
PSTricks:

PostScript macros for Generic TeX.

Dripping Faucet

M

m

g

Mathematical Model for
a Dripping Faucet

l
e
e
c
h
e
n
g

User’s Guide

Timothy Van Zandt

12 March 1993
Version 0.93a

Author’s address:
Department of Economics, Princeton University,
Princeton, NJ 08544-1021, USA. Internet:tvz@Princeton.EDU

Documentation prepared by Rolf Niepraschk and Herbert Voß–November 25, 2007

Contents

Welcome to PSTricks 2

Part I The Essentials 4

1 Arguments and delimiters 4

2 Color 5

3 Setting graphics parameters 6

4 Dimensions, coordinates and angles 7

5 Basic graphics parameters 8

Part II Basic graphics objects 10

6 Lines and polygons 10

7 Arcs, circles and ellipses 11

8 Curves 13

9 Dots 15

10 Grids 16

11 Plots 18

Part III More graphics parameters 22

12 Coordinate systems 22

13 Line styles 22

14 Fill styles 24

15 Arrowheads and such 25

CONTENTS 1

16 Custom styles 28

Part IV Custom graphics 29

17 The basics 29

18 Parameters 29

19 Graphics objects 30

20 Safe tricks 32

21 Pretty safe tricks 35

22 For hackers only 35

Part V Picture Tools 37

23 Pictures 37

24 Placing and rotating whatever 38

25 Repetition 41

26 Axes 42

Part VI Text Tricks 47

27 Framed boxes 47

28 Clipping 49

29 Rotation and scaling boxes 50

Part VII Nodes and Node Connections 52

30 Nodes 53

31 Node connections 54

CONTENTS 2

32 Attaching labels to node connections 58

Part VIII Special Tricks 63

33 Coils and zigzags 63

34 Special coordinates 64

35 Overlays 66

36 The gradient fill style 67

37 Adding color to tables 67

38 Typesetting text along a path 68

39 Stroking and filling character paths 69

40 Importing EPS files 70

41 Exporting EPS files 70

Help 73

A Boxes 73

B Tips and More Tricks 75

C Including PostScript code 76

D Troubleshooting 77

CONTENTS 3

Welcome to PSTricks

PSTricks is a collection of PostScript-based TEX macros that is compatible with
most TEX macro packages, including Plain TEX, LATEX, AMSTEX, and AMS-
LATEX. PSTricks gives you color, graphics, rotation, trees and overlays. PSTricks
puts the icing (PostScript) on your cake (TEX)!

To install PSTricks, follow the instructions in the fileread­me.pst that comes
with the PSTricks package. Even if PSTricks has already beeninstalled for you,
giveread­me.pst a look over.

This User’s Guideverges on being a reference manual, meaning that it is not
designed to be read linearly. Here is a recommended strategy: Finish reading this
brief overview of the features in PSTricks. Then thumb through the entireUser’s
Guideto get your own overview. Return to Part I (Essentials) and read it carefully.
Refer to the remaining sections as the need arises.

When you cannot figure out how to do something or when trouble arises, check out
the appendices (Help). You just might be lucky enough to find asolution. There is
also a LATEX file samples.pst of samples that is distributed with PSTricks. Look
to this file for further inspiration.

This documentation is written with LATEX. Some examples use LATEX specific
constructs and some don’t. However, there is nothing LATEX specific about any of
the macros, nor is there anything that does not work with LATEX. This package has
been tested with Plain TEX, LATEX, AMS-LATEXand AMSTEX, and should work
with other TEX macro packages as well.

The main macro file ispstricks.tex/pstricks.sty. Each of the PSTricks macro
pstricks files comes with a.tex extension and a.sty extension; these are equivalent, but

the.sty extension means that you can include the file name as a LATEX document
style option.

There are numerous supplementary macro files. A file, like theone above and the
left, is used in thisUser’s Guideto remind you that you must input a file before
using the macros it contains.

For most PSTricks macros, even if you misuse them, you will not get PostScript
errors in the output. However, it is recommended that you resolve any TEX er-
rors before attempting to print your document. A few PSTricks macros pass on
PostScript errors without warning. Use these with care, especially if you are using
a networked printer, because PostScript errors can cause a printer to bomb. Such
macros are pointed out in strong terms, using a warning like this one:

P
S Warning: Use macros that do not check for PostScript errors with

care. PostScript errors can cause a printer to bomb!

