leecheng

PSTricks:

PostScript macros for Generic TeX.

|]o
= @

Mathematical Model for
Dripping Faucet a Dripping Faucet

o o o o

User’'s Guide

Timothy Van Zandt

12 March 1993
Version 0.93a

Author’s address:

Department of Economics, Princeton University,

Princeton, NJ 08544-1021, USA. Internetz@Princeton.EDU

Documentation prepared by Rolf Niepraschk and Herbert \W@ember 25, 2007

Contents

Welcome to PSTricks

Part | The Essentials

1 Arguments and delimiters

2 Color

3 Setting graphics parameters

4 Dimensions, coordinates and angles

5 Basic graphics parameters

Part Il Basic graphics objects
6 Lines and polygons

7 Arcs, circles and ellipses

8 Curves

9 Dots

10 Grids

11 Plots

Part Il More graphics parameters
12 Coordinate systems

13 Line styles

14 Fill styles

15 Arrowheads and such

CONTENTS

10

10

11

13

15

16

18

22

22

22

24

25

16 Custom styles

Part1V Custom graphics
17 The basics

18 Parameters

19 Graphics objects

20 Safe tricks

21 Pretty safe tricks

22 For hackers only

Part V Picture Tools

23 Pictures

24 Placing and rotating whatever
25 Repetition

26 Axes

Part VI ~ Text Tricks

27 Framed boxes

28 Clipping

29 Rotation and scaling boxes

Part VIl Nodes and Node Connections
30 Nodes

31 Node connections

CONTENTS

28

29

29

29

30

32

35

35

37

37

38

41

42

a7

a7

49

50

52

53

54

32 Attaching labels to node connections

Part VIII Special Tricks

33 Coils and zigzags

34 Special coordinates

35 Overlays

36 The gradient fill style

37 Adding color to tables

38 Typesetting text along a path

39 Stroking and filling character paths
40 Importing EPS files

41 Exporting EPS files

Help

A Boxes

B Tips and More Tricks

C Including PostScript code

D Troubleshooting

CONTENTS

58

63

63

64

66

67

67

68

69

70

70

73

73

75

76

e

Welcome to PSTricks

PSTricks is a collection of PostScript-basggKTnacros that is compatible with
most X macro packages, including Plaieq, IATEX, AMSTEX, and AMS-
IATEX. PSTricks gives you color, graphics, rotation, trees avetlays. PSTricks
puts the icing (PostScript) on your cakeX}'

To install PSTricks, follow the instructions in the fitead-me.pst that comes
with the PSTricks package. Even if PSTricks has already bestalled for you,
giveread-me.pst a look over.

This User’'s Guideverges on being a reference manual, meaning that it is not
designed to be read linearly. Here is a recommended strat@ggh reading this
brief overview of the features in PSTricks. Then thumb tigtothe entirdJser’s
Guideto get your own overview. Return to Part | (Essentials) aiadl iecarefully.
Refer to the remaining sections as the need arises.

When you cannot figure out how to do something or when troutides, check out
the appendices (Help). You just might be lucky enough to fiedlation. There is
also a ATpX file samples.pst of samples that is distributed with PSTricks. Look
to this file for further inspiration.

This documentation is written witltfIeX. Some examples uséTEX specific
constructs and some don’'t. However, there is nothiiigdLspecific about any of
the macros, nor is there anything that does not work Wil This package has
been tested with Plaingk, IATEX, AMS-IATeXand AMSTEX, and should work
with other EX macro packages as well.

The main macro file ipstricks.tex/pstricks.sty. Each of the PSTricks macro
files comes with a tex extension and asty extension; these are equivalent, but
the . sty extension means that you can include the file name 484 Hdocument
style option.

There are numerous supplementary macro files. A file, liktteeabove and the
left, is used in thidJser's Guideto remind you that you must input a file before
using the macros it contains.

For most PSTricks macros, even if you misuse them, you wiliged PostScript
errors in the output. However, it is recommended that yoolvesany X er-
rors before attempting to print your document. A few PSTSiokacros pass on
PostScript errors without warning. Use these with cares@sjly if you are using
a networked printer, because PostScript errors can causeter o bomb. Such
macros are pointed out in strong terms, using a warning lileedne:

Warning: Use macros that do not check for PostScript erroith w
care. PostScript errors can cause a printer to bomb!

Welcome to PSTricks 4

Keep in mind the following typographical conventions irsthiser’s Guide.

¢ All literal input characters, i.e., those that should appeabatim in your
input file, appear in uprigltelvetica andHelvetica-Bold fonts.

e Meta arguments, for which you are supposed to substitutdie a.g.,
angle) appear in slantetlelvetica-Oblique and Helvetica-BoldOblique fonts.

e The main entry for a macro or parameter that states its syappears in
a large bold fontexcept for the optional arguments, which are in medium
weight This is how you can recognize the optional arguments.

e References to PSTricks commands and parameters withigrpales are
set iNnHelvetica-Bold.

Welcome to PSTricks 5

The Essentials

1 Arguments and delimiters

Here is some nitty-gritty about arguments and delimiteed th really important
to know.

The PSTricks macros use the following delimiters:

Curly braces {<arg>}
Brackets (only for optional arguments)[<arg>]
Parentheses and commas for coordinates, y)
=and, for parameters <parl>=<vall>, ...

Spaces and commas are also used as delimiters within ar¢gjrbanin this case
the argument is expanded before looking for the delimiters.

Always use a period rather than a comma to denote the decioial, [so that
PSTricks doesn't mistake the comma for a delimiter.

The easiest mistake to make with the PSTricks macros is te ogethe delimiters.
This may generate complaints frongXI or PSTricks about bad arguments, or
other unilluminating errors such as the following:

! Use of \get@coor doesn’t match its definition.

! Paragraph ended before \pst@addcoor was complete.

! Forbidden control sequence found while scanning use of \check@arrow.
! File ended while scanning use of \lput.

Delimiters are generally the first thing to check when yousgeidrs with a PSTricks
macro.

Since PSTricks macros can have many arguments, it is usekidw that you
can leave a space or new line between any arguments, exdejgemearguments
enclosed in curly braces. If you need to insert a new line betwarguments
enclosed in curly braces, put a comment charactdrthe end of the line.

As a general rule, the first non-space character after a E&Tmacro should not
be a[or (. Otherwise, PSTricks might think that theor (is actually part of the

macro. You can always get around this by inserting a {jaof braces somewhere
between the macro and theor (.

The Essentials 6

2 Color

The grayscales

black, darkgray, gray, lightgray, andwhite,
and the colors

red, green, blue, cyan, magenta, andyellow

are predefined in PSTricks.

This means that these names can be used with the graphietsothjat are de-
scribed in later sections. This also means that the commgaag (or \red, etc.)
can be used much likerm or \tt, as in

{\gray This stuff should be gray.}

The commandsgray, \red, etc. can be nested like the font commands as well.
There are a few important ways in which the color commandsrdifom the font
commands:

1. The color commands can be used in and out of math mode (@nenso
restrictions, other than propegX grouping).

2. The color commands affect whatever is in their scope,(lngs), not sim-
ply characters.

3. The scope of the color commands does not extend across.page

4. The color commands are not as robust as font commands veeerinside
box macros. See page 79 for details. You can avoid most prsbley
explicitly grouping color commands (e.g., enclosing thepscin braces})
whenever these are in the argument of another comrhand.

You can define or redefine additional colors and grayscalés tve following
commands. In each caseymi is a number between 0 and 1. Spaces are used as
delimiters—don’t add any extraneous spaces in the arguanent

\newgray{ color}{num}

num is the gray scale specification, to be set by PostScriptigray oper-
ator. 0 is black and 1 is white. For example:

1 \newgray{darkgray}{.25}

IHowever, this is not necessary with the PSTricks LR-box camuis, expect when
\psverbboxtrue is in effect. See Section A.

Color 7

\newrgbcolor{color}{numl num2 num3}

numl num2 num3 is ared-green-bluespecification, to be set by PostScript’s
setrgbcolor operator. For example,

1 \newrgbcolor{green}{0 1 0}

\newhsbcolor{color}{numl num2 num3}

numl num2 num3 is anhue-saturation-brightnesspecification, to be set by
PostScript'ssethsbcolor operator. For example,

1 \newhsbcolor{mycolor}{.3 .7 .9}

\newcmykcolor{color}{numl num2 num3 num4}

numl num2 num3 num4 is acyan-magenta-yellow-bladpecification, to be
set by PostScript'aewcmykcolor operator. For example,

1 \newcmykcolor{hercolor}{.5 1 0 .5}

For defining new colors, theog model is a sure thinghsbis not recommended.
cmykis not supported by all Level 1 implementations of Post3crtthough

it is best for color printing. For more information on colorodels and color
specifications, consult thRostScript Language Reference Manuzihd Edition

(Red Book), and a color guide.

Driver notes: The commangstVerb must be defined.

3 Setting graphics parameters

PSTricks uses a key-value system of graphics parameteustongize the macros
that generate graphics (e.g., lines and circles), or geapttmbined with text
(e.g., framed boxes). You can change the default valuesrafpeters with the
command\psset, as in

1 \psset{fillcolor=yellow}
\psset{linecolor=blue, framearc=.3,dash=3pt 6pt}

N

The general syntax is:
\psset{parl=valuel,par2-value2, ...}

As illustrated in the examples above, spaces are used astéed for some of the
values. Additional spaces are allowed only following thenooa that separates
par=value pairs (which is thus a good place to start a new line if theeenaany
parameter changes). E.qg., the first example is acceptalilhdsecond is not:

1 \psset{fillcolor=yellow, linecolor=blue}
\psset{fillcolor= yellow,linecolor =blue }

N

Setting graphics parameters 8

The parameters are described throughoutlthsier's Guide as they are needed.

Nearly every macro that makes use of graphics parametemssajlou to include
changes as an optional first argument, enclosed in squasketsa For example,

1

\psline[linecolor=green,linestyle=dotted](8,7) [

draws a dotted, green line. It is roughly equivalent to

1

{\psset{linecolor=green,linestyle=dotted}\psline(8,7)} [

For many parameters, PSTricks processes the value and #tdnea peculiar
form, ready for PostScript consumption. For others, PE&&ritores the value in
a form that you would expect. In the latter case, thger's Guidewill mention
the name of the command where the value is stored. This isasgdln can use
the value to set other parameters. E.g.,

1 \psset{linecolor=\psfillcolor,doublesep=.5\pslinewidth}

However, even for these parameters, PSTricks may do sornegsiag and error-
checking, and you should always set them usiggget or as optional parameter
changes, rather than redefining the command where the waftiered.

4 Dimensions, coordinates and angles

Whenever an argument of a PSTricks macro is a dimension,rihéswoptional.
The default unit is set by the

unit=dim Default: 1cm

parameter. For example, with the default valua ai, the following are equiva-
lent:

[

\psset{linewidth=.5cm}
\psset{linewidth=.5}

N

By never explicitly giving units, you can scale graphics Iaeging the value of
unit.

You can use the default coordinate when setting non-PSJdickensions as well,
using the commands

\pssetlength{cmd}{dim}
\psaddtolength{cmd3}{dim}

wherecmd is a dimension register (iKIeX parlance, a “length”), andim is
a length with optional unit. These are analogousApX’s \setlength and
\addtolength.

Coordinate pairs have the form, y). The origin of the coordinate system is at
TeX's currentpoint. The commang@pecialCoor lets you use polar coordinates, in

Dimensions, coordinates and angles 9

the form (<r>;<a>), wherer is the radius (a dimension) ards the angle (see
below). You can still use Cartesian coordinates. For a cetapdescription of
\SpecialCoor, See Section 34.

Theunit parameter actually sets the following three parameters:

xunit=dim Default: 1cm
yunit=dim Default: 1cm
runit=dim Default: 1cm

These are the default units for x-coordinates, y-coordmaand all other coor-
dinates, respectively. By setting these independently, gan scale the x and y
dimensions in Cartesian coordinate unevenly. After chapginit to 1pt, the
two \psline's below are equivalent:

\psset{yunit=1pt}
\psline(0Ocm,20pt) (5cm,80pt)
\psline(0,20)(5,80)

[

N

w

The values of th@unit, xunit andyunit parameters are stored in the dimension
I’egiS'[eI‘S\psunit(a|SO\psrunit), \psxunit and\psyunit.

Angles, in polar coordinates and other arguments, shouldrngnber giving the
angle in degrees, by default. You can also change the urets fas angles with
the command

\degrees[num]

num should be the number of units in a circle. For example, yolhinige

1 \degrees[100]

to make a pie chart when you know the shares in percentagegeees without
the argument is the same as

1 \degrees[360]

The command

\radians
is short for
\degrees[6.28319]

\SpecialCoor lets you specify angles in other ways as well.

5 Basic graphics parameters

The width and color of lines is set by the parameters:

Basic graphics parameters 10

linewidth=dim Default:
linecolor=color Default:

Thelinewidth is stored in the dimension regist@islinewidth, and theélinecolor
is stored in the commangslinecolor.

The regions delimited by open and closed curves can be fadedetermined by
the parameters:

fillstyle=style
fillcolor=color

Whenfillstyle=none, the regions are not filled. Whefillstyle=solid, the re-
gions are filled withfillcolor. Otherfillstyle’s are described in Section 14.

The graphics objects all have a starred version (&8pgframe*) which draws a
solid object whose color ikinecolor. For example,

- \psellipsex(1,.5)(1,.5)

Open curves can have arrows, according to the
arrows=arrows

parameter. lhrrows=-, you get no arrows. lérrows=<->, you get arrows on both
ends of the curve. You can also agetows=-> andarrows=<-, if you just want an
arrow on the end or beginning of the curve, respectively.hWlie open curves,
you can also specify the arrows as an optional argument sgatlim{} brackets.
This should come after the optional parameters argumegt, E.

/ \psline[linewidth=2pt]{<-}(2,1)

Other arrow styles are described in Section 15

If you set the
showpoints=true/false Default:

parameter tarue, then most of the graphics objects will put dots at the apjrop
ate coordinates or control points of the objé&ection 9 describes how to change
the dot style.

2The parameter value is stored in the conditionalshowpoints.

Basic graphics parameters 11

Basic graphics objects

6 Lines and polygons

The objects in this section also use the following pararseter

linearc=dim Default:

The radius of arcs drawn at the corners of lines by\fa@ine and\pspolygon
graphics objectsdim should be positive.

framearc=num Default:

In the \psframe and the related box framing macros, the radius of rounded
corners is set, by default, to one-halfm times the width or height of the
frame, whichever is lesswm should be between 0 and 1.

cornersize=relative/absolute Default:

If cornersize iS relative, then theframearc parameter determines the ra-
dius of the rounded corners fapsframe, as described above (and hence
the radius depends on the size of the frame)cothersize is absolute,

then thelinearc parameter determines the radius of the rounded corners for
\psframe (and hence the radius is of constant size).

Now here are the lines and polygons:

\psline:[par]l{arrows}(x0,y0)(x1,y1)...(xn,yn)
This draws a line through the list of coordinates. For exampl

\psline[linewidth=2pt,linearc=.25]{->}(4,2)(0,1)(2,0)

\qline(coor0)(coorl)

This is a streamlined version gpsline that does not pay attention to the
arrows parameter, and that can only draw a single line segment. tRate
both coordinates are obligatory, and there is no optior@iraent for set-
ting parameters (usesset if you need to change theinewidth, or what-
ever). For example:

Basic graphics objects 12

\qline(0,0)(2,1)

\pspolygon:[par](x0,y0)(x1,y1)(x2,y2)...(xn,yn)
This is similar to\ps1line, but it draws a closed path. For example:

\pspolygon[linewidth=1.5pt](0,2)(1,2)
\pspolygon*[linearc=.2,1linecolor=darkgray](1,0)(1,2)(4,0)(4,2)

\psframe:[par](x0,y0)(x1,y1)

\psframe draws a rectangle with opposing cornes®, y0) and (x1, y1).
For example:

\psframe[linewidth=2pt,framearc=.3,fillstyle=solid,
fillcolor=lightgray](4,2)
\psframe*[linecolor=white](1,.5)(2,1.5)

7 Arcs, circles and ellipses

\pscircle=[par](x0,y0){radius}

This draws a circle whose center is@b, y0) and that has radiugdius.
For example:

\pscircle[linewidth=2pt](.5,.5){1.5}

\adisk(coor){radius}

This is a streamlined version §pscirclex. Note that the two arguments
are obligatory and there is no parameters arguments. Tgehhn color of
the disks, you have to us@sset:

\psset{linecolor=gray}

¢ \qdisk(2,3){4pt}

\pswedge=[par](x0,y0){radius}{anglel }{angle2}

This draws a wedge whose center igat, y0), that has radiugadius, and
that extends counterclockwise fromglel to angle2. The angles must be
specified in degrees. For example:

Arcs, circles and ellipses 13

\pswedge[linecolor=gray,linewidth=2pt,fillstyle=solid]{2}{03}{70}

2
\psellipsex[par](x0,y0)(x1,y1)

(x0, y0) is the center of the ellipse, and andy1 are the horizontal and
vertical radii, respectively. For example:

\psellipse[fillcolor=lightgray](.5,0)(1.5,1)

-1 0 1 \psarcx[par]{arrows}(x, y){radius}{angleA}{angleB}

This draws an arc fromangleA to angleB, going counter clockwise, for a
circle of radiusradius and centered atx, y). You must include either the
arrows argument or thex, y) argument. For example:

\psarc+[showpoints=true](1.5,1.5){1.5}{215}{0}

See howshowpoints=true draws a dashed line from the center to the arc;
this is useful when compaosing pictures.

\psarc also uses the parameters:

arcsepA=dim Default: opt
angleA is adjusted so that the arc would just touch a line of widith
that extended from the center of the arc in the directioangfeA.

arcsepB=dim Default: opt
This is likearcsepa, but angleB is adjusted.

arcsep=dim Default:
This just sets bothrcsepA andarcsepB.

These parameters make it easy to draw two intersecting dindghen use
\psarc With arrows to indicate the angle between them. For example:

\SpecialCoor
\psline[linewidth=2pt](4;50)(0,0)(4;10)
\psarc[arcsepB=2pt]{->}{3}{10}{50}

Arcs, circles and ellipses 14

\psarcn=[par]{arrows}(x, y){radius}{angleA}{angleB}

This is like \psarc, but the arc is drawmrlockwise You can achieve the
same effect usingpsarc by switchingangleA andangleB and the arrows.

