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Abstract

This paper describes a new feature of the GAPT framework, namely the ability to im-
port refutations obtained from external automated theorem provers. To cope with coarse-
grained, under-specified and non-standard inference rules used by various theorem provers,
the technique of proof replaying is employed. The refutations provided by external theo-
rem provers are replayed using GAPT’s built-in resolution prover (TAP), which generates
refutations that use only three basic fine-grained inference rules (resolution, factoring and
paramodulation) and are therefore more suitable to be manipulated by the proof-theoretic
algorithms implemented in GAPT.

1 Introduction

GAPT 1 (General Architecture for Proof Theory) is a framework that aims at provid-
ing data structures, algorithms and user interfaces for analyzing and transforming formal
proofs. GAPT was conceived to replace and expand the scope of the CERES system 2

beyond the original focus on cut-elimination by resolution for first-order logic [BL00].
Through a more flexible implementation based on basic data structures for simply-typed
lambda calculus and for sequent and resolution proofs, in the hybrid functional object-
oriented language Scala [OSV10], GAPT has already allowed the generalization of the cut-
elimination by resolution method to proofs in higher-order logic [HLW11] and to schematic
proofs [DLRW12]. Furthermore, methods for structuring and compressing proofs, such as
cut-introduction [HLW12] and Herbrand Sequent Extraction [HLWWP08] have recently
been implemented.

However, due to GAPT’s focus on flexibility and generality, efficiency is only a sec-
ondary concern. Therefore, it is advantageous for GAPT to delegate proof search to
specialized external automated theorem provers (ATPs), such as Prover9 [McC10a], Vam-
pire [RV02] or Otter. This poses the technical problem of importing proofs from ATPs into
GAPT, which is less trivial than it might seem, because different ATPs use different infer-
ence rules and some inference rules are too coarse-grained, under-specified, not precisely
documented [BW11] and possibly not so standard from a proof-theoretical point of view.
As an example, take the explanation of the rewrite rule from Prover9’s manual[McC10b]:

rewrite([38(5,R),47(5),59(6,R)]) – rewriting (demodulation) with equa-
tions 38, 47, then 59; the arguments (5), (5), and (6) identify the positions of
the rewritten subterms (in an obscure way), and the argument R indicates that
the demodulator is used backward (right-to-left).

1GAPT: http://code.google.com/p/gapt/
2CERES: http://www.logic.at/ceres/
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The use of coarse-grained, under-specified and non-standard inference rules is especially
problematic for GAPT, because its proof transformation algorithms require that the proofs
adhere to strict and minimalistic calculi, as is usually the case in proof theory. To solve
this problem in a robust manner, the technique of proof replaying was implemented in
GAPT. The main purpose of this paper is to document how GAPT’s internal resolution
prover (TAP) was extended to support proof replaying and to report our overall experience
with this technique. TAP outputs resolution proofs containing only fine-grained resolution,
factoring and paramodulation steps, as desired.

Proof replaying is a widely used technique, and the literature on the topic is vast (see e.g.
[Fuc97, Amj08, Pau10, ZMSZ04]). One thing that distinguishes the work presented here
is that proofs are replayed into a logical system whose main purpose differs substantially
from the typical purposes (e.g. proving theorems, checking proofs) of most logical systems.
GAPT’s ongoing goal of automating the analysis and transformation of proofs can be seen
as complementary and posterior to the goals of most other systems.

The rest of the paper is organized as follows: Section 2 describes the general algorithm
for proof replay in our system and explains in more details how we implemented this
algorithm for Prover9 output. In Section 3 we give a concrete example. The final section
concludes our work and discusses some future improvements.

2 Proof Replaying in GAPT

The aim of this section is to describe how a proof from an external theorem prover is re-
played in GAPT. At our disposal is the interactive prover TAP, which implements Robin-
son’s resolution calculus[Rob65] and paramodulation. It is not powerful enough to prove
complex theorems, but it is able to simulate the single steps of an externally provided
proof.

