
Resolution Refinements for Cut-Elimination based
on Reductive Methods ?

Stefan Hetzl2, Alexander Leitsch1, Tomer Libal1, Daniel Weller1, and
Bruno Woltzenlogel Paleo1

1
{leitsch, shaolin, weller, bruno}@logic.at

Institute of Computer Languages (E185),
Vienna University of Technology,

Favoritenstraße 9, 1040 Vienna, Austria
2 hetzl@lix.polytechnique.fr

INRIA Saclay –Île-de-France
École Polytechnique – LIX

91128 Palaiseau, France

Abstract. Traditional reductive cut-elimination and CERES seem to be
methods of entirely different nature and hence hard to compare. This short
paper describes ongoing research that aims at comparing and possibly
combining them in ways that retain that best features of each method.

1 Introduction

Cut-elimination theorems and algorithms that actually perform the elimina-
tion of cuts from proofs are among the most prominent results and techniques
of proof theory and of logic in general. Originally devised as a way to prove
consistency [8], cut-elimination also plays a major role in: automated theorem
proving, where the sub-formula property corollary allows a bottom-up con-
struction of proofs; analysis of mathematical proofs, where the elimination of
cuts corresponds to the elimination of undesired mathematical lemmas [2]; ex-
traction of interpolants via Maehara’s lemma, which requires cut-free proofs
[11]; semantics and identity of proofs, where confluence of cut-elimination is
important [10].

Therefore, it is important to compare different cut-elimination algorithms
and devise new and hopefully better ones, as such improvements can potentially
have implications for several areas of proof theory.

In this paper, in particular, we compare reductive cut-elimination methods
and cut-elimination by resolution (CERES) (defined in Sections 2 and 3) and we
propose a way to combine them via resolution refinements (Section 4). These
refinements restrict the atomic cut normal forms (ACNFs, which are not cut-free,
but whose cuts are at most atomic) obtainable by CERES essentially to those
that are obtainable by reductive methods. The long range aim is to implement
and use various refinements in the analysis of formalized mathematical proofs.

? Supported by the Austrian Science Fund (project P19875)

2 Reductive Cut-Elimination Methods

The standard method of cut-elimination is that of Gentzen defined in his fa-
mous “Hauptsatz” [8]. The method is essentially a nondeterministic algorithm
extracted from his (constructive) proof. Its characteristic feature is a rewriting
system that rewrites proofs by shifting cut inferences upwards (rank reduction)
and by reducing the complexity of cut-formulas when these are the main for-
mulas of the inferences immediately above the cut (grade reduction). The result
is a proof containing cuts that occur on top of the proof and whose cut-formulas
are at most atomic. These atomic cuts can be simply eliminated, because their
conclusion sequents are equal to their premise sequents.

3 CERES

The resolution-based method CERES for cut-elimination in classical logic has
been defined in [6] and further developed in [3] and [9].

The method inductively defines a set of pairs (with a clause in the first
component and a projection (to this clause) in the second component) Cν for
every node ν in a skolemized3 proof ϕ:

– If ν is an occurrence of an axiom sequent S(ν), S′ is the subsequent of S(ν)
containing only the ancestors of cut-formula occurrences and S is the whole
axiom, then Cν = {〈S′,S〉}.

– Let ν′ be the predecessor of ν in a unary inference ρ.
Let Cν′ = {〈c1, ψ1〉, . . . , 〈cn, ψn〉}.
(a) The auxiliary formulas of ν′ are ancestors of cut-formula occurrences.

Then
Cν = Cν′

(b) The auxiliary formulas of ν′ are not ancestors of cut-formula occurrences.
Then

Cν = {〈c1, ρ(ψ1)〉, . . . , 〈cn, ρ(ψn)〉}

where ρ(ψ) denotes the derivation that is obtained from ψ by applying
ρ to its end-sequent.

– Let ν1, ν2 be the predecessors of ν in a binary inference ρ.
(a) The auxiliary formulas of ν1, ν2 are ancestors of cut-formula occurrences.

Then
Cν = Cν1 ∪ Cν2 .

(b) The auxiliary formulas of ν1, ν2 are not ancestors of cut-formula occur-
rences. Then

Cν = Cν1 × Cν2 .

