences is symmetric because the
homomorphism relation on sequences of formula occurrences is. It is transitive:
Assume ρ1, ρ2 are homomorphic, and ρ2, ρ3 are homomorphic. We assume that
ρ1, ρ2, ρ3 are unary inferences, the binary case is analogous. Designate the
respective auxiliary formulas by α1, α2, α3. Then there is a contraction c on
formula occurrences γ1, γ2 s.t. the downwards paths α1, . . . , γ1 and α2, . . . , γ2
exist and are homomorphic, and there is a contraction c′ on formula occurrences
γ′2, γ3 s.t. the paths α2, . . . , γ

′
2 and α3, . . . , γ3 exist and are homomorphic. From

the existence of these paths, it follows that c, c′ cannot be parallel. W.l.o.g.
assume that c is above c′, then

α2, . . . , γ
′

2 = α2, . . . , γ2, γ
∗

2 , . . . , γ
′

2

by Proposition 6, and there exists a path

α1, . . . , γ1, γ
∗

2 , . . . , γ
′

2.

For i ∈ {1, 2}, let ωi be the first formula occurrence from the right in αi, . . . , γi
such that F (ωi) 6= F (γi), ρ1, ρ3 are homomorphic by the following chain of
equalities:

F (α1, . . . , γ1, γ
∗
2 , . . . , γ

′
2) =

F (α1, . . . , ω1), F (γ
∗
2 , . . . , γ

′
2) =

F (α2, . . . , ω2), F (γ
∗
2 , . . . , γ

′
2) =

F (α2, . . . , γ2, . . . , γ
′
2) =

F (α3, . . . , γ3)

�

We can now define the notion of an LKsk-proof, for which we will require the
converse of the Proposition 7 to hold.

10

Definition 7 (Weak regularity and LKsk-proofs). Let π be an LKsk-tree
with end-sequent S. π is weakly regular if for all distinct strong labelled quan-
tifier inferences ρ1, ρ2 in π: If ρ1, ρ2 have identical Skolem terms, then ρ1, ρ2
are homomorphic. We say that π is an LKsk-proof if it is weakly regular and
proper.

In ordinary LK, it follows directly from the definition of regularity that all
strong quantifier inferences in a regular LK-tree π fulfill the eigenvariable con-
dition, and thus are LK-proofs. Hence the name “weak regularity”: inferences
are allowed to use the same eigenterm, provided they are homomorphic.

Example 5. The LKsk-tree from Example 1 is (trivially) an LKsk-proof. Also
the first LKsk-tree from Example 4 is an LKsk-proof: the only two strong
labelled quantifier applications in the tree are homomorphic.

Finally, consider the following example:

〈R(s, f(s))〉s ⊢ 〈R(s, f(s))〉f(s)

∃sk : l
〈(∃y)R(s, y)〉s ⊢ 〈R(s, f(s))〉f(s)

〈R(s, f(s))〉s ⊢ 〈R(s, f(s))〉f(s)

∃sk : l
〈(∃y)R(s, y)〉s ⊢ 〈R(s, f(s))〉f(s)

¬ : l
〈(∃y)R(s, y)〉s , 〈¬R(s, f(s))〉f(s) ⊢

→ : l
〈(∃y)R(s, y)〉s , 〈(∃y)R(s, y)〉s , 〈R(s, f(s))→ ¬R(s, f(s))〉f(s) ⊢

∀sk : l
(∀x)(∃y)R(x, y), 〈(∃y)R(s, y)〉s , 〈R(s, f(s))→ ¬R(s, f(s))〉f(s) ⊢

∀sk : l
(∀x)(∃y)R(x, y), (∀x)(∃y)R(x, y), 〈R(s, f(s))→ ¬R(s, f(s))〉f(s) ⊢

contr: l
(∀x)(∃y)R(x, y), 〈R(s, f(s))→ ¬R(s, f(s))〉f(s) ⊢

∀sk : l
(∀x)(∃y)R(x, y), (∀y)(R(s, y)→ ¬R(s, y)) ⊢

∃sk : l
(∀x)(∃y)R(x, y), (∃x)(∀y)(R(x, y) → ¬R(x, y)) ⊢

¬ : r
(∀x)(∃y)R(x, y),⊢ ¬(∃x)(∀y)(R(x, y) → ¬R(x, y))

where f ∈ Kι,ι and s ∈ Kι.
Denote the upper-left ∃sk : l application by ρ1, the upper-right ∃sk : l appli-

cation by ρ2, and the bottommost ∃sk : l application by ρ3. ρ3 is the only ∃sk : l
application with Skolem term s, so there is nothing to check. On the other hand,
ρ1 and ρ2 have the same Skolem term f(s). They are indeed homomorphic: the
contr: l application is their uniting contraction, and the homomorphic paths are

µ(ρ1) = 〈R(s, f(s))〉s , 〈(∃y)R(s, y)〉s ,
〈(∃y)R(s, y)〉s , (∀x)(∃y)R(x, y),
(∀x)(∃y)R(x, y)

µ(ρ2) = 〈R(s, f(s))〉s , 〈(∃y)R(s, y)〉s ,
〈(∃y)R(s, y)〉s , 〈(∃y)R(s, y)〉s ,
〈(∃y)R(s, y)〉s , (∀x)(∃y)R(x, y)

because F (µ(ρ1)) = F (µ(ρ2)) = 〈R(s, f(s))〉
s
, 〈(∃y)R(s, y)〉s , (∀x)(∃y)R(x, y).

11

We postpone the proof of soundness of LKsk to Section 7 and instead consider
the problem of cut-elimination. Since LKsk is cut-free, we first connect ordinary
LK with the rules of LKsk. The following definition will provide an analogue
to Proposition 3, but in higher-order logic:

Definition 8 (LKskc-trees). An LKskc-tree is a tree formed according to the
rules of LKsk and LK such that

1. rules of LK operate only on cut-ancestors, and

2. rules of LKsk operate only on end-sequent ancestors.

Hence the cut-ancestors in an LKskc-tree have empty labels.

The method for showing cut-elimination for LKskc will be cut-elimination by
resolution. Hence we will now introduce our resolution calculus.

5. The resolution calculus Ral

In this section, we introduce the resolution calculus Ral we will use to define
the CERESω method in the next section. As in LKsk, we deal with labelled
sequents. Note that Ral will include rules for CNF transformation: this is
standard in higher-order resolution, as the notion of clause is not closed under
substitution. It is also done in the ENAR calculus from [9] for a similar reason.

Definition 9 (Ral rules, deductions and refutations).

Γ ⊢ ∆, 〈¬A〉ℓ

〈A〉ℓ ,Γ ⊢ ∆
¬T

〈¬A〉ℓ ,Γ ⊢ ∆

Γ ⊢ ∆, 〈A〉ℓ
¬F

Γ ⊢ ∆, 〈A ∨B〉ℓ

Γ ⊢ ∆, 〈A〉ℓ , 〈B〉ℓ
∨T

〈A ∨B〉ℓ ,Γ ⊢ ∆

〈A〉ℓ ,Γ ⊢ ∆
∨Fl

〈A ∨B〉ℓ ,Γ ⊢ ∆

〈B〉ℓ ,Γ ⊢ ∆
∨Fr

〈A ∧B〉ℓ ,Γ ⊢ ∆

〈A〉ℓ , 〈B〉ℓ ,Γ ⊢ ∆
∧F

Γ ⊢ ∆, 〈A ∧B〉ℓ

Γ ⊢ ∆, 〈A〉ℓ
∧Tl

Γ ⊢ ∆, 〈A ∧B〉ℓ

Γ ⊢ ∆, 〈B〉ℓ
∧Tr

Γ ⊢ ∆, 〈A→ B〉ℓ

〈A〉ℓ ,Γ ⊢ ∆, 〈B〉ℓ
→T

〈A→ B〉ℓ ,Γ ⊢ ∆

Γ ⊢ ∆, 〈A〉ℓ
→F

l

〈A→ B〉ℓ ,Γ ⊢ ∆

〈B〉ℓ ,Γ ⊢ ∆
→F

r

Γ ⊢ ∆, 〈∀αA〉
ℓ

Γ ⊢ ∆, 〈AX〉ℓ,X
∀T

〈∀αA〉
ℓ
,Γ ⊢ ∆

〈A(fS1 . . .Sn)〉
ℓ
,Γ ⊢ ∆

∀F

〈∃αA〉
ℓ
,Γ ⊢ ∆

〈AX〉ℓ,X ,Γ ⊢ ∆
∃F

Γ ⊢ ∆, 〈∃αA〉
ℓ

Γ ⊢ ∆, 〈A(fS1 . . .Sn)〉
ℓ ∃

T

S

S [X← T]
Sub

Γ ⊢ ∆, 〈A〉ℓ1 , . . . , 〈A〉ℓn 〈A〉ℓn+1 , . . . , 〈A〉ℓm ,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
Cut

12

In Cut, A is atomic. In ∀T and ∃F , X is a variable of appropriate type which
does not occur in Γ,∆,A. In ∀F and ∃T , ℓ = S1, . . . ,Sn and if τ(Si) = αi for
1 ≤ i ≤ n then f ∈ Kα1,...,αn,α is a Skolem symbol. An application of this rule
is called source inference of fS1 . . .Sm, and fS1 . . .Sm is called the Skolem term
of this inference.

Let C be a set of sequents. A sequence of sequents S1, . . . , Sn is an Ral-
deduction of Sn from C if for all 1 ≤ i ≤ n either

1. Si ∈ C or
2. Si is derived from Sj (and Sk) by an Ral rule, where j, k < i.

In addition, we require that all ∀F and ∃T inferences used have pairwise distinct
Skolem symbols. An Ral-deduction of the empty sequent from C is called an
Ral-refutation of C.

The calculus Ral is quite close to Andrews’ resolution calculus R from [2]. Just
like in R, Ral-deductions are defined in a linear fashion (in contrast to LK-
proofs and LKsk-trees). The two main differences to R are (1) the use of labels
to control the arguments of the Skolem terms introduced by the ∀F rule, and (2)
the incorporation of Andrews’ rules of Simplification and Cut into the Cut rule
of Ral. Regarding the latter, note that this restriction is not as serious as it may
appear at first glance: For example, the sentence F = ∀xP (x)→ (P (a) ∧ P (b))
cannot be proved in LK, restricted to atomic cut, without using non-atomic
contraction. Still, ¬F can be refuted in Ral. We state the relative completeness
problem of Ral:

Relative Completeness of Ral. Let S be a set of labelled sequents. Ral is
relatively complete if the following holds: If there exists an R-refutation of the
reduct of S, then there exists an Ral-refutation of S.

Relative completeness will imply completeness of the CERESω method, in con-
junction with the following result from [2] (which still holds in the presence of
Miller’s restriction):

Theorem 1. Let S be a set of sentences. If there exists a T -refutation of S
then there exists an R-refutation of S.

Note that the above formulation of relative completeness is not the only way
to attain this goal: completeness with respect to an appropriate intensional
model class (see [7, 18]) for higher-order logic would also suffice (together with
a soundness theorem for that class for LK). The formulation above has the
advantage that an effective proof of it would give an algorithm to transform
R-refutations into Ral-refutations, allowing proof search to be done in practice
in the more convenient R calculus.

6. CERESω

In this section, we will show cut-elimination for LKskc. To connect this
result to LK, our first task is to show that LK-proofs can be translated to
LKskc-proofs.

13

We extend the notions of paths, homomorphic inferences, and weak regular-
ity to LKskc-trees. Let π be an LKskc-tree with end-sequent S. We say that π
is an LKskc-proof if it is weakly regular and proper.

Definition 10. Let π be an LKskc-tree. π is called regular if

1. each strong labelled quantifier inference has a unique Skolem symbol and

2. the eigenvariable of each strong quantifier inference ρ only occurs above ρ
in π.

Proposition 9. Let π be an LKskc-tree. If π is regular, then π is weakly regu-
lar.

The following lemma provides an analogue to the ⇒-direction of Proposition 2.

Lemma 1 (Skolemization). Let π be a regular LK-proof of S. Then there
exists a regular LKskc-proof ψ of S.

Proof. Let ρ be an inference in π with conclusion F1, . . . ,Fn ⊢ Fn+1, . . . ,Fm.
By induction on the height of ρ, we define a regular LKskc-tree πρ with conclu-

sion 〈F1〉
ℓ1 , . . . , 〈Fn〉

ℓn ⊢ 〈Fn+1〉
ℓn+1 , . . . , 〈Fm〉

ℓm such that for all 1 ≤ i ≤ m,
ℓi is the sequence of substitution terms of ∀ : l inferences operating on descen-
dents of Fi in π, and such that πρ fulfills an eigenterm condition, i.e. every
Skolem symbol occurs only above its source inference.2

1. ρ is an axiom A ⊢ A. Let ℓ1 be the sequence of substitution terms of
the weak quantifier inferences operating on the descendents of the left
occurrence of A, and let ℓ2 be the sequence of substitution terms of the
weak quantifier inferences operating on descendents of the right occurrence
of A. Then take as πρ the axiom 〈A〉ℓ1 ⊢ 〈A〉ℓ2 .

2. ρ is a ∀ : l inference operating on an end-sequent ancestor:

(ϕ)

FT,Γ ⊢ ∆
∀ : l

∀αF,Γ ⊢ ∆

By (IH) we obtain a regular LKskc-tree ϕ
′ of

〈

FT
〉ℓ,T

,Γ′ ⊢ ∆′ where
Γ′,∆′ are Γ,∆ with the respective labels. We take for πρ

(ϕ′)
〈

FT
〉l,T

,Γ′ ⊢ ∆′

∀sk : l
〈∀αF〉

l
,Γ′ ⊢ ∆′

2It is possible to assign arbitrary labels to cut-ancestors in LKskc-trees. To avoid a case
distinction, cut-ancestors are assigned labels in the same way as end-sequent ancestors in this
proof.

14

3. ρ is a ∀ : l inference operating on a cut-ancestor. Then we simply take the
regular LKskc-tree obtained by (IH) and apply ρ to it.

4. ρ is a ∀ : r inference operating on an end-sequent ancestor:

(ϕ)

Γ ⊢ ∆,FX
∀ : r

Γ ⊢ ∆, ∀αF

By (IH) we obtain a regular LKskc-tree ϕ
′ of Γ′ ⊢ ∆′,

〈

FX
〉T1,...,Tn

, with
Γ′,∆′ as above. Let f ∈ Kα1,...,αn,α, where for 1 ≤ i ≤ n τ(Ti) = αi, be a
new Skolem symbol, and let S = f(T1 . . .Tn). Let σ be the substitution
[X← S]. By regularity,X is not an eigenvariable in ϕ′, and does not occur

in T1, . . . ,Tn. Hence ϕ
′σ is a regular LKskc-tree of Γ

′ ⊢ ∆′,
〈

FS
〉T1,...,Tn

.
Take for πρ

(ϕ′σ)

Γ′ ⊢ ∆′,
〈

FS
〉T1,...,Tn

∀sk : r
Γ′ ⊢ ∆′, 〈∀αF〉

T1,...,Tn

5. ρ is a ∀ : r inference operating on a cut ancestor. Again we take the regular
LKskc-tree obtained by (IH) and apply ρ to it.

6. ρ is a cut inference

(ϕ)

Γ ⊢ ∆,F

(λ)

F,Π ⊢ Λ
cut

Γ,Π ⊢ ∆,Λ

By (IH) we obtain regularLKskc-trees ϕ
′, λ′ of Γ′ ⊢ ∆′, 〈F〉ℓ1 and 〈F〉ℓ2 ,Π′ ⊢

Λ′, respectively. If the intersection of the Skolem symbols of ϕ′, λ′ is non-
empty, by the eigenterm condition we can rename Skolem symbols to
achieve this. Hence the LKskc-tree πρ

(ϕ′)

Γ′ ⊢ ∆′, 〈F〉ℓ1

(λ′)

〈F〉ℓ2 ,Π′ ⊢ Λ′

cut
Γ′,Π′ ⊢ ∆′,Λ′

is regular.

