
Regular Patterns in Second-order Unification

Tomer Libal1

INRIA
tomer.libal@inria.fr

Abstract. The second-order unification problem is undecidable. While
unification procedures, like Huet’s pre-unification, terminate with success
on unifiable problems, they might not terminate on non-unifiable ones.
There are several decidability results for infinitary unification, such as for
monadic second-order problems. These results are based on the regular
structure of the solutions of these problems and by computing minimal
unifiers. In this paper we describe a refinement to Huet’s pre-unification
procedure for arbitrary second-order signatures which, in some cases, ter-
minates on problems on which the original pre-unification procedure fails
to terminate. We show that the refinement has, asymptotically, the same
complexity as the original procedure. Another contribution of the paper
is the identification of a new decidable class of second-order unification
problems.

1 Introduction

The unification principle has many uses in Computer Science. Due to the un-
decidability of the higher-order unification problem, many applications find it
necessary to restrict the use of unification to decidable classes only. This can
either be achieved by applying unification on fragments of higher-order logic
problems, whose unifiability is known to be decidable or by restricting unifica-
tion procedures to search for an incomplete set of unifiers. Among the fragments
of the first kind we can find Miller’s higher-order pattern unification [15],[17]
and decidable sub-classes of context unification [6],[12],[18],[20]. When we need
to consider arbitrary higher-order unification problems, we must search for an
incomplete set of unifiers.

Most higher-order theorem provers, such as Isabelle [16], TPS [2] and LEO
II [4] and III [24], rely on Huet’s pre-unification procedure [9] for the unification
of higher-order terms. Since the procedure does not terminate, these theorem
provers must search for incomplete finite sets of unifiers only. The most common
way to obtain such a set is by bounding the depth of the terms in the co-domain
of the unifiers. When one is interested in complete sets of unifiers, one must
accept non-termination.

1 Funded by the ERC Advanced Grant ProofCert.

The common practice of establishing the decidability of a new class of infini-
tary unification problems is by proving that their complete sets of unifiers can
be described by a finite regular expression. One can then use the exponent of
periodicity theorem [10], [19], in order to prove the existence of minimal unifiers.
Among the classes of unification problems decided by this technique are not only
those over monadic signatures [7],[14],[25] but also their extensions to problems
over arbitrary signatures for which the unifiers are restricted to have a limited
number of occurrences of the bound variables [12],[13],[18],[20],[21]. The common
property of all these classes is that complete sets of unifiers can be described by
regular terms. By regularity we mean the ability to describe infinite sets using
finite descriptions.

Unfortunately, unrestricted unification over arbitrary signatures does not en-
joy this property, even when restricted to very simple second-order languages,
as was shown by Farmer [8].

Many interesting problems, among them unification problems generated in
the search of theorems of second-order arithmetic, do not fall within these classes.
For these problems, non-termination of unification seems inevitable.

In this paper we present a procedure for second-order pre-unification which
terminates on more classes of unification problems than Huet’s pre-unification
procedure while keeping to the same complexity class. This is achieved by a
new technique of extending the non-regular complete sets of unifiers of these
problems into regular complete supersets of unifiers. We then prove the existence
of minimal members in these supersets. Empty complete supersets of unifiers will
imply the emptiness of the respective complete sets of unifiers and those, will
prove the non-unifiability of the respective problems. We prove the soundness
and completeness of this procedure.

As a second contribution, we use the structures developed in this paper in or-
der to recognize a new class of second-order unification problems, whose complete
sets of unifiers are regular and which can be decided by the new pre-unification
procedure. We believe that this approach can lead to more decidable classes of
second-order unification problems.

Other similar works includes the work of Abdulrab et al. for the finite rep-
resentation of all unifiers for sub-classes of the string unification problem by
using graphs and regular expressions [1], that of Zaionc for the regular expres-
sion description of complete sets of unifiers for monadic second-order unification
[25] and the work of Le Chenadec for the description of first-order cycles using
finite automata [11]. These works differ from the current one in that they cover
problems whose complete sets of unifiers are regular.

The paper is organized as follows. In the next section we give some definitions
and notations which will be used throughout the paper. The main section is
dedicated to the construction of complete supersets of unifiers, the establishment
of some of their properties and the presentation of the pre-unification procedure.
We then prove the correctness of the procedure and its improved termination
over classes of problems when compared to Huet’s procedure. We conclude by
proving the asymptotic equivalence of the complexity of the two procedures.

Due to space considerations, we omit the proofs of all the theorems and
lemmas appearing in the paper. The interested reader can find these proofs on
the author’s website1.

2 Preliminaries

2.1 Typed Lambda Calculus

In this section we will present the logical language that will be used throughout
the paper. The language is a version of Church’s simple theory of types [5] with
an η-conversion rule as presented in [3] and [22] and with implicit α-conversions.
Most of the definitions in this section are adapted from [22].