Welcome to PSTricks 4

Keep in mind the following typographical conventions in this User’s Guide.

• All literal input characters, i.e., those that should appear verbatim in your
input file, appear in uprightHelvetica andHelvetica­Bold fonts.

• Meta arguments, for which you are supposed to substitute a value (e.g.,
angle) appear in slantedHelvetica-Oblique andHelvetica-BoldOblique fonts.

• The main entry for a macro or parameter that states its syntaxappears in
a large bold font,except for the optional arguments, which are in medium
weight. This is how you can recognize the optional arguments.

• References to PSTricks commands and parameters within paragraphs are
set inHelvetica­Bold.

Welcome to PSTricks 5

I The Essentials

1 Arguments and delimiters

Here is some nitty-gritty about arguments and delimiters that is really important
to know.

The PSTricks macros use the following delimiters:

Curly braces {<arg>}

Brackets (only for optional arguments)[<arg>]

Parentheses and commas for coordinates(x,y)

= and, for parameters <par1>=<val1>, . . .

Spaces and commas are also used as delimiters within arguments, but in this case
the argument is expanded before looking for the delimiters.

Always use a period rather than a comma to denote the decimal point, so that
PSTricks doesn’t mistake the comma for a delimiter.

The easiest mistake to make with the PSTricks macros is to mess up the delimiters.
This may generate complaints from TEX or PSTricks about bad arguments, or
other unilluminating errors such as the following:

! Use of \get@coor doesn’t match its definition.

! Paragraph ended before \pst@addcoor was complete.

! Forbidden control sequence found while scanning use of \check@arrow.

! File ended while scanning use of \lput.

Delimiters are generally the first thing to check when you geterrors with a PSTricks
macro.

Since PSTricks macros can have many arguments, it is useful to know that you
can leave a space or new line between any arguments, except between arguments
enclosed in curly braces. If you need to insert a new line between arguments
enclosed in curly braces, put a comment character% at the end of the line.

As a general rule, the first non-space character after a PSTricks macro should not
be a[or (. Otherwise, PSTricks might think that the[or (is actually part of the
macro. You can always get around this by inserting a pair{} of braces somewhere
between the macro and the[or (.

The Essentials 6

2 Color

The grayscales

black, darkgray, gray, lightgray, andwhite,

and the colors

red, green, blue, cyan, magenta, andyellow

are predefined in PSTricks.

This means that these names can be used with the graphics objects that are de-
scribed in later sections. This also means that the command\gray (or \red, etc.)
can be used much like\rm or \tt, as in

{\gray This stuff should be gray.}

The commands\gray, \red, etc. can be nested like the font commands as well.
There are a few important ways in which the color commands differ from the font
commands:

1. The color commands can be used in and out of math mode (thereare no
restrictions, other than proper TEX grouping).

2. The color commands affect whatever is in their scope (e.g., lines), not sim-
ply characters.

3. The scope of the color commands does not extend across pages.

4. The color commands are not as robust as font commands when used inside
box macros. See page 79 for details. You can avoid most problems by
explicitly grouping color commands (e.g., enclosing the scope in braces{})
whenever these are in the argument of another command.1

You can define or redefine additional colors and grayscales with the following
commands. In each case,numi is a number between 0 and 1. Spaces are used as
delimiters—don’t add any extraneous spaces in the arguments.

\newgray{color}{num}

num is the gray scale specification, to be set by PostScript’ssetgray oper-
ator. 0 is black and 1 is white. For example:

1 \newgray{darkgray}{.25}

1However, this is not necessary with the PSTricks LR-box commands, expect when
\psverbboxtrue is in effect. See Section A.

Color 7

\newrgbcolor{color}{num1 num2 num3}

num1 num2 num3 is ared-green-bluespecification, to be set by PostScript’s
setrgbcolor operator. For example,

1 \newrgbcolor{green}{0 1 0}

\newhsbcolor{color}{num1 num2 num3}

num1 num2 num3 is anhue-saturation-brightnessspecification, to be set by
PostScript’ssethsbcolor operator. For example,

1 \newhsbcolor{mycolor}{.3 .7 .9}

\newcmykcolor{color}{num1 num2 num3 num4}

num1 num2 num3 num4 is acyan-magenta-yellow-blackspecification, to be
set by PostScript’snewcmykcolor operator. For example,

1 \newcmykcolor{hercolor}{.5 1 0 .5}

For defining new colors, therbg model is a sure thing.hsb is not recommended.
cmyk is not supported by all Level 1 implementations of PostScript, although
it is best for color printing. For more information on color models and color
specifications, consult thePostScript Language Reference Manual, 2nd Edition
(Red Book), and a color guide.