7. ρ is a contr: r inference

(ϕ)

Γ ⊢ ∆,F,F
contr: r

Γ ⊢ ∆,F

By (IH) we obtain a regular LKskc-tree ϕ
′ of Γ′ ⊢ ∆′, 〈F〉ℓ1 , 〈F〉ℓ2 . Note

that the inferences operating on descendents of the occurrences of F co-
incide, so ℓ1 = ℓ2 and we may take for πρ

15

(ϕ′)

Γ′ ⊢ ∆′, 〈F〉ℓ1 , 〈F〉ℓ1
contr: r

Γ′ ⊢ ∆′, 〈F〉ℓ1

8. ρ is another type of inference: analogous to the previous cases.

Let ρ be the last inference in π, then ψ = πρ is the desired regular LKskc-proof.
�

We will now set up some notation for the main definitions of CERESω. Let π be
an LKskc-tree, and let S be a sequent in π. Then by cutanc(S) we denote the
sub-sequent of S consisting of the cut-ancestors of S, and by esanc(S) we denote
the sub-sequent of S consisting of the end-sequent ancestors of S. Note that for
any sequent S = cutanc(S) ◦ esanc(S). Let ρ be a unary inference, σ a binary
inference, ψ, χ LKsk-trees, then ρ(ψ) is the LKsk-tree obtained by applying ρ
to the end-sequent of ψ, and σ(ψ, χ) is the LKsk-tree obtained from the LKsk-
trees ψ and χ by applying σ. Note that while this notation is ambigous, it will
always be clear from the context what the auxiliary formulas of the ρ(ψ) and
σ(ψ, χ) are. Let P,Q be sets of LKsk-trees. Then PΓ⊢∆ = {ψΓ⊢∆ | ψ ∈ P},
where ψΓ⊢∆ is ψ followed by weakenings adding Γ ⊢ ∆, and P×σQ = {σ(ψ, χ) |
ψ ∈ P, χ ∈ Q}.

Definition 11 (Characteristic sequent set and proof projections). Let π
be a regularLKskc-proof. For each inference ρ in π, we define a set of LKsk-trees,
the set of projections Pρ(π), and a set of labelled sequents, the characteristic
sequent set CSρ(π).

• If ρ is an axiom with conclusion S = 〈A〉ℓ1 ⊢ 〈A〉ℓ2 , distinguish:

– cutanc(S) = S. Then CSρ(π) = Pρ(π) = ∅.

– cutanc(S) 6= S. Distinguish:

(a) If cutanc(S) = ⊢ 〈A〉ℓ2 then CSρ(π) = {⊢ 〈A〉
ℓ1} and Pρ(π) =

{〈A〉ℓ1 ⊢ 〈A〉ℓ1},

(b) if cutanc(S) = 〈A〉ℓ1 ⊢ then CSρ(π) = {〈A〉ℓ2 ⊢} and Pρ(π) =

{〈A〉ℓ2 ⊢ 〈A〉ℓ2},

(c) if cutanc(S) = ⊢ then CSρ(π) = {⊢} and Pρ(π) = {S}.

• If ρ is a unary inference with immediate predecessor ρ′ with Pρ′(π) =
{ψ1, . . . , ψn}, distinguish:

(a) ρ operates on ancestors of cut formulas. Then

Pρ(π) = Pρ′(π)

(b) ρ operates on ancestors of the end-sequent. Then

Pρ(π) = {ρ(ψ1), . . . , ρ(ψn)}

16

In any case, CSρ(π) = CSρ′(π).

• Let ρ be a binary inference with immediate predecessors ρ1 and ρ2.

(a) If ρ operates on ancestors of cut-formulas, let Γi ⊢ ∆i be the ancestors
of the end-sequent in the conclusion sequent of ρi and define

Pρ(π) = Pρ1
(π)Γ2⊢∆2 ∪ Pρ2

(π)Γ1⊢∆1

For the characteristic sequent set, define

CSρ(π) = CSρ1
(π) ∪ CSρ2

(π)

(b) If ρ operates on ancestors of the end-sequent, then

Pρ(π) = Pρ1
(π) ×ρ Pρ2

(π).

For the characteristic sequent set, define

CSρ(π) = CSρ1
(π) × CSρ2

(π)

The set of projections of π, P(π) is defined as Pρ0
(π), and the characteristic

sequent set of π, CS(π) is defined as CSρ0
(π), where ρ0 is the last inference of

π.

Note that for LKskc-proofs π containing only atomic axioms, CS(π) consists of
sequents containing only atomic formulas. This is not required, though.

Proposition 10. Let π be a regular LKskc-proof. Then there exists an LK-
refutation of the reduct of CS(π).

Proof. We inductively define, for each inference ρ with conclusion S in π, an
LK-tree γρ of the reduct of cutanc(S) from the reduct of CSρ(π).

• If ρ is an axiom 〈A〉ℓ1 ⊢ 〈A〉ℓ2 , distinguish:

– cutanc(S) = S. Take the axiom ρ for γρ.

– cutanc(S) 6= S. Then CSρ(π) = {S′} and we may take the reduct of
S′.

• If ρ is a unary inference with immediate predecessor ρ′, let S′ be the
conclusion of ρ′ and distinguish:

– ρ operates on ancestors of cut formulas. By (IH) we have an LK-tree
γρ′ of cutanc(S′) from CSρ′ (π). Apply ρ to γρ′ to obtain γρ. Note
that as cutanc(S′) is a sub-sequent of S′, if ρ′ is a strong quantifier in-
ference, its eigenvariable condition is fulfilled. As CSρ(π) = CSρ′(π)
by definition, γρ is the desired LK-tree of cutanc(S).

– ρ operates on ancestors of the end-sequent. Then cutanc(S) = cutanc(S′)
and CSρ(π) = CSρ′(π) and hence we may take for γρ the LK-tree
obtained by (IH).

17

• If ρ is a binary inference with immediate predecessors ρ1, ρ2, let γρ1
, γρ2

be the LK-trees obtained by (IH) and distinguish:

– ρ operates on ancestors of cut-formulas. Then obtain γρ by applying
ρ to γρ1

, γρ2
: As CSρ(π) = CSρ1

(π) ∪ CSρ1
(π) it is the desired LK-

tree.

– ρ operates on ancestors of the end-sequent. Then CSρ(π) = CSρ1
(π)×

CSρ2
(π). We may assume that the eigenvariables of γρ1

are distinct
from the variables occurring in γρ2

and vice-versa, otherwise we per-
form renamings. Let S1, S2 be the conclusions of ρ1, ρ2 respectively.
For every C ∈ CSρ1

(π), construct an LK-tree γC of cutanc(S2) ◦ C
from CSρ2

(π)×{C} by taking γρ2
and adding C to every sequent, and

appending contractions on C at the end. As the eigenvariables of γρ2

are distinct from the variables of C by the consideration above, γC is
really an LK-tree. Now, construct γρ by taking γρ1

and appending,
at every leaf of the form C ∈ CSρ1

(π), the LK-tree γC , and adding
contractions on cutanc(S2) at the end. Again, no eigenvariable con-
ditions are violated by the above consideration and γC is an LK-tree
of cutanc(S1) ◦ cutanc(S2) from CSρ(π), as required.

Let ρ be the last inference in π, then γρ is the desired LK-refutation. �

We will now address a central problem of CERESω: how to combine an Ral-
refutation of CS(π) with the LKsk-trees from P(π) into an LKsk-proof of the
end-sequent of π. The following definitions set up the main properties of the
LKsk-trees in P(π):

Definition 12 (Restrictedness). Let S be a set of formula occurrences in
an LKskc-tree π. We say that π is S-linear if no inferences operate on ances-
tors of occurrences in S. We say that π is S-restricted if no inferences except
contraction operate on ancestors of occurrences in S.

If S is the set of occurrences of cut-formulas of π and π is S-restricted, we
say that π is restricted.

Example 6. Consider the LKskc-tree π

P (a) ⊢ P (a) Y (b) ⊢ Y (b)

P (a) ∨ Y (b) ⊢ P (a), Y (b)
∨ : l

Y (b) ⊢ 〈Y (b)〉T Y (b) ⊢ 〈Y (b)〉T

Y (b), Y (b) ⊢ 〈Y (b) ∧ Y (b)〉T
∧ : r

Y (b) ⊢ 〈Y (b) ∧ Y (b)〉T
contr: l

Y (b) ⊢ (∃X)X(b)
∃sk : r

P (a) ∨ Y (b) ⊢ (∃X)X(b), P (a)
cut

where T = λx.Y (x) ∧ Y (x). Let S be the ancestors of P (a) in the end-sequent,
and let C be the ancestors of cut-formulas in π. Then π is S-linear and C-
restricted, and thus restricted.

In principle, labels of linear occurrences in LKskc-trees may be deleted:

18

Proposition 11. Let π be an LKskc-tree, and S a set of formula occurrences
in π that is closed under descendents, and let π be S-linear. If π′ is obtained
from π by replacing all labels of ancestors of occurrences in S by the empty label,
then π′ is an LKskc-tree.

Proof. As π is S-linear, no inferences operate on the respective occurrences.
As no inference has restrictions on labels of context formulas (except that direct
descendents have the same labels as their direct ancestors), and also axioms pose
no restrictions on labels, the proposition holds. �

Definition 13 (Skolem parallel). Let ρ1, ρ2 be strong labelled quantifier in-
ferences in LKskc-trees π1, π2 with Skolem terms S1, S2 respectively. ρ1, ρ2
are called Skolem parallel if for all substitutions σ1, σ2, if S1σ1 = S2σ2 then
µ1σ1, µ2σ2 are homomorphic, where µ1, µ2 are the maximal downwards paths
starting at S1,S2 respectively. π1, π2 are called Skolem parallel if for all strong
labelled quantifier inferences ρ1, ρ2 in π1, π2 respectively, ρ1, ρ2 are Skolem par-
allel.

Example 7. Consider the LKskc-trees π

Y (f(Y)) ⊢ 〈Y (f(Y))〉Y

Y (f(Y)) ⊢ 〈(∀y)Y (y)〉Y
∀sk : r

Y (f(Y)) ⊢ (∃X)(∀y)X(y)
∃sk : r

and ψ

P (f(T)) ⊢ 〈P (f(T))〉T Q(α) ⊢ 〈Q(α)〉T

P (f(T)) ∨Q(α) ⊢ 〈P (f(T))〉T , 〈Q(α)〉T
∨ : l

P (f(T)) ∨Q(α) ⊢ 〈P (f(T)) ∨Q(α)〉T
∨ : r

P (f(T)) ∨Q(α) ⊢ 〈(∀y)(P (y) ∨Q(α))〉T
∀sk : r

P (f(T)) ∨Q(α) ⊢ (∃X)(∀y)X(y)
∃sk : r

where T = λx.P (x) ∨Q(α) and f ∈ Kι→o,ι. Then π and ψ are Skolem parallel.

Proposition 12. Let π1, π2 be LKskc-trees and σ a substitution. If π1, π2 are
Skolem parallel, then π1σ, π2 are.

Proof. Consider Skolem terms S1,S2 occurring in auxiliary formulas of strong
labelled quantifier inferences ρ1, ρ2 in π1σ, π2 respectively. Then by construction
of π1σ, S1 = S′

1σ for some Skolem term S′
1 occurring in the auxiliary formula of

a strong labelled quantifier inference ρ′1 in π1. Let µ
′
1 be the maximal downwards

path starting at S′
1, and µ2 the maximal downwards path in π2 starting at S2.

Let σ1, σ2 be substitutions such that S2σ2 = S1σ1 = S′
1σσ1. As ρ′1, ρ2 are

Skolem parallel, F (µ′
1σσ1) = F (µ2σ2). But by construction of π1σ, µ

′
1σ is the

maximal downwards path starting at S1 in π1σ, so ρ1, ρ2 are Skolem parallel.
�

19

Definition 14 (Axiom labels). Let π be an LKskc-tree, let ω be a formula
occurrence in π, and let µ be an ancestor of ω that occurs in an axiom A. Then
A is called a source axiom for ω. Let S be a set of formula occurrences in
π. We say that π has suitable axiom labels with respect to S if for all formula
occurrences ω in S, the source axioms of ω are of the form 〈F〉ℓ ⊢ 〈F〉ℓ.

Example 8. Consider the LKskc-tree π

〈Y (b)〉T ⊢ 〈Y (b)〉T Y (b) ⊢ 〈Y (b)〉T

〈Y (b)〉T , Y (b) ⊢ 〈Y (b) ∧ Y (b)〉T
∧ : r

〈Y (b)〉T , Y (b) ⊢ (∃X)X(b)
∃sk : r

where T = λx.Y (x) ∧ Y (x). Let ω be the occurrence of 〈Y (b)〉T in the end-
sequent. Then π has suitable axiom labels with respect to {ω}. Note that π
does not have suitable axiom labels with respect to the occurrence of Y (b) in
the end-sequent.

Definition 15 (Balancedness). Let π be an LKskc-tree, and let S be a set of

formula occurrences in π. We call π S-balanced if for every axiom 〈F〉ℓ1 ⊢ 〈F〉ℓ2

in π, at least one occurrence of F is an ancestor of a formula occurrence in S.
We say that π is balanced if π is S-balanced, where S is the set of end-sequent
occurrences of π.

Example 9. Consider the LKskc-tree π from Example 6. Let ω1 be the oc-
currence of P (a) ∨ Y (b) in the end-sequent of π, and let ω2 be the occurrence
of (∃X)X(b) in the end-sequent of π. Then π is neither {ω1}-balanced nor
{ω2}-balanced, but π is {ω1, ω2}-balanced.

Definition 16 (CERES-projections). Let S be a proper sequent, and C be
a sequent. Then an LKskc-tree π is called a CERES-projection for (S,C) if
the end-sequent of π is S ◦C and π is weakly regular, OC -linear, OS-balanced,
restricted, and has suitable axiom labels with respect to OC , where OS resp. OC

is the set of formula occurrences of S resp. C in the end-sequent of π.
Let C be a set of sequents. A set of LKskc-trees P is called a set of CERES-

projections for (S, C) if for all C ∈ C there exists a π(C) ∈ P such that π(C) is
a CERES-projection for (S,C) and moreover, for all π1, π2 ∈ P , π1 and π2 are
Skolem parallel.

Lemma 2. Let π be a regular LKskc-proof of S. Then P(π) is a set of CERES-
projections for (S,CS(π)). Furthermore, for all ψ ∈ P(π), |ψ| ≤ |π|.

Proof. By inspecting Definition 11. Let ρ be an inference in π with conclusion
R. By induction on height(ρ), it is easy to see that for every C ∈ CSρ(π),
Pρ(π) contains an LKsk-tree of esanc(R) ◦ C. Hence P(π) contains an LKsk-
tree π(C) of S ◦ C for every C ∈ CS(π). It remains to verify that (1) π(C) is
a CERES-projection for (S,C) and (2) every π(C1), π(C2) ∈ P(π) are Skolem
parallel.

20

Regarding (1): π(C) is regular, which follows from the fact that π is regular,
and that in constructing π(C) from π, every inference in π induces at most
one copy of it in π(C). Hence π(C) is also weakly regular. S-balancedness,
C-linearity and suitable axiom labels follow immediately from the definition.
As π(C) is cut-free, it is trivially restricted.