Let T0 be a set of basic types, then the set of types T is generated by
T := T0|T→ T. Let Σ be a signature of function symbols and let V be a count-
ably infinite set of variable symbols. The function ar denotes the arity of each
function symbol and variable according to its type in the usual way. Variables
are normally denoted by the letters x, y, z and function symbols by the letters
f, g, h. We sometimes use subscripts and superscript as well. We sometimes add
a superscript to symbols in order to specify their type. The set Termα of terms
of type α is generated by Termα := fα|xα|λxβ .Termγ |Termβ→α(Termβ) where
f ∈ Σ, x ∈ V and α ∈ T (in the abstraction, α = β → γ). Applications through-
out the paper will be associated to the right. We will sometimes omit brackets
in applications when the meaning is clear. The set Term denotes the set of all
terms. Subterms, positions and position prefixes are defined as usual. Sizes of
positions denote the length of the path to the position. We denote the subterm
of t at position p by t|p. Bound and free variables are defined as usual. Given a
term t, we denote by hd(t) its head symbol and distinguish between flex terms,
whose head is a free variable and rigid terms, whose head is a function symbol
or a bound variable. Rigid positions are positions such that no flex subterm is
in a prefix position. The depth of a term t, denoted by d(t), is the size of the
maximal rigid position in t. The order of types are denoted by order and are
defined as usual. The order of a term, denoted using the same symbol, is the
order of its type.

Substitutions and their composition (◦) are defined as usual. We denote by
σ|W the substitution obtained from substitution σ by restricting its domain
to variables in W . We extend the application of substitutions to terms in the
usual way and denote it by postfix notation. Variable capture is avoided by
implicitly renaming variables to fresh names upon binding. A substitution σ is
more general than a substitution θ, denoted σ ≤s θ, if there is a substitution δ
such that σ ◦ δ = θ.

We assume that all the terms considered in this paper are in β-normal and
η-expanded forms [22]. We further assume that all substitutions are idempotent
[23] and contain only terms in β-normal and η-expanded forms in their co-
domain. This allows us to deal with normal forms implicitly (see [22] for more

1 http://logic.at/staff/shaolin/papers/holunif_proofs.pdf

http://logic.at/staff/shaolin/papers/holunif_proofs.pdf

information). Equality between terms is always assumed to be α-equality. Each
application of a λ-term to another is always converted implicitly into β−normal
form.

We introduce also a vector notation tn for the sequence of terms t1, . . . , tn.
Currying and uncurrying is applied implicitly as well.

We will sometimes refer to the position 0 < i ≤ n of a term s in the sequence
by t1, . . . , s@i, . . . , tn.

2.2 Contexts and Pre-unification

The majority of the definitions in this section are taken from [21,22].
Terms of the form λzα.sα where z occurs in s exactly once are called contexts

and are denoted by s([.]) where [.] is considered as the “hole” of the term. We
denote by mpath(C) the main path of the context C which is the position of the
hole in the context C.

Unification problems (or systems) are sets of terms t
.
= s, called equations,

where t and s are of the same type. Based on whether t and s are flex or rigid, we
make a distinction between flex-flex, flex-rigid and rigid-rigid equations. Systems
are considered closed under symmetry of

.
=.

A substitution σ unifies an equation t
.
= s if tσ = sσ. It unifies a sys-

tem if it unifies all its equations. We denote the set of all unifiers of a sys-
tem S by Unifiers(S). Let =̃ be the least congruence relation on Term which
contains {(t, s) | hd(t), hd(s) ∈ V}. A substitution σ pre-unifies an equation
t
.
= s if tσ=̃sσ. It pre-unifies a system if it pre-unifies all its equations. The

completing substitution ξS for a system S maps every two variables in S of
the same type to the same fresh variable. It is simple to prove that if σ pre-
unifies a system S, then σ ◦ ξ unifies S [22]. A complete set of pre-unifiers for
a system S, denoted by PreUnifiers(S), is a set of substitutions such that
{σ ◦ ξS | σ ∈ PreUnifiers(S)} ⊆ Unifiers(S) and for every θ ∈ Unifiers(S)
there exists σ ∈ PreUnifiers(S) such that σ|dom(θ) ≤ θ.

An equation x
.
= t in η-normal form is called solved in system S if x does

not occur elsewhere in S. We call x a solved variable in S. An equation is pre-
solved in a system S if it is either solved in S or flex-flex. A system is solved
(pre-solved) if all its equations are solved (pre-solved). We denote by σS the
substitution obtained from mapping x to t in all solved equations x

.
= t in S.

Imitation partial bindings and projection partial bindings are defined in [22]
and are denoted, respectively, by PB(f, α) and PB(i, α) where α ∈ T, f ∈ Σ
and 0 < i. Briefly, partial bindings are substitutions which are used in order
to approximate the (possibly infinite) number of final mappings for variables
occurring in flex-rigid equations. By either imitating the head symbol of the
rigid equation or by projecting one of the bound variables of the mapping for
the variable, the set of partial bindings is always finite.