Prover 9 proof TAP CommandsParser Simplified Resolution proofReplaying

Figure 1: Flowgraph of the Transformation

The complete transformation process is visualized in Figure 1. The theorem to be
proved is exported into TPTP format[Sut11, Sut09] and passed to the external theorem
prover. In the case of a successful result, the proof output is usually a text file, containing
a list of tuples of the form 〈inference id, clause, applied rule(s)〉. The output file is then
parsed into commands which steer the TAP to replay the proof.

The API of TAP has two main modules : the search algorithm and the proof replaying.
The search space consists of elements called configurations. Each configuration consists of
a state, a possibly infinite stream of scheduled commands, additional arbitrary data and
a result (possibly empty) which is a resolution proof. The state consists of the persistent
data of a configuration and might be shared between different configurations. A command
transforms a configuration to a list of successor configurations.

The so called “engine function” takes a configuration, executes the first of its sched-
uled commands and inserts the newly generated configurations into the search space. At
the moment, the prover explores the search space using breadth-first search, but this is
configurable.

We now describe the commands used for replay in more detail. In principle, we could
replay an input proof purely using the Replay command. In the actual implementation,
the Prover9 inference rules which are among assumption and copy are translated directly
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Initialization Commands
Prover9Init

Configuration Commands
SetStream
PrependOnCond
RefutationReached
Spawn

Replay Commands
Replay

Guided Commands
Prover92GAPTPositions
AddGuidedInitialClause
AddGuidedClauses
GetGuidedClauses
IsGuidedNotFound

Data Commands
SetTargetClause
SetClauseWithProof
Variants
ClauseFactor
DeterministicAnd
Resolve
Paramodulation
InsertResolvent

Table 1: Selection of TAP Commands

in the TAP format and applied directly. All other Prover9 inferences are replayed. The
commands are grouped into different tasks: initialization, data manipulation and configu-
ration manipulation. Guided commands are a subset of data commands. Table 1 provides
an overview over the commands necessary for replay.

The initialization commands interface TAP with an external prover. At the moment,
there is only one command handling Prover9. It exports the given clause set to TPTP
format, hands it over to Prover9 and parses its XML output. Each assumption is registered
together with its inference id and put into the set of derived clauses (using AddGuidedIni-
tialClause and InsertResolvent). Rules known to be easily solved like copy are individually
treated. For all other rules, the replay command is issued.

The configuration commands allow control over the proof search process. It is possible
to spawn new searches, schedule insertion of additional commands into certain configura-
tions and to stop the prover when a refutation is found.

All the data commands transform a configuration to a (finite) list of successor configu-
rations. A simple example is SetTargetClause which configures with which derived clause
to stop the prover. Also the commands for the usual operations of variant generation,
factoring, paramodulation and resolution are in this group. It also contains commands to
insert a found proof into the set of already found derivations and a command for executing
two commands after each other on the same state.

The purpose of the guided commands is the bookkeeping of derived proofs. It allows
storage of the proof of a clause in a guidance map which is part of the state. When a
guided inference is retrieved, the proof is put into the list of derived clauses within that
state. There is also a special command looking for the result of a guided inference and
inserting it into the set of derived clauses.

Replaying a rule first needs to retrieve the proofs of the parent clauses from the guidance
map. Then it creates a new TAP instance, which it initializes with these proofs as already
derived clauses and the reflexivity axiom for equality. The clause to be replayed is set
as target clause and the prover is configured to use a strategy which tries alternating
applications of the resolution and paramodulation rule on variants of the input clauses.
Also forward and backward subsumption are applied after each inference step. In this
local instance neither applications of the replay rule nor access to the guidance map is
necessary. If the local TAP instance terminates with a refutation, it is put into the global
guidance map and returned as part of the configuration. In the case TAP can not prove
the inference, the list of successor states is empty. Since the scheduled replay commands
are consecutive transformations on the same configuration, this also means the global TAP
instance will stop without result.