Regarding (2): Consider µ1, µ2,S1,S2, σ1, σ2 as in Definition 13. By con-
struction, if an inference ρ of π is applied in both π(C1) and π(C2), also all
inferences operating on descendents of the main formula of ρ are applied in
both π(C1) and π(C2). Therefore by regularity of π, µ1 = µ2. µ1 = µ2 im-
plies S1 = S2, hence S1σ1 = S1σ2 and therefore σ1 ↾ FV(S1) = σ2 ↾ FV(S2).
Therefore µ1σ1 = µ2σ2 by Proposition 5. �

Lemma 3. Let S be a proper sequent. Let C be a set of sequents, and P a set
of CERES-projections for (S, C). Then, if there exists an Ral-refutation of C,
there exists a restricted, weakly regular, balanced LKskc-tree of S.

Proof. Let γ : S1, . . . , Sn be an Ral-refutation of C (hence Sn = ⊢). Let
S = Γ ⊢ ∆. By induction on 0 ≤ i ≤ n, we construct sets of LKskc-trees
Pi ⊇ P such that Pi is a set of CERES-projections for (S, C ∪ {S1, . . . , Si}) and
such that Pi contains only Skolem symbols from P and S1, . . . , Si. Then Pn

contains a CERES-projection for (S,⊢) which is the desired LKskc-tree of S.
We set P0 = P .

For i > 0, distinguish how Si is inferred in γ:

1. Si ∈ C. Then we may take Pi = Pi−1 by P ⊆ Pi−1 and (IH).

2. Si is derived from Sj (and Sk). Then by (IH) we obtain a set of CERES-
projectionsPi−1 for (S, C∪{S1, . . . , Si−1). By definition there exist CERES-
projections πj ∈ Pi−1 for (S, Sj) (and πk ∈ Pi−1 for (S, Sk)). We set
Pi = Pi−1∪{πi}, where πi is an LKskc-tree defined by distinguishing how
Si is inferred in γ:

(a) Si = 〈A〉
ℓ
,Π ⊢ Λ is derived from Sj = Π ⊢ Λ, 〈¬A〉ℓ by ¬T . Then

the end-sequent of πj is S ◦Sj = Γ,Π ⊢ Λ,∆, 〈¬A〉ℓ. By Sj-linearity

of πj , the maximal upwards path µ starting at 〈¬A〉ℓ is unique. Let

µ end in 〈¬A〉ℓ ⊢ 〈¬A〉ℓ (the labels are identical because πj has
suitable axiom labels with respect to Sj). By S-balancedness, we
may replace this axiom in πj by

〈A〉ℓ ⊢ 〈A〉ℓ

〈A〉ℓ , 〈¬A〉ℓ ⊢
¬ : l

to obtain πi of 〈A〉ℓ ,Γ,Π ⊢ Λ,∆ = S ◦ Si. The desired properties
of πi and Pi follow trivially from the fact that they hold for πj and
Pi−1 respectively.

(b) Si is derived from Sj by some other propositional rule: analogously
to the previous case, there exists a unique axiom introducing the aux-
iliary formula of the inference in πj . Depending on the rule applied,

21

we perform one of the following replacements to obtain πi:

¬F : 〈¬A〉ℓ ⊢ 〈¬A〉ℓ

〈A〉ℓ ⊢ 〈A〉ℓ

⊢ 〈¬A〉ℓ , 〈A〉ℓ
¬ : r

∨T : 〈A ∨B〉ℓ ⊢ 〈A ∨B〉ℓ

〈A〉ℓ ⊢ 〈A〉ℓ 〈B〉ℓ ⊢ 〈B〉ℓ

〈A ∨B〉ℓ ⊢ 〈A〉ℓ , 〈B〉ℓ
∨ : l

∨Fl : 〈A ∨B〉ℓ ⊢ 〈A ∨B〉ℓ

〈A〉ℓ ⊢ 〈A〉ℓ

〈A〉ℓ ⊢ 〈A ∨B〉ℓ
∨ : r1

∨Fr : 〈A ∨B〉ℓ ⊢ 〈A ∨B〉ℓ

〈B〉ℓ ⊢ 〈B〉ℓ

〈B〉ℓ ⊢ 〈A ∨B〉ℓ
∨ : r2

The replacements for the cases of ∧F ,∧Tl ,∧
T
r ,→

T ,→F
l ,→

F
r are anal-

ogous. As in the previous case, the desired properties of πi and Pi

follow from those of πj and Pi−1.

(c) Si = 〈AS〉ℓ ,Π ⊢ Λ is derived from Sj = 〈∀A〉
ℓ
,Π ⊢ Λ by ∀F . Then

the end-sequent of πj is 〈∀A〉ℓ ,Π,Γ ⊢ ∆,Λ. By Sj-linearity and

suitable axiom labels there exists a unique axiom 〈∀A〉ℓ ⊢ 〈∀A〉ℓ in-

troducing the ancestor of 〈∀A〉ℓ. By S-balancedness, we may replace
it by

〈AS〉ℓ ⊢ 〈AS〉ℓ

〈AS〉ℓ ⊢ 〈∀A〉ℓ
∀sk : r

to obtain πi of 〈AS〉ℓ ,Π,Γ ⊢ ∆,Λ. As πj is weakly regular, so is
πi (note that the Skolem symbol of this inference does not occur
in πj by assumption and the fact that it is fresh in γ). As πj is
Skolem parallel to the LKskc-trees in Pi−1, so is πi as the downwards
paths of auxiliary formulas of strong labelled quantifier inferences are
unchanged, except for the new inference which has a fresh symbol.
Restrictedness, S-balancedness and suitable axiom labels carry over
from πj .

(d) Si = Π ⊢ Λ, 〈AX〉ℓ,X is derived from Sj = Π ⊢ Λ, 〈∀A〉ℓ by ∀T . By

(IH) we have an LKskc-tree πj of Π,Γ ⊢ ∆,Λ, 〈∀A〉ℓ. By Sj-linearity

there exists a unique axiom 〈∀A〉ℓ ⊢ 〈∀A〉ℓ introducing the ancestor

of 〈∀A〉ℓ. By S-balancedness, we may replace it by

〈AX〉ℓ,X ⊢ 〈AX〉ℓ,X

〈∀A〉ℓ ⊢ 〈AX〉ℓ,X
∀sk : l

to obtain πi of Π,Γ ⊢ ∆,Λ, 〈AX〉ℓ,X. Again the desired properties
carry over from πj .

22

(e) Si is inferred from Sj by Sub with substitution σ. As S is proper,
πi = πjσ is an LKskc-tree of Sjσ ◦ S which is restricted, S-balanced,
weakly regular, and Skolem parallel to the LKskc-trees in Pi−1 by
Proposition 12 and (IH).

(f) Si = Γj ,Γk ⊢ ∆j ,∆k is derived from Sj = Γj ⊢ ∆j , 〈A〉
ℓ1 , . . . , 〈A〉ℓn

and Sk = 〈A〉ℓn+1 , . . . , 〈A〉ℓm ,Γk ⊢ ∆k by Cut. By Proposition 11,
we may delete labels from the ancestors of occurrences of A from
πj , πk respectively, denote these trees by π′

j , π
′

k. Take for πi

(π′

j)

Γ,Γj ⊢ ∆,∆j ,A, . . . ,A

Γ,Γj ⊢ ∆,∆j ,A
contr: r

(π′

k)
A, . . . ,A,Γk,Γ ⊢ ∆k,∆

A,Γk,Γ ⊢ ∆k,∆
contr: l

Γ,Γ,Γj ,Γk ⊢ ∆,∆,∆j ,∆k
cut

Γ,Γj ,Γk ⊢ ∆,∆j ,∆k
contr: ∗

As πj , πk are Skolem parallel and weakly regular, and we contract on
Γ,∆, πi is weakly regular. As the downwards paths of ancestors of
S only change by some repetitions, πi and the LKskc-trees in Pi−1

are Skolem parallel. πi is restricted because πj , πk are Sj-linear and
Sk-linear, respectively. Si-linearity follows from Sj-linearity and Sk-
linearity. As πj , πk are S-balanced, also πi is. As πj , πk have suitable
axiom labels, also πi has: going from πj to π′

j , we only delete labels
of occurrences that are cut-ancestors in πi (analogously for πk). The
suitable axiom labels hence remain by S-balancedness. �

Lemma 4. Let π be a restricted LKskc-proof of S. Then there exists a LKsk-
proof of S.

Proof. We proceed by induction on the number of Cut inferences in π. Con-
sider a subtree ϕ of π that ends in an uppermost Cut ρ. Let the end-sequent
of ϕ be S1 ◦ S2, where S1 are the end-sequent ancestors and S2 are the cut-
ancestors (in π)). We will transform ϕ into an LKsk-tree ϕ

′ such that replacing
ϕ by ϕ′ in π results in a restricted LKskc-proof of S (in particular ϕ′ will be
S2-restricted). We proceed by induction on the height of ρ.

1. ρ occurs directly below axioms. Then ρ is

〈A〉ℓ1 ⊢ 〈A〉ℓ2 〈A〉ℓ3 ⊢ 〈A〉ℓ4

〈A〉ℓ1 ⊢ 〈A〉ℓ4
Cut

and we replace it by 〈A〉ℓ1 ⊢ 〈A〉ℓ4 .

2. ρ does not occur directly below axioms. Then we permute ρ up. The only
interesting case is permuting ρ over a contraction — here, the Cut is du-
plicated and the context contracted. By this contraction, weak regularity
is preserved. Since the heights of both cuts is decreased, we may apply
the induction hypothesis twice to obtain the desired LKskc-proof. �

23

We may now state the main theorem of this section:

Theorem 2. Let π be a regular, proper LKskc-proof of S such that there exists
an Ral-refutation of CS(π). Then there an LKsk-proof of S.

Proof. By Lemma 2 and Lemma 3, there exists a restricted LKskc-proof of S.
By Lemma 4, there exists an LKsk-proof of S. �

To see that CERESω is a cut-elimination method for LK, we will show in the
next section that LKsk-proofs can be translated to cut-free LK-proofs.

7. Soundness of LKsk

This section will be devoted to proving that weak regularity suffices for
soundness of LKsk-proofs.

Definition 17. Let π be an LKsk-tree, and ρ an inference in π. Define the
height of ρ, height(ρ), as the maximal number of sequents between ρ and an
axiom in π.

Lemma 5. Let T be a Skolem term and π be a LKsk-tree of S such that π does
not contain a source inference of T. Let X be a variable not occurring in π,
then there exists an LKsk-tree π [T← X] of S [T← X]. Furthermore, if π is
weakly regular (proper) then π [T← X] is weakly regular (proper).

Proof. Let σ = [T← X], and let ρ be an inference in π with conclusion S.
By induction on height(ρ), we construct LKsk-trees πρ of Sσ.

1. ρ is an axiom 〈A〉ℓ1 ⊢ 〈A〉ℓ2 . Take for πρ the axiom 〈Aσ〉ℓ1σ ⊢ 〈Aσ〉ℓ2σ.
2. ρ is a ∀sk : r inference

Γ ⊢ ∆, 〈FR〉ℓ

∀sk : r
Γ ⊢ ∆, 〈∀F〉ℓ

where R is the Skolem term of ρ. By (IH) we have a LKsk-tree ψ of

Γσ ⊢ ∆σ, 〈FRσ〉lσ. Note that FRσ =β FσRσ. Hence we may take for πρ

(ψ)

Γσ ⊢ ∆σ, 〈FσRσ〉ℓσ

∀sk : r
Γσ ⊢ ∆σ, 〈∀Fσ〉ℓσ

3. ρ is a ∀sk : l inference

〈FR〉ℓ,R ,Γ ⊢ ∆
∀sk : l

〈∀F〉ℓ ,Γ ⊢ ∆

By (IH) we have an LKsk-tree ψ of 〈FRσ〉ℓσ,Rσ
,Γσ ⊢ ∆σ. By the sound-

ness assumption for Skolem terms from [17], T does not contain variables
bound in F, hence FRσ =β FσRσ. Therefore we may take as πρ:

24

(ψ)

〈FσRσ〉ℓσ,Rσ
,Γσ ⊢ ∆σ

∀sk : l
〈∀Fσ〉ℓσ ,Γσ ⊢ ∆σ

4. ρ is a structural or propositional inference. As in the previous cases, we
simply apply the rule to the tree(s) obtained by hypothesis to obtain πρ.

Let ρ be the last inference in π; then we set πσ = πρ. It remains to show
that weak regularity is preserved. As we apply σ on the whole tree, every path
µ in πσ induces a path ν in π such that µ = νσ. Hence homomorphisms of
downwards paths are preserved. �

Example 10. Consider the following LKsk-tree π, where s ∈ Kι and f ∈ Kι,ι:

〈R(s, f(s), s)〉f(s) ⊢ 〈R(s, f(s), s)〉s

∀sk : r
〈R(s, f(s), s)〉f(s) ⊢ 〈(∀x)R(s, x, s)〉s

∃sk : r
〈R(s, f(s), s)〉f(s) ⊢ (∃y)(∀x)R(s, x, y)

∀sk : l
(∀y)R(s, y, s) ⊢ (∃y)(∀x)R(s, x, y)

Then π [s← z]:

〈R(z, f(z), z)〉f(z) ⊢ 〈R(s, f(z), z)〉z

∀sk : r
〈R(z, f(z), z)〉f(z) ⊢ 〈(∀x)R(z, x, z)〉z

∃sk : r
〈R(z, f(z), z)〉f(z) ⊢ (∃y)(∀x)R(z, x, y)

∀sk : l
(∀y)R(z, y, z) ⊢ (∃y)(∀x)R(z, x, y)

is an LKsk-tree.

Lemma 6. Let ρ, ρ′ be homomorphic inferences, and c their uniting contrac-
tion. Let ρ1, . . . , ρn and ρ′1, . . . , ρ

′
m be the logical inferences operating on de-

scendents of the auxiliary formulas of ρ, ρ′ above c. Then n = m and for all
1 ≤ i ≤ n, ρi and ρ′i are homomorphic.

Proof. By induction on n. n = 0 is trivial. For the induction step, let µ, µ′ be
the homomorphic downwards paths from ρ, ρ′ respectively to c. Consider ρ1. As
it is a logical inference, its auxiliary formula is different from its main formula.
As F (µ) = F (µ′), there exists the logical inference ρ′1 of the same type (and even
with the same substitution or Skolem term, if applicable), and the downwards
paths from ρ1, ρ

′
1 respectively to c exist and are homomorphic. Hence ρ1, ρ

′
1 are

homomorphic and we may conclude with the induction hypothesis. �

7.1. Sequential Pruning

To show soundness of LKsk, we will transform LKsk-proofs into LK-proofs.
Roughly, this will be accomplished by permuting inferences and substituting
eigenvariables for Skolem terms. In LKsk-proofs, a certain kind of redundancy

25

may be present: namely, it may be the case that two strong labelled inferences
on a common branch use the same Skolem term. This will prevent an eigenterm
condition from holding, and hence in this situation we cannot substitute an
eigenvariable for the Skolem term. This subsection is devoted to showing how
to eliminate this redundancy.

Definition 18 (Sequential pruning). Let π be an LKsk-tree and ρ, ρ
′ infer-

ences in π. Then ρ, ρ′ are called sequential if they are on a common branch in
π. We define the set of sequential homomorphic pairs as

SHP(π) = {〈ρ, ρ′〉 | ρ, ρ′ homomorphic in π and ρ, ρ′ sequential}.

We say that π is sequentially pruned if SHP(π) = ∅.

Towards pruning sequential homomorphic pairs, we analyze the permutation of
contraction inferences over independent inferences:

Definition 19. Let ρ be an inference above an inference σ. Then ρ and σ are
independent if the auxiliary formula of σ is not a descendent of the main formula
of ρ.