8 Curves

\psbezier:[par]l{arrows}(x0,y0)(x1,y1)(x2,y2)(x3,y3)

\psbezier draws a bezier curve with the four control points. The curve
starts at the first coordinate, tangent to the line conngdtinthe second
coordinate. It ends at the last coordinate, tangent to tiee donnecting

to the third coordinate. The second and third coordinatesddition to
determining the tangency of the curve at the endpoints,“pldti the curve
towards themselves. For example:

\psbezier[linewidth=2pt, showpoints=true]{->}(0,0)(1,4)(2,1)(4,3.5)

showpoints=true puts dots in all the control points, and connects them by
dashed lines, which is useful when adjusting your bezierecur

\parabola:[par]{arrows}(x0, y0)(x1,yl)

Starting at(x0, y0), \parabola draws the parabola that passes through y0)
and whose maximum or minimum (g1, y1). For example:

\parabola=*(1,1)(2,3)
\psset{xunit=.01}
\parabola{<->}(400,3)(200,0)

The next three graphics objects interpolate an open oraloseve through the
given points. The curve at each interior point is perperdico the line bisecting
the angle ABC, where B is the interior point, and A and C arertlighboring
points. Scaling the coordinateéees notause the curve to scale proportionately.

The curvature is controlled by the following parameter:

SHowever, with\pscustom graphics object, described in Part Npsarcn is not redundant.

Curves 15

curvature=numl num2 num3 Default:

You have to just play around with this parameter to get what yant.
Individual values outside the range -1 to 1 are either igthare are for
entertainment only. Below is an explanation of what eachlmemaoes. A,
B and C refer to three consecutive points.

Lower values ofhum1 make the curve tighter.

Lower values ofnum?2 tighten the curve where the angle ABC is greater
than 45 degrees, and loosen the curve elsewhere.

num3 determines the slope at each point. nlfm3=0, then the curve is
perpendicular at B to the bisection of ABC.Adfim3=-1, then the curve at
B is parallel to the line AC. With this value (and only this we), scaling

the coordinates causes the curve to scale proportion&telyever, positive

values can look better with irregularly spaced coordinatadues less than
-1 or greater than 2 are converted to -1 and 2, respectively.

Here are the three curve interpolation macros:

\pscurve:[parl{arrows}(x1,yl)...(xn, yn)

This interpolates an open curve through the points. For pl&m

\pscurve[showpoints=true]{<->}(0,1.3)(0.7,1.8)
(3.3,0.5)(4,1.6)(0.4,0.4)

Note the use oObhowpoints=true t0 see the points. This is helpful when
constructing a curve.

\psecurve:[parl{arrows}(x1,yl)...(xn, yn)]

This is like\pscurve, but the curve is not extended to the first and last points.
This gets around the problem of trying to determine how theeghould
join the first and last points. Thehas something to do with “endpoints”.
For example:

\psecurve[showpoints=true](.125,8)(.25,4)(.5,2)
(1,1)(2,.5)(4,.25)(8,.125)

Curves 16

\psccurve:[parl{arrows}(x1, yl)...(xn, yn)

This interpolates a closed curve through the poiatstands for “closed”.
For example:

\psccurve[showpoints=true]
(.5,0)(3.5,1)(3.5,0)(.5,1)

9 Dots

The graphics object
\psdots=[par](x1,y1)(x2,y2)...(xn,yn)

puts a dot at each coordinate. What a “dot” is depends on the @ the
dotstyle=style Default:

parameter. This also determines the dots you get whé&@ipoints=true. The dot
styles are also pretty intuitive:

Style Example Style Example
e o o o o Square (] o (] [m} [m]
o e o o o0 square= R ET R
+ + + + + o+ pentagon o 0 0o o0 o
triangle ~ & & & 2 pentagonx * * ® ¢ ¢
trianglex 4 4 4 4 4 | Lo

As with arrows, there is a parameter for scaling the dots:
dotscale=numl num2 Default:

The dots are scaled horizontally laym1 and vertically bynum2. If you only
include one number, the arrows are scaled the same in betttidins.

There is also a parameter for rotating the dots:
dotangle=angle Default:

Thus, e.g., by settin@otangle=45, the + dotstyle gives you arx, and thesquare
dotstyle gives you a diamond. Note that the dots are first scaled amdrtitated.

The unscaled size of thedot style is controlled by thebarsize parameter, and
the unscaled size of the remaining dot styles is controliethbdotsize. These
are described in Section 15. The radius as determined byailhe vfdotsize is
the radius of solid or open circles. The other types of datoésimilar size

4The polygons are sized to have the same area as the circlésmarmt is just a rotated square.

Dots 17

The dot sizes are allowed to depend on thewidth because of thehowpoints
parameter . However, you can set the dot sizes to an absatuémsion by setting
the second number in thietsize parameter to 0. E.g.,

1 \psset{dotsize=3pt 0}

sets the size of the dots 3pt, independent of the value ©fnewidth.

10 Grids

PSTricks has a powerful macro for making grids and graphmape
\psgrid(x0,y0)(x1,y1)(x2,y2)

\psgrid draws a grid with opposing cornecsi, y1) and(x2, y2). The intervals
are numbered, with the numbers positioneda@tnd y0. The coordinates are
always interpreted as Cartesian coordinates. For example:

\pSgrid(OsO)(_ls_l)(312)

o
=

[y

o

(Note that the coordinates and label positioning work theesas with\psaxes.)

The main grid divisions occur on multiples afnit andyunit. Subdivisions are
allowed as well. Generally, the coordinates would be givemgegers, without
units.

If the (x0, y0) coordinate is omittedxI, y1) is used. The default forx1, y1) is
(0,0). If you don't give any coordinates at all, then the coordésadf the current
\pspicture environment are used or a 10x10 grid is drawn. Thus, you adnde
a\psgrid command without coordinates ingspicture environment to get a grid
that will help you position objects in the picture.

The main grid divisions are numbered, with the numbers dr@swito the vertical
line atx0 (away fromx2) and next to the horizontal line at (away fromy?2).
(x1, yl) can be any corner of the grid, as long@s, y2) is the opposing corner,
you can position the labels on any side you want. For exarsplapare

\psgrid(0,0)(4,1)

and

\psgrid(4,1)(0,0)

Grids 18

The following parameters apply only f@sgrid:

gridwidth=dim Default:
The width of grid lines.

gridcolor=color Default:

The color of grid lines.

griddots=num Default:

If num is positive, the grid lines are dotted, witlhm dots per division.

gridlabels=dim Default:

The size of the numbers used to mark the grid.

gridlabelcolor=color Default:

The color of the grid numbers.

subgriddiv=int Default:

The number of grid subdivisions.

subgridwidth=dim Default:

The width of subgrid lines.

subgridcolor=color Default:

The color of subgrid lines.

subgriddots=num Default:

Like griddets, but for subdivisions.

Here is a familiar looking grid which illustrates some of {erameters:

--------- --------- ---------- \psgrid[subgriddiv=1,griddots=10,gridlabels=7pt](-1,-1)(3,1)

Note that the values afunit andyunit are important parameters fQpsgrid,
because they determine the spacing of the divisions. Eife ivalue of these is
1pt, and then you type

1 \psgrid(0,0)(10in,10in) '

you will get a grid with 723 main divisions and 3615 subdioiss! (Actually,
\psgrid allows at most 500 divisions or subdivisions, to limit therdage done by
this kind of mistake.) Probably you want to @it to .5in or 1in, as in

1| \psgrid[unit=.5in](0,0)(20,20) [

Grids 19

11 Plots

The plotting commands described in this part are defingdtinplot. tex/pst-plot.sty,
pst-plot which you must load first.

The \psdots, \psline, \pspolygon, \pscurve, \psecurve and \psccurve graphics
objects let you plot data in a variety of ways. However, fitst yrave to generate
the data and enter it as coordinate pairsy). The plotting macros in this section
give you other ways to get and use the data. (Section 26 mli$igw to generate
axes.)

To parameter
plotstyle=style Default:

determines what kind of plot you get. Valid styles aoés, 1ine, polygon, curve,
ecurve, ccurve. E.g., if theplotstyle iS polygon, then the macro becomes a
variant of the\pspolygon object.

You can use arrows with the plot styles that are open curugsthkre is no op-
tional argument for specifying the arrows. You have to useaittows parameter
instead.

Warning: No PostScript error checking is provided for theéadar-
guments. Read Appendix C before including PostScript aodeei
arguments.

There are system-dependent limits on the amount of dataand
PostScript can handle. You are much less likely to exceed the
PostScript limits when you use théne, polygon or dots plot style,

with showpoints=false, linearc=0pt, and no arrows.

Note that the lists of data generated or used by the plot cordseannot contain
units. The values ofpsxunit and\psyunit are used as the unit.

\fileplot:[parl{file}

\plotfile is the simplest of the plotting functions to use. You justthee
file that contains a list of coordinates (without units), lsas generated by
Mathematica or other mathematical packages. The data cdalib@ted by
curly braces{ 3, parenthesesg), commas, and/or white space. Bracketing
all the data with square brackets] will significantly speed up the rate at
which the data is read, but there are system-dependens limihow much
data X can read like this in one chunk. (THemustgo at the beginning
of aline.) The file should not contain anything else (not evefdinput),
except for comments marked with

\plotfile only recognizes th&ine, polygon anddots plot styles, and it ig-
nores thearrows, linearc andshowpoints parameters. Thelistplot com-
mand, described below, can also plot data from file, withbase restric-

Plots 20

tions and with fastergX processing. However, you are less likely to exceed
PostScript's memory or operand stack limits wifllotfile.

If you find that it takes fX a long time to process yoyplotfile cOmmand,
you may want to use thepsttoEPs command described on page 71. This
will also reduce EX’s memory requirements.

\dataplot+[par]{commands}

/x\xyyfﬁx&géfﬁﬁﬁﬂﬁ

\dataplot IS also for plotting lists of data generated by other prograbut
you first have to retrieve the data with one of the followingncoands:

\savedata{command}[data]
\readdata{command}{file}

data or the data infile should conform to the rules described above for the
data in\fileplot (with \savedata, the data must be delimited ky], and
with \readdata, bracketing the data witlh] speeds things up). You can
concatenate and reuse lists, as in

\readdata{\foo}{foo.data}
\readdata{\bar}{bar.data}
\dataplot{\foo\bar}
\dataplot[origin=(0,1)]{\bar}

AW N R

The \readdata and\dataplot combination is faster thaxfileplot if you
reuse the datafileplot uses less of gX’s memory than\readdata and
\dataplot if yOou are alSO USSPSTtoEPS.

Here is a plot ofintegral (sin(x)). The data was generated by Mathemat-
ica, with

1| Table[{x,N[SinIntegral[x]]1},{x,0,20}]

and then copied to this document.

\psset{xunit=.2cm,yunit=1.5cm}

\savedata{\mydata}[
{{0,0},{1.,0.946083},{2.,1.60541},{3.,1.84865},{4.,1.7582},
{5.,1.54993},{6.,1.42469},{7.,1.4546},{8.,1.57419},
{9.,1.66504},{10.,1.65835},{11.,1.57831},{12.,1.50497},
{13.,1.49936},{14.,1.55621},{15.,1.61819},{16.,1.6313},
{17.,1.59014},{18.,1.53661},{19.,1.51863},{20.,1.54824}}]

\dataplot[plotstyle=curve, showpoints=true,
dotstyle=triangle]{\mydata}

\psline{<->}(0,2)(0,0)(20,0)

\listplot=[par]l{list}

Plots

\listplot is yet another way of plotting lists of data. This timiet should
be a list of data (coordinate pairs), delimited only by wisppace Jist is first
expanded by gX and then by PostScript. This means tlisd might be a
PostScript program that leaves on the stack a list of datgdoucan also in-
clude data that has been retrieved withaddata and\dataplot. However,

21

when using théline, polygon Or dots plotstyles withshowpoints=false,
linearc=0pt and NoO arrows)dataplot iS much less likely thanlistplot
to exceed PostScript's memory or stack limits. In the pregedxample,
these restrictions were not satisfied, and so the examplguisaent to
when\listplot iS used:

\listplot[plotstyle=curve, showpoints=true,
dotstyle=triangle]{\mydata}

B w N B

\psplot:[par] {Xmin}{Xmax} { function}

\psplot can be used to plot a functiof(x), if you know a little PostScript.
function should be the PostScript code for calculatifig). Note that you
must usex as the dependent variable. PostScript is not designed ifam-sc
tific computation, butpsplot is good for graphing simple functions right
from within TgX. E.g.,

\psplot[plotpoints=200]{0}{720}{x sin}

[

plots sinx) from 0 to 720 degrees, by calculating Gihroughly every 3.6
degrees and then connecting the points wiikline. Here are plots of
sin(x) cog((x/2)?) and sirff(x):

\psset{xunit=1.2pt}
\psplot[linecolor=gray,linewidth=1.5pt,plotstyle=curvel]%
{0}3{90}{x sin dup mul}
\psplot[plotpoints=100]1{03}{90}{
X sin x 2 div 2 exp cos mul}
\psline{<->}(0,-1)(0,1)
\psline{->}(100,0)

\parametricplot: [par] {tminHtmax{ function}

Plots

This is for a parametric plot ofx(t),y(t)). function is the PostScript code
for calculating the paix(t) y(t).

For example,

\parametricplot[plotstyle=dots,plotpoints=13]%
{-6}3{6}{1.2 t exp 1.2 t neg exp}

plots 13 points from the hyperboly = 1, starting with(1.276,1.2%) and
ending with(1.26,1.276).

Here is a parametric plot @6in(t),sin(2t)):

22

\psset{xunit=1.7cm}
\parametricplot[linewidth=1.2pt,plotstyle=ccurve]%

{0}{360}{t sin t 2 mul sin}
\psline{<->}(0,-1.2)(0,1.2)
\psline{<->}(-1.2,0)(1.2,0)

The number of points that th@splot and\parametricplot commands calculate
is set by the

plotpoints=int Default:

parameter. Usingurve or its variants instead dfine and increasing the value of
plotpoints are two ways to get a smoother curve. Both ways increase tgitiy
time. Which is better depends on the complexity of the comupurt. (Note that all
PostScript lines are ultimately rendered as a series (pertzort) line segments.)
Mathematica generally usésneto to connect the points in its plots. The default
minimum number of plot points for Mathematica is 25, but k&hpsplot and
\parametricplot, Mathematica increases the sampling frequency on seatibns
the curve with greater fluctuation.

Plots 23

More graphics parameters

The graphics parameters described in this part are commalh @0 most of the
graphics objects.

12 Coordinate systems

The following manipulations of the coordinate system aflly to pure graphics
objects.

A simple way to move the origin of the coordinate systemxtoy) is with the
origin={coor} Default: opt,0pt

This is the one time that coordinatesistbe enclosed in curly bracke{s rather
than parentheses.

A simple way to switch swap the axes is with the
swapaxes=true Default:

parameter. E.g., you might change your mind on the oriemtadf a plot after
generating the data.

13 Line styles

The following graphics parameters (in additionltmewidth andlinecolor) de-
termine how the lines are drawn, whether they be open oraloseves.

linestyle=style Default:

Valid styles arenone, solid, dashed anddotted.

dash=dim1 dim2 Default:
The black-white dash pattern for théashed line style. For example:

\psellipse[linestyle=dashed,dash=3pt 2pt](2,1)(2,1)

~a —

More graphics parameters 24

dotsep=dim Default:

The distance between dots in thetted line style. For example

UURTEE e \psline[linestyle=dotted,dotsep=2pt]{|-»}(4,1)
—

border=dim Default:
A positive value draws a border of widtlim and colomordercolor On
each side of the curve. This is useful for giving the impr@sshat one
line passes on top of another. The value is saved in the dioreregister
\psborder.

bordercolor=color Default:

Seeborder above.

For example:

\psline(0,0)(1.8,3)

\psline[border=2pt]{*->3}(0,3)(1.8,0)

\psframe*[linecolor=gray](2,0)(4,3)

\psline[linecolor=white,linewidth=1.5pt]{<->}(2.2,0)(3.8,3)

\psellipse[linecolor=white,linewidth=1.5pt,
bordercolor=gray,border=2pt](3,1.5)(.7,1.4)

doubleline=true/false Default:

Whentrue, a double line is drawn, separated by a space thihiflesep
wide and of colodoublecolor. This doesn’t work as expected with the
dashed linestyle, and some arrows look funny as well.

doublesep=dim Default:

Seedoubleline, above.

doublecolor=color Default:
Seedoubleline, above.
Here is an example of double lines:

\psline[doubleline=true,linearc=.5,
doublesep=1.5pt]{->}(0,0)(3,1)(4,0)

shadow=true/false Default:

Whentrue, a shadow is drawn, at a distang@adowsize from the original
curve, in the directiorhadowangle, and of colorshadowcolor.

shadowsize=dim Default:

Seeshadow, above.

Line styles 25

shadowangle=angle Default:

Seeshadow, above.

shadowcolor=color Default:
Seeshadow, above.

Here is an example of thehadow feature, which should look familiar:

\pspolygon[linearc=2pt,shadow=true, shadowangle=45,
xunit=1.1](-1,-.55)(-1,.5)(-.8,.5)(-.8,.65)
(-.2,.65)(-.2,.5)(1,.5)(1,-.55)

Here is another graphics parameter that is related to linethht applies only to
the closed graphics objecissframe, \pscircle, \psellipse and\pswedge:

dimen=outer/inner/middle Default:

It determines whether the dimensions refer to the insidesid® or middle of the
boundary. The difference is noticeable when the linewidtlaige:

1 _ \psset{linewidth=.25cm}

......... \psframe[dimen=inner](0,0)(2,1)
\psframe[dimen=middle] (0,2)(2,3)

- """" \psframe[dimen=outer](3,0)(4,3)

With \pswedge, this only affects the radius; the origin always lies in thielde
the boundary. The right setting of this parameter dependsoanyou want to
align other objects.

14 Fill styles

The next group of graphics parameters determine how clasgidns are filled.
Even open curves can be filled; this does not affect how theedarpainted.
fillstyle=style Default:

Valid styles are

none, solid, vlines, vlines#*, hlines, hlines*, crosshatch
andcrosshatchzx.

vlines, hlines andcrosshatch draw a pattern of lines, according to the
four parameters list below that are prefixed witttch. The« versions
also fill the background, as in th®1id style.

