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Abstract. Different theorem provers work within different formalisms
and paradigms, and therefore produce various incompatible proof ob-
jects. Currently there is a big effort to establish foundational proof cer-
tificates (FPC), which would serve as a common “specification language”
for all these formats. Such framework enables the uniform checking of
proof objects from many different theorem provers while relying on a
small and trusted kernel to do so. Checkers is an implementation of a
proof checker using foundational proof certificates. By trusting a small
kernel based on (focused) sequent calculus on the one hand and by sup-
porting FPC specifications in a prolog-like language on the other hand,
it can be used for checking proofs of a wide range of theorem provers.
The focus of this paper is on the output of equational resolution theo-
rem provers and for this end, we specify the paramodulation rule. We
describe the architecture of Checkers and demonstrate how it can be
used to check proof objects by supplying the FPC specification for a
subset of the inferences used by E-prover and checking proofs using these
inferences.

1 Introduction

Many times software development faces the challenge of formal verification. This
task can be accomplished by using a number of methods and available tools.
Among such tools are theorem provers, which, upon proving a statement (auto-
matically or interactively), provide a proof evidence. The problem faced nowa-
days is that such evidence comes in various formats, generally incompatible with
each other. So if one is using a theorem prover, she must blindly trust the evi-
dence provided, as it is not understood by any other system.

ProofCert [7] is a research project whose main goal is to bridge the gap
between proof evidences. By using well-established concepts of proof theory,
ProofCert proposes foundational proof certificates (FPC) as a framework to
specify proof evidence formats. Describing a format in terms of an FPC al-
lows softwares to check proofs in this format, much like a context-free grammar
allows a parser to check the syntactical correctness of a program. The parser in
this case would be a kernel: a small and trusted component that checks a proof
evidence with respect to an FPC specification.

1 Funded by the ERC Advanced Grant ProofCert.



Checkers is the first implementation of a proof checking software which is
based on FPC’s. It uses an LKF (focused classical logic) kernel and comes with
the FPC specification for paramodulation. It is applied to E-prover’s [11] proof
objects and therefore has also FPC’s for some of the prover’s inferences. Addi-
tionally, it includes a parser that translates E-prover’s proofs into proof certifi-
cates. Checkers is a proof-of-concept implementation validating the feasibility of
applying the ideas of ProofCert to “real life” theorem provers. Its development
provided insights on practical challenges of such systems and clarified the kind
of compromises the provers and the checkers need to deal with. Fortunately,
we have found that proof objects using the TPTP syntax [9] can be straight-
forwardly translated to a proof certificate for checkers. Unfortunately, as far as
we know, no prover uses exactly this syntax, but an approximation of it. We
explain this point further in Section 2.3 and discuss what are the characteristics
required for our tool. We also use a simple and modular architecture which can
be extended with other FPC’s for other inferences and formats.

This paper is organized as follows: Section 2 explains the architecture of the
proof checker software, each of its components in detail and an overview on
the syntax for FPC’s. Section 3 explains the experiments on E-prover’s proof
objects, the challenges faced and the solutions implemented. Section 4 compares
checkers with other proof checking software. Finally, Section 5 concludes the
paper pointing to future work.

2 Checkers
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Fig. 1. High-level architecture of checkers.

The main components of checkers are depicted in Figure 1. Right now, we
explain only briefly the function of each one and how they relate to each other.
On the next sections we give more details.

Proof evidence This is the actual proof we aim to check and the input for check-
ers. It is the output of a theorem prover which is supposed to describe a proof.

Parser The parser is a software component that translates the proof evidence
into a proof certificate in a format that can be understood by the kernel. Such
translation should be purely syntactical, not performing any logical or semantic



transformation on the proof evidence. Because of this requirement, it might be
the case that the proof evidence of some provers need to be adapted to give
more (or less) structured information1. The parser in checkers is implemented in
OCaml using ocamlyacc and ocamllex.