Driver notes: The command\pstVerb must be defined.

3 Setting graphics parameters

PSTricks uses a key-value system of graphics parameters to customize the macros
that generate graphics (e.g., lines and circles), or graphics combined with text
(e.g., framed boxes). You can change the default values of parameters with the
command\psset, as in

1 \psset{fillcolor=yellow}

2 \psset{linecolor=blue,framearc=.3,dash=3pt 6pt}

The general syntax is:

\psset{par1=value1,par2=value2,...}

As illustrated in the examples above, spaces are used as delimiters for some of the
values. Additional spaces are allowed only following the comma that separates
par=value pairs (which is thus a good place to start a new line if there are many
parameter changes). E.g., the first example is acceptable, but the second is not:

1 \psset{fillcolor=yellow, linecolor=blue}

2 \psset{fillcolor= yellow,linecolor =blue }

Setting graphics parameters 8

The parameters are described throughout thisUser’s Guide, as they are needed.

Nearly every macro that makes use of graphics parameters allows you to include
changes as an optional first argument, enclosed in square brackets. For example,

1 \psline[linecolor=green,linestyle=dotted](8,7)

draws a dotted, green line. It is roughly equivalent to

1 {\psset{linecolor=green,linestyle=dotted}\psline(8,7)}

For many parameters, PSTricks processes the value and stores it in a peculiar
form, ready for PostScript consumption. For others, PSTricks stores the value in
a form that you would expect. In the latter case, thisUser’s Guidewill mention
the name of the command where the value is stored. This is so that you can use
the value to set other parameters. E.g.,

1 \psset{linecolor=\psfillcolor,doublesep=.5\pslinewidth}

However, even for these parameters, PSTricks may do some processing and error-
checking, and you should always set them using\psset or as optional parameter
changes, rather than redefining the command where the value is stored.

4 Dimensions, coordinates and angles

Whenever an argument of a PSTricks macro is a dimension, the unit is optional.
The default unit is set by the

unit=dim Default: 1cm

parameter. For example, with the default value of1cm, the following are equiva-
lent:

1 \psset{linewidth=.5cm}

2 \psset{linewidth=.5}

By never explicitly giving units, you can scale graphics by changing the value of
unit.

You can use the default coordinate when setting non-PSTricks dimensions as well,
using the commands

\pssetlength{cmd}{dim}

\psaddtolength{cmd}{dim}

wherecmd is a dimension register (in LATEX parlance, a “length”), anddim is
a length with optional unit. These are analogous to LATEX’s \setlength and
\addtolength.

Coordinate pairs have the form(x,y). The origin of the coordinate system is at
TEX’s currentpoint. The command\SpecialCoor lets you use polar coordinates, in

Dimensions, coordinates and angles 9

the form(<r>;<a>), wherer is the radius (a dimension) anda is the angle (see
below). You can still use Cartesian coordinates. For a complete description of
\SpecialCoor, see Section 34.

Theunit parameter actually sets the following three parameters:

xunit=dim Default: 1cm

yunit=dim Default: 1cm

runit=dim Default: 1cm

These are the default units for x-coordinates, y-coordinates, and all other coor-
dinates, respectively. By setting these independently, you can scale the x and y
dimensions in Cartesian coordinate unevenly. After changing yunit to 1pt, the
two \psline’s below are equivalent:

1 \psset{yunit=1pt}

2 \psline(0cm,20pt)(5cm,80pt)

3 \psline(0,20)(5,80)

The values of therunit, xunit andyunit parameters are stored in the dimension
registers\psunit(also\psrunit), \psxunit and\psyunit.

Angles, in polar coordinates and other arguments, should bea number giving the
angle in degrees, by default. You can also change the units used for angles with
the command

\degrees[num]

num should be the number of units in a circle. For example, you might use

1 \degrees[100]

to make a pie chart when you know the shares in percentages.\degrees without
the argument is the same as

1 \degrees[360]

The command

\radians

is short for

\degrees[6.28319]

\SpecialCoor lets you specify angles in other ways as well.

5 Basic graphics parameters

The width and color of lines is set by the parameters:

Basic graphics parameters 10

linewidth=dim Default:
linecolor=color Default:

Thelinewidth is stored in the dimension register\pslinewidth, and thelinecolor
is stored in the command\pslinecolor.