Huet’s pre-unification procedure PUA, as presented by Snyder and Gallier
[22], is given in Fig. 1.

Theorem 1 (Soundness of PUA [9]). If S′ is obtained from a unification sys-
tem S using PUA and is in pre-solved form, then σS′ |FV(S) ∈ PreUnifiers(S).

S

S ∪ {A .
= A}

(Delete)
S ∪ {λzk.s1

.
= λzk.t1, . . . , λzk.sn

.
= λzk.tn}

S ∪ {λzk.f(sn)
.
= λzk.f(tn)}

(Decomp)

Sσ ∪ {x .
= λzk.t} x 6∈ FV(t) ∧ σ = [λzk.t/x]

S ∪ {λzk.x(zk)
.
= λzk.t}

(Bind)

S ∪ {x .
= u, λzk.x

α(sn)
.
= λzk.f(tm)} u ∈ PB(f, α)

S ∪ {λzk.xα(sn)
.
= λzk.f(tm)}

(Imitate)
1

S ∪ {x .
= u, λzk.x

α(sn)
.
= λzk.a(tm)} 0 < i ≤ k, u = PB(i, α)

S ∪ {λzk.xα(sn)
.
= λzk.a(tm)}

(Project)
2

⊥
S ∪ {λzk.f(sn)

.
= λzk.g(tn)}

(Symbol-Clash)
3,4

1. where f ∈ Σ.
2. where either a ∈ Σ or a = zi for some 0 < j ≤ k.
3. where f, g ∈ Σ and f 6= g.
4. this rule is redundant with regard to soundness and completeness but has impli-

cations with regard to termination and appears in [9].

Fig. 1. PUA- Huet’s pre-unification procedure

Theorem 2 (Completeness of PUA [9]). If θ ∈ PreUnifiers(S) for a uni-
fication system S, then there exists a pre-solved system S′, which is obtainable
from S using PUA such that σS′ |FV(S) ≤s θ.

Remark 3. The procedure PUA contains two kinds of non-determinism. On the
one hand, we need to choose an equation at each step and on the other, we need
to choose which rule to apply to it. In [22] it is argued that completeness is
only affected by the second kind of non-determinism and more precisely, by the
choice between the (Imitate) and (Project) rules. The first case is a ”don’t-
care” non-determinism while the second is a ”don’t-know” non-determinism. We
will use this fact in the rest of the paper and allow ourselves to choose specific
equations to process without harming completeness.

3 The refinement procedure

In order to simplify definitions and proofs, we consider only first-order functions
symbols of arbitrary arity and second-order unary variables. Note that even very
simple second-order unification classes are undecidable [8]. An extension to the
general second-order case is straightforward. We discuss the possibility to extend
the method to the general higher-order case in the conclusion.

In this section we will be interested in trying to obtain failure information
from cyclic equations.

3.1 Cyclic equations and their properties

Let the relations x < y and x = y be defined for equations C(xtn)
.
= D(ysm)

where C and D are contexts and where mpath(C) < mpath(D) and mpath(C) =
mpath(D) respectively. Define a partial order over variables by the transitive
closure of the union of the two relations (under further restrictions on the sym-
metry of =, see [13],[21] for a full definition). A set of equations is cyclic if the
partial order generated over the set contains the relation x < x for some variable
x occurring in the set. An example of a cycle is the set {xa .

= f(yc, b), g(yd)
.
=

g(ze), zb
.
= xb}. Cycles capture the idea that using PUA, one can, in some cases,

obtain again (a variation of) the original set of equations.
The next result exemplifies the role of cycles in the non-termination of second-

order unification.

Theorem 4 (Levy [13]). It is decidable whether a second-order unification
problem not containing cycles has a unifier.

In this paper we will focus on a certain kind of second-order cycles of the
following form.

Definition 5 (Cyclic equations). Let e be an equation of the form λzn.x0t
.
=

λzn.C(x0s). e is called a cyclic equation where C is a context. t, s and C may
contain the variables zn but not the variable x0. We denote the fact that e is
cyclic by the predicate cyclic(e).

We next prove that the restriction on C not to contain x0 can be avoided.

Lemma 6. Let e be an equation λzn.x0t
.
= λzn.C(x0s) and assume further,

without loss of generality, that for all occurrences of x0 in C, the sizes of their
positions are not smaller than the size of the position of the hole in C (otherwise,
define the hole to be the position of the minimal such occurrence). Then we can
obtain, using the rules of PUA, an equation λzn.w0t

.
= λzn.C

′(w0s) where w0

does not occur in C ′ for some context C ′.