Proof certificate This file is generated by the parser for a given proof evidence
file. Ideally it contains the same proof as the later, only in a different syntax. In
practice, we are skipping a pre-processing step (clausal normal form transforma-
tion) for simplification purposes, but checking E-prover’s CNF transformation is
trivial as it is the standard deterministic one. Therefore, as of now, checkers will
verify that the proof evidence represents a proof (or refutation) of the clauses
after the input problem is transformed to clausal normal form. We expect to fill
in this gap in the future. The clauses and inferences operating on them are the
content of the proof certificate. The certificate needs to be in a comprehensible
syntax for the kernel. As the kernel is implemented in λProlog [8], the certificate
is composed of a λProlog module (.mod file) and signature (.sig file).

FPC specification In contrast to the proof certificate, which is generated for
each proof evidence, an FPC specification corresponds to the proof format of
a theorem prover. Every proof evidence file of the same theorem prover should
be checked with the same FPC specification. The content of these files is a
specification of clerks and experts [3]. These are predicates which will interface
with the kernel and provide directives during proof checking (e.g. which term to
choose for an existential quantifier or which formula to decompose next). The
files are also a λProlog module and signature.

Kernel(s) The kernel is the key component of checkers. It consists of a small
and trustable implementation of the focused sequent calculus for classical logic
(LKF). The choice to implement this component in λProlog is due to the fact that
rules in sequent calculi are straightforwardly encoded in a logic programming
language and proof construction is directly represented by the execution of logic
programs. Inferences in the theorem prover’s system are ultimately translated to
derivations in the kernel’s system, i.e., LKF. The correctness of each inference
is guaranteed by the correctness of the corresponding derivation (adequacy).
A small and trusted kernel increases the confidence that such derivations are
correct.

2.1 Kernels

The kernel is an implementation of the LKF a [4] sequent calculus. The λProlog
language [8] was chosen for the implementation because of its direct support for
λtree syntax, hypothetical reasoning capabilities, typing mechanism and logic-
based module system. It is a logic programming language based on so called

1 In fact, this has already triggered a dialog between us and developers of theorem
provers, including Stephan Schultz, the developer of E-prover.



hereditary Rasiowa-Harrop formulas (or hRHf) instead of the less expressive
Horn clauses. The LKF a system is obtained by augmenting the LKF system[6]
with a communication protocol. Relying on the focusing behavior, this proto-
col allows the proof certificate to interact with the kernel, providing guiding
information at specific moments. These moments are justified from the focusing
paradigm itself: focused systems organize a proof into invertible phases, where
only reversible rules are used, and focused phases, where a single formula is
selected to be subject to a sequence of potentially non-invertible rules. The ro-
bustness of the kernel is twofold. First, augmenting LKF with this protocol is
soundness-preserving, i.e., the kernel will never accept a falsehood regardless
of how badly (or even maliciously) a proof certificate is written. Second, the
kernel is an inference-based system whose implementations, in presence of back-
tracking and unification, are concise: for each inference rule in LKF a, there is a
hRHf predicate (taking 2 to 4 lines) that is a direct writing of that rule, making
the code highly readable. Some additional basic predicates are added for basic
testing such as list membership. The current implementation of the kernel is
about one hundred lines long. Understanding focusing or background in logic
programming are not required (but particularly helpful) for using this system.

2.2 Semantics of proof evidence

One of the main desiderata for the ProofCert project is the ability to check
proof evidence in a wide variety of formats or languages. One way of doing so
is to translate all proof evidence into one language and check that language.
This method, reminiscent of Automath, is used by the proof checker Dedukti [2]
which translates all outputs of provers based on the lambda-cube, as well as
some classical theorem provers, into λΠ-modulo theory. The ProofCert project
takes a different approach. Instead of translating proof evidence from the origi-
nal language L to some other unique language, (thus altering the notion of proof
known to the user), the semantics of the language L are defined in a relational
setting such that the kernel checker can perform any proof evidence written in
that language, much like one can, based on the semantics of a programming
language, define interpreters compatible with that semantics that perform any
programs written in that language. Using a relational instead of a functional
setting allows for various level of details in proof evidence when the kernel is
supplied with proof reconstruction abilities. For instance, a witness for an exis-
tential can be left out of proof evidence and found through unification during
proof checking. A semantics definition for a language L, added to parsed proof
evidence written in that language, yields a proof certificate.