Fill styles 26

fillcolor=color Default:

The background color in th&1id, vlinesx, hlines* andcrosshatchx

styles.

hatchwidth=dim Default:
Width of lines.

hatchsep=dim Default:

Width of space between the lines.

hatchcolor=color Default:

Color of lines. Saved iRpshatchcolor.

hatchangle=rot Default:

Rotation of the lines, in degrees. For exampl@aifchangle is set to45,
thevlines style draws lines that run NW-SE, and flieines style draws
lines that rurswW-NE, and thecrosshatch style draws both.

Here is an example of thé ines and related fill styles:

\pspolygon[fillstyle=vlines](0,0)(0,3)(4,0)

\pspolygon[fillstyle=hlines](0,0)(4,3)(4,0)

\pspolygon[fillstyle=crosshatch+,fillcolor=black,
hatchcolor=white,hatchwidth=1.2pt,hatchsep=1.8pt,
hatchangle=0](0,3)(2,1.5)(4,3)

Don't be surprised if the checkered part of this examplel@bE\pspolygon) looks
funny on low-resolution devices. PSTricks adjusts thedlige that they all have
the same width, but the space between them, which in thisigddack, can have
varying width.

Each of the pure graphics objects (except those beginnittyayihas a starred
version that produces a solid object of coldhecolor. (It automatically sets
linewidth t0 zero,fillcolor tO linecolor, fillstyle tO solid, andlinestyle tO

none.)

15 Arrowheads and such

Lines and other open curves can be terminated with variousvbeads, t-bars or
circles. The

arrows=style Default:

Arrowheads and such 27

parameter determines what you get. It can have the followaiges, which are
pretty intuitive®

Value Example Name

- — None

<-> <— Arrowheads.

>-< > Reverse arrowheads.
<<->> =—>> Double arrowheads.
>>-<< > Double reverse arrowheads.

[———> T-bars, flush to endpoints.
|«-|+ F—— T-bars, centered on endpoints.

[-] E——3 Square brackets.

(-) & Rounded brackets.

o-o °— Circles, centered on endpoints.

»-x *——* Disks, centered on endpoints.
oo-oo °— Circles, flush to endpoints.
»x—x% ® ¢ Disks, flush to endpoints.

c-c — Extended, rounded ends.
cc-cc —— Flush round ends.
c-C — Extended, square ends.

You can also mix and match. E.gs3, =-) and [-> are all valid values of the
arrows parameter.

Well, perhaps the, cc andC arrows are not so obvious: andC correspond to
setting PostScript'dinecap to 1 and 2, respectivelyc is like ¢, but adjusted so
that the line flush to the endpoint. These arrows styles atieeale when the
linewidth is thick:

\psline[linewidth=.5cm](0,0)(0,2)
\psline[linewidth=.5cm]{c-c}(1,0)(1,2)
\psline[linewidth=.5cm]{cc-cc}(2,0)(2,2)
\psline[linewidth=.5cm]{C-C}(3,0)(3,2)

- c-c cc-cc C-C

Almost all the open curves let you include therows parameters as an optional
argument, enclosed in curly braces and before any othermamgts (except the
optional parameters argument). E.g., instead of

1 \psline[arrows=<-,linestyle=dotted] (3,4) [

you can write

5This is TEXs version of WYSIWYG.

Arrowheads and such 28

1 \psline[linestyle=dotted]{<-3}(3,4)

The exceptions are a few streamlined macros that do not siuhpaise of arrows
(these all begin withy).

The size of these line terminators is controlled by the feilg parameters. In
the description of the parameters, the width always refethd dimension per-
pendicular to the line, and length refers to a dimension endhection of the
line.

arrowsize=dim num Default:

Width of arrowheads, as shown below.

arrowlength=num Default:

Length of arrowheads, as shown below.

arrowinset=num Default:

Size of inset for arrowheads, as shown below.

|

length
l Tinset o
) arrowsize = dim num
F— width — , .

width = num X linewidth + dimI

length = arrowlength X width
inset = arrowinset X height

tbarsize=dim num Default:

The width of at-bar, square bracket or rounded bracketistimeslinewidth,
plusdim.

bracketlength=num Default:

The height of a square bracketdsm times its width.

rbracketlength=num Default:

The height of a round bracket imm times its width.

dotsize=dim num Default:

The diameter of a circle or disc igim timeSlinewidth, plusdim.

arrowscale=arrowscale=numl num2 Default:

Imagine that arrows and such point down. This scales thehwoéithe
arrows bynumi and the length (height) byium2. If you only include

Arrowheads and such 29

one number, the arrows are scaled the same in both directiGhang-

ing arrowscale can give you special effects not possible by changing the
parameters described above. E.g., you can change the Witltle® used

to draw brackets.

16 Custom styles

You can define customized versions of any macro that has ptearchanges as
an optional first argument using tReewpsobject command:

\newpsobject{namel}{object}{parl=valuel, ...}

asin

1 \newpsobject{myline}{psline}{linecolor=green,linestyle=dotted}
2| \newpsobject{\mygrid}{psgrid}{subgriddiv=1,griddots=10,
3 gridlabels=7pt}

The first argument is the name of the new command you want toedefThe
second argument is the name of the graphics object. Notédtiabf these argu-
ments are given without the backslash. The third arguméheispecial parameter
values that you want to set.

With the above examples, the commanggline and\mygrid work just like the
graphics objectpsline it is based on, and you can even reset the parameters that
you set when definingmyline, as in:

1 \myline[linecolor=gray,dotsep=2pt](5,6)

Another way to define custom graphics parameter configuraimwith the
\newpsstyle{name}{parl=valuel, ...}

command. You can then set theyle graphics parameter teame, rather than
setting the parameters given in the second argumeieapsstyle. For example,

1| \newpsstyle{mystyle}{linecolor=green,linestyle=dotted}
2 \psline[style=mystyle](5,6)

Custom styles 30

Custom graphics

17 The basics

PSTricks contains a large palette of graphics objects, dmtetimes you need
something special. For example, you might want to shadestjiem between two
curves. The

\pscustom:[par]{commands}

command lets you “roll you own” graphics object.

Let's review how PostScript handles graphics. pathis a line, in the mathe-
matical sense rather than the visual sense. A path can hasabkdisconnected
segments, and it can be open or closed. PostScript has sanaunators for mak-
ing paths. The end of the path is called therent point but if there is no path
then there is no current point. To turn the path into somgthisual, PostScript
canfill the region enclosed by the path (that is wfiatistyle and such are about),
andstrokethe path (that is whatinestyle and such are about).

At the beginning of\pscustom, there is no path. There are various commands that
you can use inpscustom for drawing paths. Some of these (the open curves) can
also draw arrows\pscuston fills and strokes the path at the end, and for special
effects, you can fill and stroke the path along the way usii@ill and\pstroke

(see below).

Driver notes: \pscustom uses\pstverb and\pstunit. There are system-dependent
limits on how long the argument dkpecial can be. You may run into this limit using
\pscustom because all the PostScript code accumulatedpbyustom is the argument of

a single\special command.

18 Parameters

You need to keep the separation between drawing, strokiddfiting paths in
mind when setting graphics parameters. Thewidth andlinecolor parameters
affect the drawing of arrows, but since the path commandsadastnoke or fill
the paths, these parameters, andiftiestyle, fillstyle and related parameters,
do not have any other effect (except that in some cagesidth is used in some
calculations when drawing the pathhscustom and\fill make use ofillstyle

Custom graphics 31

and related parameters, angkcustom and \stroke make use of plinestyle and
related parameters.

For example, if you include
\psline[linewidth=2pt,linecolor=blue,fillstyle=vlines]{<-}(3,3)(4,0)

in \pscustom, then the changes thinewidth and linecolor Will affect the size
and color of the arrow but not of the line when it is strokedd éime change to
fillstyle Will have no effect at all.

Theshadow, border, doubleline andshowpoints parameters are disabled\isscustom,
and theorigin andswapaxes parameters only affecpscustom itself, but there are
commands (described below) that let you achieve thesead pdfacts.

Thedashed anddotted line styles need to know something about the path in order
to adjust the dash or dot pattern appropriately. You can thiginformation by
setting the

linetype=int Default:

parameter. If the path contains more than one disconneetpdent, there is no
appropriate way to adjust the dash or dot pattern, and yottragywell leave the
default value oftinetype. Here are the values for simple paths:

Value Type of path
0 Open curve without arrows.
-1 Open curve with an arrow at the beginning.
-2 Open curve with an arrow at the end.
-3 Open curve with an arrow at both ends.
1 Closed curve with no particular symmetry.
n>1 Closed curve witlh symmetric segments.

19 Graphics objects
You can use most of the graphics objects\pacustom. These draw paths and
making arrows, but do not fill and stroke the paths.

There are three types of graphics objects:

Special Special graphics objects includ@sgrid, \psdots, \qline and \qdisk.
You cannot use special graphics objectsggcustomn.

Closed You are allowed to use closed graphics objectgpitustom, but their ef-
fect is unpredictabl€.Usually you would use the open curves pldsosepath
(see below) to draw closed curves.

6The closed objects never use the current point as an cotedinat typically they will close
any existing paths, and they might draw a line between theentpoint and the closed curved.

Graphics objects 32

Open The open graphics objects are the most useful commandsdeirdy paths
with \pscustom. By piecing together several open curves, you can draw
arbitrary paths. The rest of this section pertains to thegpaphics objects.

By default, the open curves draw a straight line between tigeot point, if it
exists, and the beginning of the curve, except when the daegims with an arrow.
For example

\pscustom{
\psarc(0,0){1.5}{5}{85}
\psarcn{->}(0,0){3}{85}{5}}

Also, the following curves make use of the current pointt iéxists, as a first
coordinate:

\psline and\pscurve.
The plot commands, with thEine Or curve plotstyle.
\psbezier if you only include three coordinates.

For example:

\pscustom[linewidth=1.5pt]{
\psplot[plotstyle=curve]{.67}{4}{2 x div}
\psline(4,3)}

We'll see later how to make that one more interesting. Heamather example

\pscustom{
\psline[linearc=.2]{|-3}(0,2)(0,0)(2,2)
\psbezier{->}(3,3)(1,0)(4,3)}

However, you can control how the open curves treat the cup@int with the
liftpen=0/1/2 Default:

parameter.

If 1iftpen=0, you get the default behavior described above. For example

Graphics objects 33

\pscustom[linewidth=2pt,fillstyle=solid,fillcolor=gray]{
\pscurve(0,2)(1,2.5)(2,1.5)(4,3)
\pscurve(4,1)(3,0.5)(2,1)(1,0)(0,.5)}

If 1iftpen=1, the curves do not use the current point as the first coomlif@xtcept
\psbezier, but you can avoid this by explicitly including the first cdorate as an
argument). For example:

\pscustom[linewidth=2pt,fillstyle=solid,fillcolor=gray]{
\pscurve(0,2)(1,2.5)(2,1.5)(4,3)
\pscurve[liftpen=1](4,1)(3,0.5)(2,1)(1,0)(0,.5}

If 1iftpen=2, the curves do not use the current point as the first coorlirzatd
they do not draw a line between the current point and the begjrof the curve.
For example

\pscustom[linewidth=2pt,fillstyle=solid,fillcolor=gray]{
\pscurve(0,2)(1,2.5)(2,1.5)(4,3)
\pscurve[liftpen=2](4,1)(3,0.5)(2,1)(1,0)(0,.5}

Later we will use the second example to fill the region betwentwo curves,
and then draw the curves.

20 Safe tricks

The commands described under this heading, which can onigdakimpscustom,
do not run a risk of PostScript errors (assuming your docuro@mpiles without
TeX errors).

Let’s start with some path, fill and stroke commands:

\newpath
Clear the path and the current point.

\moveto(coor)

This moves the current point tx, y).

Safe tricks 34

\closepath

This closes the path, joining the beginning and end of eamtepithere may
be more than one piece if you ussveto).’

\stroke[par]

This strokes the path (non-destructivel\)\pscustom automatically strokes
the path, but you might want to stroke it twice, e.g., to adaalér. Here

is an example that makes a double line and adds a border xdmspte is

kept so simple that it doesn’t negpscustom at all):

\psline(0,3)(4,0)

\pscustom[linecolor=white,linewidth=1.5pt]{%
\psline(0,0)(4,3)
\stroke[linewidth=5\pslinewidth]
\stroke[linewidth=3\pslinewidth,linecolor=black]}

\fill[par]

This fills the region (non-destructively)\pscustom automatically fills the
region as well.

\gsave

This saves the current graphics state (i.e., the path,,daterwidth, co-
ordinate system, etc.\grestore restores the graphics stat&gsave and
\grestore Must be used in pairs, properly nested with respeqgtXogfoups.
You can have have nest&gkave-\grestore pairs.

\grestore
See above.

Here is an example that fixes an earlier example, ugigsye and\grestore:

\psline{<->}(0,3)(0,0)(4,0)
\pscustom[linewidth=1.5pt]{
\psplot[plotstyle=curve]{.67}{4}{2 x div}
\gsave
\psline(4,3)
\fill[fillstyle=solid,fillcolor=gray]
\grestore}

Observe how the line added hysline(4,3) is never stroked, because it
is nested ingsave and\grestore.

Here is another example:

"Note that the path is automatically closed when the regidiflésl. Use\closepath if you
also want to close the boundary.

Safe tricks 35

\pscustom[linewidth=1.5pt]{

\pscurve(0,2)(1,2.5)(2,1.5)(4,3)

\gsave
\pscurve[liftpen=1](4,1)(3,0.5)(2,1)(1,0)(0,.5)
\fill[fillstyle=solid,fillcolor=gray]

\grestore}

\pscurve[linewidth=1.5pt](4,1)(3,0.5)(2,1)(1,0)(0,.5)

Note how | had to repeat the secorgscurve (I could have repeated it
within \pscustom, with 1iftpen=2), because | wanted to draw a line between
the two curves to enclose the region but | didn't want thie lim be stroked.

The next set of commands modify the coordinate system.

\translate(coor)
Translate coordinate system loy, y). This shifts everything that comes
later by (x, y), but doesn'’t affect what has already been drawn.
\scale{numl num2}
Scale the coordinate system in both directionsilay 1, or horizontally by
numl and vertically bynum2.
\rotate{angle}

Rotate the coordinate system bygle.

\swapaxes

Switch the x and y coordinates. This is equivalent to

\rotate{-90}
\scale{-1 1 scale}

[

N

\msave

Save the current coordinate system. You can then restolithitmtrestore.
You can have nesteghsave-\mrestore pairs. \msave and\mrestore do not
have to be properly nested with respectt §roups ongsave and\grestore.
However, remember thafgsave and \grestorealso affect the coordinate
system. \msave-\mrestore lets you change the coordinate system while
drawing part of a path, and then restore the old coordinagtesywithout
destroying the path)\gsave-\grestore, On the other hand, affect the path
and all other componments of the graphics state.

\mrestore

See above.
And now here are a few shadow tricks:

\openshadow|[par]
Strokes a replica of the current path, using the variousshgdrameters.

Safe tricks 36

\closedshadow[par]

Makes a shadow of the region enclosed by the current pathiasvére
opague regions.

\movepath(coor)

Moves the path byx, y). Use\gsave-\grestore if you don’'t want to lose
the original path.

21 Pretty safe tricks

The next group of commands are safe,long as there is a current point
\lineto(coor)
This is a quick version ofpsline(<coor>).

\rlineto(coor)

This is like\lineto, but (x, y) is interpreted relative to the current point.

\curveto(x1, y1)(x2,y2)(x3,y3)
This is a quick version ofpsbezier(xl, y1)(x2, y2)(x3, y3).

\rcurveto(xl, y1)(x2,y2)(x3,y3)
This is like \curveto, but (x1,y1), (x2,y2) and (x3, y3) are interpreted

relative to the current point.

22 For hackers only

For PostScript hackers, there are a few more commands. Béoswad Appendix
C before using these. Needless to say:

Warning: Misuse of the commands in this section can cause
PostScript errors.

The PostScript environment in effect withscustom has one unit equal to ongX
pt.

\code{code}
Insert the raw PostScript code.

\dim{dim}

Convert the PSTricks dimension to the numbep©$, and inserts it in the
PostScript code.

Pretty safe tricks 37

\coor(x1,yl)(x2,y2)...(xn, yn)
Convert one or more PSTricks coordinates to a pair of numfesiagpt
units), and insert them in the PostScript code.
\rcoor(x1,yl)(x2,y2)...(xn, yn)
Like \coor, but insert the coordinates in reverse order.

\file{file}

This is like \code, but the raw PostScript is copied verbatim (except com-
ments delimited bye) from file.

\arrows{arrows}

This defines the PostScript operatarsowA andArrowB so that

1 x2 y2 x1 y1 ArrowA
2 x2 y2 x1 yl1 ArrowB

each draws an arrow(head) with the tigat, y1) and pointing fromx2, y2).
ArrowA leaves the current point at end of the arrowhead, where aecbnn
line should start, and leaves2, y2) on the stackArrowB does not change
the current point, but leaves

1| x2 y2 x1’7 yl’

on the stack, wherexi’, y1') is the point where a connecting line should
join. To give an idea of how this work, the following is roughhow
PSTricks draws a bezier curve with arrows at the end:

\pscustom{
\arrows{|->}
\code{
80 140 5 5 ArrowA
30 -30 110 75 ArrowB
curveto}}

\setcolor{color}

Set the color taolor.

For hackers only 38

Picture Tools

23 Pictures

The graphics objects angput and its variants do not changgX’s current point
(i.e., they create a 0-dimensional box). If you string salef these together (and
any other 0-dimensional objects), they share the same icadedsystem, and so
you can create a picture. For this reason, these macroslke® giature objects

If you create a picture this way, you will probably want to githe whole pic-
ture a certain size. You can do this by putting the picturectisjin apspicture
environment, as in:

\pspicture:[baseline](x0,y0)(x1,yl)
picture objects \endpspicture

The picture objects are put in a box whose lower left-hanaeois at(x0, y0)
(by default,(0,0)) and whose upper right-hand corner igat, y1).