3 A skolemized proof is a proof with an end-sequent in skolem normal form. For any
proof ϕ there is a proof ϕ′ such that ϕ′ is skolemized and the end-sequent of ϕ′ is a
structural skolem normal form of the end-sequent of ϕ [5].

where
C ×D = {〈c ◦ d, ρ(ψ, χ)〉 | 〈c, ψ〉 ∈ C, 〈d, χ〉 ∈ D}

where c ◦ d is the merge of clauses and ρ(ψ, χ) denotes the derivation
that is obtained from the derivations ψ and χ by applying the binary
inference ρ.

The characteristic clause set CL(ϕ) of ϕ is defined as Cν0 , where ν0 is the root.
CL(ϕ) is always unsatisfiable [6]. Therefore, there is a resolution refutation

of CL(ϕ), which can be grounded and then used as a skeleton where each leaf
clause receives its corresponding instantiated projection on top. Finally, the
resolution and factoring inferences can be replaced by cuts and contractions,
respectively, yielding a proof of the end-sequent of ϕ in ACNF (possibly with
the addition of contractions in the bottom of the proof).

The main advantage of CERES over reductive cut-elimination methods is
that it is implicitly capable of detecting redundancies in the input proof ϕ and
eliminating them. Therefore, CERES can, in the best cases, produce ACNFs that
are non-elementarily smaller than ACNFs produced by reductive methods [6].
More precisely, there are proofs ϕ such that, for all ACNFs ϕBGT obtained via
Gentzen’s or Tait’s reductive cut-elimination methods, there exists an ACNF
ϕCERes obtained via CERES such that:

|ϕBGT |

|ϕCERes|
= O(

|ϕ|︷︸︸︷
222...

)

where |ψ| denotes the size of the proof ψ.
For this reason, CERES is computationally superior than reductive cut-

elimination methods, especially considering that the converse (i.e. proofs whose
ACNFs via reductive cut-elimination would be non-elementary smaller than
ACNFs via CERES) is not possible [6]. However, the price paid by CERES is its
increased non-confluence (i.e. CERES can usually produce more ACNFs than
reductive cut-elimination methods) and a correspondingly large search space
for refutations. In some cases, such as for Fuerstenberg’s proof of the infinitude
of primes, current theorem provers like Otter and Prover9 were unable to refute
the characteristic clause set [4].

4 Resolution Refinements for Cut-Elimination

In order to tackle the problem of the large search space for refutations, the
chosen approach was the development of resolution refinements that reduce
the number of CERES ACNFs that are not reductive ACNFs4.

4 Strictly speaking, ACNFs produced by CERes are structurally very different from
ACNFs produced by reductive cut-elimination methods. In the former the atomic cuts
occur in the bottom, while in the latter they occur in the top of the ACNF. However,
the ACNFs can be compared with respect to their canonic refutation [7]. In this paper,

The following examples show some kinds of proofs whose characteristic
clause sets admit refutations that lead to ACNFs that are not obtainable with
reductive cut-elimination methods. Each example motivates the development
of a different refinement.

4.1 Blocking the Resolution of Literals from Different Cuts

Consider the proof ϕ below:

Pα ` Pα wlPα,¬Pα ` Pα
→r

Pα ` ¬Pα→ Pα
∀l

∀xPx ` ¬Pα→ Pα
∀r

∀xPx ` ∀x(¬Px→ Px)

Ps ` Ps ¬r
` ¬Ps,Ps Ps ` Ps

→l
¬Ps→ Ps ` Ps,Ps cr
¬Ps→ Ps ` Ps

∀l
∀x(¬Px→ Px) ` Ps

Ps ` Ps
∃rPs ` ∃yPy
cut

∀x(¬Px→ Px) ` ∃yPy
cut

∀xPx ` ∃yPy

Its characteristic clause set is:

CL(ϕ) ≡ { ` Pα︸︷︷︸
c1

; Ps ` Ps︸ ︷︷ ︸
c2

; Ps ` Ps︸ ︷︷ ︸
c3

; Ps `︸︷︷︸
c4

}

This characteristic clause admits the following resolution refutation δ:

c1 c4 R
`

δ is used as a skeleton for an ACNF that will have an atomic cut where the
cut formula occurrences are Ps from c4 and the instance Ps from the occurrence
Pα from c1. But, if reductive cut-elimination methods had been used, this could
not happen, because reductive cut-elimination methods are local. As the cuts
are shifted upwards, grade reduction always keeps cut-formula occurrences of
a cut paired (via the new cuts) with cut-formula occurrences of the same original
cut. But the literals of c1 come from ancestors of the lowermost cut, while the
literals of c4 come from ancestors of the uppermost cut. δ is effectively pairing
cut formula occurrences from different cuts.