A paramodulation proof, in the sense of Robinson & Wos [10], is a series of
steps where each step introduces a non axiomatic formula from the paramodu-
lation from a second formula into a third formula. These steps may or may not
exactly specify the subterms on which the paramodulation is done. In this base
language, a proof consists of ordered triples of formulas, or of indices of formulas.



Consider the following example:

1. h(g(g(c))) 6= g(g(g(c)))

3. ∀X1.∀X2.h(f(g(X1), X2)) = g(X2)

4. ∀X1.f(X1, g(X1)) = g(X1)

2. ∀X1.h(g(g(X1))) = g(g(g(X1))) (from 3 into 4)

0. false (rewriting on 1 and 2)

This is an arguably reasonable output to request from a paramodulation-
based prover. Indeed, many possible sophisticated strategies and heuristics can
be used by such a tool but if it is, indeed, based on paramodulation, it should
come at close to no cost to output a paramodulation-like proof in a language
that resembles the base language mentioned above. In the case of E-prover, the
output does not always resemble a paramodulation proof and we restricted our
efforts to those E-prover outputs that are paramodulation-like.

2.3 Certificate

As mentioned before, the certificate built from a proof evidence is a λProlog
module [8]. This means it is composed of two files: a module (extension .mod)
and its signature (extension .sig). The module contains one predicate describing
the proof of the following shape:

resProblem Name Clauses Inferences Map.

The resProblem predicate specifies a resolution refutation of an unsatisfiable
set of clauses. Additionally, the module contains predicates of the form inSig

f. for declaring each function symbol f occurring in the proof. The arguments
of resProblem are:

– Name: This is a string representing the name of the problem. It can be any
name chosen by the user and it should be enclosed in double quotes.

– Clauses: This is a list of clauses which are refuted. They are represented
using the pr (for pair) term constructor that takes as arguments an integer
(the index of the clause) and a clause.

– Inferences: The actual inferences of the proof are encoded with the resteps
term constructor. The argument of this constructor is a list of inferences in
the shape inf (id (idx i)) (id (idx j)) k, where inf is an inference
name declared in the FPC and corresponding exactly to an inference used
by E-prover, id is a constructor mapping an index to a clause and k is an
index. The semantics of this constructor is that inference inf is applied to
clauses with indices i and j, resulting in the clause with index k. The order
of such inferences must be the same one as in the proof.

– Map: This is a function map which takes a list of pr terms mapping indices
to clauses. These are all the clauses used in the proof.



type f i -> i -> i. type c i. type g i -> i. type h i -> i.

Fig. 2. Proof certificate: signature

resProblem "simple" [

(pr 4 (all (X1\ (n ((f X1 (g X1)) == (g X1)))))) ,

(pr 3 (all (X1\ (all (X2\

(n ((h (f (g X1) X2)) == (g X2)))))))) ,

(pr 1 (p ((h (g (g c))) == (g (g (g c))))))]

(resteps [pm (id (idx 3)) (id (idx 4)) 2,

rw (id (idx 1)) (id (idx 2)) 0,

cn (id (idx 0)) 0])

(map [

pr 4 (all (X1\ (n ((f X1 (g X1)) == (g X1))))),

pr 3 (all (X1\ (all (X2\

(n ((h (f (g X1) X2)) == (g X2))))))) ,

pr 0 f-,

pr 2 (all (X1\ (n ((h (g (g X1))) == (g (g (g X1))))))) ,

pr 1 (p ((h (g (g c))) == (g (g (g c)))))

]).

inSig h.

inSig g.

inSig f.

Fig. 3. Proof certificate: module

The signature file contains simply the type declarations of all the symbols
used in the certificate. Figures 2 and 3 show the signature and module files for
a proof certificate of the paramodulation proof in Section 2.2.