By default, the baseline is set at the bottom of the box, keibihtional argument
[<baseline>] sets the baseline fractidieseline from the bottom. Thusbhaseline
is a number, generally but not necessarily between 0 and youlfinclude this
argument but leave it empty {), then the baseline passes through the origin.

Normally, the picture objects can extend outside the boueslaf the box. How-
ever, if you include the, anything outside the boundaries is clipped.

Besides picture objects, you can put anything ipspicture that does not take
up space. E.g., you can put in font declarations and\psset, and you can put
in braces for grouping. PSTricks will alert you if you inceidomething that does
take up spac@.

IATEX users can type

\begin{pspicture}... \end{pspicture}

8When PSTricks picture objects are included iNgspicture environment, they gobble up
any spaces that follow, and any preceding spaces as welingigkess likely that extraneous space
gets inserted. (PSTricks objects always ignore spaceddhadv. If you also want them to try
to neutralize preceding space when used outsidé\pspicture environment (e.g., in afTpX
picture environment), then use the commaxkiil1Glue. The commandDontKillGlue turns
this behavior back off.)

Picture Tools 39

You can use PSTricks picture objects inAggX picture environment, and you
can useAIpX picture objects in a PSTrickgspicture environment. However,
thepspicture environment makesTEX's picture environment obsolete, and has
a few small advantages over the latter. Note that the argtstdrihepspicture
environment work differently from the arguments 8IgX’s picture environment
(i.e., the right way versus the wrong way).

Driver notes: The clipping option:-J uses\pstVerb and\pstverbscale.

24 Placing and rotating whatever

stuff

PSTricks contains several commands for positioning anatingt an HR-mode
argument. All of these commands endbirt, and bear some similarity t6TgX's
\put command, but with additional capabilities. LikdEX's \put and unlike the
box rotation macros described in Section 29, these comn@dmdst take up any
space. They can be used inside and outgidgicture environments.

Most of the PSTrickgut commands are of the form:
\put* arg{<rotation>}(<coor>){<stuff>}

With the optional argumentstuff is first put in a

\psframeboxx[boxsep=false]{<stuff>}

thereby blotting out whatever is behireLff. This is useful for positioning text
on top of something else.

arg refers to other arguments that vary from gag command to another, The
optional rotation is the angle by whiclstuff should be rotated; this arguments
works pretty much the same for alit commands and is described further below.
The (<coor>) argument is the coordinate for positionigstgff, but what this really
means is different for eaglut command. The&<coor>) argument is shown to be
obligatory, but you can actually omit it if you include the&tation argument.

The rotation argument should be an angle, as described in Section 4,éantle
can be preceded by an This causes all the rotations (except the box rotations
described in Section 29) within which theput command is be nested to be un-
done before setting the angle of rotation. This is mainlyfulder getting a piece

of text right side up when it is nested inside rotations. Fameple,

\rput{343}{%
\psframe(-1,0)(2,1)
\rput[br]{+0}(2,1){\em stuff}}

There are also some letter abbreviations for the commandsanghese indicate
which way is up:

Placing and rotating whatever 40

Here is a marginal note.

Letter Shortfor Equiv. to Letter Shortfor Equiv. to

U Up 0 N North *0
L Left 90 W West *90
D Down 180 S South *180
R Right 270 E East *270

This section describes just a two of the PSTripks commands. The most basic
one command is

\rput:[refpoint]{rotation}(x, y){stuff}

refpoint determines the reference pointfff, and this reference point is trans-
lated to(x, y).

By default, the reference point is the center of the box. this be changed by
including one or two of the following in the optionaifpoint argument:

Horizontal Vertical

1 Left t Top

r Right b Bottom
B Baseline

Visually, here is where the reference point is set of theoumricombinations (the
dashed line is the baseline):

tl t tr

[r

Bl ------ B------- Br
bl b br

There are numerous examples\gfut in this documentation, but for now here is
a simple one:

\rput[b]{90}(-1,0){Here is a marginal note.}

One common use of a macro such\asut is to put labels on things. PSTricks
has a variant ofrput that is especially designed for labels:

\uput={labelsep}[refangle]l{rotation}(x, y){stuff}

This placestuff distancelabelsep from (x, y), in the directionrefangle.

The default value ofabelsep is the dimension register
\pslabelsep

You can also change this be setting the

Placing and rotating whatever 41

labelsep=dim Default:

parameter (but remember thaiput does have an optional argument for setting
parameters).

Here is a simple example:

((1,1) \qdisk(1,1){lpt}
\uput[45](1,1){(1,1)}

Here is a more interesting example whiigut is used to make a pie chart;

\psset{unit=1.2cm}

\pspicture(-2.2,-2.2)(2.2,2.2)
\pswedge[fillstyle=solid,fillcolor=gray]{2}{0}{70}
\pswedge[fillstyle=solid,fillcolor=lightgray]{2}{70}{200}
\pswedge[fillstyle=solid,fillcolor=darkgray]{2}{200}{360}
\SpecialCoor
\psset{framesep=1.5pt}
\rput(1.2;35){\psframebox+{\small\$9.0M}}
\uput{2.2}[45](0,0){Oreos}
\rput(1.2;135){\psframebox+{\small\$16.7M}}
\uput{2.23}[135](0,0){Heath}
\rput(1.2;280){\psframebox*{\small\$23.1M}}
\uput{2.23}[280](0,0){M\&M}

\endpspicture

M&M

You can use the following abbreviations fefangle, which indicate the direction
the angle point$®1!

9PSTricks is distributed with a useful tool for convertingaléo piechartspiechart.sh. This
is a UNIX sh script written by Denis Girou.

10Using the abbreviations when applicable is more efficient.

1There is an obsolete commaXRput that has the same syntaxagut and that works almost

Placing and rotating whatever 42

Letter Short for Equiv. to Letter Short for Equiv. to

r right 0 ur up-right 45
u up 90 ul up-left 135
1 left 180 dl down-left 225
d down 270 dr down-right 315

The first example could thus have been written:

[(L.1) \qdisk(1,1){1pt}
\uput [ur](1,1){(1,1)}

Driver notes: The rotation macros ugsstVerb and\pstrotate.

25 Repetition
The macro
\multirput:[refpoint]1{angle}(x0, y0)(x1, y1){int}{stuff}
is a variant of\rput that puts dowrint copies, starting atx0, y0) and advancing

by (x1,y1) each time.(x0, y0) and(x1, y1) are always interpreted as Cartesian
coordinates. For example:

* * \multirput(.5,0)(.3,.1){12}{*}

If you want copies of pure graphics, it is more efficient to use
\multips{angle}(x0, y0)(x1, y1){int}{graphics}

graphics can be one or more of the pure graphics objects describedrtinl Par
\pscustom. Note that\multips has the same syntax asultirput, except that

the same way, except threfangle argument has the syntax Rfput’s refpoint argument, and it
gives the point irstuff that should be aligned wittix, y). E.g.,

\qdisk(4,0){2pt} °
\Rput[t1](4,0){(x,v)} (%)
Here is the equivalence betwegaput’s refangle abbreviations anNRput’s refpoint abbrevia-

tions:

\uput r u 1 d wur wul dr dl
\NRput 1 b r t bl br tr rl

Some people preféRput’s convention for specifying the position efuff over\uput’s.

Repetition 43

there is norefpoint argument (since the graphics are zero dimensional anyway).
Also, unlike\multirput, the coordinates can be of any type. &rerfull \hbox
warning indicates that theraphics argument contains extraneous output or space.
For example:

\def\zigzag{\psline(0,0)(.5,1)(1.5,-1)(2,0)}%

/\/\/\/\/\/\/\/\/ \psset{unit=.25,1linewidth=1.5pt}

|I|H|!HHHHIII

\multips(0,0)(2,0){8}{\zigzag}

PSTricks is distributed with a much more general loop macatied \multido.
You must input the filanultido.tex or multido.sty. See the documentation
multido.doc for details. Here is a sample of what you can do:

\begin{pspicture}(-3.4,-3.4)(3.4,3.4)
\newgray{mygray}{0} % Initialize ‘mygray’ for benefit
\psset{fillstyle=solid,fillcolor=mygray} % of this line.
\SpecialCoor
\degrees[1.1]
\multido{\n=0.0+.1}{11}{%
\newgray{mygray}{\n}
\rput{\n}{\pswedge{3}{-.05}{.05}}
\uput{3.2}[\n](0,0){\small\n}}
\end{pspicture}

0.3 02

0.9

0.8

All of these loop macros can be nested.

26 Axes

|Il%%IHHiII

The axes command described in this section is definpsitifplot. tex/ pst-plot.sty,
which you must input firstpst-plot. tex, in turn, will automatically inpuiultido. tex,
which is used for putting the labels on the axes.

Axes 44

The macro for making axes is:
\psaxes:[par]{arrows}(x0, y0)(x1,yl1)(x2,y2)

The coordinates must be Cartesian coordinates. They wergaime way as with
\psgrid. That is, if we imagine that the axes are enclosed in a retdand , y1)
and(x2, y2) are opposing corners of the rectangle. (l.e., the x-axisnalg from
x1 to x2 and the y-axis extends frop1 to y2.) The axes intersect a0, y0). For

example:
SRR 2,y2)
.(XO] yQ) \psaxes[linewidth=1.2pt,labels=none,
: \ : : ticks=none]{<->}(2,1)(0,0)(4,3)
E\ 1 2 3 4
(x1,y1) If (x0,y0) is omitted, then the origin isx1, y1). If both (x0, y0) and (x1, y1)

are omitted,(0,0) is used as the default. For example, when the axes enclose a
single orthont, onlyx2, y2) is needed:

\psaxes{->}(4,2)

o

Labels (numbers) are put next to the axes, on the same sideaagly1. Thus, if
we enclose a different orthont, the numbers end up in the pigice:

o

\psaxes{->}(4,-2)

Also, if you set thearrows parameter, the first arrow is used for the tipsaand
y1, while the second arrow is used for the tipsatndy2. Thus, in the preceding
examples, the arrowheads ended up in the right plac&too.

When the axes don't just enclose an orthont, that is, whemtigén is not at a
corner, there is some discretion as to where the numbersdsgouThe rules for
positioning the numbers and arrows described above stillyapnd so you can
position the numbers as you please by switchingand y2, or x1 andx2. For

example, compare

12ncluding a first arrow in these examples would have had recefiecause arrows are never
drawn at the origin.

Axes 45

\psaxes{<->}(0,0)(-2.5,0)(2.5,2.5)

with what we get wher1 andx2 are switched:

\psaxes{<->}(0,0)(2.5,0)(-2.5,2.5)

\psaxes puts the ticks and numbers on the axes at regular intervaisg uhe
following parameters:

Horitontal | Vertical | Dflt | Description
Ox=num Oy=num 0 | Label at origin.
Dx=num Dy=num 1 | Label increment
dx=dim oy=dim | Opt | Dist btwn labels.

Whendx is 0, Dx\psxunit is used instead, and similarly fay. Hence, the default
values ofopt for dx anddy are not as peculiar as they seem.

You have to be very careful when setting px, oy andpy to non-integer values.
multido.tex increments the labels using rudimentary fixed-point arétioy and

it will come up with the wrong answer unless andpx, or oy andpy, have the
same number of digits to the right of the decimal. The onlyegxion is thabx or

oy can always be an integer, evemifor by is not. (The converse does not work,
however.$3

Note that\psaxes’s first coordinate argument determines the physical posioif
the origin, but it doesn't affect the label at the origin. Eifjthe origin is at(1,1),
the origin is still labeled along each axis, unless you explicitly chamngendoy.
For example:

\psaxes[0x=-2](-2,0)(2,3)

13For examplepx=1.0 andDx=1.4 is okay, as i9x=1 andDx=1. 4, but0x=1.4 andDx=1, or
0x=1.4 andDx=1.15, is not okay. If you get this wrong, PSTricks won't complabut you won'’t
get the right labels either.

Axes 46

The ticks and labels use a few other parameters as well:

labels=all/x/y/none Default:
To specify whether labels appear on both axes, the x-ax@sytaxis, or
neither.

showorigin=true/false Default:

If true, then labels are placed at the origin, as long as the labshdand
up on one of the axes. Halse, the labels are never placed at the origin.

ticks=all/x/y/none Default:
To specify whether ticks appear on both axes, the x-axisythgis, or
neither.

tickstyle=full/top/bottom Default:

For example, itickstyle=top, then the ticks are only on the side of the axes
away from the labels. Kickstyle=bottom, the ticks are on the same side as
the labels full gives ticks extending on both sides.

ticksize=dim Default:

Ticks extenddim above and/or below the axis.

The distance between ticks and labelspislabelsep, which you can change with
thelabelsep parameter.

The labels are set in the current font (ome of the examplegealvere preceded
by \small so that the labels would be smaller). You can do fancy thinijs the
labels by redefining the commands:

\psxlabel
\psylabel

E.g., if you want change the font of the horizontal labelst ot the vertical
labels, try something like

1 \def\psxlabel#1{\small #1} '

You can choose to have a frame instead of axes, or no axeqlatiajlou still get
the ticks and labels), with the parameter:

axesstyle=axes/frame/none Default:

The usuallinestyle, fillstyle and related paremeters apply.

For example:

Axes 47

\psaxes[Dx=.5,dx=1, tickstyle=top, axesstyle=frame] (-3, 3)

1 1 0
-15 -10 -05 O

The\psaxes macro is pretty flexible, but PSTricks contains some othelstéor
making axes from scratch. E.g., you can yp€line and\psframe t0 draw axes
and frames, respectivelymultido to generate labels (see the documentation for
multido.tex), and\multips to make ticks.

Axes 48

Text Tricks

27 Framed boxes

The macros for framing boxes take their argument, put it intx, and put a
PostScript frame around it. (They are analogousTgXd’s \fbox). Thus, they are
composite objects rather than pure graphics objects. litialdo the graphics
parameters foxpsframe, these macros use the following parameters:

framesep=dim Default:

Distance between each side of a frame and the enclosed box.

boxsep=true/false Default:

When true, the box that is produced is the size of the frame or whatever
that is drawn around the object. Whexi se, the box that is produced is the
size of whatever is inside, and so the frame is “transparenfX. This
parameter only applies t@sframebox, \pscirclebox, and\psovalbox.

Here are the three box-framing macros:

\psframebox: [par]{stuff}

A simple frame (perhaps with rounded corners) is drawn usji3@rame.
The« option is of particular interest. It generates a solid fram®se color
is fillcolor (rather thaniinecolor, as with the closed graphics objects).
Recall that the default value #fl1color is white, and so this has the effect
of blotting out whatever is behind the box. For example,

\pspolygon[fillcolor=gray,fillstyle=crosshatch=](0,0)(3,0)
(3,2)(2,2)
\rput(2,1){\psframebox=[framearc=.3]{Label}}

\psdblframebox: [par]{stuff}

This draws a double frame. It is just a variant\péframebox, defined by

1 \newpsobject{psdblframebox}{psframebox}{doublesep=\pslinewidth}

For example,

Text Tricks 49

\psdblframebox[1linewidth=1.5pt]{%
\parbox[c]{6cm}{\raggedright A double frame is drawn
with the gap between 1lines equal to {\tt doublesep}}}

A double frame is drawn with the ga
between lines equal i@ublesep

\psshadowbox: [par] {stuff}
This draws a single frame, with a shadow.

Great Ideal! \psshadowbox{\bf Great Idea!!}

You can get the shadow wittpsframebox just be setting thehadowsize
parameter, but witRpsframebox the dimensions of the box won't reflect the
shadow (which may be what you want!).

\pscirclebox:[par]{stuff}

This draws a circle. Withboxsep=true, the size of the box is close to but
may be larger than the size of the circle. For example:

You are
here

\pscirclebox{\begin{tabular}{c} You are \\ here \end{tabular}}

\cput=[par] {angle } (x, y){stuff}
This combines the functions ®pscirclebox and\rput. It is like

\rput{<angle>}(x0,y0){\string\pscirclebox=*[<par>]{<stuff>}}

but it is more efficient. Unlike tharput command, there is no argument
for changing the reference point; it is always the centerhef lbox. In-
stead, there is an optional argument for changing graplsicanpeters. For
example

\cput[doubleline=true](1,.5){\large K_1}

\psovalbox:[par]{stuff}

This draws an ellipse. If you want an oval with square sidesrannded
corners, then usgpsframebox With a positive value fokectarc Or linearc
(depending on whethefornersize iS relative or absolute). Here is an
example that usesxsep=false:

At the __introductory At the introductory price of
price Qf$13.99)t pays \psovalbox[boxsep=false,linecolor=darkgray]{\$13.99},

to act now! it pays to act now!

Framed boxes 50

You can define variants of these box framing macros usingné@sobject com-
mand.

If you want to control the final size of the frame, indepentleof the material
inside, nesttuff in something likeATEX’s \makebox command.

28 Clipping

“One of the best new plays | \psclip{\psccurve[linestyle=none](-3,-2)

have seen all year: cool, po- (0.3,-1.5)(2.3,-2)(4.3,-1.5)(6.3,-2)(8,-1.5)(8,2)(-3,2)}

etic, ironic ..." proclaimedhe ‘“One of the best new plays I have seen all vyear: cool,
Guardianupon the London pre- ironic \ldots” proclaimed {\em The Guardian} upon the

¢ this extraor”

The command
\clipbox[dim]{stuff}
putsstuff in an\hbox and then clips around the boundary of the box, at a distance
dim from the box (the default igpt).
The\pspicture environment also lets you clip the picture to the boundary.

The command
\psclip{graphics} ... \endpsclip

sets the clipping path to the path drawn by the graphics t{sjeantil the\endpsclip
command is reached\psclip and\endpsclip must be properly nested with re-
spect to EX grouping. Only pure graphics (those described in Partdh\@&acustom)
are permitted. Ardverfull \hbox warning indicates that thgraphics argument
contains extraneous output or space. Note that the graphjests otherwise act
as usual, and thepsclip does not otherwise affect the surrounded text. Here is an
example:

\parbox{4.5cm}{%

premiere of this extraordinary play about a Czech director

]

his actress wife, confronting exile in America.\vspace{-lcm}

\endpsclip}

If you don’t want the outline to be painted, you need to ineluthestyle=none in
the parameter changes. You can actually include more tharg@phics object
in the argument, in which case the clipping path is set to tier$ection of the
paths.