In order to prevent this class of refutations exemplified by δ, the ancestors
of cut formula occurrences can be annotated with labels in such a way that two
occurrences have the same label iff they are cut-linked.

Definition 1 (Cut-Linkage). Two (sub)formula occurrences ν1 and ν2 in a proof ϕ
are cut-linked if and only if there is a cut ρ such that ν1 is an ancestor of νi and ν2 is
an ancestor of ν j where νi and ν j are auxiliary occurrences of ρ.

The labels for cut-linkage in ϕ are shown below:

two ACNFs obtained from the same input proof are considered equal if they have the
same canonic refutation.

ϕ1 ϕ2
cut

∀xPx ` ∃yPy

where ϕ1 is:

Pα ` [Pα]1 wl
Pα,¬[Pα]1 ` [Pα]1

→r
Pα ` [¬Pα→ Pα]1

∀l
∀xPx ` [¬Pα→ Pα]1

∀r
∀xPx ` ∀x[(¬Px→ Px)]1

and ϕ2 is:

[Ps]1 ` [Ps]2
¬r

` ¬[Ps]1, [Ps]2 [Ps]1 ` [Ps]2
→l

[¬Ps→ Ps]1 ` [Ps]2, [Ps]2 cr
[¬Ps→ Ps]1 ` [Ps]2

∀l
∀x[(¬Px→ Px)]1 ` [Ps]2

[Ps]2 ` Ps
∃r[Ps]2 ` ∃yPy
cut

∀x[(¬Px→ Px)]1 ` ∃yPy

The new characteristic clause set is essentially the same as before, but now
the literals have the labels that indicate the cuts from which they originate:

CL(ϕ) ≡ {` [Pα]1︸ ︷︷ ︸
c1

; [Ps]1 ` [Ps]2︸ ︷︷ ︸
c2

; [Ps]1 ` [Ps]2︸ ︷︷ ︸
c3

; [Ps]2 `︸ ︷︷ ︸
c4

}

We define Rcl-resolution as resolution restricted in such a way that two literals
can only be resolved if they have the same labels (i.e. if they originated from the
same cut). It is clear that δ is not an Rcl-refutation.

4.2 Blocking the Resolution of Literals from the Same Branch of a Cut

The previously described refinement of Rcl-refutation still can produce refu-
tations whose corresponding ACNFs would not be obtainable by reductive
cut-elimination methods. This can occur, for example, when the proof contains
only one cut but the cut-formula is valid, as shown in the proof ϕ below:

Pα ` [Pα]1 wr
Pα ` [¬Pα]1, [Pα]1

∨rPα ` [¬Pα ∨ Pα]1
∀l

∀xPx ` [¬Pα ∨ Pα]1
∀r

∀xPx ` [∀x(¬Px ∨ Px)]1

Pt ` [Pt]1
¬l

[¬Pt]1,Pt `
¬r

[¬Pt]1 ` ¬Pt [Pt]1 ` Pt
∨l[¬Pt ∨ Pt]1 ` Pt,¬Pt

∨r[¬Pt ∨ Pt]1 ` Pt ∨ ¬Pt
∀l[∀x(¬Px ∨ Px)]1 ` Pt ∨ ¬Pt
cut

∀xPx ` Pt ∨ ¬Pt

Its characteristic clause set is:

CL(ϕ) ≡ {` [Pα]1︸ ︷︷ ︸
c1

; ` [Pt]1︸ ︷︷ ︸
c2

; [Pt]1 `︸ ︷︷ ︸
c3

}

Note that all clauses of the set have the same label, because ϕ has only one
cut. This means that, for this case, any unrestricted R-refutation would also be
an Rcl-refutation. Hence Rcl-resolution does not really help in this case.

Let δ be the Rcl-refutation below:

c2 c3 Rcl`

Both c2 and c3 contain literals originating from the right branch of the cut. By
executing reductive cut-elimination onϕ, on the other hand, the final atomic cut
will necessarily have an instance of Pα and the Pt from the second branch of the
∨l rule as its cut-formula occurrences. In general, in reductive cut-elimination
methods the atomic cuts of the resulting ACNF must pair occurrences originat-
ing from different branches of the original cuts. This is so, because in the grade
reduction rewrite rules, it is never the case that the new cuts pair occurrences
that are subformulas of the same cut-formula occurrences.