Definition 7 (Progressive context). Given a cyclic equation e, where C =
C1 . . . Cm such that for all 0 < i ≤ m, Ci = fi(r

1
i , . . . , [.], . . . , r

ni
i) where ni =

ar(fi) − 1. Define also, for all m < i, Ci = fk(y1i−ms, . . . , [.], . . . , y
nk
i−ms) where

k = ((i− 1) mod m) + 1 and yji−m for 0 < j ≤ nk are new variables. We define
the progressive context De

i for all 0 ≤ i as follows:

– for all 0 ≤ i, De
i = Ci+1 . . . Ci+m.

We will use the cycle x0t
.
= f(r1, g(x0s, r2)) as a running example. This cy-

cle is interesting as it has instances which are unifiable and instances which are
not unifiable. For the unifiable ones, both Huet’s procedure and the one pre-
sented here will compute a complete set of pre-unifiers. For the non-unifiable
ones, Huet’s will fail to terminate while our procedure, as proved in Theorem 37
and under some additional restrictions as defined in Definition 35, will terminate
with failure. An example for a unifiable instance is for t = f(a, g(f(a, a), a)), r1 =
a, r2 = a and s = f(a, a). For obtaining a non-unifiable instance which corre-
sponds to Definition 35, just replace s from the previous instance with f(a, b).

Example 8. Given the cycle x0t
.
= f(r1, g(x0s, r2)) (having m = 2), its progres-

sive contexts for 0 ≤ i ≤ 2 are

– D0 = C1C2, D1 = C2C3 and D2 = C3C4

where

– C1 = f(r1, [.]).
– C2 = g([.], r2).
– C3 = f(y1, [.]).
– C4 = g([.], y2).

In the rest of this paper, e will refer to equations of this form and t, s, C,m, k,
ni, r

j
i and yji will refer to the corresponding values in e.

As mentioned in remark 3, the ”don’t-know” non-determinism affects the
completeness of PUA and it is not hard to see that it is also the cause of its non-
termination. The way to improve termination and to define additional decidable
classes will depend, therefore, on refining the possible ”don’t-know” choices al-
lowed in the search.

We will first define the result of applying (Imitate) and (Project) (plus
some additional deterministic rules) on cyclic equations.

Definition 9 (I and P). Given a cyclic equation e, for all 0 ≤ i, we define
I(i), I∗(i) and P(i) inductively as follows:

– P(0) = I(0) = I∗(0) = ∅.
– if 0 < i ≤ m then I∗(i) = I∗(i− 1) ∪ {λzn.yji t

.
= λzn.r

j
i | 1 ≤ j ≤ ni}.

– if m < i then I∗(i) = I∗(i− 1) ∪ {λzn.yji t
.
= λzn.y

j
i−ms | 1 ≤ j ≤ ni}.

– for all 0 < i, I(i) = I∗(i) ∪ {λzn.xit
.
= λzn.D

e
i (xis)}.

– for all 0 < i, P(i) = I∗(i− 1) ∪ {λzn.t
.
= λzn.D

e
i−1(s)}.

Using these definitions, one can now describe the search conducted by PUA

graphically as can be seen in Figure 2.

e

I(1)

. . .P(2)

(Project),(Bind) (Imitate),(Bind),(Decomp)

P(1)

(Project),(Bind) (Imitate),(Bind),(Decomp)

Fig. 2. The ”don’t-know” non-determinism in PUA

Example 10. Extending Example 8, we get the following values for 0 < i ≤ 3:

– P(1) is t
.
= f(r1, g(s, r2)) which is equivalent to t

.
= D0(s).

– I(1) is {x1t
.
= g(f(y1s, x1s), r2), y1t

.
= r1} which is equivalent to {x1t

.
=

D1(x1s), y1t
.
= r1}.

– P(2) is {t .= g(f(y1s, s), r2), y1t
.
= r1} which is equivalent to {t .= D1(s), y1t

.
=

r1}.
– I(2) is {x2t

.
= f(y1s, g(x2s, y2s)), y2t

.
= r2, y1t

.
= r1} which is equivalent to

{x2t
.
= D2(x2s), y2t

.
= r2, y1t

.
= r1}.

– P(3) is {t .= D2(s), y2t
.
= r2, y1t

.
= r1}

– I(3) is {x3t
.
= D3(x3s), y3t

.
= y1s, y2t

.
= r2, y1t

.
= r1}

The correctness of this description is proved next.

Lemma 11. Let e be a cyclic equation, then, up to the renaming of the free
variables and for all 0 ≤ i, the application of (Imitate),(Bind) and (Decomp)

on λzn.xit
.
= λzn.D

e
i (xis) results in a set of equations containing λzn.xi+1t

.
=

λzn.D
e
i+1(xi+1s).

We call this cycle the principle cycle of the application of (Imitate).

Lemma 12. Let S ∪ {e} be a unification problem where e is a cyclic equation.
Then, there is a substitution τ such that FV(S ∪ {e}) ∩ dom(τ) = {x0} and such
that the following holds, up to the renaming of the free variables:

– assume we repeatedly apply i times (Imitate),(Bind) and (Decomp) on e
and the generated principal cycles, then the obtained unification problem is
(S ∪ I(i))τ .