\psclip can be a useful tool in picture environments. For examples tés used
to shade the region between two curves:

Clipping 51

\psclip{%
\pscustom[linestyle=none]{%
\psplot{.5}{4}{2 x div}
\lineto(4,4)}
\pscustom[linestyle=none]{%
\psplot{0}{3}{3 x x mul 3 div sub}
\lineto(0,0)}}
\psframe=[linecolor=gray](0,0)(4,4)
\endpsclip
\psplot[linewidth=1.5pt]{.5}{4}{2 x div}

! ! \psplot[linewidth=1.5pt]{0}{3}{3 x x mul 3 div sub}
\psaxes(4,4)

Driver notes: The clipping macros usgstverbscale and\pstVerb. Don’t be sur-
prised if PSTricks’s clipping does not work or causes probieitis never robust\endpsclip
usesinitclip. This can interfere with other clipping operations, andeesgly if the X
document is converted to an Encapsulated PostScript file.cobimmandAltClipMode
cause$psclip and\endpsclip t0 usegsave andgrestore instead. This bothers some
drivers, such as NeXTTeX's TeXView, especiall\ffsclip and\endpsclip do not end
up on the same page.

29 Rotation and scaling boxes

There are versions of the standard box rotation macros:

\rotateleft{stuff}
\rotateright{stuff}
\rotatedown{stuff}

stuff IS put in an\hbox and then rotated or scaled, leaving the appropriate amount
of spaces. Here are a few uninteresting examples:

py)
Q \Large\bf \rotateleft{Left} \rotatedown{Down} \rotateright{Right}
0
—

There are also two box scaling macros:

\psscalebox{numl num2}{stuff}

If you give two numbers in the first argumeniym1 is used to scale hor-
izontally andnum? is used to scale vertically. If you give just one num-
ber, the box is scaled by the same in both directions. Youtcmale by
zero, but negative numbers are OK, and have the effect ofrflipjhe box
around the axis. You never know when you need to do somettiagit
(\psscalebox{-1 1}{this}).

\psscaleboxto(x, y){stuff}

Rotation and scaling boxes 52

andlon

Question: How do
Democrats organize a
firing squad?
gane
ul 106 Aoyl 1S114 Jamsuy

This time, the first argument is a (Cartesian) coordinatel the box is
scaled to have widtk and height (plus depth). If one of the dimensions
is 0, the box is scaled by the same amount in both directiomseXample:

\psscaleboxto(4,2){Big and long}

PSTricks defines LR-box environments for all these box imteand scaling com-
mands:

\pslongbox{Rotateleft}{\rotateleft}
\pslongbox{Rotateright}{\rotateright}
\pslongbox{Rotatedown}{\rotatedown}
\pslongbox{Scalebox}{\psscalebox}
\pslongbox{Scaleboxto}{\psscaleboxto}

s W N R

Here is an example where Wrotatedown for the answers to exercises:

Question: How do Democrats organize a firing squad?
\begin{Rotatedown}
\parbox{\hsize}{Answer: First they get in a circle, \ldots\!
\end{Rotatedown}

See the documentation d@fncybox.sty for tips on rotating aAIpX table or
figure environment, and other boxes.

Rotation and scaling boxes 53

V I I Nodes and Node Connections

All the commands described in this part are contained in tedi-node . tex/pst-node. st
pst-node] o
The node and node connection macros let you connect infammand place la-
bels, without knowing the exact position of what you are @mtimg or of where
the lines should connect. These macros are useful for majkimghs and trees,

mathematical diagrams, linguistic syntax diagrams, amthecting ideas of any
kind. They are the trickiest tricks in PSTricks!

Although you might use these macros in pictures, positgm@ind rotating them
with \rput, you can actually use them anywhere. For example, | mighbdues
thing like this in a guide about page styles:

\makeatletter
\gdef\ps@temp{\def\@oddhead{}\def\@evenhead{}
\def\@oddfoot{\small\sf
\ovalnode[boxsep=false]{A}{\rightmark}

With themyfoot age
mytooters pag \nccurve[ncurv=.5,angleB=240,angleA=180,nodesep=6pt]{<-}{A}{B}

style, the name of the

. \hfil\thepage}
current section appears at
\let\@evenfoot\@oddfoot}
the bottom of each page.
\makeatother

\thispagestyle{empty}
With the {\tt myfooters} page style, the name of the cur:
appears at the bottom of each \rnode{B}{page}.

You can use nodes in math mode and in alignment environmemkh Here is
an example of a commutative diagram:

$
\begin{array}{c@{\hskip 1lcm}c}
A & \rnode{a}{A}\\[2cm]
\rnode{b}{B} & \rnode{c}{C}
\end{array}

9 \psset{nodesep=3pt}
\everypsbox{\scriptstyle}
\ncline{->}{a}{b}\Bput{f}

- C \ncline{->}{a}{c}\Aput{g}
\ncline[linestyle=dotted]{->}{b}{c}\Aput{h}
$

There are three components to the node macros:

C::::jiégggénd Node Connggﬁgﬁg::::> 54

Node definitions The node definitions let you assign a name and shape to an
object. See Section 30.

Node connectionsThe node connections connect two nodes, identified by their
names. See Section 31.

Node labels The node label commands let you affix labels to the node cennec
tions. See Section 32.

30 Nodes

The name of a node must contain only letters and numbers, and must béti a
letter.

Warning: Bad node names can cause PostScript errors.

\rnode[refpoint]1{name}{stuff}

This assigns theame to the node, which will have a rectangular shape for
the purpose of making connections, with the “center” at #ierence point
(i.e., node connections will point to the reference polmhode was used in
the two examples above.

\Rnode(x, y){name}{stuff}

This is like \rnode, but the reference point is calculated differently. It is
set to the middle of the box’s baseline, plus y). If you omit the(x, y)
argument, command

\RnodeRef

is substituted. The default definition WnodeRef is 0, .7ex. E.g, the fol-
lowing are equivalent:

\Rnode (0, .6ex){stuff}
{\def\RnodeRef{0, .6ex}\Rnode{stuff}}

[

N

\Rnode iS useful when aligning nodes by their baaelines, such asrnmc
mutative diagrams. WitRrnode horizontal node connections might not be
quite horizontal, because of differences in the size oétett

\pnode(x, y){name}
This creates a zero dimensional node at the poiny) (default(o,0)).

\cnode:[par]l(x, y){radius}{name}
This draws a circle and assigns thene to it.

\circlenode:[parl{name}{stuff}

This is a variant ofpscirclebox that gives the node the shape of the circle.

Nodes 55

\cnodeput+[parl{angle}(x, y){name}{stuff}
This is a variant ofcput that gives the node the shape of the circle.

\ovalnode:[parl{name}{stuff}

This is a variant ofpsovalbox that gives the node the shape of the ellipse.

The reason that there is nd@ramenode command is that usingpsframebox (Or
\psshadowbox OF \psdblframebox) in the argument ofrnode gives the desired re-
sult.

31 Node connections

All the node connection commands begin wiith and they all have the same
syntax:

‘ \<nodeconnection>[<par>]{<arrows>}{<nodeA>}{<nodeB>}

A line of some sort is drawn fromodeA to nodeB. Some of the node connection
commands are a little confusing, but with a little experita¢gion you will figure
them out, and you will be amazed at the things you can do.

The node and point connections can be used witleustom. The beginning of

the node connection is attached to the current point by &htréine, as with

\psarc.14

When we refer to tha andB nodes below, we are referring only to the order in
which the names are given as arguments to the node connecsioms.

When a node name cannot be found on the same page as the nogetoon
command, you get either no node connection or a nonsense auoaection.
However, BX will not report any errors.

The node connections use the following parameters:

nodesep=dim Default:
The border around the nodes added for the purpose of deiagnirhere
to connect the lines.

offset=dim Default:

After the node connection point is calculated, it is shiftfap nodeA and
down fornodeB by dim, where “up” and “down” assume that the connecting
line points to the right from the node.

arm=dim Default:

Some node connections start with a segment of ledgthbefore turning
somewhere.

145ee page 64 if you want to use the nodes as coordinates inRfiffeicks macros.

Node connections 56

angle=angle Default:
Some node connections let you specify the angle that the caratgection
should connect to the node.

arcangle=angle Default:

This applies only toncarc, and is described below.

ncurv=num Default:

This applies only toinccurve and\pccurve, and is described below.

loopsize=dim Default:

This applies only th&ncloop and\pcloop, and is described below.

You can set these parameters separately for the two nodsisadiam or B to
the parameter name. E.g.

1| \psset{nodesepA=3pt, offsetA=5pt, offsetB=3pt, arm=lcm}

setsnodesep for the A node, but leaves the value for tRenode unchanged, sets
offset for theA andB nodes to different values, and seta for theA andB nodes
to the same value.

Don't forget that by using théorder parameter, you can create the impression
that one node connection passes over another.

Here is a description of the individual node connection camds:

\ncline:[par]{arrows}{nodeA}{nodeB}

This draws a straight line between the nodes. Onlyftfeet andnodesep
parameters are used.

Idea 2

\rput[bl](0,0){\rnode{A}{Idea 1}}
\rput[tr](4,3){\rnode{B}{Idea 2}}
\ncline[nodesep=3pt]{<->}{A}{B}

Idea 1

\ncLine=[par]{arrows}{nodeA}{nodeB}

This is like \ncline, but the labels (withlput, etc) are positioned as if the
line began and ended at the center of the nodes. This is ukgau have
multiple parallel lines and you want the labels to line upgrethough the
nodes are of varying size, e.g., in commutative diagrams.

\nccurve:[parl{arrows}{nodeA}{nodeB}

This draws a bezier curve between the nodes. It usesotle@ep, offset,
angle andncurv parameters.

Node connections 57

Connect some words!

t 1

\rput[bl](0,0){\rnode{A}{\psframebox{Node A}}}
\rput[tr](4,3){\ovalnode{B}{Node B}}
\nccurve[angleB=180]{A}{B}

\ncarc:[par]{arrows}{nodeA}{nodeB}

This is actually a variant Ofnccurve. l.€., it also connects the nodes with
a bezier curve, using th@desep, offset, andncurv parameters. However,
the curve connects to nodeat an anglerrcanglea from the line between
andB, and connects to nodeat an anglearcangleB from the line between
B andA. For small, equal values ahglea andangleB (e.g., the default value
of 8) and with the default value akurv, the curve approximates an arc of
a circle.\ncarc is a nice way to connect two nodes with two lines.

\cnodeput (0,0) {A}{X}
\cnodeput(3,2){B}{Y}
\psset{nodesep=3pt}
\ncarc{->}{A}{B}
\ncarc{->}{B}{A}

\ncbar:[par]{arrows}{nodeA}{nodeB}

First, lines are drawn attaching to both nodes at an aaggeea and of
lengthsarma andarmB. Then one of the arms is extended so that when the
two are connected, the finished line contains 3 segmentsingeat right
angles. Generally, the whole line has three straight segm@&he value of
linearc is used for rounding the corners.

\rnode{A}{Connect} some \rnode{B}{words}!
\ncbar[nodesep=3pt,angle=-90]{<-**}{A}{B}

\ncdiag:[par]{arrows}{nodeA}{nodeB}

First, the arms are drawn usiafigle andarm. Then they are connected with
a straight line. Generally, the whole line has three sttadgigments. The
value oflinearc is used for rounding the corners.

\rput[t1](0,3){\rnode{A}{\psframebox{Node A}}}
\rput[br](4,0){\ovalnode{B}{Node B}}
\ncdiag[angleA=-90,angleB=90,arm=.5,1linearc=.2]{A}{B}

\ncdiagg=[par]l{arrows}{nodeA}{nodeB}

Node connections 58

\ncloop:[par]l{arrows}{nodeA}{nodeB}

LA loop

B

This is similar to\ncdiag, but only the arm for node A is drawn. The end of
this arm is then connected directly to node B. The connedipitally has
two segments. The value dinearc is used for rounding the corners.

\cnode(0,0){4pt}{a}

\rput[1](3,1){\rnode{b}{H}}
\rput[1](3,-1){\rnode{c}{T}}
\ncdiagg[angleA=180,armA=2cm,nodesepA=3pt]{b}{a}
\ncdiagg[angleA=180, armA=2cm,nodesepA=3pt]{c}{a}

\ncangle=[par]l{arrows}{nodeA}{nodeB}

The node connection points are determineddteA andangleB (andnodesep
andoffset). Then an arm is drawn for nodeusingarmp. This arm is con-
nected to noda by a right angle, that also meets nadat angleanglea.
Generally, the whole line has three straight segments} bahihave fewer.
The value oftinearc is used for rounding the corners. Simple, right? Here
is an example:

\rput[t1](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br] (4,0){\ovalnode{B}{Node B}}

\ncangle[angleA=-90,angleB=90, arm=.4cm,
linestyle=dashed]{A}{B}

\ncangles:[par]{arrows}{nodeA}{nodeB}

This is similar to\ncangle, but botharma and armB are used. The arms
are connected by a right angle that meets arat a right angle as well.
Generally there are four segments (hence one more angle\ibaigle,
and hence the in \ncangles). The value oflinearc is used for rounding
the corners. Compare this example with the previous one:

\rput[t1](0,3){\rnode{A}{\psframebox{Node A}}}
\rput[br](4,0){\ovalnode{B}{Node B}}
\ncangles[angleA=-90,arm=.4cm,linearc=.15]{A}{B}

The first segment iarma, then it makes a 90 degree turn to the left, drawing
a segment of lengtioopsize. The next segment is again at a right angle; it
connects tarms. For example:

\rnode{a}{\psframebox{\Huge A loop}}
\ncloop[angleB=180, loopsize=1,arm=.5,1linearc=.2]{->}{a}{a}

Node connections 59

\nccircle=[par]l{arrows}{node}{radius}

This draws a circle from a node to itself. It is the only nod@reection
command of this sort. The circle starts at angiglea and goes around the
node counterclockwise, at a distanmdesepa from the node.

The node connection commands make interesting drawing mlwell, as an
alternative to\psline for connecting two points. There are variants of the node
connection commands for this purpose. Each begins weittfior “point connec-
tion”) rather thamec. E.g.,

\pcarc{<->}(3,4)(6,9) [

1

gives the same result as

1

\pnode(3,4){A}\pnode(6,9){B}\pcarc{<->}{A}{B} [

Only \ncLine and\nccircle do not havepc variants:

\pcline:[parl{arrows}(x1, y1)(x2,y2)
Like \ncline.

\pccurve:[parl{arrows3}(x1, y1)(x2,y2)

Like \nccurve.

\pcarcx[par]{arrows}(x1,y1)(x2,y2)

Like \ncarc.

\pcbar=[par]{arrows}(x1,y1)(x2,y2)
Like \ncbar.

\pcdiag=[parl{arrows}(x1, y1)(x2,y2)
Like \ncdiag.
\pcangle=[parl{arrows3}(x1, y1)(x2, y2)

Like \ncangle.

\pcloop=[parl{arrows}(x1, y1)(x2,y2)
Like \ncloop.

32 Attaching labels to node connections

Now we come to the commands for attaching labels to the nodleemtions. The
node label command must come right after the node connetiohich the label
is to be attached. You can attach more than one label to a mogection, and a
label can include more nodes.

Attaching labels to node connections 60

The node label commands must end up on the sgXep@ige as the node con-
nection to which the label corresponds.

The coordinate argument in other PSTrigks commands is a single humber in
the node label commandgi<pos>). This humber selects a point on the node
connection, roughly according to the following scheme: HEnode connection
has potentially one or more segments, including the armgandecting lines. A
numberposhbetween 0 and 1 picks a point on the first segment from addes,
(fraction posfrom the beginning to the end of the segment), a number betdee
and 2 picks a number on the second segment, and so on. Eaclcaraukrtion
has its own default value of the positioning coordinate, alihis used by some
short versions of the label commands.

Here are the details for each node connection:

Connection Segments Range Default
\ncline 1 0< pos<1 0.5
\nccurve 1 0< pos<1 0.5
\ncarc 1 0< pos<1 0.5
\ncbar 3 0< pos<3 1.5
\ncdiag 3 0< pos<3 1.5
\ncdiagg 2 0< pos< 2 0.5
\ncangle 3 0< pos<3 1.5
\ncloop 5 0< pos<4 2.5
\nccircle 1 0< pos<1 0.5

There is another difference between the node label comnanttistheput com-
mands. In addition to the various ways of specifying the argjl rotation for
\rput, With the node label commands the angle can be of the farmangle>}.

In this case, the angle is calculated after rotating thedinate system so that the
node connection at the position of the label points to thietrfiyjom nodes\ to B).
E.qg., if the angle ig: U}, then the label runs parallel to the node connection.

Here are the node label commands:

\1put:[refpoint]{rotation}(pos){stuff}

The 1 stands for “label”. Here is an example illustrating the u$ehe
optional star and <angle> with \1put, as well as the use of theffset
parameter withppcline:

\pspolygon(0,0)(4,2)(4,0)
\pcline[offset=12pt]{|-]}(0,0)(4,2)
\1lput*{:U}{Length}

Attaching labels to node connections 61

(Remember that with theut commands, you can omit the coordinate if
you include the angle of rotation. You are likely to use tlgiatfire with the
node label commands.)

With \1put and\rput, you have a lot of control over the position of the
label. E.g.,

label \pcline(0,0)(4,2)
\1lput{:U}{\rput[r]{N}(0, .4){label}}

puts the label upright on the page, with right side locatededtimeters
“above” the position. 5 of the node connection (above if the node connec-
tion points to the right). However, th@put and\bput commands described
below handle the most common cases withawtit.1®

\aput:[labelsep]l{angle}(pos){stuff}

stuff is positioned distancgpslabelsep abovethe node connection, given
the convention that node connections point to the riglabut is a node-
connection variant ofuput. For example:

(%
o \pspolygon(0,0)(4,2) (4,0)
\pcline[linestyle=none](0,0)(4,2)
\aput{:U}{Hypotenuse}

\bput:[labelsep]l{angle}(pos){stuff}
This is like\aput, but stuff is positionedbelowthe node connection.