To prevent refutation as δ above, side-labels l and r can be added to the
ancestors of cut formula occurrences, indicating whether they are ancestor from
the left or from the right cut formula occurrence. This is shown below:

Pα ` [Pα]l
1 wr

Pα ` [¬Pα]l
1, [Pα]1

∨r
Pα ` [(¬Pα ∨ Pα)]l

1
∀l

∀xPx ` [(¬Pα ∨ Pα)]l
1

∀r
∀xPx ` [∀x(¬Px ∨ Px)]l

1

Pt ` [Pt]r
1 ¬l

[¬Pt]r
1,Pt `

¬r
[¬Pt]r

1 ` ¬Pt [Pt]r
1 ` Pt

∨l[(¬Pt ∨ Pt)]r
1 ` Pt,¬Pt

∨r[(¬Pt ∨ Pt)]r
1 ` Pt ∨ ¬Pt

∀l[∀x(¬Px ∨ Px)]r
1 ` Pt ∨ ¬Pt

cut
∀xPx ` Pt ∨ ¬Pt

CL(ϕ) ≡ {` [Pα]l
1︸ ︷︷ ︸

c1

; ` [Pt]r
1︸ ︷︷ ︸

c2

; [Pt]r
1 `︸ ︷︷ ︸

c3

}

Rcls-resolution is defined as Rcl-resolution with the additional constraint that
two literals can only be resolved if their side labels are different. From the
side-labelled CL(ϕ) above, one can see that the Rcl-refutation δ is not an Rcls-
refutation, because the literals of c2 and c3 have the same side-label r and hence
cannot be resolved with each other.

4.3 Blocking the Resolution of Literals from Different Positions in Cuts

Still it is possible to have Rcls-refutations whose corresponding ACNFs are not
obtainable via reductive cut-elimination methods. This fact can be exemplified
by the proof ϕ below:

Pα ` [Pα]l
1
∀l

∀zPz ` [Pα]l
1

∀r
∀zPz ` [∀xPx]l

1 wr
∀zPz ` [∀xPx]l

1, [∀yPy]l
1
∨r

∀zPz ` [(∀xPx ∨ ∀yPy)]l
1

[Pt]r
1 ` Pt

∃r[Pt]r
1 ` ∃wPw

∀l[∀xPx]r
1 ` ∃wPw

[Ps]r
1 ` Ps

∃r[Ps]r
1 ` ∃wPw

∀l[∀yPy]r
1 ` ∃wPw

∨l[(∀xPx ∨ ∀yPy)]r
1 ` ∃wPw,∃wPw

cr
[(∀xPx ∨ ∀yPy)]r

1 ` ∃wPw
cut

∀zPz ` ∃wPw

Its characteristic clause set is:

CL(ϕ) ≡ {` [Pα]l
1︸ ︷︷ ︸

c1

; [Pt]r
1 `︸ ︷︷ ︸

c2

; [Ps]r
1 `︸ ︷︷ ︸

c3

}

And it admits the following Rcls-refutation δ:

c1 c3 Rcls`

No ACNF produced by reductive cut-elimination would have an atomic
cut whose cut formula occurrences come from Pα and Ps. Instead, Pα would
be resolved with Pt, because Pα and Pt originate from the left disjunct of the
cut-formula, while Ps originates from the right disjunct, and grade reduction
mantains this structure when it creates new cuts of smaller formula complexity.

To forbid refutations like δ, a more strict labeling, called atomic cut linkage,
of the cut-formula ancestors can be devised.

Definition 2 (Atomic Cut-Linkage). Two atomic (sub)formula occurrences ν1 and
ν2 in a proof ϕ are atomically cut-linked if and only if there is a cut ρ such that ν1 is
an ancestor of bνicπ and ν2 is an ancestor of bν jcπ where π is the position of an atomic
sub-formula and νi and ν j are auxiliary occurrences of ρ.