3
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3 An Example

In this section we explain with a simple example how our algorithm works for a concrete
proof. Consider the clause set from Figure 2, which was obtained from an analysis of
mathematical proof [BHL+06].

cnf( sequent0,axiom,’f’(’+’(X1, X0)) = ’0’ | ’f’(’+’(X0, X1)) = ’1’).
cnf( sequent1,axiom,~’f’(’+’(X2, X1)) = ’0’ | ~’f’(’+’(’+’(’+’(X2, X1), ’1’), X0)) = ’0’).
cnf( sequent2,axiom,~’f’(’+’(X2, X1)) = ’1’ | ~’f’(’+’(’+’(’+’(X2, X1), ’1’), X0)) = ’1’).

Figure 2: Example of a theorem to be proved in TPTP format

We give this clause set to Prover9, which outputs the refutation given in Figure 3.
We see that the information contained in a rule description is incomplete – the unifier is
normally left out and the variable names in the resulting clause are normalized. In many
cases (such as last step) more than one step is applied at once. Clause 22 is rewritten
twice into clause 3 (back rewrite(3),rewrite([22(2),22(8)])), yielding two equational
tautologies (xx(a),xx(b)) which are deleted, resulting in the empty clause.

1 f(plus(A,B)) = zero | f(plus(B,A)) = one # label(sequent0) # label(axiom). [assumption].
2 f(plus(A,B)) != zero | f(plus(plus(plus(A,B),one),C)) != zero # label(sequent1) # label(axiom). [assumption].
3 f(plus(A,B)) != one | f(plus(plus(plus(A,B),one),C)) != one # label(sequent2) # label(axiom). [assumption].
5 f(plus(A,B)) != zero | f(plus(C,plus(plus(A,B),one))) = one. [resolve(2,b,1,a)].
11 f(plus(A,plus(plus(B,C),one))) = one | f(plus(C,B)) = one. [resolve(5,a,1,a)].
16 f(plus(A,B)) = one | f(plus(C,D)) != one. [resolve(11,a,3,b)].
20 f(plus(A,B)) = one | f(plus(C,D)) = one. [resolve(16,b,11,a)].
22 f(plus(A,B)) = one. [factor(20,a,b)].
24 $F. [back_rewrite(3),rewrite([22(2),22(8)]),xx(a),xx(b)].

Figure 3: Example of a Prover9 refutation of the clause set

In our approach each (nontrivial) step is translated into a series of commands to
the internal prover. For trivial steps (like resolution and paramodulation) correspond-
ing command is created, which returns the same step. The series of commands starts by
initializing the prover with only those clauses contributing to the current inference and
then schedules the refutation. The last command of the series inserts the proof of the
resolution step into the already replayed refutation tree. For the last step the follow-
ing command is created: List(ReplayCommand(List(0, 3, 22, 22), 24, ([], [])),

InsertResolvent()), which says that from the reflexivity predicate 0, clauses 3 and vari-
ants of 22 it should derive the empty clause.

An output of TAP (displayed as a graph) is given in Appendix. Figure 4 displays graph
corresponding to the last step of Prover9’s refutation.

4 Conclusion

In this paper we described GAPT’s new feature of replaying refutations output by ATPs.
Our approach is based on interpreting coarse-grained, under-specified and non-standard
inference rules as streams of commands for GAPT’s built-in prover TAP. By executing
these commands, TAP generates resolution refutations containing only inference rules that
are fine-grained and standard enough for GAPT’s purposes. This approach is simpler
to implement and more robust. In GAPT’s historical predecessor CERES a more direct
translation of each of Prover9’s inference rules into pre-defined corresponding sequences of
resolution and paramodulation steps had been implemented. Recomputing missing unifiers
and figuring out the obscure undocumented ways in which Prover9 assigns numbers to
positions made this direct translation particularly hard. Thanks to the technique of proof
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replaying, these problems were avoided in GAPT. The drawback is that its reliance on
proof search by a non-optimized prover (TAP) makes replaying less efficient than a direct
translation.

In the future, we plan to add support for the TSTP proof format, in order to benefit not
only from Prover9 but from any prover using this format. As GAPT’s algorithms for proof
analysis and proof compression mature, we expect them to be of value in post-processing
the proofs obtained by ATPs.
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Figure 4: Replayed resolution tree of the last step of the example
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Figure 5: Replayed resolution tree of the full example
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