Itis fairly common to want to use the default position anétfioin with these node
connections, but you have to include at least one of theseragts. Therefore,
PSTricks contains some variants:

\mput: [refpoint]{stuff}
\Aput=[labelsep1{stuff}
\Bput=[labelsep1{stuff}

15There is also an obsolete commaXxiput for putting labels next to node connections. The
syntax is

\Lput{<labelsep>}[<refpoint>]{<rotation>}(<pos>){<stuff>}

It is a combination okRput and\1put, equivalent to

\1lput(<pos>){\Rput{<labelsep>}[<refpoint>]{<rotation>}(0,0){<stuff>}}

\Mput is a short version ofLput with no {<rotation>} or (<pos>) argument\Lput and\Mput
remain part of PSTricks only for backwards compatibility.

Attaching labels to node connections 62

of \1put, \aput and\bput, respectively, that have no angle or positioning argu-
ment. For example:

[]
///////// \cnode=(0,0){3pt}{A}
1 \cnode=(4,2){3pt}{B}
\ncline[nodesep=3pt]{A}{B}
///////// \mput {1}
[]
Here is another:
Label \pcline{<->}(0,0)(4,2)

\Aput{Label}

Now we can compargncline With \ncLine, and\rnode With \Rnode. First, here is
a mathematical diagram witticLine and\Rnode:

\[
\setlength{\arraycolsep}{lcm}
\def\tX{\tilde{\tilde{X}}}
\begin{array}{cc}
\Rnode{a}{(X-A,N-A)} & \Rnode{b}{(\tX,a)}\\[1.5cm]
\Rnode{c}{(X,N)} & \Rnode{d}{\LARGE(\tX,N)\\[1.5cm]
\end{array}
\psset{nodesep=5pt,arrows=->}
\everypsbox{\scriptstyle}
\ncLine{a}{b}\Aput{a}
\ncLine{a}{c}\Bput{r}
\ncLine[linestyle=dashed]{c}{d}\Bput{b}
\ncLine{b}{d}\Bput{s}
\1]
a =
(X—A,N—A) (X,a)
(XN) === ===~ - (XN)

Attaching labels to node connections 63

Here is the same one, but witicline and\rnode instead:

(X —AN—A) (X,a)
(X,N) === === ~ (X,N)

Driver notes: The node macros ugstVerb and\pstverbscale.

Attaching labels to node connections

64

VI I I Special Tricks

33 Coils and zigzags

The filepst-coil. tex/pst-coil.sty(and optionally the header fit&st-coil.pro)
defines the following graphics objects for coils and zigzags

\pscoil=[par]{arrows}(x0, y0)(x1,yl)
\psCoil=[parl{anglel}{angle2}
\pszigzag=[par]{arrows}(x0, y0)(x1,yl)

These graphics objects use the following parameters:

coilwidth=dim Default:
coilheight=num Default:
coilarm=dim Default:
coilaspect=angle Default:
coilinc=angle Default:

All coil and zigzag objects draw a coil or zigzag whose widtia(heter) isoilwidth,
and with the distance along the axes for each period (36@&dspequal to

coilheight X coilwidth.

Both\pscoil and\pscoil draw a “3D" coil, projected onto the xz-axes. The center
of the 3D caoil lies on the yz-plane at angle pcoilaspect toztais. The coil is
drawn with PostScript'dineto, joining points that lie at anglerilinc from each
other along the coil. Hence, increasiagilinc makes the curve smoother but the
printing slower.\pszigzag does not use theéoilaspect andcoilinc parameters.

\pscoiland \pszigzag connect(x0, y0) and (x1, y1), starting and ending with
straight line segments of lengdilarma and coilarmB, resp. Setting:oilarm is
the same as settingilarmA andcoilarms.

Here is an example ofpscoil:

\pscoil[coilarm=.5cm,linewidth=1.5pt,coilwidth=.5cm]{<-|}(4,2)

Here is an example Opszigzag:

Special Tricks 65

AVAVAVS

\pszigzag[coilarm=.5,linearc=.1]{<->}(4,0)

Note that\pszigzag uses thainearc parameters, and that the beginning and end-
ing segments may be longer thesilarm to take up slack.

\psCoil just draws the coil horizontally froranglel to angle2. Use\rput to rotate
and translate the coll, if desiredpsCoil does not use thevilarm parameter. For
example, withcoilaspect=0 we get a sine curve:

\psCoil[coilaspect=0,coilheight=1.33,
coilwidth=.75,1linewidth=1.5pt]{0}{1440}

@

pst-coil.texalso contains coil and zigzag node connections. You musiadsl
pst-node.tex/ pst-node.styto use these. The node connections are:

\nccoil:[par]{arrows}{nodeA}{nodeB}
\nczigzag=[par]{arrows}{nodeA}{nodeB}
\pccoil=[par]{arrows}(x1, y1)(x2,y2)
\pczigzag=[par]l{arrows}(x1, y1)(x2,y2)

The end points are chosen the same as\#eline and\pcline, and otherwise
these commands work lik@scoil and\pszigzag. For example:

\cnode(.5,.5){.5}{A}
\cnode[fillstyle=solid,fillcolor=1ightgray](3.5,2.5){.5}{B}
\nccoil[coilwidth=.3]1{<->}{A}{B}

34 Special coordinates

The command
\SpecialCoor

enables a special feature that lets you specify coordiriatasvariety of ways,
in addition to the usual Cartesian coordinaf®rocessing is slightly slower and

16There is an obsolete commaN#olar that causes coordinates in the forrr>,<a>) to be
interpreted as polar coordinates. The us&Rflar is not recommended because it does not allow
one to mix Cartesian and polar coordinates the WegecialCoor does, and because it is not as
apparent when examining an input file whether, &3),2) is a Cartesian or polar coordinate. The
command for undoinyPolar is \Cartesian. It has an optional argument for setting the default
units. l.e.,

\Cartesian(<x>,<y>)

Special coordinates 66

less robust, which is why this feature is available on dermatiter than by default,
but you probably won't notice the difference.

Here are the coordinates you can use:
(x,y) The usual Cartesian coordinate. E@.,4).

(r;a) Polar coordinate, with radiusand anglea. The default unit for is unit.
E.g.,(3;110).

(node) The center ohode. E.g.,(A).

([parlnode) The position relative tode determined using thengle, nodesep
andoffset parameters. E.g([angle=45]A).

(!ps) Raw PostScript codeps should expand to a coordinate pair. The units
xunit andyunit are used. For example, if | want to use a polar coordinate
(3,110 that is scaled along witlunit andyunit, | can write

1

(!3 110 cos mul 3 110 sin mul)

(coorl | coor2) The x coordinate fromcoor1 and they coordinate fromcoor2.
coorl and coor2 can be any other coordinates for use wWilpecialCoor.
For example(A|1in;30).

\SpecialCoor also lets you specify angles in several ways:

num A number, as usual, with units given by thegrees command.

(coor) A coordinate, indicating where the angle points to. Be soiia¢lude the
(), in addition to whatever other delimiters the angle argumees. For
example, the following are two ways to draw an arc of .8 inatius from
0 to 135 degrees:

\SpecialCoor
\psarc(0,0){.8in}{0}{135}
\psarc(0,0){.8in}{0}{(-1,1)}

!ps Raw PostScript codess should expand to a number. The same units are used
as withnum.

The command

\NormalCoor

disables thaspecialcoor features.

has the effect of

\psset{xunit=<x>,yunit=<y>}

\Cartesian can be used for this purpose without usk\®plar.

Special coordinates 67

35 Overlays

Overlays are mainly of interest for making slides, and therlay macros de-
scribed in this section are mainly of interest {@g<Tmacro writers who want to
implement overlays in a slide macro package. For exampkesdhinar.sty

package, aAIeX style for notes and slides, uses PSTricks to implementiaysr

Overlays are made by creating gtbox and then outputting the box several times,
printing different material in the box each time. The boxiisated by the com-
mands

\overlaybox stuff \endoverlaybox

IATEX users can instead write:

‘ \begin{overlaybox} <stuff> \end{overlaybox}

The material for overlaytring should go within the scope of the command
\psoverlay{string}

string can be any string, after expansion. Anything not in the scdp®y\psoverlay
command goes on overlaygin, and material within the scope Qfsoverlay{all}
goes on all the overlayspsoverlay commands can be nested and can be used in
math mode.

The command
\putoverlaybox{string}

then prints overlaytring.

Here is an example:

\overlaybox
\psoverlay{all}
\psframebox[framearc=.15,1linewidth=1.5pt]{%
\psoverlay{main}
\parbox{3.5cm}{\raggedright
Foam Cups Damage Environment {\psoverlay{one} Less
Paper Cups,} Study Says.}}
\endoverlaybox
\putoverlaybox{main} \hspace{.5in} \putoverlaybox{one}

Foam Cups Damage

Environment Less
than Paper Cups,

Study Says.

Driver notes: Overlays us@stVerb and\pstverbscale.

Overlays 68

tl

36 The gradient fill style

_ The filegradient. tex/gradient.sty, along with the PostScript header fgeadient. pro,
gradient defines thegradient fillstyle, for gradiated shading. Thigillstyle uses the
following parameters:

gradbegin=color Default:

The starting and ending color.

gradend=color Default:

The color at the midpoint.

gradlines=int Default:

The number of lines. More lines means finer gradiation, myvet printing.

gradmidpoint=num Default:
The position of the midpoint, as a fraction of the distancarfitop to bot-
tom. num should be between 0 and 1.

gradangle=angle Default:
The image is rotated byngle.

gradbegin andgradend Should preferably begb colors, but grays anenyk colors
should also work. The definitions of the col@isadbegin andgradend are:

[

\newrgbcolor{gradbegin}{0 .1 .95}
\newrgbcolor{gradend}{0 1 1}

N

Here are two ways to change the gradient colors:

1

\newrgbcolor{gradbegin}{1 .4 0} [

and

1 \psset{gradbegin=blue} [

Try this example:

1 \psframe[fillstyle=gradient,gradangle=45](10,-20)

37 Adding color to tables

The filecolortab.tex/colortab.sty contains macros that, when used with color
colortab commands such as those in PSTricks, let you color the celldia@s in tables.

Seecolortab.doc for more information.

The gradient fill style 69

38 Typesetting text along a path

The filetextpath. tex/textpath. sty defines the commangstextpath, for type-
textpath setting text along a path. It is a remarkable trick, but treeeesome caveats:

e textpath.tex only works with certain DVI-to-PS drivers. Here is what is
currently known:

— It works with Rokicki’'s dvips, version 5.487 or later (at least up to
v5.495).
— It does not work with earlier versions of dvips.

— It does not work with TeXview (to preview files with NeXTTeXG.
convert the.dvi file to a PostScript file withlvips -o and use Pre-
view).

— “Does not work” means that it has no effect, for better or forse.

— This may work with other drivers. The requirement is that dhiger
only use PostScript'show operator, unbound and unloaded, to show
characters.

e You must also have installed the PostScript headertéil@path.ps, and
\pstheader Mmust be properly defined wstricks.con for your driver.

¢ Like other PSTricks that involve rotating text, this worlesbwith PostScript
(outline) fonts.

e PostScript rendering withextpath.texis slow.

Because of all this, no samples are shown here. Howeveg ibea test file
tp-test.texand PostScript outpub-test.ps that are distributed with PSTricks.

Here is the command:
\pstextpath[pos1(x,y){graphics object}{text}

text is placed along the path, from beginning to end, defined byP®&ricks
graphics object. (This object otherwise behaves norm&lbtlinestyle=none if
you don’t want it to appear.)

text can only contain characters. No TeX rules, no PSTricks, aratimer\special’s.
(These things don't cause errors; they just don’t work rigMath mode is OK,
but math operators that are built from several charactegs, {(arge integral signs)
may break. Entire boxes (e.gparbox) are OK too, but this is mainly for amuse-
ment.

pos is either

| justify on beginning of path
c center on path
r justify on end of path.

Typesetting text along a path 70

The default isl.

(<x>,<y>) is an offset. Characters are shifted distancalong path, and are
shifted up byy. “Up” means with respect to the path, at whatever point on the
path corresponding to the middle of the charactex>, <y>) must be Cartesian
coordinates. Both coordinates uggunit as the default. The default coordinate
is (0,\TPoffset), where\Tpoffset a command whose default value-s7ex.
This value leads to good spacing of the characters. Remetimdierx units are

for the font in effect whenpstextpath occurs, not inside theext argument.

More things you might want to know:

o Like with \rput and the graphics objects, it is up to you to leave space for
\pstextpath.

e Results are unpredictablet#xt is wider than length of path.

e \pstextpath leaves the typesetting tgX. It just intercepts thehow oper-
ator to remap the coordinate system.

39 Stroking and filling character paths

The file charpath. tex/charpath. sty defines the command:
\pscharpath=[par]{text}

It strokes and fills thetext character paths using the PSTrickiestyle and
fillstyle.

The restrictions on DVI-to-PS drivers listed on page 68\fsrtextpath apply to
\pscharpath. Furthermore, only outline (PostScript) fonts are affdcte

Sample input and output filedartest . texandchartest.ps are distributed with
PSTricks.

With the optional=, the character path is not removed from the PostScript envi-
ronment at the end. This is mainly for special hacks. For ganyou can use
\pscharpath= in the first argument ofpstextpath, and thus typeset text along
the character path of some other text. See the sampléefiles1. tex. (However,

you cannot combin&pscharpath and\pstextpath in any other way. E.g., you
cannot typeset character outlines along a path, and thamdilstroke the outlines
with \pscharpath.)

The command
\pscharclip=[par]{text} ... \endpscharclip

works just like\pscharpath, but it also sets the clipping path to the character path.
You may want to position this clipping path usixgput inside\pscharclip’s argu-
ment. Like\psclip and\endpsclip, \pscharclip and\endpscharclip should come

Stroking and filling character paths 71

40

on the same page and should be properly nested with respg¢ gmoups (unless
\AltClipMode is in effect). The filedenis2. tex contains a sample Gpscharclip.

Importing EPS files

PSTricks does not come with any facility for including Ensalated PostScript
files, because there are other very good and well-testedosémrexactly that. If
using Rokicki'sdvips, then tryepsf.tex/epsf.sty, by the man himself!

What PSTrickss good for is embellishing your EPS picture. You can include an
EPS file in in the argument afput, as in

1 \rput(3,3){\epsfbox{myfile.eps}}

and hence you can include an EPS file in YBépicture environment. Turn on
\psgrid, and you can find the coordinates for whatever graphics orytaxwant

to add. This works even when the picture has a weird boundirgtecause with
the arguments t@pspicture you control the bounding box fromgX'’s point of

view.

This isn’t always the best way to work with an EPS file, howelfghe PostScript
file’s bounding box is the size you want the resulting picttoebe, after your
additions, then try

\hbox{<picture objects> \epsfbox{<file.eps>}

This will put all your picture objects at the lower left cornef the EPS file.
\epsfbox takes care of leaving the right amount of space.

If you need to determine the bounding box of an EPS file, thencam try of the
automatic bounding box calculating programs, suchte&g (distributed with
Rokicki's dvips). However, all such programs are easily fooled; the only sur
way to determine the bounding box is visualysgrid is a good tool for this.

41 Exporting EPS files

You must loathst2eps. texOrpst2eps.styto use the PSTricks macros described
in this section.

If you want to export an EPS file that contains both graphias tart, then you
need to be using a DVI-to-PS driver that suports such a featfiyou just want to
export pure graphics, then you can use\PsrricksePS command. Both of these
options are described in this section.

Newer versions of Rokicki'slvips support an-E option for creating EPS files
from TpX .dvi files. E.g.,

dvipsfoodvi— E —ofooeps

Importing EPS files 72

Your document should be a single pag#:ips will find a tight bounding box
that just encloses the printed characters on the page. Thkswest with outline
(PostScript) fonts, so that the EPS file is scalable andw#enlindependent.

There are two inconvenient aspects of this method. You mayt walifferent
bounding box than the one calculated dyips (in particular,dvips ignores all
the PostScript generated by PSTricks when calculating thimding box), and
you may have to go out of your way to turn off any headers antéfsahat would
be added by output routines.

PSTricks contains an environment that tries to get arouesktiwo problems:

\TeXtoEPS
stuff
\endTeXtoEPS

This is all that should appear in your document, but headedsvehatever that
would normally be added by output routines are ignomd.ps will again try to
find a tight bounding box, but it will treattuff as if there was a frame around it.
Thus, the bounding box will be sure to incluskeff, but might be larger if there
is output outside the boundaries of this box. If the boundiog still isn’t right,
then you will have to edit the

%%BoundingBox <llx 1ly urx ury>

specification in the EPS file by hand.

If your goal is to make an EPS file for inclusion in other docuisetherivips -E

is the way to go. However, it can also be useful to generate R® e from
PSTricks graphics objects and include it in the same doctiteather than just
including the PSTricks graphics directly, becaugk Gets involved with process-
ing the PSTricks graphics only when the EPS file is initialigated or updated.
Hence, you can edit your file and preview the graphics, with@aving to pro-
cess all the PSTricks graphics each time you correct a typis. Speed-up can be
significant with complex graphics suchaslistplot’s with a lot of data.

To create an EPS file from PSTricks graphics objects, use
\PSTtoEPS[par]l{file}{graphics objects}

The file is created immediately, and hence you can include tlhé same docu-
ment (after thepsTtoEPS command) and as many times as you want. Unlike with
dvips -E, only pure graphics objects are processed (&rgyt commands have
no effect).

\PSTtoEPS cannot calculate the bounding box of the EPS file. You havpecif/
it yourself, by setting the following parameters:

17see the preceding section on importing EPS files.

Exporting EPS files 73

bbllx=dim Default:

bblly=dim Default:
bburx=dim Default:
bbury=dim Default:

Note that if the EPS file is only to be included in a PSTrickdurie with \rput
you might as well leave the default bounding box.

\PSTricksEPS also uses the following parameters:

headerfile=file Default: s

()This parameter is for specifying PostScript header fites &ire to be in-
cluded in the EPSfile. The argument should contain one or filemames,
separated by commas. If you have more than one file, howdneegrttire
list must be enclosed in braceés.

headers=none/all/user Default:

Whennone, no header files are included. Wheri, the header files used
by PSTricks plus the header files specified byli&slerfile parameter are
included. Wheruser, only the header files specified by theaderfile
parameter are included. If the EPS file is to be included ipadocument
that uses the same PSTricks macros and hence loads thentdd&/Bricks
header files anyway (in particular, if the EPS file is to beudeld in the
same document), tharaders should benone or user.