– assume we apply a (Project) and (Bind) after i− 1 applications of
(Imitate), (Bind) and (Decomp) on e and the generated principal cycles,
then the obtained problem is (S ∪P(i))τ .

A simple but crucial fact that will enable us to enlarge the non-regular sets
of solutions of PUA into regular supersets is the following.

Proposition 13. Let S be a unification problem and let S′ ⊂ S, then:

– S is unified by a substitution σ only if S′ is unified by σ.
– PreUnifiers(S) ⊆ PreUnifiers(S′).

We can now prove that each derivation of e must, at some point, use the
above sequence of rules.

Lemma 14. For any S, σ ∈ PreUnifiers(S∪{e}) iff there is 0 < i and substi-
tutions θ and τ such that θ ∈ PreUnifiers((S ∪ {e} ∪P(i))τ), θ|FV(S∪{e}) ≤s σ
and τ |FV(S∪{e}) ≤s σ.

By taking θ ◦ τ , the next corollary follows immediately.

Corollary 15. For any S, σ ∈ PreUnifiers(S ∪{e}) only if there is 0 < i and
a substitution θ such that θ ∈ PreUnifiers(S∪{e}∪P(i)), and θ|FV(S∪{e}) ≤s σ.

The definitions of the generated sets P(i) for all 0 < i, are given inductively.
We notice that the sets, for i > m, are made of two components:

– the inductive part which includes all equations {λzn.yjl t
.
= λzn.y

j
l−ms | 1 ≤

j ≤ nk}, for all m < l ≤ i.
– the base part which includes the equations {λzn.t

.
= λzn.D

e
i−1(s)} and

{λzn.yjl t
.
= λzn.r

j
l | 1 ≤ j ≤ nk} for just 0 < l ≤ m.

We will use this distinction in the next section.

3.2 The refinement procedure

In this section we will show how to obtain a superset of all unifiers of a cycle
such that this superset will not be defined inductively. This will allow us to
give a finite representation of this set which will be used in order to improve
termination.

The next sets are constructed without the inductive part mentioned earlier.

Definition 16 (P−). Given a cyclic equation e, we define P− for all 0 < i as
follows:

– if 0 < i ≤ m+ 1 then P−(i) = P(i).
– if m+ 1 < i then P−(i) = I∗(m) ∪ {λzn.t

.
= λzn.D

e
i−1(s)}.

The equation λzn.t
.
= λzn.D

e
i−1(s) is called the projected equation of P−(i).

As can be seen from the definition, for i > m, P− is defined in a non-inductive
way as it depends on a fixed set I∗(m).

Example 17. The values for the equation from Example 8 for i = 3, 4, 5, 6, 7 are:

– P−(3) = {t .= D2(s), y2s
.
= r2, y1s

.
= r1} = P(3).

– P−(4) = {t .= D3(s), y2s
.
= r2, y1s

.
= r1} ⊆ P(4).

– P−(5) = {t .= D4(s), y2s
.
= r2, y1s

.
= r1} ⊆ P(5).

– P−(6) = {t .= D5(s), y2s
.
= r2, y1s

.
= r1} ⊆ P(6).

– P−(7) = {t .= D6(s), y2s
.
= r2, y1s

.
= r1} ⊆ P(7).

Together with Proposition 13 and Corollary 15, we can now prove two lemmas
asserting that these new sets are indeed complete supersets of unifiers.

Lemma 18. For all 0 < i, P−(i) ⊆ P(i).

Lemma 19. For all S and for all 0 < i, PreUnifiers(S ∪P(i)) ⊆
PreUnifiers(S ∪P−(i)).

The fact that the sets P−(i), for i > m, are not defined in an inductive way,
will enable us to simplify the description of their pre-unifiers. In the next lemma
we will prove that iterating the (Imitate) rule beyond the first 3m iterations
gives no further information about the unifiability of the set.

Lemma 20. For all S and for all 3m < i, S∪P−(i) is unifiable iff S∪P−(i−m)
is unifiable. Moreover, if σ is a pre-unifier of S ∪P−(i −m), then σ′ is a pre-
unifier of S ∪ P−(i) where dom(σ′) = dom(σ) \ {yjl | 0 < j ≤ nk, i − 2m ≤
l < i − m} ∪ {yjl | 0 < j ≤ nk, i − m ≤ l < i} and σ′(yjl) = σ(yjl−m) for all
i−m ≤ l < i and 0 < j ≤ nk where k = ((i− 1) mod m) + 1.

The intuition behind this lemma is demonstrated in the following example.

Example 21. Take P−(5) and P−(7) (remember that m = 2) from Example 17:

– P−(5) = {t .= f(y3s, g(s, y4s)), y2s
.
= r2, y1s

.
= r1}.