The regions delimited by open and closed curves can be filled,as determined by
the parameters:

fillstyle=style

fillcolor=color

Whenfillstyle=none, the regions are not filled. Whenfillstyle=solid, the re-
gions are filled withfillcolor. Otherfillstyle’s are described in Section 14.

The graphics objects all have a starred version (e.g.,\psframe*) which draws a
solid object whose color islinecolor. For example,

\psellipse*(1,.5)(1,.5)

Open curves can have arrows, according to the

arrows=arrows

parameter. Ifarrows=­, you get no arrows. Ifarrows=<­>, you get arrows on both
ends of the curve. You can also setarrows=­> andarrows=<­, if you just want an
arrow on the end or beginning of the curve, respectively. With the open curves,
you can also specify the arrows as an optional argument enclosed in{} brackets.
This should come after the optional parameters argument. E.g.,

\psline[linewidth=2pt]{<­}(2,1)

Other arrow styles are described in Section 15

If you set the

showpoints=true/false Default:

parameter totrue, then most of the graphics objects will put dots at the appropri-
ate coordinates or control points of the object.2 Section 9 describes how to change
the dot style.

2The parameter value is stored in the conditional\ifshowpoints.

Basic graphics parameters 11

II Basic graphics objects

6 Lines and polygons

The objects in this section also use the following parameters:

linearc=dim Default:

The radius of arcs drawn at the corners of lines by the\psline and\pspolygon
graphics objects.dim should be positive.

framearc=num Default:

In the\psframe and the related box framing macros, the radius of rounded
corners is set, by default, to one-halfnum times the width or height of the
frame, whichever is less.num should be between 0 and 1.

cornersize=relative/absolute Default:

If cornersize is relative, then theframearc parameter determines the ra-
dius of the rounded corners for\psframe, as described above (and hence
the radius depends on the size of the frame). Ifcornersize is absolute,
then thelinearc parameter determines the radius of the rounded corners for
\psframe (and hence the radius is of constant size).

Now here are the lines and polygons:

\psline*[par]{arrows}(x0 ,y0)(x1 ,y1)...(xn,yn)

This draws a line through the list of coordinates. For example:

0 1 2 3 4
0

1

2

\psline[linewidth=2pt,linearc=.25]{­>}(4,2)(0,1)(2,0)

\qline(coor0)(coor1)

This is a streamlined version of\psline that does not pay attention to the
arrows parameter, and that can only draw a single line segment. Notethat
both coordinates are obligatory, and there is no optional argument for set-
ting parameters (use\psset if you need to change thelinewidth, or what-
ever). For example:

Basic graphics objects 12

0 1 2
0

1

\qline(0,0)(2,1)

\pspolygon*[par](x0 ,y0)(x1 ,y1)(x2 ,y2)...(xn,yn)

This is similar to\psline, but it draws a closed path. For example:

0 1 2 3 4
0

1

2

\pspolygon[linewidth=1.5pt](0,2)(1,2)

\pspolygon*[linearc=.2,linecolor=darkgray](1,0)(1,2)(4,0)(4,2)

\psframe*[par](x0 ,y0)(x1 ,y1)

\psframe draws a rectangle with opposing corners(x0,y0) and (x1,y1).
For example:

0 1 2 3 4
0

1

2

\psframe[linewidth=2pt,framearc=.3,fillstyle=solid,

fillcolor=lightgray](4,2)

\psframe*[linecolor=white](1,.5)(2,1.5)

7 Arcs, circles and ellipses

\pscircle*[par](x0 ,y0){radius}

This draws a circle whose center is at(x0,y0) and that has radiusradius.
For example:

-1 0 1 2
-1

0

1

2

\pscircle[linewidth=2pt](.5,.5){1.5}

\qdisk(coor){radius}

This is a streamlined version of\pscircle*. Note that the two arguments
are obligatory and there is no parameters arguments. To change the color of
the disks, you have to use\psset:

\psset{linecolor=gray}

\qdisk(2,3){4pt}

\pswedge*[par](x0 ,y0){radius}{angle1}{angle2}

This draws a wedge whose center is at(x0,y0), that has radiusradius, and
that extends counterclockwise fromangle1 to angle2 . The angles must be
specified in degrees. For example:

Arcs, circles and ellipses 13

0 1 2
0

1

2

\pswedge[linecolor=gray,linewidth=2pt,fillstyle=solid]{2}{0}{70}

\psellipse*[par](x0 ,y0)(x1 ,y1)

(x0,y0) is the center of the ellipse, andx1 andy1 are the horizontal and
vertical radii, respectively. For example:

-1 0 1 2
-2

-1

0

1

\psellipse[fillcolor=lightgray](.5,0)(1.5,1)

\psarc*[par]{arrows}(x,y){radius}{angleA}{angleB}

This draws an arc fromangleA to angleB, going counter clockwise, for a
circle of radiusradius and centered at(x,y). You must include either the
arrows argument or the(x,y) argument. For example:

0 1 2 3
0

1

2

\psarc*[showpoints=true](1.5,1.5){1.5}{215}{0}

See howshowpoints=true draws a dashed line from the center to the arc;
this is useful when composing pictures.

\psarc also uses the parameters:

arcsepA=dim Default: 0pt

angleA is adjusted so that the arc would just touch a line of widthdim

that extended from the center of the arc in the direction ofangleA.

arcsepB=dim Default: 0pt

This is likearcsepA, butangleB is adjusted.

arcsep=dim Default:

This just sets botharcsepA andarcsepB.

These parameters make it easy to draw two intersecting linesand then use
\psarc with arrows to indicate the angle between them. For example:

0 1 2 3 4
0

1

2

3

\SpecialCoor

\psline[linewidth=2pt](4;50)(0,0)(4;10)

\psarc[arcsepB=2pt]{­>}{3}{10}{50}

Arcs, circles and ellipses 14

\psarcn*[par]{arrows}(x,y){radius}{angleA}{angleB}

This is like \psarc, but the arc is drawnclockwise. You can achieve the
same effect using\psarc by switchingangleA andangleB and the arrows.3

8 Curves

\psbezier*[par]{arrows}(x0 ,y0)(x1 ,y1)(x2 ,y2)(x3 ,y3)

\psbezier draws a bezier curve with the four control points. The curve
starts at the first coordinate, tangent to the line connecting to the second
coordinate. It ends at the last coordinate, tangent to the line connecting
to the third coordinate. The second and third coordinates, in addition to
determining the tangency of the curve at the endpoints, also“pull” the curve
towards themselves. For example:

b

b

b

\psbezier[linewidth=2pt,showpoints=true]{­>}(0,0)(1,4)(2,1)(4,3.5)

showpoints=true puts dots in all the control points, and connects them by
dashed lines, which is useful when adjusting your bezier curve.

\parabola*[par]{arrows}(x0,y0)(x1,y1)

Starting at(x0,y0), \parabola draws the parabola that passes through(x0,y0)

and whose maximum or minimum is(x1,y1). For example:

0 1 2 3 4
0

1

2

3

\parabola*(1,1)(2,3)

\psset{xunit=.01}

\parabola{<­>}(400,3)(200,0)

The next three graphics objects interpolate an open or closed curve through the
given points. The curve at each interior point is perpendicular to the line bisecting
the angle ABC, where B is the interior point, and A and C are theneighboring
points. Scaling the coordinatesdoes notcause the curve to scale proportionately.

The curvature is controlled by the following parameter:

3However, with\pscustom graphics object, described in Part IV,\psarcn is not redundant.

Curves 15

curvature=num1 num2 num3 Default:

You have to just play around with this parameter to get what you want.
Individual values outside the range -1 to 1 are either ignored or are for
entertainment only. Below is an explanation of what each number does. A,
B and C refer to three consecutive points.

Lower values ofnum1 make the curve tighter.

Lower values ofnum2 tighten the curve where the angle ABC is greater
than 45 degrees, and loosen the curve elsewhere.

num3 determines the slope at each point. Ifnum3=0, then the curve is
perpendicular at B to the bisection of ABC. Ifnum3=-1, then the curve at
B is parallel to the line AC. With this value (and only this value), scaling
the coordinates causes the curve to scale proportionately.However, positive
values can look better with irregularly spaced coordinates. Values less than
-1 or greater than 2 are converted to -1 and 2, respectively.

Here are the three curve interpolation macros:

\pscurve*[par]{arrows}(x1,y1)...(xn,yn)

This interpolates an open curve through the points. For example:

0 1 2 3 4
0

1

2
b

b

b

\pscurve[showpoints=true]{<­>}(0,1.3)(0.7,1.8)

(3.3,0.5)(4,1.6)(0.4,0.4)

Note the use ofshowpoints=true to see the points. This is helpful when
constructing a curve.