Exporting EPS files 74

Help

A Boxes

Many of the PSTricks macros have an argument for text thatasgssed in re-
stricted horizontal mode (i’IpX parlance, LR-mode) and then transformed in
some way. This is always the macro’s last argument, and ititsenw {<stuff>}

in this User's Guide Examples are the framing, rotating, scaling, positiordngd
node macros. | will call these “LR-box” macros, and use fragnas the leading
example in the discussion below.

In restricted horizontal mode, the input, consisting ofilagcharacters and boxes,
is made into one (long or short) line. There is no line-bregkinor can there be
vertical mode material such as an entire displayed equatitowever, the fact
that you can include another box means that this isn’t resatigstriction.

For one thing, alignment environments such\Bslign or IXTEX’S tabular are
just boxes, and thus present no problem. Picture envirotener the box macros
themselves are also just boxes. Actually, there isn't alsiR@ Tricks command
that cannot be put directly in the argument of an LR-box maé¢towever, en-
tire paragraphs or other vertical mode material such adagisp equations need
to be nested in &vbox or IATEX \parbox Or minipage. IATEX users should see
fancybox.sty and its documentatiorfancybox.doc, for extensive tips and trick
for using LR-box commands.

The PSTricks LR-box macros have some features that are mod im most other
LR-box macros, such as the standaEX LR-box commands.

With IATEX LR-box commands, the contents is always processed in textem
even when the box occurs in math mode. PSTricks, on the odret, preserves
math mode, and attempts to preserve the math style as vlhds four math
styles: text, display, script and scriptscript. Generaflthe box macro occurs in
displayed math (but not in sub- or superscript math), thaerta are processed
in display style, and otherwise the contents are processtki style (even here
the PSTricks macros can make mistakes, but through no fatieeo own). If
you don't get the right style, explicitly include “aextstyle, \displaystyle,
\scriptstyle Or \scriptscriptstyle command at the beginning of the box
macro’s argument.

In case you want your PSTricks LR-box commands to treat nmathé same as
your other LR-box commands, you can switch this feature ahathwith the
commands

\psmathboxtrue
\psmathboxfalse

Help 75

You can have commands (such as, but not restricted to, tHestydé commands)
automatically inserted at the beginning of each LR-boxgi#ire

\everypsbox{commands}

command-8

If you would like to define an LR-box environmensme from an LR-box com-
mandcmd, use

\pslongbox{name}{cmd}
For example, after
\pslongbox{MyFrame}{\psframebox}
you can write
\MyFrame <stuff>\endMyFrame
instead of
\psframebox{<stuff>}
Also, KTEX users can write
\begin{MyFrame} <stuff>\end{MyFrame}

Itis up to you to be sure thatnd is a PSTricks LR-box command; if it isn’t, nasty
errors can arise.

Environments like have nice properties:
e The syntax is clearer whemuff is long.

e It is easier to build composite LR-box commands. For exapntmee is a
framed minipage environment fa¥TEX:

\pslongbox{MyFrame}{\psframebox}

\newenvironment{fminipage}%
{\MyFrame\begin{minipage}}%
{\end{minipage}\endMyFrame}

B w N B

e You include verbatim text and oth&tatcode tricks in stuff.

The rest of this section elaborates on the inclusion of tarbtext in LR-box
environments and commands, for those who are interedtattybox.sty also
contains some nice verbatim macros and tricks, some of vareliseful for LR-
box commands.

18This is a token register.

Boxes 76

The reason that you cannot normally include verbatim texrirLR-box com-

mands argument is thateX reads the whole argument before processing the

\catcode changes, at which point it is too late to change the categodes. If

this is all Greek to yod? then just try thisATEX example to see the problem:
\psframebox{\verb+\foo{bar}+}

The LR-box environments defined witlhslongbox do not have this problem be-
causestuff is not processed as an argument. Thus, this works:

\pslongbox{MyFrame}{\psframebox}
\MyFrame \verb+\foo{bar}+\endMyFrame

\foo{bar}

The commands

\psverbboxtrue
\psverbboxfalse

switch into and out of, respectively, a special PSTricks entbéit lets you include
verbatim text in any LR-box command. For example:

\psverbboxtrue
\psframebox{\verb+\foo{bar}+}

\foo{bar}
However, this is not as robust. You must explicitly groupotatommands in
stuff, and LR-box commands that usually ignore spaces that foflesuff>}
might not do so wheRpsverbboxtrue is in effect.
B Tips and More Tricks

1 How do | rotate/frame this or that with IATEX?

Seefancybox.sty and its documentation.

2 How can | suppress the PostScript so that | can use my document with a
non-PostScript dvi driver?

Put the command

BIncidentally, many foreign language macros, suctgmsk. tex, use\catcode tricks which
can cause problems in LR-box macros.

Tips and More Tricks 77

\PSTricksOff
at the beginning of your document. You should then be ableita pr preview

drafts of your document (minus the PostScript, and perhegisypstrange look-
ing) with any dvi driver.

3 How can | improve the rendering of halftones?

This can be an important consideration when you have a helfio the back-
ground and text on top. You can try putting

1| \pstverb{106 45 {dup mul exch dup mul add 1.0 exch sub} setscreen}

before the halftone, or in a header (as in headers and fooigtras in PostScript
header files), if you want it to have an effect on every page.

setscreen iS a device-dependent operator.

4 What special characters can be active with PSTricks?

C Including PostScript code

To learn about the PostScript language, consult AddBestScript Language Tu-
torial and Cookbookthe “Blue Book”), or Henry McGilton and Mary Campi-
one’'sPostScript by Examplgl992). Both are published by Addison-Wesley. You
may find that the Appendix of the Blue Book, plus an understandf how the
stack works, is all you need to write simple code for commgutinmbers (e.g., to
specify coordinates or plots using PostScript).

You may want to definegX macros for including PostScript fragments in various
places. All BX macros are expanded before being passed on to PostStiipt. |
not always clear what this means. For example, suppose yitel wr

\SpecialCoor
\def\mydata{23 43}
\psline(!47 \mydata add)
\psline(!47 \mydata\ add)
\psline(!47 \mydata~add)
\psline(!47 \mydata{} add)

You will get a PostScript error in each of tRgsline commands. To see what the
argument is expanding to, try usgXrs \edef and\show. E.g.,

\def\mydata{23 43}
\edef\temp{47 \mydata add}
\show\temp

\edef\temp{47 \mydata\ add}
\show\temp

\edef\temp{47 \mydata~add}

Including PostScript code 78

\show\ temp
\edef\temp{47 \mydata{} add}
\show\ temp

TpX expands the code, assigns its value temp, and then displays the value of
\temp on your console. Hiteturn to procede. You fill find that the four samples
expand, respectively, to:

47 23 43add

47 23 43\ add

47 23 43\penalty \@M \ add
47 23 43{} add

B W N R

All'you really wanted was a space between4B@ndadd. The commandspace
will do the trick:

\psline(!47 \mydata\space add)

You can include balance braces; these will be passed on verbatim to PostScript.
However, to include an unbalanced left or right brace, yoteha use, respec-
tively,

\pslbrace
\psrbrace

Don't bother trying\} or \{.

Whenever you insert PostScript code in a PSTricks arguntieatcdictionary on
the top of the dictionary stack iscedict, which is PSTrick’s main dictionary. If
you want to define you own variables, you have two options:

Simplest Always include & in the variable names, because PSTricks never uses
@ in its variables names. You are at a risk of overflowing tkedict dic-
tionary, depending on your PostScript interpreter. Youadse more likely
to collide with someone else’s definitions, if there are iplétauthors con-
tributing to the document.

Safest Create a dictionary namebict for your scratch computations. Be sure
to remove it from the dictionary stack at the end of any code ipgert in
an argument. E.g.,

TDict 10 dict def TDict begin <your code> end

D Troubleshooting

1 Why does the document bomb in the printer when the first item in a IATEX
file is a float?

When the first item in @AIEX file is a float, \special’s in the preamble are dis-
carded. In particular, thgspecial for including PSTricks’s header file is lost.

Troubleshooting 79

The workaround is to but something before the float, or tauidelthe header file
by a command-line option with your dvi-to-ps driver.

2 | converted a .dvi file to PostScript, and then mailed it to a colleague. It
prints fine for me but bombs on her printer.

Here is the most likely (but not the only) cause of this probleThe PostScript
files you get when using PSTricks can contain long lines. Fhisuld be ac-
ceptable to any proper PostScript interpreter, but thesloga get chopped when
mailing the file. There is no way to fix this in PSTricks, but yzcan make a point
of wrapping the lines of your PostScript files when mailingrth E.g., on UNIX
you can usewencode anduudecode, or you can use the following AWK script to
wrap the lines:

#! /bin/sh
This script wraps all lines
Usage (if script is named wrap):

wrap < infile > outfile
awk ’
BEGIN {

N =78 # Max line length
}
{ if (length($0)<=N)
print
else {
currlength = 0
for (i = 1; i <=NF; i++) {
if ((currlength = currlength + length($i) + 1) > N) {
printf "\n"
printf "%s", $i
currlength = length($i)
}
else
printf \ %s", $i
}
printf "\n"
}
}

3 The color commands cause extraneous vertical space to be inserted.
For example, this can happen if you startgK \parbox or ap{} column with

a color command. The solution usually is to precede the ambonmand with
\leavevmode.

4 The color commands interfere with other color macros | use.
Try putting the commangaltcolormode at the beginning of your document. This

may or may not help. Be extra careful that the scope of colormands does not
extend across pages. This is generally a less robust cdlense

Troubleshooting 80

5 How do | stop floats from being the same color as surrounding material?

That's easy: Just put an explicit color command at the béginof the float, e.g.,
\black.

6 When | use some color command in box macros or with \setbox, the colors
get all screwed up.

If \mybox is a box register, and you write

\green Ho Hum.

\setbox\mybox=\hbox{Foo bar \blue fee fum}
Hi Ho. \red Diddley-dee

\box\mybox hum dee do

B w N R

then whenmybox is inserted, the current color is red andi® bar comes out
red (rather than green, which was the color in effect wherbthewas set). The
command that returns fronplue to the current cologreen, when the box is
set, is executed after thehbox is closed, which means thai Ho is green, but
hum dee do is still blue.

This odd behavior is due to the fact thaXTdoes not support color internally, the
way it supports font commands. The first thing to do is to exiyi bracket any
color commands inside the box. Second, be sure that thentwotor is black
when setting the box. Third, make other explicit color cremwhere necessary
if you still have problems. The color scheme invoked\Bytcolormode is slightly
better behaved if you follow the first two rules.

Note that various box macros use=tbox and so these anomalies can arise unex-
pectedly.

Troubleshooting 81

Index

\AltClipMode, 50, 70
\altcolormode, 78, 79

angle (parameter)55, 55, 56, 65
angleA (parameter), 56-58
angleB (parameter), 56, 57
\Aput, 60

\aput, 60, 60, 61

arcangle (parameter)55
arcangleA (parameter), 56
arcangleB (parameter), 56
arcsep (parameter)12

arcsepA (parameter)12, 12
arcsepB (parameter)12, 12

arm (parameter)s4, 56

armA (parameter), 56, 57

armB (parameter), 56, 57
arrowinset (parameter)27, 27
arrowlength (parameter)27, 27
\arrows, 36

arrows (parameter), 9, 10, 185, 26, 43

arrowscale (parameter)27, 28
arrowsize (parameter)27
axesstyle (parameter)45

bbl1x (parameter)72

bblly (parameter)72

bburx (parameter)72

bbury (parameter)72

\black, 79

\blue, 79

border (parameter)23, 23, 30, 55
bordercolor (parameter)23, 23
boxsep (parameter)47, 48
\Bput, 60

\bput, 60, 60, 61
bracketlength (parameter)27

\Cartesian, 64, 64, 65
\circlenode, 53
\clipbox, 49
\closedshadow, 35
\closepath, 30,33, 33
\cnode, 53

\cnodeput, 54

\code, 35, 36

82

coilarm (parameter)63, 63, 64
coilarmA (parameter), 63
coilarmB (parameter), 63
coilaspect (parameter)63, 63, 64
coilheight (parameter)p3, 63
coilinc (parameter)63, 63
coilwidth (parameter)g3, 63
\coor, 36, 36

cornersize (parameter)10, 10, 48
\cput, 48, 54

curvature (parameter)14
\curveto, 35, 35

dash (parameter)22

dashed (parameter), 30
\dataplot, 19, 19, 20
\degrees, 8, 8, 65

\dim, 35

dimen (parameter)24
\DontKillGlue, 37

dotangle (parameter)15, 15
dotscale (parameter)15
dotsep (parameter)23

dotsize (parameter), 15, 1&7
dotstyle (parameter)15, 15
dotted (parameter), 30
doublecolor (parameter)23, 23
doubleline (parameter)23, 23, 30
doublesep (parameter)23, 23
Dx (parameter), V44, 44

dx (parameter), IV44, 44

Dy (parameter), V44, 44

dy (parameter), 44

\endoverlaybox, 66
\endpscharclip, 69, 69
\endpsclip, 49, 49, 50, 69
\endpspicture, 37
\endTeXtoEPS, 71
\everypsbox, 74

\file, 36

\fileplot, 18, 19

\fill, 29,33

fillcolor (parameter), 925, 25, 47

fillstyle (parameter), R4, 25, 29, 30, 45,
67, 69

framearc (parameter)10, 10

\framenode, 54

framesep (parameter)47

gradangle (parameter)67
gradbegin (parameter)67, 67
gradend (parameter)67, 67
gradlines (parameter)g7
gradmidpoint (parameter)67
\gray, 5
\grestore, 33, 33-35
gridcolor (parameter)17
griddots (parameter)17, 17
gridlabelcolor (parameter)17
gridlabels (parameter)17
gridwidth (parameter)17
\gsave, 33, 33—-35

hatchangle (parameter)25, 25
hatchcolor (parameter)25
hatchsep (parameter)25
hatchwidth (parameter)25
headerfile (parameter)72, 72
headers (parameter)72, 72

\KillGlue, 37

labels (parameter)45

labelsep (parameter)40, 45

liftpen (parameter)3l, 31, 32, 34

linearc (parameter)10, 10, 18, 20, 48, 56,
57, 64

linecolor (parameter)9, 9, 22, 25, 29, 30,
47

linestyle (parameter)22, 23, 25, 29, 45,
49, 68, 69

\lineto, 35, 35

linetype (parameter)30, 30

linewidth (parameter)9, 9, 10, 16, 22, 25—
27,29, 30

\listplot, 18,19, 19, 20

loopsize (parameter)55, 57

\Lput, 60, 60

\1put, 55,59, 59-61

\movepath, 35

INDEX

\moveto, 32, 33

\Mput, 60, 60

\mput, 60

\mrestore, 34, 34
\msave, 34, 34
\multido, 42, 46
\multips, 41, 41, 46
\multirput, 41, 41, 42

\ncangle, 57, 57-59
\ncangles, 57, 57
\ncarc, 55,56, 56, 58, 59
\ncbar, 56, 58, 59
\nccircle, 58, 58, 59
\nccoil, 64
\nccurve, 55, 55, 56, 58, 59
\ncdiag, 56, 57-59
\ncdiagg, 56, 59
\ncLine, 55, 58, 61
\ncline, 55, 55, 58, 59, 61, 62, 64
\ncloop, 55,57, 58, 59
ncurv (parameter)s5, 55, 56
\nczigzag, 64
\newcmykcolor, 6
\newgray, 5
\newhsbcolor, 6
\newpath, 32
\newpsobject, 28, 28, 49
\newpsstyle, 28, 28
\newrgbcolor, 6

nodesep (parameter)54, 55-57, 65
nodesepA (parameter), 58
\NormalCoor, 65

offset (parameter)54, 55-57, 59, 65
\openshadow, 34

origin (parameter)22, 30
\ovalnode, 54

\overlaybox, 66

0x (parameter), V44, 44

Oy (parameter), IV44, 44

oy (parameter), IV44, 44

\parabola, 13, 13
parameters:
Dx, |V, 44, 44
Dy, IV, 44, 44
0ox, IV, 44, 44

83

oy, IV, 44, 44
angleA, 56-58
angleB, 56, 57
angle, 55, 55, 56, 65
arcangleA, 56
arcangleB, 56
arcangle, b5
arcsepA, 12, 12
arcsepB, 12, 12
arcsep, 12

armA, 56, 57

armB, 56, 57

arm, 54, 56
arrowinset, 27, 27
arrowlength, 27, 27
arrowscale, 27, 28
arrowsize, 27

arrows, 9, 10, 1825, 26, 43

axesstyle, 45
bbllx, 72

bblly, 72

bburx, 72

bbury, 72
bordercolor, 23, 23
border, 23, 23, 30, 55
boxsep, 47, 48
bracketlength, 27
coilarmA, 63
coilarmB, 63
coilarm, 63, 63, 64
coilaspect, 63, 63, 64
coilheight, 63, 63
coilinc, 63, 63
coilwidth, 63, 63
cornersize, 10, 10, 48
curvature, 14
dashed, 30

dash, 22

dimen, 24
dotangle, 15, 15
dotscale, 15
dotsep, 23

dotsize, 15, 16,27
dotstyle, 15, 15
dotted, 30
doublecolor, 23, 23

INDEX

doubleline, 23, 23, 30

doublesep, 23, 23

dx, IV, 44, 44

dy, 44

fillcolor, 9, 25, 25, 47

fillstyle, 9, 24, 25, 29, 30, 45, 67, 69

framearc, 10, 10

framesep, 47

gradangle, 67

gradbegin, 67, 67

gradend, 67, 67

gradlines, 67

gradmidpoint, 67

gridcolor, 17

griddots, 17, 17

gridlabelcolor, 17

gridlabels, 17

gridwidth, 17

hatchangle, 25, 25

hatchcolor, 25

hatchsep, 25

hatchwidth, 25

headerfile, 72, 72

headers, 72, 72

labelsep, 40, 45

labels, 45

liftpen, 31, 31, 32, 34

linearc, 10, 10, 18, 20, 48, 56, 57, 64

linecolor, 9, 9, 22, 25, 29, 30, 47

linestyle, 22, 23, 25, 29, 45, 49, 68,
69

linetype, 30, 30

linewidth, 9, 9, 10, 16, 22, 25-27, 29,
30

loopsize, 55, 57

ncurv, 55, 55, 56

nodesepA, 58

nodesep, 54, 55-57, 65

offset, 54, 55-57, 59, 65

origin, 22, 30

oy, IV, 44, 44

plotpoints, 21, 21

plotstyle, 18, 18, 31

pspicture, 37

rbracketlength, 27

rectarc, 48

84

runit, 8, 8
shadowangle, 23,24
shadowcolor, 23,24
shadowsize, 23, 23, 48
shadow, 23, 23, 24, 30

showorigin, 45

showpoints, 9, 12-16, 18, 20, 30

style, 28
subgridcolor, 17
subgriddiv, 17
subgriddots, 17
subgridwidth, 17
swapaxes, 22, 30
tbarsize, 15,27
ticksize, 45
tickstyle, 45, 45
ticks, 45
unit, 7,7, 8,17, 65
xunit, 8, 8, 16, 17, 65
yunit, 8, 8, 16, 17, 65
\parametricplot, 20, 21
\pcangle, 58
\pcarc, 58
\pcbar, 58
\pccoil, 64
\pccurve, 55,58
\pcdiag, 58
\pcline, 58, 59, 64
\pcloop, 55,58
\pczigzag, 64
\plotfile, 18, 19
plotpoints (parameter)21, 21
plotstyle (parameter)18, 18, 31
\pnode, 53
\Polar, 64, 64, 65
\psaddtolength, 7
\psarc, 12, 12, 13, 54
\psarcn, 13, 13
\psaxes, 16,43, 44, 46
\psbezier, 13, 13, 31, 32
\psborder, 23
\psccurve, 15, 18
\pscharclip, 69, 69, 70
\pscharpath, 69, 69
\pscircle, 11, 24
\pscirclex, 11