– P−(7) = {t .= f(y5s, g(s, y6s)), y2s
.
= r2, y1s

.
= r1}.

The two pairs of variables y3, y4 and y5, y6 occur only once in both sets.

Next, we prove that the supersets of pre-unifiers for e can be restricted by
computing pre-unifiers for the problems P−(i) for 0 < i ≤ 3m. This will establish
the minimality property which is required for proving termination.

Lemma 22. For any S and for any σ ∈ PreUnifiers(S ∪ {e}), there is 0 <
i ≤ 3m and θ ∈ PreUnifiers(S ∪ {e} ∪P−(i)) such that θ|FV(S∪{e}) ≤s σ.

The following is a corollary of the previous lemma. This result states that
termination can be achieved on some problems, even if their sets of solutions is
irregular.

Corollary 23. Given a set S and a cycle e. If, for all 0 < i ≤ 3m,
PreUnifiers(P−(i)) = ∅, then S ∪ {e} is not unifiable.

As an example of applying the above corollary, consider the following instance
of our running example.

Example 24. Given the cycle x0(f(a, g(a, a), a))
.
= f(a, g(x0(f(a, b)), a)), none

of the P−(i) for 0 < i ≤ 6 are unifiable. Using the above corollary, we can
conclude that this problem is not unifiable.

We will proceed next to the refinement of PUA but first, we need to modify
unification equations and the predicate cyclic. This modification is required in
order to apply the refinement at most once per cyclic equation.

Definition 25 (Marked equations). Given a unification equation λzn.t
.
=

λzn.s, let λzn.t
.
=
•
λzn.s be its marked version. The function cyclic now fails

if e is marked.

The idea of the following procedure is the following. When running on a
unifiable problem, the extra equations added by the (Cycle) rule will also be
unifiable for some 0 < i ≤ 3m according to Lemma 22. On the contrary, when a
problem is not unifiable, the generated sets P−(i) must all be processed before
any rule is applied to e. If none is unifiable, we get on all branches of the search
(Symbol-Clash) failure nodes and therefore will not apply any further rule to

e and the procedure will terminate. Corollary 23 also tells us that in that case
the problem is indeed not unifiable. In the case the problem is not unifiable but
some set P−(i) is, we will proceed with the unifiability of e, which might not
terminate.

Definition 26 (RPUA). The procedure RPUA has the same set of rules as PUA

(see Fig. 1) but has, in place of (Imitate) and (Project), the rules in Fig. 3.
In addition, all rules apply to marked and unmarked equations in the same way.

S ∪ {x .
= u, λzk.x

α(sn)
.
= λzk.f(tm)} u ∈ PB(f, α) ∧ ¬cyclic(e)

S ∪ {λzk.xα(sn)
.
= λzk.f(tm)}

(Imitate)
1

S ∪ {x .
= u, λzk.x

α(sn)
.
= λzk.a(tm)} 0 < i ≤ k, u = PB(i, α) ∧ ¬cyclic(e)

S ∪ {λzk.xα(sn)
.
= λzk.a(tm)}

(Project)
2

S ∪ {λzk.xα(sn)
.
=

•
λzk.a(tm)} ∪P−(i) 0 < i ≤ 3m ∧ cyclic(e)

S ∪ {λzk.xα(sn)
.
= λzk.a(tm)}

(Cycle)
2

1. where f ∈ Σ and e = λzk.x
α(sn)

.
= λzk.f(tm).

2. where either a ∈ Σ or a = zi for some 0 < j ≤ k and e = λzk.x
α(sn)

.
= λzk.a(tm)

Fig. 3. RPUA- Pre-unification with refined termination

3.3 The correctness of the refinement

In this section we prove the soundness and completeness of the procedure. Both
are proved relatively to PUA.

Theorem 27 (Soundness of RPUA). If S′ is obtained from a unification sys-
tem S using RPUA and is in pre-solved form, then σS′ |FV(S) ∈ PreUnifiers(S).

For proving the completeness of RPUA, we need one more definition.

Definition 28 (Imitation blocks). Let D be a derivation in PUA, and let e
be an unmarked cyclic equation. The imitation block for e in D is the following
inductive set:

– e is in the imitation block.
– if there is an application of (Imitate) on an equation in the block, then its

principal cycle is also in the block.

The size of the block is the size of the set plus 1.

The intuition behind this definition is that imitation blocks help us recon-
struct, out of some arbitrary derivation, the exact i for constructing P−(i).

Theorem 29 (Completeness of RPUA). If θ is a pre-unifier of a unification
system S, then there exists a pre-solved system S′, which is obtainable from S
using RPUA such that σS′ |FV(S) ≤s θ.

3.4 Termination and decidability results

The most interesting property of RPUA is that it terminates on some cases where
PUA does not and, at the same time, has no additional asymptotic complexity.
We will investigate these two claims next.