In the proof below, atomic subformula occurrences of cut ancestors are given
labels such that if two occurrences have the same label, then they are atomic
cut-linked:

Pα ` [Pα]1
∀l

∀zPz ` [Pα]1
∀r

∀zPz ` ∀x[Px]1 wr
∀zPz ` ∀x[Px]1,∀y[Py]2

∨r
∀zPz ` (∀x[Px]1 ∨ ∀y[Py]2)

[Pt]1 ` Pt
∃r[Pt]1 ` ∃wPw
∀l

∀x[Px]1 ` ∃wPw

[Ps]2 ` Ps
∃r[Ps]2 ` ∃wPw
∀l

∀y[Py]2 ` ∃wPw
∨l(∀x[Px]1 ∨ ∀y[Py]2) ` ∃wPw,∃wPw

cr
(∀x[Px]1 ∨ ∀y[Py]2) ` ∃wPw

cut
∀zPz ` ∃wPw

The characteristic clause set with the atomic cut-linkage labels is:

CL(ϕ) ≡ {` [Pα]1︸ ︷︷ ︸
c1

; [Pt]1 `︸ ︷︷ ︸
c2

; [Ps]2 `︸ ︷︷ ︸
c3

}

Racl-resolution is defined as R-resolution with the restriction that two literals
can only be resolved if they have the same atomic cut-linkage label. Clearly, as
desired, δ is not an Racl-refutation.

We can now give a uniform definition of the refined resolution rules

Definition 3 (Refined Resolution and Factoring Rules). The resolution rule R
shown below:

. Γ1 ` ∆1,A1 A2, Γ2 ` ∆2 R(Γ1, Γ2 ` ∆1, ∆2)mgu(A1,A2)

where Γ1 ` ∆1,A1 and A2, Γ2 ` ∆2 are variable-disjoint clauses, is a:

– Cut-Linkage Refined Resolution Rule Rcl iff A1 and A2 are cut-linked.
– Cut-Linkage/Sides Refined Resolution Rule Rcls iff A1 and A2 are cut-linked

and from opposite sides (branches) of a cut.
– Atomic Cut-Linkage Refined Resolution Rule Racl iff A1 and A2 are atomically

cut-linked.

Analogously, the restricted rules of factoring should also be restricted so that, if
A1, . . . ,An are the factorized atoms, then the factoring is a:

– Cut-Linkage Factoring Fcl iff A1, . . . ,An are pairwise cut-linked.
– Cut-Linkage/Sides Factoring Fcls iff A1, . . . ,An are pairwise cut-linked and from

the same side (branch) of a cut.
– Atomic Cut-Linkage Refined Resolution Rule Facl iff A1, . . . ,An are pairwise

atomically cut-linked.

5 Refined Refutability

The original proof of the refutability of the characteristic clause set shows that the
characteristic clause set is unsatisfiable by constructing a refutation in sequent
calculus LK [6]. Then it relies on the completeness of the unrestricted resolution
calculus, which guarantees that refutations of unsatisfiable clause sets exist.

However, with the restrictions imposed by the refinements, one cannot rely
on the completeness of resolution anymore. Indeed, for arbitrary clause sets
with arbitrary labels, Rcl-resolution, Rcls-resolution and Racl-resolution are clearly
incomplete. Nevertheless, Theorem 1 shows that for characteristic clause sets
extracted from proofs with the labeling done in the specific ways defined in
Section 4, refined refutations always exist.

Theorem 1 (Refutability of the Characteristic Clause Set). For any proof ϕ,
CL(ϕ) is R-refutable, Rcl-refutable, Rcls-refutable and Racl-refutable.

Proof. The full detailed proof is under development in the unfinished PhD
thesis of Bruno Woltzenlogel Paleo. What follows is a basic informal outline of
the ideas of the proof.

Firstly, it can be noted that every Racl-refutation is an Rcls-refutation, every
Rcls-refutation is an Rcl-refutation, and every Rcl-refutation is an R-refutation.
Hence, it suffices to show that CL(ϕ) is Racl-refutable.

We prove the refutability by constructing an Racl-refutation, as follows:

– Let ϕ′ be an atomic cut normal form of ϕ obtained by reductive methods
(i.e. by applying rank and grade reduction, but no elimination of atomic
cuts).

– Lemma 1 (Subsumption of the Characteristic Clause Sets under cut reduc-
tion):
Show that CL(ϕ′) is subsumed by CL(ϕ) [7].

– Lemma 2 (Invariance of the Atomic Cut Linkage Labeling under cut-reduction):
Show that, when a cut reduction is performed, the labels of the cut-formula
occurrences of the new cuts are the same, so that in ϕ′, the atomic cuts
always resolve two atoms that have the same labels.