The TPTP format for problems and proofs consists of a set of predicates of
the following shape [9]:

language(name, role, formula, source, useful info).

In the case of proofs, source is a file predicate (in case the formula is obtained
from the input file) or an inference predicate (in case the formula is the result
of applying an inference to other formulas). Most provers do not use exactly such
format though, but some variant of it. One of the reasons for choosing E-prover
for our experiments was because its output in TPTP syntax comes closest to
the formal specitication of the TPTP format2.

Transforming a file with such predicates into a proof certificate in our syntax
is fairly straightforward. One needs simply to collect all the formulas and how
they were derived. If source is file, then the formula is an axiom. If source is
inference, it has the shape:

inference(inference name, inference info, parents).

2 By private communication with Geoff Sutcliffe.



This means the formula was a result of applying inference name to parents. An
important requirement is that the parents must be names of previously computed
clauses or axioms (as specified in [9]). Unfortunately, a large number of proofs
from E-prover contain nested inferences: the parents are not names of clauses
but other inference predicates. Take the following line coming from an actual
E-prover proof (where F is some formula):

cnf(c_0_6, negated_conjecture, F, inference(rw, [status(thm)],

[inference(rw, [status(thm)], [c_0_3, c_0_4]), c_0_4])).

This line specifies that a rewriting step is done on clauses c 0 3 and c 0 4,
obtaining some intermediate clause c, which is used in another rewriting step
with c 0 4 to obtain c 0 6. Wihtout knowing the intermediate clause, we would
need to perform proof search in order to guess what is derived and how it is used
afterwards. This search might be non-terminating, and therefore, would not be
much different than theorem proving itself. It is admissible for a proof checker
to perform simple and decidable proof search, but anything more complicated
than that will defeat its purpose. For this reason we have decided to work only
with what we call proper proof objects, i.e., those that name all clauses used in
the proofs and list the parents of each inference using these names.

Such requirement should not be considered a drawback of our approach, but
a step in the direction of uniformization. We note that, for the SAT community,
the tracecheck format has a similar requirement. Moreover, the feature of out-
putting the proof with all intermediary steps is in the future plans for E-prover
(as we were informed by its principal developer).

Given a proof in the TPTP syntax, we can build a directed acyclic graph,
from where the proof certificate can be extracted. Since we do not yet have a
checking procedure for the normalization of input formulas (transformation to
clausal normal form), when traversing the graph, whenever a clause resulting
from normalization is encountered, we consider it to be an axiom instead of
searching for its parents.

3 Experiments

A natural set of problems on which to experiment Checkers is the output of
theorem provers on the TPTP library. Since we only support a subset of E-
prover’s inferences, namely paramodulation and rewriting, we restrict this set to
755 unsatisfiable problems of all difficulties and sizes and from different domains
using the TPTP problem finder3 by allowing only proofs having pure equations
with unit equality.

A very interesting experiment would have been to try Checkers on wrong
E-prover refutations of satisfiable clause sets. We could not find, however, such
cases using the problem finder.

In the rest of this section, we describe our attempt of trying to certify E-
prover refutations on the above set of problems. Our experiment consisted of

3 http://www.cs.miami.edu/~tptp/cgi-bin/TPTP2T
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running E-prover using a ten-minute timeout, parsing the result using our parser
and then running Checkers on the generated files. The results of this paper were
obtained using Checkers on SHA a754baf and Teyjus on SHA 469c04e.

As can be seen from Fig. 4, Checkers managed to certify all problems which we
managed to parse, but we have managed to parse only a fraction of the produced
proofs. Out of 639 TPTP proofs which were produced by E-prover using our
timeout (giving enough time, E-prover can refute all 755 problems in the set),
we were able to parse only 10 problems into proof certificates which could be
fed to Checkers. The certificates obtained for these problems can be found in
src/tests/eprover and can be checked by running the program. 39 problems
indeed failed because of our missing support for the whole range of E-prover
inferences. But the vast majority failed to be parsed because they contained
nested inferences. As discussed in Section 2.3, such constructions would require
the proof checking software to perform (possibly non-terminating) proof search.