We first prove that RPUA terminates on at least all problems on which PUA

terminates.

Theorem 30. Let S be a unification system, then PUA terminates on it only if
RPUA does.

We now prove that RPUA terminates, in contrast to PUA, on more classes of
problems.

As noted above, in order for RPUA to terminate on problems on which PUA

does not terminate, one must use the eager strategy of, upon calling (Cycle),
attempting to unify all generated sets P−(i) before applying any rule to e. In
order for RPUA not to compute unnecessary steps, we will also add a constraint
on the calls to (Imitate) and (Project).

Definition 31 (Possible pairs). Given a problem S ∪ {e} ∪P−(i), an equa-
tion e′ derived from e and an equation e′′ derived from P−(i) are paired if e′

was derived from the set generated by applying (Imitate) i times on e and the
generated principle cycles, then applying one (Project) and then following the
rule applications used for deriving e′′ from P−(i).

The intuition behind possible pairs, as demonstrated in the following exam-
ple, is that one can optimize the execution of the procedure by applying the
same rules to pairs of equations.

Example 32. Consider the equation from previous examples and consider the
application of (Cycle) with i = 4, so P−(4) = {t .= D3(s), y2s

.
= r2, y1s

.
= r1}.

After applying 3 times (Imitate) and a (Project) on e and its generated
principal cycles (among other rules), we obtain {t .

= D′3(s), y′2s
.
= r2, y

′
1s

.
=

r1, y
′
3t

.
= y′1s} where D′3 is equal to D3 except for the renaming of the free

variables. Then the following are possible pairs:

– t
.
= D′3(s) and t

.
= D3(s).

– y′2s
.
= r2 and y2s

.
= r2.

– y′1s
.
= r1 and y1s

.
= r1.

Note that the equation y′3t
.
= y′1s, has no possible pair.

Definition 33 (RPUA strategy). When running RPUA, we require the following
stategies:

– Given an unmarked cyclic equation, do the following:
• let i = 1.
• apply (Cycle) with i.
• exhaustively apply RPUA on the equations in P−(i).

• if a pre-solved form is found, break. Otherwise increment i by 1 (as long
as i ≤ 3m).

• try to apply (Symbol-Clash) on the current problem.

– Always apply the same (Project) or (Imitate) on both equations in a
possible pair.

Theorem 34 (Correctness of the strategy). RPUA with the strategy is sound
and complete.

We can now define a new class of second-order unification problems and show
it to be decidable when using RPUA, in contrast to PUA.

Definition 35 (Projected cycles). A cycle x0t
.
= C(x0s) is called a projected

cycle if:

1. t is ground.

2. for all positions p in C which are not on the main path of C:

(a) d(t|p) < d(s).

(b) t|p = C|p.

Theorem 36. PUA does not terminate on problems containing projected cycles.

In the next theorem, we assert that the unifiability of problems in this class
can be decided using RPUA. The idea behind the proof is that, if the problem is
unifiable, it is unifiable only by substitutions which map each of the variables yji
to terms λz.sji where z does not occur in sji . Such substitutions will always unify

the equations yji t
.
= yi−ms and therefore, our computed supersets are actually

complete sets of unifiers.

Theorem 37. RPUA decides the unification problem of projected cycles.

3.5 Asymptotic analysis

In the last part of the paper we discuss the complexity of RPUA. We will mea-
sure the complexity of both procedures in the number of ”don’t-know” non-
deterministic calls done along the derivation. A naive consideration of RPUA

might suggest that it has an asymptotically exponential slow-down, in the num-
ber and size of the cyclic equations, on problems on which PUA terminates. We
will show next that both procedures have the same complexity.

Theorem 38. The number of ”don’t know” non-deterministic choices in runs
of RPUA on some problem S when using the strategy is the same as in runs of
PUA on S.

4 Conclusion

Second-order unification problems play an important role within general higher-
order unification. Many important theorems, like those in arithmetic which
can be finitely axiomatized in second-order logic, require only unification over
second-order formulas. Nevertheless, except for few results like the one by Levy
[13] for deciding acyclic second-order unification problems, these problems are
treated within the general procedures for higher-order problems. In this paper
we have attempted to show that these problems are inherently simpler than
general higher-order problems and that one can design for them (theoretically)
improved unification procedures. We showed that for these problems, one can
compute information which is static for arbitrarily long runs and which can be
used in order to improve termination.

The fact that the procedure has the same asymptotic complexity does not
mean that it is as efficient as Huet’s. Indeed, even in the most efficient implemen-
tation where different computations of the P sets are done using the previous set
information, care should be taken to back-track at the right points and those,
extra machinery is required. On the other hand, this procedure might also be
implemented in a more efficient way that Huet’s. This can be achieved by taking
advantage of the natural parallelism which is inherent in the procedure in the
form of the separate computation of the 3m P sets. The claims in this paragraph
have still to be demonstrated and the implementation of this procedure, both
in a sequential form and in a parallel form, is planned using the multi-agent
architecture of LEO-III [24].