– Lemma 3 (Canonic Refutation):
Show that CL(ϕ′) admits a canonic refutation [7], which can be extracted
from ϕ′ roughly by taking the cut-relevant part of ϕ′, which is composed of
atomic cut inferences only, and transforming these atomic cuts into resolu-
tion inferences. Let δ′ be this canonic refutation.

– By Lemma 1, δ′ can be lifted to a R-refutation δ of CL(ϕ), because CL(ϕ)
subsumes CL(ϕ′).

– By Lemma 2, δ is an Racl-refutation of CL(ϕ).

6 Conclusions and Future Work

The refinements defined in this paper correspond, in various degrees, to the
simulation of reductive methods within CERES . This allows a tradeoff between
confluence of cut-elimination and size of the ACNFs, and consequently also
some control on the search space for refutations.

The structural differences between ACNFs produced by CERES and reduc-
tive methods indicate some possible directions for future work in this area. It
is noticeable that an ACNF produced by CERES ends with a series of contrac-
tion inferences. The duplications of formula occurrences (which are eventually
contracted in the end) occur because of three different reasons:

1. Duplications of subproofs are intrinsic to the proccess of (reductive) cut-
elimination in classical logics (due to rank reduction over contraction infer-
ences).

2. Parts of the input proof are duplicated to appear in many projections. This
is necessary to allow projections to be plugged on top of the refutation of
the characteristic clause set. It seems that the contractions that exist due
to this source of duplications could be avoided either by a more careful

construction and combination of the projections with the refutation or by a
postprocessing step in which the contractions would be shifted upwards un-
til they meet the weakening inferences that introduce one of their auxiliary
formula occurrences, in which case both the contraction and the weakening
could be eliminated.

3. The construction of the characteristic clause set may be seen as a standard
CNF-transformation of the characteristic clause term [7]. The standard CNF
transformation (which distributes disjunction over conjunction, or in this
case products over sums in the charateristic clause term) can cause an ex-
ponential increase in size. The contractions associated with this source of
duplications are intrinsic to cut-elimination by resolution using standard
CNF-transformation, but it might be fruitful to investigate the possibility
of using structural CNF-transformations, for which these duplications do
not occur [1]. However, this approach would imply a radical change in
the concepts of characteristic clause set and projections, because structural
CNF-transformation adds fresh predicate symbols to the signature of the
input proof.

An improvement of CERES that eliminates the second and third sources of
contractions mentioned above would not only improve the efficiency of the
method but also make it suitable for substructural logics in which contraction
rules are not available. A deeper understanding of the relation between CERES
and reductive methods seems to be crucial to achieve this improvement.

References

1. M. Baaz, U. Egly, and A. Leitsch. Normal form transformations. In A. Voronkov
A. Robinson, editor, Handbook of Automated Reasoning, pages 275–333. Elsevier, 2001.

2. Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
Cut-Elimination: Experiments with CERES. In Franz Baader and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) 2004, vol-
ume 3452 of Lecture Notes in Computer Science, pages 481–495. Springer, 2005.

3. Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
Proof Transformation by CERES. In Jonathan M. Borwein and William M. Farmer,
editors, Mathematical Knowledge Management (MKM) 2006, volume 4108 of Lecture
Notes in Artificial Intelligence, pages 82–93. Springer, 2006.

4. Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
Ceres: An analysis of fürstenberg’s proof of the infinity of primes. Theor. Comput.
Sci., 403(2-3):160–175, 2008.

5. Matthias Baaz and Alexander Leitsch. Cut normal forms and proof complexity.
Annals of Pure and Applied Logic, 97:127–177, 1999.

6. Matthias Baaz and Alexander Leitsch. Cut-elimination and Redundancy-elimination
by Resolution. Journal of Symbolic Computation, 29(2):149–176, 2000.

7. Matthias Baaz and Alexander Leitsch. Towards a clausal analysis of cut-elimination.
Journal of Symbolic Computation, 41:381–410, 2006.

8. G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,
39:176–210,405–431, 1934–1935.

9. Stefan Hetzl. Characteristic Clause Sets and Proof Transformations. PhD thesis, Vienna
University of Technology, 2007.

10. Lutz Straßburger. What is a logic, and what is a proof? In Jean-Yves Beziau,
editor, Logica Universalis, pages 135–145. Birkhäuser, 2005. Updated version at
http://www.lix.polytechnique.fr/˜lutz/papers/WhatLogicProof.pdf.

11. G. Takeuti. Proof Theory. North-Holland, Amsterdam, 2 edition, 1987.