INDEX

\pscirclebox, 47,48, 48, 53
\psclip, 49, 49, 50, 69
\psCoil, 63, 63, 64
\pscoil, 63, 63, 64
\pscurve, 14, 14, 18, 31, 34

\pscustom, 13,29, 29-35, 41, 49, 54

\psdblframebox, 47, 54
\psdots, 15, 18, 30
\psecurve, 14, 18
\psellipse, 12, 24
\psfill, 29
\psframe, 9, 10,11, 11, 24, 46, 47
\psframebox, 47, 47, 48, 54
\psgrid, 16, 16, 17, 30, 43, 70
\pshatchcolor, 25
\pslabelsep, 39, 45, 60
\pslbrace, 77

\psline, 8,10, 10, 11, 18, 20, 28, 31, 46, 58,

76
\pslinecolor, 9
\pslinewidth, 9
\pslongbox, 74, 75
\psmathboxfalse, 73
\psmathboxtrue, 73
\psovalbox, 47,48, 54
\psoverlay, 66, 66
\pspicture, 16,37, 37, 38, 49, 70
pspicture (parameter), 37
\psplot, 20, 20, 21
\pspolygon, 10,11, 18, 25
\psrbrace, 77
\psrunit, 8
\psscalebox, 50
\psscaleboxto, 50
\psset, 6, 6, 7, 10, 11, 37
\pssetlength, 7
\psshadowbox, 48, 54
\pstextpath, 68, 68, 69
\pstheader, 68
\PSTricksEPS, 70, 72
\PSTricksOff, 76
\pstroke, 29
\pstrotate, 41
\PSTtoEPS, 19,71, 71
\pstunit, 29
\pstVerb, 6, 38, 41, 50, 62, 66

85

\pstverb, 29
\pstverbscale, 38, 50, 62, 66
\psunit, 8, 69
\psverbboxfalse, 75
\psverbboxtrue, 5,75, 75
\pswedge, 11, 24
\psxlabel, 45

\psxunit, 8, 18
\psylabel, 45

\psyunit, 8, 18
\pszigzag, 63, 63, 64
\putoverlaybox, 66

\qdisk, 11, 30
\qline, 10, 30

\radians, 8

rbracketlength (parameter)27

\rcoor, 36

\rcurveto, 35

\readdata, 19, 19

rectarc (parameter), 48

\red, 5

\rlineto, 35

\Rnode, 53, 53, 61

\rnode, 53, 53, 54, 61, 62

\RnodeRef, 53, 53

\rotate, 34

\Rotatedown, 51

\rotatedown, 50

\rotateleft, 50

\rotateright, 50

\Rput, 40, 40, 41, 60

\rput, 37, 38,39, 39, 41, 48, 52, 59, 60, 64,
69, 70, 72

runit (parameter)8g, 8

\savedata, 19, 19

\scale, 34

\setcolor, 36

shadow (parameter)23, 23, 24, 30

shadowangle (parameter), 234

shadowcolor (parameter), 234

shadowsize (parameter)23, 23, 48

showorigin (parameter)45

showpoints (parameter)9, 12-16, 18, 20,
30

\SpecialCoor, 7, 8,64, 64, 65

INDEX

\stroke, 30,33

style (parameter), 28
subgridcolor (parameter)17
subgriddiv (parameter)17
subgriddots (parameter)17
subgridwidth (parameter)17
\swapaxes, 34

swapaxes (parameter)22, 30

tbarsize (parameter), 187
\TeXtoEPS, 71

ticks (parameter)45
ticksize (parameter)45
tickstyle (parameter)45s, 45
\TPoffset, 69

\translate, 34

unit (parameter)/, 7, 8, 17, 65

\uput, 39, 40, 41, 60

xunit (parameter)8, 8, 16, 17, 65

yunit (parameter)8, 8, 16, 17, 65

86

Color

5 \newgray{color}{num}
6 \newrgbcolor{color}{numl num2 num3}%
6 \newhsbcolor{color}{numl num2 num3}%

6 \newcmykcolor{color}{numl num2 num3 num4}

Setting graphics parameters

6 \psset{parl=valuel,par2=value2, ...}

Dimensions, coordinates and angles
unit=dim
\pssetlength{cmd3}{dim}
\psaddtolength{cmd}{dim}

xunit=dim

7

7

7

8

8 yunit=dim
8 runit=dim

8 \degrees[num]
8

\radians

Basic graphics parameters

9 linewidth=dim
9 linecolor=color

9 showpoints=true/false

Lines and polygons

10 linearc=dim
10 framearc=num

10 cornersize=relative/absolute

Default:

Default:
Default:
Default:

1lcm

1lcm
1lcm

1lcm

Default:
Default:
Default:

Default:
Default:
Default:

10
10
11
11

Arcs,

11
11
11
12
12

\psline:[par]l{arrows}(x0,y0)(x1,y1)...(xn,yn)
\qline(coorQ®)(coorl)
\pspolygon=[par](x0,y0)(x1,y1)(x2,y2)...(xn,yn)

\psframe:[par](x0,y0)(x1,y1)

circles and ellipses

\pscircle=[par](x0,y0){radius}

\adisk(coor){radius}
\pswedge=[par](x0,y0){radius}{anglel }{angle2}
\psellipse«[par](x0,y0)(x1,y1)

\psarcx [parl{arrows}(x, y){radius}{angleA}{angleB}

12 arcsepA=dim Default: opt

12 arcsepB=dim Default: opt

12 arcsep=dim Default:

13 \psarcn=[par]{arrows}(x, y){radius}{angleA}{angleB}
Curves

13 \psbezier=[par]{arrows}(x0,y0)(x1,y1)(x2,y2)(x3,y3)

13
14
14
14
15

Dots

15
15

\parabola:[parl{arrows}(x0, y0)(x1, yl)

curvature=numl num2 num3 Default:
\pscurve:[parl{arrows}(x1,y1)...(xn, yn)
\psecurve:[par]{arrows}(x1, y1)...(xn, yn)]
\psccurve:[par]{arrows}(x1, y1)...(xn, yn)
\psdots=[par](x1,y1)(x2,y2)...(xn,yn)

dotstyle=style Default:

15
15

Grids

16
17
17
17
17
17
17
17
17
17

Plots

18
18
19
19
19

Dot styles

Style Example

% o o o

o) o o o o o
+ + o+ + + o+

triangle *+ & & & %

trianglex 4 4 4 4 4

dotscale=numl num2

dotangle=angle

\psgrid(x0,y0)(x1,y1)(x2,y2)
gridwidth=dim

gridcolor=color

griddots=num

gridlabels=dim
gridlabelcolor=color
subgriddiv=int
subgridwidth=dim
subgridcolor=color

subgriddots=num

plotstyle=style
\fileplot:[parl{file}
\dataplot:[parl{commands}
\savedata{command}[data]

\readdata{command}{file}

Style
square
square=
pent agon
pentagon=

Example

[}

O

(m)

O

(m]

O

o ad

o O

* @

Default:
Default:

Default:
Default:
Default:
Default:
Default:
Default:
Default:
Default:
Default:

Default:

19 \listplot=[parl{list}
20 \psplot=[par] {Xmin} {Xmax}{function}
20 \parametricplot=[par]{tmin}{tmaxt{function}

21

plotpoints=int

Coordinate systems

22
22

Line
22
22
23
23
23
23
23
23
23
23
24
24
24

Fill

24
25
25

origin={coor}

swapaxes=true

styles

linestyle=style
dash=dim1 dim2
dotsep=dim
border=dim
bordercolor=color
doubleline=true/false
doublesep=dim
doublecolor=color
shadow=true/false
shadowsize=dim
shadowangle=angle
shadowcolor=color

dimen=outer/inner/middle

styles

fillstyle=style
fillcolor=color

hatchwidth=dim

Default:

Default:

Opt,Opt
Default:

Default:
Default:
Default:
Default:
Default:
Default:
Default:
Default:
Default:
Default:
Default:
Default:
Default:

Default:
Default:
Default:

25 hatchsep=dim Default: 27 bracketlength=num Default:

25 hatchcolor=color Default: 27 rbracketlength=num Default:
25 hatchangle=rot Default: 27 dotsize=dim num Default:
27 arrowscale=arrowscale=numl num2 Default:

Arrowheads and such

25 arrows=style Default: Custom styles

AITOWS 28 \newpsobject{name}{object}{parl=valuel,...}

Value Example Name 28 \newpsstyle{name}{parl=valuel,...}
- — None
<-> < Arrowheads.
>-< < Reverse arrowheads.

<<->> =<=—> Double arrowheads.

The basics

29 \pscustom:[par]{commands}

>>-<< == Double reverse arrowheads. Parameters

|-| F— T-bars, flush to endpoints. 30 linetype=int Default:
|«-|+ F—— T-bars, centered on endpoints.

[-] F— Square brackets. Graphics objects

(-) & Rounded brackets.
o-o °—= C(ircles, centered on endpoints.
»-+« ®———* Disks, centered on endpoints.

31 liftpen=0/1/2 Default:

Safe tricks
oo-oo °— Circles, flush to endpoints.

xx-xx = Disks, flush to endpoints. 32 \newpath

32 \moveto(coor)

c-c —— Extended, rounded ends.
cc-cc —— Flush round ends. 33 \closepath
C-C — Extended, square ends. 33 \stroke[par]
33 \fill[par]
27 arrowsize=dim num Default: 33 \gsave
27 arrowlength=num Default: 33 \grestore
27 arrowinset=num Default: 34 \translate(coor)

27 tbarsize=dim num Default: 34 \scale{numl num2}

A\

34
34
34
34
34
35
35

\rotate{angle}
\swapaxes

\msave

\mrestore
\openshadow[par]
\closedshadow[par]

\movepath(coor)

Pretty safe tricks

35
35
35
35

\lineto(coor)

\rlineto(coor)

\curveto(x1, y1)(x2, y2)(x3, y3)
\rcurveto(xl, y1)(x2,y2)(x3,y3)

For hackers only

35
35
36
36
36
36
36

\code{code}

\dim{dim}
\coor(x1,yl1)(x2,y2)...(xn, yn)
\rcoor(x1, y1)(x2,y2)...(xn, yn)
\file{file}

\arrows{arrows}

\setcolor{color}

Pictures

37 \pspicture:[baseline](x0,y0)(x1,yl)

37

\endpspicture

Placing and rotating whatever

39 \rput:[refpoint]{rotation}(x, y){stuff}

39 \uput={labelsep}[refangle]l{rotation}(x, y){stuff}

39 \pslabelsep

40 1labelsep=dim Default:

Repetition

41 \multirput=[refpoint]1{angle}(x0, y0)(x1, y1){int}{stuff}
41 \multips{angle}(x0, y0)(x1, y1){int}{graphics}

Axes

43 \psaxes=[par]{arrows}(x0, y0)(x1,y1)(x2,y2)

Axes label parameters

Horitontal | Vertical | Dflt | Description

Ox=num oy=num | O | Label at origin.

Dx=num Dy=num 1 | Label increment

dx=dim oy=dim | Opt | Dist btwn labels.
45 1labels=all/x/y/none Default:
45 showorigin=true/false Default:
45 ticks=all/x/y/none Default:
45 tickstyle=full/top/bottom Default:
45 ticksize=dim Default:

45 \psxlabel
45 \psylabel

45 axesstyle=axes/frame/none Default:

Framed boxes

47 framesep=dim Default:
47 boxsep=true/false Default:

47 \psframebox:[par]{stuff}

47 \psdblframebox:[par]{stuff}

48 \psshadowbox:[par]{stuff}

48 \pscirclebox:[par]{stuff}

48 \cput=[par]l{angle}(x, y){stuff}
48 \psovalbox=[par]{stuff}

Clipping

49 \clipbox[dim]1{stuff}

49 \psclip{graphics} ... \endpsclip
< - -

Rotation and scaling boxes

50 \rotateleft{stuff}

50 \rotateright{stuff}

50 \rotatedown{stuff}

50 \psscalebox{numl num2}{stuff}

50 \psscaleboxto(x, y){stuff}

Nodes

53 \rnode[refpoint]1{name}{stuff}

53 \Rnode(x, y){name}{stuff}

53 \RnodeRef

53 \pnode(x, y){name}

53 \cnode=[parl(x, y){radius}{name}
53 \circlenode:[parl{name}{stuff}

54
54

Node

54
54
54
55
55
55
55
55
55
55
56
56
56
56
57
57
57
58
58
58
58
58
58
58
58

\cnodeput=[par]{angle}(x, y){name}{stuff}
\ovalnode=[par]{name}{stuff}

connections

nodesep=dim

offset=dim

arm=dim

angle=angle

arcangle=angle

ncurv=num

loopsize=dim
\ncline:[par]{arrows}{nodeA}{nodeB}
\ncLine: [par]{arrows}{nodeA}{nodeB}
\nccurve:[par]{arrows}{nodeA}{nodeB}
\ncarc:[par]{arrows}{nodeA}{nodeB}
\ncbar:[par]{arrows}{nodeA}{nodeB}
\ncdiag: [par]{arrows}{nodeA}{nodeB}
\ncdiagg=[par]l{arrows}{nodeA}{nodeB}
\ncangle=[par]{arrows}{nodeA}{nodeB}
\ncangles=[par]{arrows}{nodeA}{nodeB}
\ncloop= [parl{arrows}{nodeA}{nodeB}
\nccircle=[par]{arrows}{node}{radius}
\pcline:[par]{arrows}(x1, y1)(x2,y2)
\pccurve:[parl{arrows}(x1, y1)(x2,y2)
\pcarc:[par]{arrows}(x1,yl1)(x2,y2)
\pcbar:[par]{arrows}(x1,yl1)(x2,y2)
\pcdiag=[par]{arrows}(x1, y1)(x2,y2)
\pcangle:[parl{arrows}(x1, y1)(x2,y2)
\pcloop=[par]l{arrows}(x1,yl1)(x2,y2)

Default:
Default:
Default:
Default:
Default:
Default:
Default:

Attaching labels to node connections Coordinate Example Description
59 \lput=[refpoint]{rotation}(pos){stuff} (<>, <y>) (3,4) Cartesian cgordinate.
60 \aputs[labelsep]{angle}(pos){stuff} (<r>;<a>) (3;110) Polar coordinate.
(<node>) (A) Center of node.

60
60

\bput:[labelsep]{angle}(pos){stuff}
\mput: [refpoint1{stuff}

([<par>]<node>)

(!<ps>)

([angle=45]A)
(!5 3.3 2 exp)

Relative to node.
Raw PostScript.

IN

60 \aput:[labelsep]{stuff} (<coorl>|<coor2>) (A|1in;30) Combination.
60 \Bput=[labelsep]l{stuff} —
Angle Example Description
<num> 45 Angle.
Coils and zigzags (<coor>) (-1,1) Coordinate (vector).
63 \pscoils[par]{arrows}(x0, y0)(xI,y1) I<ps> 133 sqrt Raw PostScript.
63 \psCoilx[parl{anglel}{angle2} 65 \NormalCoor
63 \pszigzag=[par]{arrows}(x0, y0)(x1,yl)
63 coilwidth=dim Default: Overlays
63 coilheight=num Default: 66 \overlaybox stuff \endoverlaybox
63 coilarm=dim Default: 66 \psoverlay{string}
63 coilaspect=angle Default: 66 \putoverlaybox{string}
63 coilinc=angle Default: 67 gradbegin=color Default:
64 \nccoilx[par]l{arrows}{nodeA}{nodeB} 67 gradend=color Default
64 \nczigzag:[par]l{arrows}{nodeA}{nodeB} 67 gradlines=int Default
67 gradmidpoint=num Default:
64 \pccoil=[par]{arrows}(x1,yl)(x2,y2) 67 gradangle=angle Default:

64 \pczigzag=[par]l{arrows}(x1,yl)(x2,y2)
Typesetting text along a path

Special coordinates 68 \pstextpath[pos1(x,y){graphics object}{text}

64 \SpecialC . 173
pecialloor Stroking and filling character paths

Special coordinates and angles 69 \pscharpath:[par]{text}

69

\pscharclip=[par]{text} ... \endpscharclip

Exporting EPS files

71
71
71
72
72
72
72
72
72

Boxes

73

\TeXtoEPS

\endTeXtoEPS

\PSTtoEPS[par]{file}{graphics objects}
bbllx=dim

bblly=dim

bburx=dim

bbury=dim

headerfile=file

headers=none/all/user

\psmathboxtrue

73 \psmathboxfalse
74 \everypsbox{commands}
74 \pslongbox{name}{cmd}
75 \psverbboxtrue
75 \psverbboxfalse

Default:

Default: Tips and More Tricks
Default:
Default: 76 \PSTricksOff

Default: s

Default: . .
Including PostScript code

77 \pslbrace

77 \psrbrace