An extension to higher-order logic is far from being trivial. The main difficulty
is that the number of higher-order variables does not decrease when applying
projections. One of the consequences is that, in contrary to the second-order case
where infinite sequences of cyclic problems can only be generated by applying
imitations, such sequences can also be generated using projections. Even if this
obstacle can be overcome by detecting these cycles, the fact that the total number
of higher-order variables does not decrease at each P set, renders our procedure
ineffective.

An interesting extension to the work presented in the paper is to consider also
the equations in the set P \P−. This set was considered in this paper only with
regard to deciding the unification problem of projected cycles. We have started
a very promising work on using this set in order to build finite tree automata
which, together with unifiers of the finitely many P− sets, can be used in order to
decide the unification problem of far more complex cases than projected cycles.

References

1. Habib Abdulrab, Pavel Goralcik, and G. S. Makanin. Towards parametrizing word
equations. ITA, 35(4):331–350, 2001.

2. Peter Andrews, Sunil Issar, Daniel Nesmith, and Frank Pfenning. The tps theorem
proving system. volume 310 of Lecture Notes in Computer Science, pages 760–761.
Springer Berlin / Heidelberg, 1988. 10.1007/BFb0012885.

3. Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, vol-
ume 103 of Studies in Logic and the Foundations of Mathematics. North-Holland,
1984.

4. Christoph Benzmüller, Larry Paulson, Frank Theiss, and Arnaud Fietzke. The
LEO-II project. In Proceedings of the Fourteenth Workshop on Automated Rea-
soning, Bridging the Gap between Theory and Practice. Imperial College, London,
England, 2007.

5. Alonzo Church. A formulation of the simple theory of types. J. Symb. Log.,
5(2):56–68, 1940.

6. Hubert Comon. Completion of rewrite systems with membership constraints. part
i: Deduction rules. J. Symb. Comput., 25(4):397–419, 1998.

7. William M. Farmer. A unification algorithm for second-order monadic terms.
Annals of Pure and Applied Logic, 39(2):131–174, 1988.

8. William M. Farmer. Simple second-order languages for which unification is unde-
cidable. Theor. Comput. Sci., 87(1):25–41, 1991.

9. Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Com-
put. Sci., 1(1):27–57, 1975.

10. Joxan Jaffar. Minimal and complete word unification. Journal of the ACM
(JACM), 37(1):47–85, 1990.

11. Philippe Le Chenadec. The finite automaton of an elementary cyclic set. Technical
Report RR-0824, INRIA, April 1988.

12. Jordi Levy. Linear second-order unification. In RTA, pages 332–346, 1996.
13. Jordi Levy. Decidable and undecidable second-order unification problems. In RTA,

pages 47–60, 1998.
14. G. S. Makanin. On the decidability of the theory of free groups (in russian). In

FCT, pages 279–284, 1985.
15. Dale Miller. Unification of simply typed lambda-terms as logic programming. In

8th International Logic Programming Conference, pages 255–269. MIT Press, 1991.
16. Lawrence Paulson. Isabelle: The next seven hundred theorem provers. volume 310

of Lecture Notes in Computer Science, pages 772–773. Springer Berlin / Heidelberg,
1988. 10.1007/BFb0012891.

17. Christian Prehofer. Decidable higher-order unification problems. CADE-12, pages
635–649, London, UK, UK, 1994. Springer-Verlag.

18. Manfred Schmidt-Schauß. A decision algorithm for stratified context unification.
J. Log. Comput., 12(6):929–953, 2002.

19. Manfred Schmidt-Schauß and Klaus U. Schulz. On the exponent of periodicity of
minimal solutions of context equation. In RTA, pages 61–75, 1998.

20. Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of context equations
with two context variables is decidable. J. Symb. Comput., 33(1):77–122, 2002.

21. Manfred Schmidt-Schauß and Klaus U. Schulz. Decidability of bounded higher-
order unification. J. Symb. Comput., 40(2):905–954, August 2005.

22. Wayne Snyder and Jean H. Gallier. Higher-order unification revisited: Complete
sets of transformations. J. Symb. Comput., 8(1/2):101–140, 1989.

23. Wayne S. Snyder. Complete sets of transformations for general unification. PhD
thesis, Philadelphia, PA, USA, 1988. AAI8824793.

24. Max Wisnieski, Alexander Steen, and Christoph Benzmüller. The Leo-III project.
In Alexander Bolotov and Manfred Kerber, editors, Joint Automated Reasoning
Workshop and Deduktionstreffen, page 38, 2014.

25. Marek Zaionc. The regular expression descriptions of unifier sets in the typed
lambda calculus. In Fundamenta Informaticae X, pages 309–322. North-Holland,
1987.

	Regular Patterns in Second-order Unification