Definition 20 (The relation ⊲c). We will now define the rewrite relation ⊲c
for LKsk-trees π, π

′, where we assume the inferences contr: ∗ and σ to be inde-
pendent:

1. If π is

Π,Π,Γ ⊢ ∆,Λ,Λ
contr : ∗

Π,Γ ⊢ ∆,Λ
σ

Π,Γ′ ⊢ ∆′,Λ

and π′ is

Π,Π,Γ ⊢ ∆,Λ,Λ
σ

Π,Π,Γ′ ⊢ ∆′,Λ,Λ
contr: ∗

Π,Γ′ ⊢ ∆′,Λ

then π ⊲1c π
′.

2. If π is

Π,Π,Γ ⊢ ∆,Λ,Λ
contr: ∗

Π,Γ ⊢ ∆,Λ Σ ⊢ Θ
σ

Π,Γ′ ⊢ ∆′,Λ

and π′ is

Π,Π,Γ ⊢ ∆,Λ,Λ Σ ⊢ Θ
σ

Π,Π,Γ′ ⊢ ∆′,Λ,Λ
contr : ∗

Π,Γ′ ⊢ ∆′,Λ

26

then π ⊲1c π
′.

3. If π is

Σ ⊢ Θ

Π,Π,Γ ⊢ ∆,Λ,Λ
contr: ∗

Π,Γ ⊢ ∆,Λ
σ

Π,Γ′ ⊢ ∆′,Λ

and π′ is

Σ ⊢ Θ Π,Π,Γ ⊢ ∆,Λ,Λ
σ

Π,Π,Γ′ ⊢ ∆′,Λ,Λ
contr : ∗

Π,Γ′ ⊢ ∆′,Λ

then π ⊲1c π
′.

The ⊲c relation is then defined as the transitive and reflexive closure of the
compatible closure of the ⊲1c relation.

Lemma 7. Let π be a weakly regular LKsk-tree of S. If π ⊲c ψ then ψ is a
weakly regular LKsk-tree of S.

Proof. By induction on the length of the ⊲c-rewrite sequence. The case of
π = ψ is trivial, so assume there exists a subtree ϕ of π such that ϕ ⊲1c ϕ

′ and
ψ is obtained from π by replacing ϕ by ϕ′. Then the end-sequent of ψ is the
same as that of π. Also weak regularity is preserved: The paths in ψ and π are
the same modulo some repetitions. �

Lemma 8. Let π be a LKsk-tree with end-sequent S such that π is not se-
quentially pruned. Then there exists a LKsk-tree π

′ with end-sequent S such
that

|SHP(π′)| < |SHP(π)|

Furthermore, if π is weakly regular, so is π′.

Proof. Consider a sequential homomorphic pair in π with uniting contraction
c. By Lemma 6, there exists a sequential homomorphic pair ρ, ρ′ with unit-
ing contraction c such that no logical inference operates on descendents of the
auxiliary formulas of ρ, ρ′ above c (ρ, ρ′ are the lowermost ρi, ρ

′
j of Lemma 6,

respectively). W.l.o.g. assume that ρ is above ρ′. As no logical inference op-
erates on descendents ω of the auxiliary formula of ρ on the path to c, we can
permute all contraction inferences operating on such ω below ρ′ using ⊲c. By
Lemma 7 the resulting tree is weakly regular and its end-sequent is S. Clearly
the number of sequential homomorphic pairs stays the same.

For example, if there are two such contractions inferences between ρ and ρ′,
the situation is

27

ρ

...
contr: l

...
contr: l

...
ρ′

which is transformed to

ρ

...
ρ′

contr: l
contr: l

Hence we may assume that no inference operates on descendents of the auxiliary
formula of ρ between ρ, ρ′. Now distinguish the cases

1. ρ is a unary inference. W.l.o.g. assume that the auxiliary and main
formulas of ρ occur on the right. Then the situation is:

Γ ⊢ ∆, 〈F〉ℓ1
ρ

Γ ⊢ ∆, 〈G〉ℓ2

...

Γ′ ⊢ ∆′, 〈F〉ℓ1 , 〈G〉ℓ2
ρ′

Γ′ ⊢ ∆′, 〈G〉ℓ2 , 〈G〉ℓ2

...

Γ∗ ⊢ ∆∗, 〈G〉ℓ2 , 〈G〉ℓ2
c

Γ∗ ⊢ ∆∗, 〈G〉ℓ2

We replace this subtree by

Γ ⊢ ∆, 〈F〉ℓ1

...

Γ′ ⊢ ∆′, 〈F〉ℓ1 , 〈F〉ℓ1
c

Γ′ ⊢ ∆′, 〈F〉ℓ1
ρ′

Γ′ ⊢ ∆′, 〈G〉ℓ2

...

Γ∗ ⊢ ∆∗, 〈G〉ℓ2

2. ρ is a ∨ : l inference. W.l.o.g. the situation is

28

〈F〉ℓ ,Γ ⊢ ∆ 〈G〉ℓ ,Π ⊢ Λ
ρ

〈F ∨G〉ℓ ,Γ,Π ⊢ ∆,Λ

...

〈F〉ℓ , 〈F ∨G〉ℓ ,Γ∗ ⊢ ∆∗ 〈G〉ℓ ,Π∗ ⊢ Λ∗

ρ′

〈F ∨G〉ℓ , 〈F ∨G〉ℓ ,Γ∗,Π∗ ⊢ ∆∗,Λ∗

...

〈F ∨G〉ℓ , 〈F ∨G〉ℓ ,Γ+ ⊢ ∆+

c
〈F ∨G〉ℓ ,Γ+ ⊢ ∆+

This is transformed to

〈F〉ℓ ,Γ ⊢ ∆
weak: ∗

〈F〉ℓ ,Γ,Π ⊢ ∆,Λ

...

〈F〉ℓ , 〈F〉ℓ ,Γ∗ ⊢ ∆∗

c
〈F〉ℓ ,Γ∗ ⊢ ∆∗ 〈G〉ℓ ,Π∗ ⊢ Λ∗

ρ′

〈F ∨G〉ℓ ,Γ∗,Π∗ ⊢ ∆∗,Λ∗

...

〈F ∨G〉ℓ ,Γ+ ⊢ ∆+

As we only permute contractions and delete inferences, weak regularity is pre-
served by this transformation. Furthermore, consider a sequential homomorphic
pair 〈σ, σ′〉 in π′ (w.l.o.g. we consider the case that ρ is ∨ : l). Clearly σ, σ′ also
exist in π and 〈σ, σ′〉 is a homomorphic pair in π (if its uniting contraction in π′

is c in the second figure, then the c in the first figure is its uniting contraction
in π). It is sequential since we have not changed the branching structure of the
tree (except for deleting a subtree from π to obtain π′).

Hence the number of sequentially homomorphic pairs is reduced, which was
to show. �

Lemma 9 (Sequential Pruning). Let π be a LKsk-tree of S, then there ex-
ists LKsk-tree π

′ of S s.t. π′ is sequentially pruned. Furthermore, if π is weakly
regular, so is π′.

Proof. Repeated application of Lemma 8 does the job. �

Example 11. Consider the LKsk-tree π:

29

P (s1) ⊢ P (s1) P (s1) ⊢ P (s1)
∨ : l

P (s1) ∨ P (s1) ⊢ P (s1), P (s1)
∀
sk : r

P (s1) ∨ P (s1) ⊢ P (s1), (∀x)P (x)
∀
sk : r

P (s1) ∨ P (s1) ⊢ (∀x)P (x), (∀x)P (x)

Q(t1) ⊢ Q(t1)
∀
sk : l

(∀x)Q(x) ⊢ Q(t1)
→ : l

P (s1) ∨ P (s1), (∀x)P (x) → (∀x)Q(x) ⊢ (∀x)P (x),Q(t1)

Q(t2) ⊢ Q(t2)
∀
sk : l

(∀x)Q(x) ⊢ Q(t2)
→ : l

P (s1) ∨ P (s1), (∀x)P (x) → (∀x)Q(x), (∀x)P (x) → (∀x)Q(x) ⊢ Q(t1), Q(t2)
contr : l

P (s1) ∨ P (s1), (∀x)P (x) → (∀x)Q(x) ⊢ Q(t1), Q(t2)

where s1, s2 ∈ Kι.
Denote the upper-left ∀sk : r application by ρ1, the ∀sk : r application directly

below ρ1 by ρ2, the upper→ : l application by η1 and the lower→ : l application
by η2. Then

SHP(π) = {{ρ1, ρ2}, {η1, η2}}

and the contr: l application is the uniting contraction of both pairs. We apply
Lemma 8, removing {η1, η2} and obtaining π′:

P (s1) ⊢ P (s1) P (s1) ⊢ P (s1)
∨ : l

P (s1) ∨ P (s1) ⊢ P (s1), P (s1)
∀sk : r

P (s1) ∨ P (s1) ⊢ P (s1), (∀x)P (x)
∀sk : r

P (s1) ∨ P (s1) ⊢ (∀x)P (x), (∀x)P (x)
weak: r

P (s1) ∨ P (s1) ⊢ (∀x)P (x), (∀x)P (x), Q(t1)
contr: r

P (s1) ∨ P (s1) ⊢ (∀x)P (x), Q(t1)

Q(t2) ⊢ Q(t2)
∀sk : l

(∀x)Q(x) ⊢ Q(t2)
→ : l

P (s1) ∨ P (s1), (∀x)P (x) → (∀x)Q(x) ⊢ Q(t1), Q(t2)

such that
SHP(π′) = {{ρ1, ρ2}}

We apply Lemma 8 again, removing {ρ1, ρ2} and obtaining the sequentially
pruned π′′:

P (s1) ⊢ P (s1) P (s1) ⊢ P (s1)
∨ : l

P (s1) ∨ P (s1) ⊢ P (s1), P (s1)
contr: r

P (s1) ∨ P (s1) ⊢ P (s1)
∀sk : r

P (s1) ∨ P (s1) ⊢ (∀x)P (x)
weak: r

P (s1) ∨ P (s1) ⊢ (∀x)P (x), Q(t1)

Q(t2) ⊢ Q(t2)
∀sk : l

(∀x)Q(x) ⊢ Q(t2)
→ : l

P (s1) ∨ P (s1), (∀x)P (x)→ (∀x)Q(x) ⊢ Q(t1), Q(t2)

7.2. Translating LKsk to LK

The main result of this subsection will be to show that LKsk-proofs can
be translated into LK-proofs. The proof will be effective, and will be based on
permuting inferences and pruning. To this end, we will analyze the permutation
of inferences in LKsk-trees. Such an analysis is often useful, see for example [20]
for the case of a first-order sequent calculus. In LKsk, we have more freedom in

30

the permutation of inferences since we do not have to consider an eigenvariable
condition, although we will want to preserve weak regularity.

To ease the following case distinctions, we introduce the following notation:

Γ, A1 = Γ, A
Γ, A0 = Γ

and let i, i1, . . . , i4 ∈ {0, 1}, x̄ = |x− 1|. In the following transformations, we do
not display the labels of the labelled formula occurrences since we always leave
them unchanged (what this means exactly will be clear from the context).

Definition 21 (The relation ⊲u). This definition shows how to permute down
a unary logical inference ρ over an inference σ, assuming that ρ and σ are inde-
pendent. We do not write down the cases involving ∧ : r,→ : l,→ : r inferences,
since they are analogous. In case 1, σ is a unary logical inference, in case 2 σ is
a weakening inference, in case 3 σ is a contraction inference, and in cases 4–5 σ
is an ∨ : l inference. We define a relation ⊲1u between LKsk-trees π and π′:

1. If π is

Fi1 ,Gi2 ,Γ ⊢ ∆,Gī2 ,Fī1
ρ

Mi3 ,Gi2 ,Γ ⊢ ∆,Gī2 ,Mī3

σ
Mi3 ,Ni4 ,Γ ⊢ ∆,Nī4 ,Mī3

and π′ is

Fi1 ,Gi2 ,Γ ⊢ ∆,Gī2 ,Fī1

σ
Fi1 ,Ni4 ,Γ ⊢ ∆,Nī4 ,Fī1

ρ
Mi3 ,Ni2 ,Γ ⊢ ∆,Nī2 ,Mī3

then π ⊲1u π
′.

2. If π is

Fi1 ,Γ ⊢ ∆,Fī1
ρ

Mi2 ,Γ ⊢ ∆,Mī2

σ (weak: ∗)
Ni3 ,Mi2 ,Γ ⊢ ∆,Mī2 ,Nī3

and π′ is

Fi1 ,Γ ⊢ ∆,Fī1

σ (weak: ∗)
Ni3 ,Fi1 ,Γ ⊢ ∆,Fī1 ,Nī3

ρ
Ni3 ,Mi2 ,Γ ⊢ ∆,Mī2 ,Nī3

then π ⊲1u π
′.

3. If π is

Fi1 ,Gi2 ,Gi2 ,Γ ⊢ ∆,Gī2 ,Gī2 ,Fī1

ρ
Mi3 ,Gi2 ,Gi2 ,Γ ⊢ ∆,Gī2 ,Gī2 ,Mī3

σ (contr: ∗)
Mi3 ,Gi2 ,Γ ⊢ ∆,Gī2 ,Mī3

31

and π′ is

Fi1 ,Gi2 ,Gi2 ,Γ ⊢ ∆,Gī2 ,Gī2 ,Fī1

σ (contr : ∗)
Fi1 ,Gi2 ,Γ ⊢ ∆,Gī2 ,Fī1

ρ
Mi3 ,Gi2 ,Γ ⊢ ∆,Gī2 ,Mī3

then π ⊲1u π
′.

4. If π is

Fi1 ,G1,Γ ⊢ ∆,Fī1

ρ
Mi2 ,G1,Γ ⊢ ∆,Mī2 G2,Π ⊢ Λ

σ
G1 ∨G2,M

i2 ,Γ,Π ⊢ ∆,Λ,Mī2

and π′ is

Fi1 ,G1,Γ ⊢ ∆,Fī1 G2,Π ⊢ Λ
σ

G1 ∨G2,F
i1 ,Γ,Π ⊢ ∆,Λ,Fī1

ρ
G1 ∨G2,M

i2 ,Γ,Π ⊢ ∆,Λ,Mī2

then π ⊲1u π
′.

5. If π is

G1,Γ ⊢ ∆

Fi1 ,G2,Π ⊢ Λ,Fī1
ρ

Mi2 ,G2,Π ⊢ Λ,Mī2

σ
G1 ∨G2,M

i2 ,Γ,Π ⊢ ∆,Λ,Mī2

and π′ is

G1,Γ ⊢ ∆ Fi1 ,G2,Π ⊢ Λ,Fī1

σ
G1 ∨G2,F

i1 ,Γ,Π ⊢ ∆,Λ,Fī1
ρ

G1 ∨G2,M
i2 ,Γ,Π ⊢ ∆,Λ,Mī2

then π ⊲1u π
′.

Finally, we define the ⊲u relation as the transitive and reflexive closure of the
compatible closure of the ⊲1u relation.

Lemma 10. Let π be a weakly regular LKsk-tree of S. If π ⊲u ψ then ψ is a
weakly regular LKsk-tree of S.