TPTP
problems

filtering E-prover
755

116

639

timed-out

590

39

10

implicit inferences

unsupported inferences

10
prover.sh

Checkers

Fig. 4. Experimenting with Checkers, E-prover and the TPTP library.

4 Related work

Currently there are several well-established tools for checking proofs, such as
Mizar [5] for mathematical proofs, the EDACC [1] verifier for SAT solvers, LFSC
[12] for SMT solvers and Dedukti for general proofs. Dedukti, being a univer-
sal proof checker (see Section 2.2 for a brief description), is the closest to our
approach. The soundness of of Dedukti depends on the soundness of the transla-
tion into λΠ-terms and on the soundness of the rewriting rules. In general, most
of the proof checkers mentioned above combine formal proof verification with
non-verifiable computation component. This makes these proof checkers more
practical on the one hand, but less trustable on the other. Since Checkers does
not require translations of the theorem, its soundness depends only on that of its



trusted kernel, making it a relatively trustable solution. The fact that its kernel
is only about 100 lines, compared to about 1500 lines of Dedukti for example, in-
creases even further its trustiness since the kernel can be implemented by various
people and in various programming languages. On the other hand, Checkers can
support computational steps in the form of modules of relational specifications
(FPC), each giving the semantics of certain computations and which can be used
by other FPC to define coarser deduction rules or computations. In this paper
we have presented the FPC for the semantics of the standard paramodulation
rule, which is used by the FPC of E-prover. But, one can provide modules of
general term-rewriting rules as well.

Checkers can also be compared with theorem provers and proof assistants,
such as Coq and Isabelle, which have a trusted kernel for checking their proofs.
In order to use these tools, one has to translate the proofs objects to those
used by these tools and also trust their kernels, which consist of thousands of
lines of code. Therefore, the aim in the community is to use dedicated and more
trusted checkers for certifying even the proofs of these tools, as can be seen by
the translations of both Coq and HOL proofs into the language of Dedukti.

5 Conclusion

In this paper we have described a new tool for proof checking which is based on
a small and trusted kernel and which aims on supporting a wide range of proof
calculi and prover’s outputs. The need for such a tool is growing since theorem
provers are getting more complex and therefore, less trustable. For demonstration
purposes, we have chosen to interface with E-prover, one of the leading theorem
provers. Our choice was mainly based, as we mentioned before, on the fact that,
while still not perfect, E-prover has the best support for TPTP syntax.

The main obstacle is the use of implicit inferences inside the proofs. In order
to overcome that, one must replace these inferences by actual proofs obtained by
search and this search might not terminate. This solution is both contradictory
to the role of proof checkers and impractical due to our attempt to certify proofs
using the sequent calculus.

Checkers supports a modular construct for the definition of the semantics of
proof calculi (see Sec. 2.2). By writing FPC’s, it is possible for implementors of
theorem provers to give the semantics of their proof calculus which is required in
order to complement the proof objects. The FPC for the semantics of E-prover’s
pm and rw inferences (see /src/fpc/resolution/eprover) is a good example
for that as it consists only of a few lines of code. Understanding the FPC’s for
resolution and paramodulation, while not required, can help the implementors
produce better proof objects which might improve proof certification.

The main shortcoming of using Checkers to certify the proofs of a certain
theorem prover lies in the fact that there is no clear definition of what is a
“proper” proof object. We hope that the further development of Checkers for
other proof formats will make it clear how such object should be defined and



thus help implementors of theorem provers to have some guidelines on what
information proof evidences should contain.

The next step is extending Checkers with other inferences from E-prover as
well as experimenting with other formats. In the future we expect to use Checkers
to certify the proofs generated in the CASC4 competition. As of now, there is no
possibility of checking whether the competitors are producing a valid proof and
we hope that this feature will be greatly appreciated by the community. This
will definitely require an effort on both sides and we wish to collaborate with
theorem prover writers to agree on a proof evidence format that suits both sides.
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