Proof. By induction on the length of the ⊲u-rewrite sequence. The case of
π = ψ is trivial, so assume there exists a subtree ϕ of π such that ϕ ⊲1u ϕ

′ and
ψ is obtained from π by replacing ϕ by ϕ′. Then the end-sequent of ψ is the
same as that of π. Also weak regularity is preserved since the paths in ψ and π
are the same modulo some repetitions. �

32

Definition 22 (The relation ⊲b). This definition shows how to permute down
a ∨ : l inference ρ (the cases for ∧ : r,→ : l are analogous), together with some
contractions the auxiliary formulas of which come from both permises of ρ. In
the prooftrees, the indicated occurrences of F1 and F2 will be the auxiliary
occurrences of ρ. Again, we leave out the cases involving ∧ : r,→ : l,→ : r since
they are analogous. We will now define the rewrite relation ⊲b on LKsk-trees,
where we assume ρ and σ to be independent. Cases 1–3 treat the case of σ being
a unary logical inference, in case 4 σ is a weakening inference, in cases 5–6 σ is
a contraction inference, and in cases 7–9 σ is ∨ : l.

1. If π is

F1,Π,Γ1,G
i1 ⊢ ∆1,G

ī1 ,Λ F2,Π,Γ2 ⊢ ∆2,Λ ρ
F1 ∨ F2,Π,Π,Γ1,Γ2,G

i1 ⊢ ∆1,G
ī1 ,∆2,Λ,Λ

contr: ∗
Gi1 ,F1 ∨ F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,G

ī1

σ
Mi2 ,F1 ∨ F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,M

ī2

and π′ is

Gi1 ,F1,Π,Γ1 ⊢ ∆1,Λ,G
ī1

σ
Mi2 ,F1,Π,Γ1 ⊢ ∆1,Λ,F1,M

ī2 F2,Π,Γ2 ⊢ ∆2,Λ ρ
F1 ∨F2,M

i2 ,Π,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,Λ,M
ī2

contr: ∗
F1 ∨ F2,M

i2 ,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,M
ī2

then π ⊲1b π
′.

2. If π is

F1,Π,Γ1 ⊢ ∆1,Λ F2,Π,Γ2,G
i1 ⊢ ∆2,Λ,G

ī1

ρ
F1 ∨ F2,Π,Π,Γ1,Γ2,G

i1 ⊢ ∆1,∆2,Λ,Λ,G
ī1

contr: ∗
Gi1 ,F1 ∨ F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,G

ī1

σ
Mi2 ,F1 ∨ F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,M

ī2

and π′ is

F1,Π,Γ1 ⊢ ∆1,Λ

Gi1 ,F2,Π,Γ2 ⊢ ∆2,Λ,G
ī1

σ
Mi2 ,F2,Π,Γ2 ⊢ ∆2,Λ,M

ī2

ρ
F1 ∨ F2,M

i2 ,Π,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,Λ,M
ī2

contr: ∗
F1 ∨ F2,M

i2 ,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,M
ī2

then π ⊲1b π
′.

3. If π is

F1,Π,G
i1 ,Γ1 ⊢ ∆1,Λ,G

ī1 F2,Π,G
i1 ,Γ2 ⊢ ∆2,Λ,G

ī1
ρ

F1 ∨ F2,Π,G
i1 ,Π,Gi1 ,Γ1,Γ2 ⊢ ∆1,∆2,Λ,G

ī1 ,Λ,Gī1

contr: ∗
Gi1 ,F1 ∨ F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,G

ī1

σ
Mi2 ,F1 ∨ F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,M

ī2

33

and π′ is

Gi1 ,F1,Π,Γ1 ⊢ ∆1,Λ,G
ī1

σ
Mi2 ,F1,Π,Γ1 ⊢ ∆1,Λ,M

ī2

Gi1 ,F2,Π,Γ2 ⊢ ∆2,Λ,G
ī1

σ
Mi2 ,F2,Π,Γ2 ⊢ ∆2,Λ,M

ī2

ρ
F1 ∨ F2,Π,M

i2 ,Π,Mi2 ,Γ1,Γ2 ⊢ ∆1,∆2,Λ,M
ī2 ,Λ,Mī2

contr: ∗
F1 ∨ F2,Π,M

i2 ,Γ1,Γ2 ⊢ ∆1,∆2,Λ,M
ī2

then π ⊲1b π
′.

4. If π is

F1,Π,Γ1 ⊢ ∆1,Λ F2,Π,Γ2 ⊢ ∆2,Λ ρ
F1 ∨ F2,Π,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,Λ

contr: ∗
F1 ∨F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ

σ (weak: ∗)
Mi,F1 ∨F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,M

ī

and π′ is

F1,Π,Γ1 ⊢ ∆1,Λ
σ (weak: ∗)

Mi,F1,Π,Γ1 ⊢ ∆1,Λ,M
ī F2,Π,Γ2 ⊢ ∆2,Λ ρ

F1 ∨ F2,M
i,Π,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,Λ,M

ī

contr: ∗
F1 ∨F2,M

i,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,M
ī

then π ⊲1b π
′.

5. If π is

F1,Π,Γ1,G
i,Gi ⊢ ∆1,Λ,G

ī,Gī F2,Π,Γ2 ⊢ ∆2,Λ ρ
F1 ∨F2,Π,Π,Γ1,Γ2,G

i,Gi ⊢ ∆1,∆2,Λ,Λ,G
ī,Gī

contr : ∗
Gi,Gi,F1 ∨F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,G

ī,Gī

σ (contr : ∗)
Gi,F1 ∨F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,G

ī

and π′ is

F1,Π,Γ1,G
i,Gi ⊢ ∆1,Λ,G

ī,Gī

σ (contr: ∗)
F1,Π,Γ1,G

i ⊢ ∆1,Λ,G
ī F2,Π,Γ2 ⊢ ∆2,Λ ρ

F1 ∨ F2,Π,Π,Γ1,Γ2,G
i ⊢ ∆1,∆2,Λ,Λ,G

ī

contr: ∗
Gi,F1 ∨F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,G

ī

then π ⊲1b π
′.

6. If π is

F1,Π,Γ1 ⊢ ∆1,Λ F2,Π,Γ2,G
i,Gi ⊢ ∆2,Λ,G

ī,Gī

ρ
F1 ∨F2,Π,Π,Γ1,Γ2,G

i,Gi ⊢ ∆1,∆2,Λ,Λ,G
ī,Gī

contr : ∗
Gi,Gi,F1 ∨F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,G

ī,Gī

σ (contr : ∗)
Gi,F1 ∨F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,G

ī

34

and π′ is

F1,Π,Γ1 ⊢ ∆1,Λ

F2,Π,Γ2,G
i,Gi ⊢ ∆2,Λ,G

ī,Gī

σ (contr : ∗)
F2,Π,Γ2,G

i ⊢ ∆2,Λ,G
ī

ρ
F1 ∨ F2,Π,Π,Γ1,Γ2,G

i ⊢ ∆1,∆2,Λ,Λ,G
ī

contr : ∗
Gi,F1 ∨ F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ,G

ī

then π ⊲1b π
′.

7. If π is

F1,Π,Γ1,G1 ⊢ ∆1,Λ F2,Π,Γ2 ⊢ ∆2,Λ ρ
F1 ∨ F2,Π,Π,Γ1,G1,Γ2 ⊢ ∆1,∆2,Λ,Λ

contr: ∗
G1,F1 ∨ F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ G2,Σ ⊢ Θ

σ
G1 ∨G2,F1 ∨ F2,Π,Γ1,Γ2,Σ ⊢ Θ,∆1,∆2,Λ

and π′ is

G1,F1,Π,Γ1 ⊢ ∆1,Λ G2,Σ ⊢ Θ
σ

G1 ∨G2,F1,Π,Γ1,Σ ⊢ Θ,∆1,Λ F2,Π,Γ2 ⊢ ∆2,Λ ρ
F1 ∨ F2,G1 ∨G2,Π,Π,Γ1,Γ2,Σ ⊢ Θ,∆1,∆2,Λ,Λ

contr: ∗
F1 ∨ F2,G1 ∨G2,Π,Γ1,Γ2,Σ ⊢ Θ,∆1,∆2,Λ

then π ⊲1b π
′.

8. If π is

F1,Π,Γ1 ⊢ ∆1,Λ F2,Π,Γ2,G1 ⊢ ∆2,Λ ρ
F1 ∨ F2,Π,Π,Γ1,Γ2,G1 ⊢ ∆1,∆2,Λ,Λ

contr: ∗
G1,F1 ∨ F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ G2,Σ ⊢ Θ

σ
G1 ∨G2,F1 ∨ F2,Π,Γ1,Γ2,Σ ⊢ Θ,∆1,∆2,Λ

and π′ is

F1,Π,Γ1 ⊢ ∆1,Λ

G1,F2,Π,Γ2 ⊢ ∆2,Λ G2,Σ ⊢ Θ
σ

G1 ∨G2,F2,Π,Γ2,Σ ⊢ Θ,∆2,Λ ρ
F1 ∨ F2,G1 ∨G2,Π,Π,Γ1,Γ2,Σ ⊢ Θ,∆1,∆2,Λ,Λ

contr : ∗
F1 ∨ F2,G1 ∨G2,Π,Γ1,Γ2,Σ ⊢ Θ,∆1,∆2,Λ

then π ⊲1b π
′.

9. If π is

F1,Π,G1,Γ1 ⊢ ∆1,Λ F2,Π,G1,Γ2 ⊢ ∆2,Λ ρ
F1 ∨ F2,Π,G1,Π,G1,Γ1,Γ2 ⊢ ∆1,∆2,Λ,Λ

contr: ∗
F1 ∨ F2,Π,G1,Γ1,Γ2 ⊢ ∆1,∆2,Λ G2,Σ ⊢ Θ

σ
G1 ∨G2,F1 ∨ F2,Π,Γ1,Γ2,Σ ⊢ Θ,∆1,∆2,Λ

35

and π′ is

G1,F1,Π,Γ1 ⊢ ∆1,Λ G2,Σ ⊢ Θ
σ

G1 ∨G2,F1,Π,Γ1,Σ ⊢ Θ,∆1,Λ

G1,F2,Π,Γ2 ⊢ ∆2,Λ G2,Σ ⊢ Θ
σ

G1 ∨G2,F2,Π,Γ2,Σ ⊢ Θ,∆2,Λ ρ
F1 ∨ F2,Π,G1 ∨G2,Π,G1 ∨G2,Γ1,Γ2,Σ,Σ ⊢ Θ,Θ,∆1,∆2,Λ,Λ

contr: ∗
F1 ∨ F2,G1 ∨G2,Π,Γ1,Γ2,Σ ⊢ Θ,∆1,∆2,Λ

then π ⊲1b π
′.

Finally, we define the ⊲b relation as the transitive and reflexive closure of the
compatible closure of the ⊲1b relation.

Lemma 11. Let π be a weakly regular LKsk-tree of S. If π ⊲b ψ then ψ is a
weakly regular LKsk-tree of S.

Proof. By induction on the length of the ⊲b-rewrite sequence. The case of
π = ψ is trivial, so assume there exists a subtree ϕ of π such that ϕ ⊲1b ϕ

′ and
ψ is obtained from π by replacing ϕ by ϕ′. Then the end-sequent of ψ is the
same as that of π. Also weak regularity is preserved:

1. In cases 1, 2 and 4–8 of Definition 22, the paths in ψ and π are the same
modulo some repetitions.

2. In case 3, the paths in ψ and π are the same modulo some repetitions, but
a new copy of σ is introduced. Note that the two copies are homomorphic,
so we may conclude by Proposition 8.

3. In case 9, σ is duplicated together with the subtree ending in Σ ⊢ Θ.
Observe that all the descendents of the two copies of Σ ⊢ Θ are contracted,
and hence all the duplicated inferences are homomorphic. Therefore we
may again conclude by Proposition 8. �

Summarizing, we obtain

Lemma 12. Let π be a weakly regular LKsk-tree of S. If π ⊲b ψ, π ⊲u ψ, or
π ⊲c ψ, then ψ is a weakly regular LKsk-tree of S.

Proof. By Lemmas 11, 10, and 7. �

The following definitions will be used in the algorithm translating LKsk-proofs
into such LKsk-proofs which fulfil an eigenterm condition.

Definition 23. Let π be a LKsk-tree, and let ξ be a branch in π. Let σ, ρ
be inferences on ξ and w.l.o.g. let σ be above ρ. Let ξ1, . . . , ξn be the binary
inferences between σ and ρ. For 1 ≤ i ≤ n, let λi be the subproofs ending in a
premise sequent of ξi such that λi do not contain σ. Then λ1, . . . , λn are called
the parallel trees between σ and ρ.

Definition 24. Let σ be a strong labelled quantifier inference in π with Skolem
term S, and ρ be a weak labelled quantifier inference in π with substitution term
T. We say that ρ blocks σ if ρ is below σ and T contains S. We call σ correctly
placed if no weak labelled quantifier inference in π blocks σ.

36

Example 12. Consider the LKsk-proof π:

〈P (c)〉c ⊢ P (c)
∀sk : r

〈P (c)〉c ⊢ (∀x)P (x)
∀sk : l

(∀x)P (x) ⊢ (∀x)P (x)

Here, the ∀sk : l inference blocks the ∀sk : r inference.

As indicated before, we will rearrange the quantifier inferences in an LKsk-
proof π in such a way that there are no eigenterm violations: this will allow us
to convert the LKsk-proof into an LK proof. During this rearranging, we may
have to permute binary inferences, causing duplication of subproofs. This is bad
for showing termination of the rearranging algorithm because our termination
measure will be based on the number of inferences in π. As Example 11 shows,
sequential pruning may severly reduce the number of inferences in an LKsk-
proof (especially when pruning binary inferences). In fact, this pruning will be
sufficient to show termination of the rearranging procedure in the subsequent
lemma. For the termination argument, we will use the notion of lexicographic
order:

Definition 25 (Lexicographic order). Let X1, . . . , Xn be sets and for i ≤ n
let ≤i be a partial order on Xi. Then the lexicographic order on X1× . . .×Xn:
<LEX is defined by

(x1, . . . , xn) <LEX (x′1, . . . , x
′

n) ⇐⇒ (∃m > 0)(∀i < m)(xi = x′i)∧(xm <m x′m)

Lemma 13. Let π be a LKsk-proof of S. Then there exists an LKsk-proof π
′

of S such that all strong labelled quantifier inferences in π′ are correctly placed.

Proof. We introduce some notations that will be useful. Let π be an LKsk-
tree, ρ be a strong labelled quantifier inference in π with Skolem term S. Define
Qρ as the number of inferences blocking ρ. Then define BLOCKπ(S) =

∑

σ Qσ

where σ ranges over the strong labelled quantifier inferences in π with Skolem
term S. If S,T are expressions, define S ≺ T if S occurs in T.

Define SKπ as the set of Skolem terms occurring in π. Let |SKπ| = n, then
denote the elements of SKπ by S1, . . . ,Sn s.t. for all 1 ≤ i ≤ n and all j < i:
either Si ≺ Sj or Sj , Si are incomparable w.r.t. ≺. Then define the n-tupel
απ = 〈BLOCKπ(S1), . . . ,BLOCKπ(Sn)〉.

We show that there exists an LKsk-proof π
′ of S such that απ′ = 〈0, . . . , 0〉,

which implies that there are no blocking inferences in π′.
We may assume that some member of απ is not 0. We will transform π

into an LKsk-proof π
′ of S such that απ′ <LEX απ — existence of the desired

LKsk-proof then follows by induction. Let k be the least integer such that
BLOCKπ(Sk) > 0. Then there exists a lowermost strong labelled quantifier
inference ρ with Skolem term Sk such that there is a weak labelled quantifier
inference σ blocking ρ. Observe that σ does not operate on a descendent of the
main formula of ρ: Assume it does, then by Proposition 4, Sk properly contains

37

the substitution term of σ and, by the definition of blocking, therefore properly
contains itself!

Let σ, ξ be inferences in π. Then define RR(π, ξ, σ) =
∑

µQµ where µ ranges
over the inferences homomorphic to ρ in the parallel trees between ξ and σ. De-
fine BR(π, ξ, σ) = BLOCKπ(Sk) − RR(π, ξ, σ). The intuitive idea is: When
we permute down inferences, new subtrees can be created which contain infer-
ences homomorphic to ρ. RR(π, ξ, σ) counts the number of “blockings” created
by these inferences. The point then is that these inferences will eventually be
deleted, and then BR(π, ξ, σ) = BLOCKπ(Sk) and therefore BLOCKπ(Sk)
will properly decrease by permuting ρ below σ.

Formally, let Rn, . . . , R1 be the inferences between ρ and σ (exluding ρ and
σ) operating on descendents of the main formula of ρ, i.e.:

... ρ
Γ ⊢ ∆

...
Rn

Γn ⊢ ∆n

...

...
R1

Γ1 ⊢ ∆1

... σ
Π ⊢ Λ

We construct by induction LKsk-proofs π1, . . . , πl where one of the inferences is
permuted down below σ. The induction invariant is: ∀j < k(BLOCKπl+1

(Sj) =
0) ∧ BR(πl, ρ, σ) ≥ BR(πl+1, ρ, σ). Assume l inferences have been shifted, that
is

38

... ρ
Γ ⊢ ∆

...
Rn

Γn ⊢ ∆n

...

... Rl+1
Γl+1 ⊢ ∆l+1

... σ
Π′ ⊢ Λ′

...
Rl

Γ′

l ⊢ ∆′

l

...

...
R1

Π ⊢ Λ

Depending on whether Rl+1 is a unary, binary, or contraction inference, we use
⊲u, ⊲b, or ⊲c respectively to permute it below σ, obtaining πl+1. By Lemma 12,
πl+1 is an LKsk-proof of S. We verify the induction invariant by distinguishing
what kind of inference Rl+1 is:

1. Rl+1 is a ∀sk : r inference. Permuting down a ∀sk : r inference cannot
create any blocking inferences and does not change the number of ho-
momorphic inferences in the parallel trees, so the invariant holds. For
example, we permute Rl+1 below a ∀sk : l inference:

(ψ)

〈GT〉ℓ1,T ,Γ ⊢ ∆, 〈FS〉ℓ2
Rl+1

〈GT〉ℓ1,T ,Γ ⊢ ∆, 〈∀F〉ℓ2

∀sk : l
〈∀G〉ℓ1 ,Γ ⊢ ∆, 〈∀F〉ℓ2

is transformed into

(ψ)

〈GT〉ℓ1,T ,Γ ⊢ ∆, 〈FS〉ℓ2

∀sk : l
〈∀G〉ℓ1 ,Γ ⊢ ∆, 〈FS〉ℓ2

Rl+1
〈∀G〉ℓ1 ,Γ ⊢ ∆, 〈∀F〉ℓ2

2. Rl+1 is a ∀sk : l inference with substitution term T. As Rl+1 operates
on a descendent of ρ, by Proposition 4, T ≺ Sk. Therefore Sk properly
contains any Skolem term R contained in T, so R = Sj for some j > k.
Therefore BLOCKπl

(Sp) ≥ BLOCKπl+1
(Sp) for all p ≤ k. The parallel

trees are untouched, so the invariant holds.

39

3. Rl+1 is an ∃sk : l or an ∃sk : r inference: analogous to the previous case.

4. Rl+1 is a unary propositional inference. The invariant trivially holds.

5. Rl+1 is an ∨ : l inference. To verify the induction invariant, we perform a
case distinction depending on the inference below Rl+1. We only consider
the interesting cases:

(a) Rl+1 is permuted over a ∀sk : l inference ξ. At most one copy ξ′ of
ξ is created in πl+1, and there is no branch containing both ξ and
ξ′. So for all ∀sk : r inferences above Rl+1, there is still at most one
of ξ, ξ′ below them, so BLOCKπl+1

(Si) ≤ BLOCKπl
(Si) for all

i ∈ {1, . . . , k}.
For example, consider the case

(ψ)

F1,Π, 〈GT〉ℓ,T ,Γ1 ⊢ ∆1,Λ

(ψ′)

F2,Π, 〈GT〉ℓ,T ,Γ2 ⊢ ∆2,Λ
Rl+1

F1 ∨ F2,Π, 〈GT〉ℓ,T ,Π, 〈GT〉ℓ,T ,Γ1,Γ2 ⊢ ∆1,∆2,Λ,Λ
contr: ∗

〈GT〉ℓ,T ,F1 ∨ F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ
ξ

〈∀G〉ℓ ,F1 ∨ F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ

which is transformed to

(ψ)

〈GT〉ℓ,T ,F1,Π,Γ1 ⊢ ∆1,Λ
ξ

〈∀G〉ℓ ,F1,Π,Γ1 ⊢ ∆1,Λ

(ψ′)

〈GT〉ℓ,T ,F2,Π,Γ2 ⊢ ∆2,Λ
ξ′

〈∀G〉ℓ ,F2,Π,Γ2 ⊢ ∆2,Λ
Rl+1

F1 ∨ F2,Π, 〈∀G〉
ℓ
,Π, 〈∀G〉ℓ ,Γ1,Γ2 ⊢ ∆1,∆2,Λ,Λ

contr : ∗
〈∀G〉ℓ ,F1 ∨F2,Π,Γ1,Γ2 ⊢ ∆1,∆2,Λ

So for all ∀sk : r inferences in ψ, ψ′ there is still only one copy of ξ
below them, and hence BLOCKπl+1

(Si) ≤ BLOCKπl
(Si).

(b) Rl+1 is permuted over a ∀sk : r inference ξ with Skolem term Sp. If
p < k, then BLOCKπl

(Sp) = 0 and therefore duplicating ξ still gives
BLOCKπl+1

(Sp) = 0. p = k does not hold, as we chose a lowermost
blocked ∀sk : r inference ρ.

(c) Rl+1 is permuted over a binary inference ξ such that one of the
auxiliary formulas of ξ is contracted; then the situation in πl is

F1,Π,G1,Γ1 ⊢ ∆1,Λ F2,Π,G1,Γ2 ⊢ ∆2,Λ
Rl+1

F1 ∨ F2,Π,G1,Π,G1,Γ1,Γ2 ⊢ ∆1,∆2,Λ,Λ
contr: ∗

F1 ∨ F2,Π,G1,Γ1,Γ2 ⊢ ∆1,∆2,Λ

(ϕ)

G2,Σ ⊢ Θ
ξ

G1 ∨G2,F1 ∨ F2,Π,Γ1,Γ2,Σ ⊢ Θ,∆1,∆2,Λ

which is transformed to

40

G1,F1,Π,Γ1 ⊢ ∆1,Λ

(ϕ)

G2,Σ ⊢ Θ
ξ

G1 ∨G2,F1,Π,Γ1,Σ ⊢ Θ,∆1,Λ

G1,F2,Π,Γ2 ⊢ ∆2,Λ

(ϕ)

G2,Σ ⊢ Θ
ξ

G1 ∨G2,F2,Π,Γ2,Σ ⊢ Θ,∆2,Λ
Rl+1

F1 ∨F2,Π,G1 ∨G2,Π,G1 ∨G2,Γ1,Γ2,Σ,Σ ⊢ Θ,Θ,∆1,∆2,Λ,Λ
contr: ∗

F1 ∨F2,G1 ∨G2,Π,Γ1,Γ2,Σ ⊢ Θ,∆1,∆2,Λ

in πl+1.
As BLOCKπl

(Sp) = 0 for p < k, BLOCKπl+1
(Sp) = 0 even when

duplicating a subtree. Hence we only have to consider Sk. Assume
BLOCKπl+1

(Sk) > BLOCKπl
(Sk), then there exists a ∀sk : r in-

ference ρ′ in the duplicated tree ϕ with Skolem term Sk. As ρ′

was created by copying a inference ρ∗ that was, by weak regularity,
homomorphic to ρ, also ρ′ will be homomorphic to ρ due to the ap-
plications of contractions contr: ∗ on Σ,Θ,G1 ∨G2. Therefore the
inferences blocking ρ′ in the copy of ϕ are counted in RR(πl+1, ρ, σ).
Let z be the number of inferences blocking inferences ρ′ copied in this
way, then RR(πl+1, ρ, σ) = RR(πl, ρ, σ) + z and BLOCKπl+1

(Sp) =
BLOCKπl

(Sp) + z and hence BR(πl+1, ρ, σ) ≤ BR(πl, ρ, σ).

6. Rl+1 is another binary inference: analogous to the previous case.

This completes the case distinction. Let ω be the inference directly above ρ,
then RR(πm, ρ, σ) = RR(πm, ω, σ). Permute ρ down over σ in the same way
as above and apply Lemma 9 to the resulting proof. This yields a proof π′

m

such that RR(π′
m, ω, σ) = 0 and, because ρ is now below σ, BLOCKπ′

m
(Sk) <

BLOCKπ(Sk). �

Theorem 3 (Soundness). Let π be a LKsk-proof of S. Then there exists a
cut-free LK-proof of S.

Proof. We apply Lemma 9 and Lemma 13 to obtain a sequentially pruned
LKsk-proof π

′ of S where all inferences are correctly placed.
For the rest of this proof, we allow ∀ : r and ∃ : l inferences in LKsk-proofs

(with the usual eigenvariable condition). By induction on the number of strong
labelled quantifier inferences in π′, we construct sequentially pruned LKsk-
proofs π′′ where all inferences are correctly placed, containing strictly less strong
labelled quantifier inferences inferences than π′.

Let ρ

(ψ)

Γ ⊢ ∆,
〈

FS
〉ℓ

∀sk : r
Γ ⊢ ∆, 〈∀F〉ℓ

be a ∀sk : r inference in π′ such that S is a >-maximal Skolem term in π′ (the
case for ρ being an ∃sk : l inference is analogous).

Assume that S occurs in Γ ∪ ∆ ∪ ℓ. As π′ is an LKsk-proof, S does not
contain Skolem symbols and so a descendent of S must be eliminated by a
labelled quantifier inference σ below ρ. Distinguish:

41

1. σ is a strong labelled quantifier inference. As π′ is sequentially pruned and
weakly regular, the Skolem term T of σ fulfills S 6= T. Therefore S < T,
which contradicts the assumption of >-maximality of S!

2. σ is a weak labelled quantifier inference. Then ρ is not correctly placed!

Hence S does not occur in Γ∪∆∪ ℓ. Applying Lemma 5, we obtain ψ [S← Y].
We replace ρ in π′ by

(ψ [S← Y])

Γ ⊢ ∆,
〈

FY
〉ℓ

∀ : r
Γ ⊢ ∆, 〈∀F〉ℓ

We perform this procedure on all source inferences of S at once. As π′ is
sequentially pruned, all such inferences are parallel and the substitutions do not
interfere with each other. As Y is new, it does not cause eigenvariable violations
in ψ [S← Y]. As we apply the same replacement on the homomorphic paths,
weak regularity is preserved.

Finally, we obtain a tree consisting of LKsk inferences which does not contain
∀sk : r and ∃sk : l inferences, but contains ∀ : r and ∃ : l inferences obeying the
eigenvariable condition. We replace the LKsk inferences by the respective LK
inferences to obtain the desired LK-proof. �

We can now extend the main theorem on CERESω:

Theorem 4. Let π be a regular, proper LKskc-proof of S such that there exists
an Ral-refutation of CS(π). Then there a cut-free LK-proof of S.

Proof. By Theorem 2, there exists an LKsk-proof of S. By Theorem 3, there
exists a cut-free LK-proof of S. �

Completeness of Ral implies completeness of the cut-elimination method:

Theorem 5. Assume completeness of Ral. Let π be an LK-proof of a proper
sequent S. Then there exists a cut-free LK-proof of S.

Proof. π can be transformed into a regular LK-proof of S. By Lemma 1,
there exists a regular LKskc-proof of S. Let CSR(π) be the reduct of CS(π). By
Proposition 10, Proposition 1, and Theorem 1, there exists an R-refutation γ
of F (CSR(π)). By deleting some →T , ∨T and ∧F inferences from γ, we obtain
an R-refutation of CSR(π). By completeness of Ral, we may apply Theorem 4.

�

Of course, cut-elimination implies consistency. Hence by Gödel’s second incom-
pleteness theorem, at some point in the proof of the theorem above we must
use assumptions which can not be proven in type theory. This strength is to be
found in the proof of Theorem 1.

The following subsection will be devoted to investigating the relative com-
pleteness of Ral.

42

8. Relative completeness of Ral

So far, we have not been able to prove relative completeness of Ral. We
state the following:

Conjecture. Relative Completeness of Ral holds.

This subsection will present results which indicate that the conjecture can indeed
be resolved positively by studying whether the R calculus can be sufficiently
restricted.

8.1. Restricting R (towards Ral)

In this section, we will consider the following calculus:

Definition 26 (Resolution calculus Ra). We define the calculus Ra analo-
gously to the calculus Ral; it consists of the propositional rules of Ra where all
labels are empty, together with the following rules:

Γ ⊢ ∆, ∀A

Γ ⊢ ∆,AX ∀
T

∀A,Γ ⊢ ∆

A(fX1 . . .Xn),Γ ⊢ ∆
∀F

S

S [X← T]
Sub

Γ ⊢ ∆,A, . . . ,A A, . . . ,A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
mCut

where in ∀F , X1, . . . ,Xn are all the free variables occuring in A, and if τ(Xi) =
ti for 1 ≤ i ≤ n and τ(A) = t→ o, then f ∈ Kt1,...,tn,t. In mCut, A is atomic.

Note that Ra is “in-between” Andrews’ R from [2] and Ral: it does not have
the SimT , SimF rules of R, but the ∀F and ∀T rules work as they do in R. In
this section, we are interested in the question whether Ra is still complete (with
respect to R). The answer will be positive for a fragment of R:

Definition 27. Let γ be an R-deduction such that all Skolem terms of ∀F

inferences in γ are constants. Then γ is called an Rc-deduction.

The aim of this section is to prove the following result:

Theorem 6. Let γ be an Rc-refutation of C. Then there exists an Ra-refutation
of C.

Let γ be an R-deduction, and ρ1, ρ2 inferences in γ. Then we say that ρ1 is
a direct ancestor of ρ2 if the conclusion of ρ1 is a premise of ρ2. ρ2 is a direct
descendent of ρ1 if ρ1 is a direct ancestor of ρ2. Similarily, if S1, S2 are sequent
occurrences in γ then S1 is a direct ancestor of S2 if there exists an inference
with premise S1 and conclusion S2 in γ, and then S2 is a direct descendent
of S1. The proper ancestor (descendent) relations are the transitive closures
of the direct ancestor (direct descendent) relations. The ancestor (descendent)
relations are the reflexive closures of the proper ancestor (descendent) relations.
If S1 is a descendent of S2 then we also say that S1 depends on S2. Furthermore,
we say that an inference ρ operates on a formula occurrence ω if ω is an auxiliary

43

or main formula of ρ (note that the Sub rule does not operate on any formula
occurrences).

For notational convenience we will refer to SimT and SimF inferences simply
as Sim inferences.

Definition 28. We say that a Sim inference ρ in an R-deduction γ is locked
if all the direct descendents of ρ operate on the main formula of ρ. Let ω be
a formula occurrence in γ. Then a sequence of sequents S1, . . . , Sn is a path
starting at ω if S1 contains ω and for all 1 ≤ i < n, Si is a direct ancestor of
Si+1. A path p starting at ω is called uninterrupted if no inference on p operates
on a descendent of ω.

Proposition 13. Let ω be the occurrence of F in the sequent Γ ⊢ ∆,F (F,Γ ⊢
∆) in an R-deduction γ, and let p be an uninterrupted path starting at ω. Then
all sequents in p are of the form Π ⊢ Λ,Fσ (Fσ,Π ⊢ Λ) for some Π,Λ and
substitution σ.

Proof. By induction on the length of p. σ is determined by the Sub inferences
on p. �

Proposition 14. Let γ be an R-refutation of C. Then there exists an R-
refutation ψ of C such that all Sim inferences in ψ are locked and such that
the Skolem terms occuring in γ are exactly those occuring in ψ.

Proof. We may assume that there exists a Sim inference ρ in γ that is not
locked. W.l.o.g. assume that ρ is a SimT inference. We construct an R-
refutation γ′ of C such that γ′ contains strictly less non-locked Sim inferences
than γ, and conclude by induction.

Let γ = S1, . . . , Sk. As γ is an R-refutation, Sk does not contain formula
occurrences and hence (1) every formula occurrence ω has a descendent which
is an auxiliary formula. Let ω be the main formula of ρ, let Si = Γ ⊢ ∆,A,A
be the premise of ρ (where the A’s are the auxiliary formulas of ρ), and let
Sj = Γ ⊢ ∆,A be the conclusion of ρ. As ρ is not locked and by (1), there exist
non-trivial uninterrupted paths p1, . . . , pn from ω to some auxiliary formulas
occurring in sequents Ti (1 ≤ i ≤ n). Define ψ = Σ1, . . . ,Σj−1,Σj+1,Σk where

(1) if Sl occurs on some pi then by Proposition 13, Sl is of the form Π ⊢ Λ,Aσ
and we define Σl = Π ⊢ Λ,Aσ,Aσ,

(2) if Sl is inferred from some Tj then Σl = Tj, Sl,

(3) otherwise Σl = Sl.

ψ is an R-refutation of C: W.l.o.g. we treat the case of Sl being inferred in ψ
by a unary inference. In case (1) if Sl is inferred from Sj in γ then we can infer
Σl from Σi = Si in ψ. Otherwise it is inferred from some Sm for which also
case (1) holds, and we can infer Σl from Σm. In case (2), we can infer Tj from

Σj by SimT and Sl from Tj as in γ. In case (3) if Sl was inferred from Sm in γ
then Σm ends in Sm and we can infer Sl from Σm just as Sl was inferred from
Sm in γ.

44

Note that we have only introduced locked Sim inferences, and have removed
one non-locked Sim inference. Hence ψ contains strictly less non-locked Sim
inferences than γ, which concludes the proof. �

Example 13. Consider the R-deduction γ:

1 Px ∨Qx, Px ∨Qx ⊢ ∀yRy
2 Px ∨Qx ⊢ ∀yRy SimF : 1
3 Px ∨Qx ⊢ Rz ∀F : 2
4 Pz ∨Qz ⊢ Rz Sub : 3
5 Pz ⊢ Rz ∨Fl : 4
6 Pc ∨Qc ⊢ Rc Sub : 4
7 Qc ⊢ Rc ∨Fr : 6

Applying Proposition 14 to γ yields the R-deduction

1 Px ∨Qx, Px ∨Qx ⊢ ∀yRy
2 Px ∨Qx, Px ∨Qx ⊢ Rz ∀F : 1
3 Pz ∨Qz, Pz ∨Qz ⊢ Rz Sub : 2

4 Pz ∨Qz ⊢ Rz SimF : 3
5 Pz ⊢ Rz ∨Fl : 4
6 Pc ∨Qc, Pc ∨Qc ⊢ Rc Sub : 3

7 Pc ∨Qc ⊢ Rc SimF : 6
8 Qc ⊢ Rc ∨Fr : 7

Hence from now on we will focus on the following set of rules:

Definition 29 (Rules for R′
a).

Γ ⊢ ∆,¬A, . . . ,¬A

A,Γ ⊢ ∆ ¬T
¬A, . . . ,¬A,Γ ⊢ ∆

Γ ⊢ ∆,A ¬F
Γ ⊢ ∆,A ∨B, . . . ,A ∨B

Γ ⊢ ∆,A,B ∨T

A ∨B, . . . ,A ∨B,Γ ⊢ ∆

A,Γ ⊢ ∆
∨Fl

A ∨B, . . . ,A ∨B,Γ ⊢ ∆

B,Γ ⊢ ∆
∨Fr

Γ ⊢ ∆, ∀A, . . . , ∀A

Γ ⊢ ∆,AX ∀T
∀A, . . . , ∀A,Γ ⊢ ∆

A(fX1 . . .Xn),Γ ⊢ ∆
∀F

Γ ⊢ ∆
(Γ ⊢ ∆) [X← T]

Sub

Γ ⊢ ∆,A, . . . ,A A, . . . ,A,Π ⊢ Λ

Γ,Π ⊢ ∆,Λ
mCut

with conditions on mCut, ∀F as in Definition 26 (rules of Ra). Rules for the
connectives →,∧, ∃ are defined analogously. An inference is called singular if it
has at most one auxiliary formula.

Hence the following follows immediately from Proposition 14:

Proposition 15. Let γ be an R-refutation of C. Then there exists an R′
a-

refutation ψ of C such that the Skolem terms occuring in γ are exactly those
occuring in ψ.

45

Note that an R′
a-deduction γ is an Ra-deduction iff all inferences in γ except

mCut are singular. We introduce some notions regarding the status of inferences
in R′

a deductions:

Definition 30. An inference is called relevant if it is not an mCut, ∀F , or ∃T

inference. Let ρ be an ∀F or ∃T inference. ρ is called prefinished if all inferences
operating on a proper ancestor of an auxiliary formula of ρ are singular. ρ is
called finished if it is prefinished and singular.

Example 14. Consider the R′
a-deduction

1 A ∨ ∀xPx,A ∨ ∀xPx ⊢
2 ∀xPx ⊢ ∨Fr : 1
3 Ps ⊢ ∀F : 2

Then inference 3 is not prefinished since inference 2 operates on a proper an-
cestor of the auxiliary formula of 3, and 2 is not singular. Now consider

1 A ∨ ∀xPx,A ∨ ∀xPx ⊢
2 A ∨ ∀xPx, ∀xPx ⊢ ∨Fr : 1
3 ∀xPx, ∀xPx ⊢ ∨Fr : 2
4 Ps ⊢ ∀F : 3

Here, inference 4 is prefinished but not finished since it is not singular.

Definition 31. Let S = F1, . . . ,Fn ⊢ G1, . . . ,Gm be a sequent. If there exist
k1, . . . , kn, ℓ1, . . . , ℓm ∈ N such that

S′ = k1 × F1, . . . , kn × Fn ⊢ ℓ1 ×G1, . . . , ℓm ×Gm,

then S′ is a multiple of S, where the notation ki × Fi means “ki occurrences
of Fi”. Abusing notation, we write F1, . . . ,Fn ⊢m G1, . . . ,Gm for S′ if S′ is a
multiple of S.

If all relevant inferences in an R′
a-deduction γ are singular, then we say that γ

is singular. We define NF(γ) to be the number of ∀F and ∃T inferences in γ

which are not finished (i.e. not prefinished or not singular).

Proposition 16. Let γ be an R′
a-deduction of ⊢ Γ from C. Then there exists

an R′
a-deduction ψ of ⊢m Γ from C such that ψ is singular.

Furthermore, the Skolem terms occuring in ψ are the same as those occuring
in γ, and NF(γ) = NF(ψ).

Proof. Assume γ is not singular. Let γ = S1, . . . , Sn, and let i be the least
such that Si is inferred by a relevant inference ρ such that ρ is not singular. We
will construct an R′

a-deduction ψ = S1, . . . , Si−1,Σ, S
′

i+1, . . . , S
′
n from C such

that (1) if µ is an inference in ψ with conclusion in S1, . . . , Si−1,Σ, then µ is
singular and furthermore, (2) a sequent in ψ is inferred by an ∀F (∃T) inference
µ iff its corresponding sequent in γ is inferred by an ∀F (∃T) inference µ′, and

46

µ is not finished iff µ′ is. We may then conclude by induction on n− i, where i
is defined as above.

S1, . . . , Si−1 are inferred in ψ as they were in γ. By assumption, all these
inferences are singular if they are relevant. Σ is defined as follows: We treat
the case of ρ being an ∨T inference. The other cases are analogous. Let Γ ⊢
∆,A∨B, . . . ,A∨B be the premise of ρ, and let Γ ⊢ ∆,A,B be the conclusion.
Then Σ is the sequence of sequents starting with Γ ⊢ ∆,A∨B, . . . ,A∨B,A,B
and ending with Γ ⊢ ∆,A,B, . . . ,A,B, such that every sequent in Σ is inferred
from the previous one by the singular version of ρ. The first sequent in Σ can
be inferred from the same Sj , j < i, as it was in γ, using the singular version of
ρ. By construction, (1) holds. For (2), note that by assumption ρ cannot be ∀F

or ∃T , as ρ is relevant. All other inferences are as they were in γ, so (2) holds
for this part of ψ.

Now, define S′

j for i < j ≤ n. Let ω be the main formula of ρ, and let Sj =
Γ,∆ where ∆ are all the descendents of ω in Sj in γ. Define S′

j = Γ,∆, . . . ,∆ if
there exists an uninterrupted path starting at ω and ending at Sj in γ (for some
suitable number of copies of ∆), and S′

j = Sj otherwise. S′

j can be derived in
ψ:

1. If Sj was derived in γ from Sk with k < i, then ∆ is empty and we can
derive S′

j = Sj from Sk.
2. If Sj was derived from Si in γ, we can derive S′

j from the last element of
Σ.

3. If Sj was derived from Sk, with k > i, in γ then again we can derive S′

j

from S′

k in ψ. If the inference with conclusion Sj is the first inference
operating on a descendent of ω in γ, we have to increase the number
of auxiliary formulas to derive the correct sequent in ψ. For example,
if Sk = Γ ⊢ ∆,A ∨ B and Sj = Γ ⊢ ∆,A,B is derived by ∨T , then
S′

k = Γ ⊢ ∆,A∨B, . . . ,A∨B and we derive S′
j = Sj from S′

k by ∨T in ψ.

For (2), it is clear by construction that S′
j is inferred by ∀F iff Sj is. Note that

inferences from γ are changed iff they operate on descendents of ω, in which
case they are not prefinished if they are instances of ∀F in both γ and ψ. �

The second R′
a-deduction in Example 14 is obtained from the first by applying

Proposition 16.

Proposition 17. Let ρ1, ρ2 be ∀F or ∃T inferences in an R′
a-deduction such

that ρ1 operates on an ancestor of the main formula of ρ2. Then if ρ1 is not
finished, ρ2 is not finished.

Proof. As ρ1 is not finished, an inference operating on an ancestor of the main
formula ω of ρ1 is not singular. By assumption ω is an ancestor of the main
formula of ρ2, so ρ2 is not prefinished and hence not finished. �

For the final results, we will allow the rule of weakening in R′
a-deductions to

ease the presentation of the proofs:

Γ ⊢ ∆
Γ,Π ⊢ ∆,Λ

weak

47

Proposition 18. Let γ be an R′
a-refutation of C using weakening. Then there

exists an R′
a-refutation ψ of C without weakening such that NF(ψ) ≤ NF(γ).

Proof. By deleting formula occurrences, sequents and inferences. �

Proposition 19. Let γ be an R′
a-refutation of C such that all Skolem terms of

∀F and ∃T inferences in γ are constants. Then there exists an Ra-refutation of
C.

Proof. Note that if γ is singular and NF(γ) = 0, γ is the desiredRa-refutation.
By Proposition 16, we may assume that γ is singular. We proceed by induc-

tion on NF(γ), showing that if γ is a singular R′
a-deduction of S from C, then

there exists a singular R′
a-deduction ψ of S from C with NF(ψ) = 0.

If NF(γ) = 0, we may take ψ = γ. Hence assume as inductive hypothesis
that for all R′

a-deductions λ of S from C with NF(λ) < NF(γ), there exists an
R′

a-deduction λ
′ of S from C with NF(λ′) = 0.

We say that an ∀F or ∃T inference ρ is uppermost if all ∀F or ∃T inferences
operating on a proper ancestor of the auxiliary formula of ρ are prefinished. By
assumption, there exists an ∀F or ∃T inference in γ that is not finished. Then
there exists an uppermost such inference ρ in γ that is not finished. Observe that
ρ is prefinished and not singular, as it is uppermost and all relevant inferences
are singular. W.l.o.g. let ρ be an ∀F inference.

Let γ = S1, . . . , Sn, and let the premise of ρ be Si = ∀A, . . . , ∀A,Γ ⊢ ∆
(containing k + 1 ≥ 2 auxiliary formulas), the conclusion be Sj = Ac,Γ ⊢ ∆,
and denote the main formula of ρ by ω. Note that Sn is the empty sequent since
γ is an R′

a-refutation. If Sn does not depend on Sj , then clearly we can simply
remove Sj and the sequents that depend on it from γ to obtain a singular R′

a-
deduction of Sn from C containing strictly less ∀F and ∃T inferences which are
not finished, and we may conclude by the inductive hypothesis. Hence assume
Sn depends on Sj . Note that A does not contain free variables since c is a
constant. Let c1, . . . , ck be fresh Skolem constants.

For 1 ≤ q ≤ k, we will construct singular R′
a-deductions

1. ψ0 of (Γ ⊢ ∆) ◦ (Ac1, . . . ,Ack ⊢m) from C, and

2. ψq of (Γ ⊢ ∆)◦(Acq+1, . . . ,Ack ⊢m) from C∪{(Γ ⊢ ∆)◦(Acq , . . . ,Ack ⊢m
)}.

such that for 0 ≤ p ≤ k, NF(ψp) < NF(γ). We may then apply the inductive
hypothesis to ψp to obtain singular R′

a-deductions ψ
′
p with NF(ψ′

p) = 0. Hence
all inferences except mCut are singular in ψ′

p. We may then rename the Skolem
symbols of the ψ′

p such that their sets of Skolem symbols are pairwise disjoint.
Then clearly ψ = ψ′

0, . . . , ψ
′

k has NF(ψ) = 0 and is therefore the desired R′
a-

refutation.
We start by defining ψ0. For j + 1 ≤ r ≤ n, if Sr does not depend on

Sj then S′
r = Sr, and otherwise S′

r = Sr ◦ (Ac1, . . . ,Ack ⊢m). Note that
S′
n = Ac1, . . . ,Ack ⊢m. So let

ψ0 = S1, . . . , Sj−1,Σ, S
′

j+1, . . . , S
′

n, (Γ ⊢ ∆) ◦ (Ac1, . . . ,Ack ⊢m),

48

where Σ is a sequence of sequents deriving Ac,Ac1, . . . ,Ack,Γ ⊢ ∆ from Si

using only singular ∀F . Clearly S1, . . . , Sj−1 can be derived from C as they were
in γ. Since ρ is prefinished, all the ∀F inferences introduced in deriving Σ are
finished. Letting S′

j be the last sequent in Σ, we show that S′
r can be derived

in ψ0 for j < r ≤ n. Distinguish:

1. If Sr does not depend on Sj, then neither do its premise(s) Sp (Sq). Hence
S′
r = Sr and S′

p = Sp (and S′
q = Sq) and S

′
r can be inferred from S′

p (S′
q)

just as it was in γ.

2. If Sr depends on Sj and was inferred by a unary inference µ from Sp, then
p ≥ j and hence we can infer S′

r from S′
p by the same unary inference.

If µ is Sub, remember that A is closed and hence not affected by the
substitution.

3. If Sr depends on Sj and was inferred by mCut from Sp and St, then at least
one of the premises depends on Sj . Hence we may infer S′

r from S′
p and

S′
t by mCut. Note that if both premises depend on Sj , the multiplicities

of the Acq increase.

Note that S′
n = (Ac1, . . . ,Ack ⊢m), so the last sequent of ψ0 can be derived

from S′
n by weakening. By construction, for every ∀F (∃T) inference in ψ0 that

is not finished there exists a unique ∀F (∃T) inference in γ that is not finished,
hence NF(ψ0) < NF(γ) (because ρ induces only finished inferences in ψ0). Since
all relevant inferences in γ are singular, this is also the case for ψ0. Hence ψ0 is
as desired.

We turn to the construction of ψq for 1 ≤ q ≤ k. Let

ψ′

q = (Γ ⊢ ∆) ◦ (Acq , . . . ,Ack ⊢m), S1,q, . . . , Sj−1,q, Sj+1,q, . . . , Sn,q

where Sr,q is defined in the following way:

1. If Sr does not depend on Sj , then Sr,q = Sr [c← cq].

2. If Sr depends on Sj , denote the inference whose conclusion Sr is by ρ.
Distinguish:

(a) If no inference in γ on the path from ω to Sr operates on a descendent
of ω, then Sr is of the form Ac,Π ⊢ Λ. Then let Sr,q = (Π ⊢
Λ) ◦ (Acq , . . . ,Ack ⊢m).

(b) ρ is the first inference operating on a descendent of ω. We treat
the case where ρ is ∨T , the other cases are similar. So if Sr =
Π ⊢ Λ,B,C is inferred from Sℓ = Π ⊢ Λ,B ∨ C then Sℓ,q = (Π ⊢
Λ,B ∨ C, . . . ,B ∨ C) ◦ (Acq+1, . . . ,Ack ⊢m) by the previous case
(note that by assumption Acq = B ∨ C). Then let Sr,q = (Π ⊢
Λ,B,C) ◦ (Acq+1, . . . ,Ack ⊢m).

(c) Otherwise, Sr,q = Sr ◦ (Acq+1, . . . ,Ack ⊢m).

For r ∈ {1, . . . , j − 1, j + 1, . . . , n}, we show that Sr,q can be derived in ψ′
q by

distinguishing how Sr is derived in γ:

1. Sr ∈ C. Then Sr does not contain c and does not depend on Sj , hence
Sr,q ∈ C.

49

2. If Sr is inferred by Sub with [X← T] from Sp, then we may use Sub with
[X← T [c← cq]] to derive Sr,q from Sp,q, again noting that A is closed.

3. Sr is derived from Sp by a CNF inference. We may use the same inference
to infer Sr,q from Sp,q (In case Sr,q is constructed in case 2(b) above, the
number of auxiliary formulas of the inference increases).

4. Sr is derived from Sp and St by an mCut. We may derive Sr,q from Sp,q

and St,q using mCut. Again if Sr,q is constructed in case 2(b) above, the
number of auxiliary formulas of the inference increases. Also, note again
that if both premises depend on Sj , then the multiplicities of the Acℓ
increase.

By construction, for every ∀F (∃T) inference in ψ′
q that is not finished there exists

a unique ∀F (∃T) inference in γ that is not finished, hence NF(ψ′
q) < NF(γ)

(because ρ does not induce an ∀F inference in ψ′
q). Note that due to 2(b), also

the ∀F (∃T) inferences operating on descendents of Acq are not finished, but
their corresponding inferences in γ operate on descendents of ω and are hence
not finished, too.

Set ψ′′
q = ψ′

q, (Γ ⊢ ∆) ◦ (Acq+1, . . . ,Ack ⊢m) Note that the last sequent of
ψ′
q is Sn,q = Acq+1, . . . ,Ack ⊢m, hence the last sequent of ψ′′

q can again be
derived by weakening. Finally, we may apply Proposition 16 to ψ′′

q to obtain a
singular ψq such that NF(ψq) = NF(ψ′′

q) = NF(ψ′
q) < NF(γ). Hence ψq is as

desired. Finally, we apply Proposition 18 to ψ, which completes the proof. �

Example 15. Consider the R′
a-refutation of {∀x(Px∨¬Px), ∀x(Px∨¬Px) ⊢}:

1 ∀x(Px ∨ ¬Px), ∀x(Px ∨ ¬Px) ⊢
2 Ps ∨ ¬Ps ⊢ ∀F : 1
3 Ps ⊢ ∨Fl : 2
4 ¬Ps ⊢ ∨Fr : 2
5 ⊢ Ps ¬F : 4
6 ⊢ mCut : 5, 3

In the proof of Proposition 19 we obtain ψ0

1 ∀x(Px ∨ ¬Px), ∀x(Px ∨ ¬Px) ⊢
2 ∀x(Px ∨ ¬Px), P s ∨ ¬Ps ⊢ ∀F : 1
3 Ps1 ∨ ¬Ps1, P s ∨ ¬Ps ⊢ ∀F : 2
4 Ps1 ∨ ¬Ps1, P s ⊢ ∨Fl : 3
5 Ps1 ∨ ¬Ps1,¬Ps ⊢ ∨Fr : 3
6 Ps1 ∨ ¬Ps1,⊢ Ps ¬F : 5
7 Ps1 ∨ ¬Ps1, P s1 ∨ ¬Ps1 ⊢ mCut : 6, 4

and ψ′
1

8 Ps1 ∨ ¬Ps1, P s1 ∨ ¬Ps1 ⊢
9 Ps1 ⊢ ∨Fl : 8
10 ¬Ps1 ⊢ ∨Fr : 8
11 ⊢ Ps1 ¬F : 10
12 ⊢ mCut : 9, 11

50

ψ′
1 is not singular, but after application of Proposition 16 we obtain the singular
ψ1

8 Ps1 ∨ ¬Ps1, P s1 ∨ ¬Ps1 ⊢
9 Ps1 ∨ ¬Ps1, P s1 ⊢ ∨Fl : 8
10 Ps1, P s1 ⊢ ∨Fl : 9
11 Ps1 ∨ ¬Ps1,¬Ps1 ⊢ ∨Fr : 8
12 ¬Ps1,¬Ps1 ⊢ ∨Fr : 11
13 ¬Ps1 ⊢ Ps1 ¬F : 12
14 ⊢ Ps1, P s1 ¬F : 13
15 ⊢ mCut : 10, 14

Clearly ψ = ψ0, ψ1 is the desired Ra-refutation of {∀x(Px ∨ ¬Px), ∀x(Px ∨
¬Px) ⊢}.

Finally, observe that Theorem 6 follows from Propositions 15 and 19.

9. An example application of CERESω

In this section, we apply the method introduced in Section 3 to the analysis
of a concrete proof π. π is based on a mathematical proof which consists of two
parts: in part (1) we prove that the induction principle IND follows from the
least number principle LNP. Part (2) uses IND for proving the sentence A that
every number greater than one has a prime divisor. Connecting the two proofs
by a cut on the sentence IND results in the proof π which shows that A follows
from LNP. By applying cut-elimination on π we obtain a direct proof of A via
LNP. This way cut-elimination transforms a proof of A from IND into another
one using LNP.

The proof uses usual axioms of arithmetic for 0, 1, ∗, <,> and the predecessor
function p. We also define = (of type ι→ ι→ o) via Leibniz equality. Table 1
lists the symbols we use, along with their types, and the definitions used in the
proof. s0, . . . , s3 are Skolem symbols.
The shape of π is

(π1)
LNP ⊢ IND

(π2)
· · ·

IND ⊢ ∀y∃w(y > 1→ PD(w, y))
∀sk : l λy.∃w(y > 1 ∧ PD(w, y))

LNP ⊢ ∀y∃w(y > 1→ PD(w, y))
cut

We indicate which Skolem symbols correspond to which quantifier in the end-
sequent of π (with expanded definitions):

∀X(∃yX(y)→
s0

∃y(∀z(z < y → ¬X(z)) ∧X(y))) ⊢
∀y
s3

∃w(y > 1→ (w > 1 ∧ ∀z
s2
(∃q
s1

z ∗ q = w → (z = 1 ∨ z = w))) ∧ ∃q w ∗ q = y)

As labels of formulas that do not contain free higher-order variables or quan-
tifiers do not play a role in the machinery of Section 3, we do not write down

51

Table 1: Symbols and definitions

Symbols Type Constant
∗ ι→ ι→ ι X

0, 1, s3 ι X

<,>,= ι→ ι→ o X

s0 (ι→ o)→ ι X

s1, s2, p ι→ ι X

w, x, y, z, . . . ι

X, . . . ι→ o

Symbol Definition
x = y (∀X)(X(x)→ X(y))
LNP ∀X(∃yX(y)→ ∃y(∀z(z < y → ¬X(z)) ∧X(y)))
IND ∀X(∀y(∀z(z < y → X(z))→ X(y))→ ∀yX(y))
D(x, y) ∃z x ∗ z = y

PRIME(x) x > 1 ∧ ∀z(D(z, x)→ (z = 1 ∨ z = x))
PD(x, y) PRIME(x) ∧D(x, y)

such labels in the rest of this paper for readability. The characteristic sequent
set of π is3

CS(π) = {

C1 : 〈z0 < s0(λx.¬X0(x))〉
λx.¬X0(x),z0 ⊢ 〈X0(y0)〉

λx.¬X0(x),y0 ,

〈X0(z0)〉
λx.¬X0(x),z0 ;

C2 : 〈X0(s0(λx.¬X0(x)))〉
λx.¬X0(x) ⊢ 〈X0(y0)〉

λx.¬X0(x),y0 ;
C3 : ⊢ y0 ∗ 1 = y0;
C4 : z0 ∗ z1 = y0 ⊢ z0 = 1, z0 = y0, z0 < y0;
C5 : z0 ∗ z1 = y0, y0 > 1 ⊢ z0 = 1, z0 > 1;
C6 : ⊢ w0 ∗ (z1 ∗ z2) = (w0 ∗ z1) ∗ z2;
C7 : ⊢ s3 > 1;
C8 : x0 > 1, x0 ∗ y0 = s3 ⊢ s2(x0) ∗ s1(x0) = x0;
C9 : x0 > 1, s2(x0) = 1, x0 ∗ y0 = s3 ⊢;
C10 : x0 > 1, s2(x0) = x0, x0 ∗ y0 = s3 ⊢
}

The refutation γ of CS(π) is based on the idea to prove that, from the number
s3, we can obtain an infinite strictly decreasing chain of divisors of s3, which is
inductively unsound. Indeed this property can be derived using essentially the
clauses C7, . . . , C10 in CS(π). Formally this argument is realized by replacing

3
π was formalized using HLK (http://www.logic.at/hlk) and CS(π) was extracted using

the GAPT framework (http://code.google.com/p/gapt/). The source code for π can be found
at http://www.logic.at/ceres/examples/primediv.html.

52

the second-order variable X0 by λx.F (x) for

F (x) ≡ ∃z(D(z, s3) ∧ z + x < s3 ∧ z > 1).

Indeed, by ⊢ s3 > 1 we can derive (using C8, C9, C10):

⊢ s2(s3) ∗ s1(s3) = s3; ⊢ s2(s3) < s3; ⊢ s2(s3) > 1

and so ⊢ D(s2(s3), s3) ∧ s2(s3) < s3 ∧ s2(s3) > 1. Assume now we have already
derived

(∗) ⊢ D(c, s3) ∧ c+ x < s3 ∧ c > 1.

Then using ⊢ c > 1 instead of ⊢ s3 > 1 we derive

⊢ s2(c) ∗ s1(c) = c; ⊢ s2(c) < c; ⊢ s2(c) > 1

so replacing c by s2(c) we get ⊢ D(s2(c), s3) ∧ s2(c) + (x + 1) < s3 ∧ s2(c) > 1.
(∗) for all x leads to a contradiction for x← s3.

The proof by LNP obtained via γ can be described informally as follows: We
show LNP ⊢ ∀y∃w(y > 1 → PD(w, y)). Assume ¬∀y∃w(y > 1 → PD(w, y)),
which is equivalent to ∃y∀w(y > 1 ∧ ¬PD(w, y)), and assume k is the smallest
number s.t. ∀w(k > 1∧¬PD(w, k)). Using the arguments of γ we get s2(k) > 1,
s2(k) < k, D(s2(k), k). Hence ∃wPD(w, s2(k)), so let q be a prime divisor of
s2(k). But then also D(q, k) and so q is a prime divisor of k, contradiction.

We would like to mention a specific proof-theoretic property of this refutation
γ: the proof obtained from γ cannot be obtained via the reductive Gentzen
method. In fact, in Gentzen’s method, X0 would be replaced by the predicate

P : λy.∃w(y > 1→ PD(w, y))

which corresponds to the “straightforward” argument. Of course, also this kind
of cut-elimination can be obtained by refuting CS(π) via the substitution X0 ←
P . This shows that, by its high flexibility, the CERESω method can reveal
interesting mathematical arguments unattainable by reductive methods.

References

[1] M. Aigner and G. Ziegler. Proofs from THE BOOK. Springer, 1999.

[2] Peter B. Andrews. Resolution in Type Theory. Journal of Symbolic Logic,
36(3):414–432, September 1971.

[3] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hen-
drik Spohr. Cut-elimination: Experiments with ceres. In Franz Baader and
Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR) 2004, volume 3452 of Lecture Notes in Computer
Science, pages 481–495. Springer, 2005.

53

[4] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and
Hendrik Spohr. Ceres: An analysis of fürstenberg’s proof of the infinity
of primes. Theoretical Computer Science, 403:160–175, 2008.

[5] Matthias Baaz and Alexander Leitsch. Skolemization and proof complexity.
Fundamenta Informaticae, 20(4):353–379, 1994.

[6] Matthias Baaz and Alexander Leitsch. Cut-elimination and redundancy-
elimination by resolution. Journal of Symbolic Computation, 29(2):149–176,
2000.

[7] C. Benzmüller, C. E. Brown, and M. Kohlhase. Higher-order semantics
and extensionality. Journal of Symbolic Logic, 69(4):1027–1088, 2004.

[8] Alonzo Church. A formulation of the simple theory of types. JSL, 5(2):56–
68, June 1940.

[9] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving
modulo. Journal of Automated Reasoning, 31(1):33–72, September 2003.

[10] Dov M. Gabbay. Labelled Deductive Systems, volume I of Oxford Logic
Guides. Oxford Science Publications, 1996.

[11] Gerhard Gentzen. Untersuchungen über das logische Schließen I. Mathe-
matische Zeitschrift, 39(1):176–210, dec 1935.

[12] Gerhard Gentzen. Untersuchungen über das logische Schließen II. Mathe-
matische Zeitschrift, 39(1):405–431, dec 1935.

[13] J.-Y. Girard. Proof Theory and Logical Complexity. Elsevier, 1987.

[14] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlo-
gel Paleo. CERES in second-order logic. Technical report, Vienna Uni-
versity of Technology, 2008.

[15] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlo-
gel Paleo. Herbrand sequent extraction. In Serge Autexier, John Campbell,
Julio Rubio, Volker Sorge, Masakazu Suzuki, and Freek Wiedijk, editors,
Intelligent Computer Mathematics, volume 5144 of Lecture Notes in Com-
puter Science, pages 462–477. Springer Berlin, 2008.

[16] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlo-
gel Paleo. A clausal approach to proof analysis in second-order logic. In
Sergei Artemov and Anil Nerode, editors, Logical Foundations of Computer
Science, volume 5407 of Lecture Notes in Computer Science, pages 214–229.
Springer Berlin, 2009.

[17] Dale Miller. A compact representation of proofs. Studia Logica, 46(4):347–
370, 1987.

54

[18] Reinhard Muskens. Intensional models for the theory of types. Journal of
Symbolic Logic, 72(1):98–118, 2007.

[19] G. Polya. Induction and Analogy in Mathematics, volume 1 ofMathematics
and Plausible Reasoning. Princeton University Press, 1954.

[20] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, sec-
ond edition, 2000.

55