\psecurve*[par]{arrows}(x1,y1)...(xn,yn)]

This is like\pscurve, but the curve is not extended to the first and last points.
This gets around the problem of trying to determine how the curve should
join the first and last points. Thee has something to do with “endpoints”.
For example:

0 1 2 3 4
-1

0

1

2

3

4 b

b

b

b

b

\psecurve[showpoints=true](.125,8)(.25,4)(.5,2)

(1,1)(2,.5)(4,.25)(8,.125)

Curves 16

\psccurve*[par]{arrows}(x1,y1)...(xn,yn)

This interpolates a closed curve through the points.c stands for “closed”.
For example:

0 1 2 3 4
0

1

b

b

b

b

\psccurve[showpoints=true]

(.5,0)(3.5,1)(3.5,0)(.5,1)

9 Dots

The graphics object

\psdots*[par](x1 ,y1)(x2 ,y2)...(xn,yn)

puts a dot at each coordinate. What a “dot” is depends on the value of the

dotstyle=style Default:

parameter. This also determines the dots you get whenshowpoints=true. The dot
styles are also pretty intuitive:

Style Example

*
b b b b b

o
bc bc bc bc bc

+ + + + + +

triangle
ut ut ut ut ut

triangle*
u u u u u

Style Example

square
rs rs rs rs rs

square*
r r r r r

pentagon
qp qp qp qp qp

pentagon*
q q q q q

| | | | | |

As with arrows, there is a parameter for scaling the dots:

dotscale=num1 num2 Default:

The dots are scaled horizontally bynum1 and vertically bynum2 . If you only
include one number, the arrows are scaled the same in both directions.

There is also a parameter for rotating the dots:

dotangle=angle Default:

Thus, e.g., by settingdotangle=45, the+ dotstyle gives you anx, and thesquare
dotstyle gives you a diamond. Note that the dots are first scaled and then rotated.

The unscaled size of the⁀| dot style is controlled by thetbarsize parameter, and
the unscaled size of the remaining dot styles is controlled by thedotsize. These
are described in Section 15. The radius as determined by the value ofdotsize is
the radius of solid or open circles. The other types of dots are of similar size.4

4The polygons are sized to have the same area as the circles. A diamond is just a rotated square.

Dots 17

The dot sizes are allowed to depend on thelinewidth because of theshowpoints
parameter . However, you can set the dot sizes to an absolute dimension by setting
the second number in thedotsize parameter to 0. E.g.,

1 \psset{dotsize=3pt 0}

sets the size of the dots to3pt, independent of the value oflinewidth.

10 Grids

PSTricks has a powerful macro for making grids and graph paper:

\psgrid(x0 ,y0)(x1 ,y1)(x2 ,y2)

\psgrid draws a grid with opposing corners(x1,y1) and(x2,y2). The intervals
are numbered, with the numbers positioned atx0 and y0 . The coordinates are
always interpreted as Cartesian coordinates. For example:

-1 0 1 2 3

-1

0

1

2

\psgrid(0,0)(­1,­1)(3,2)

(Note that the coordinates and label positioning work the same as with\psaxes.)

The main grid divisions occur on multiples ofxunit andyunit. Subdivisions are
allowed as well. Generally, the coordinates would be given as integers, without
units.

If the (x0,y0) coordinate is omitted,(x1,y1) is used. The default for(x1,y1) is
(0,0). If you don’t give any coordinates at all, then the coordinates of the current
\pspicture environment are used or a 10x10 grid is drawn. Thus, you can include
a\psgrid command without coordinates in a\pspicture environment to get a grid
that will help you position objects in the picture.

The main grid divisions are numbered, with the numbers drawnnext to the vertical
line at x0 (away fromx2) and next to the horizontal line atx1 (away fromy2).
(x1,y1) can be any corner of the grid, as long as(x2,y2) is the opposing corner,
you can position the labels on any side you want. For example,compare

0 1 2 3 4
0

1

\psgrid(0,0)(4,1)

and
43210

1

0

\psgrid(4,1)(0,0)

Grids 18

The following parameters apply only to\psgrid:

gridwidth=dim Default:

The width of grid lines.

gridcolor=color Default:

The color of grid lines.

griddots=num Default:

If num is positive, the grid lines are dotted, withnum dots per division.

gridlabels=dim Default:

The size of the numbers used to mark the grid.

gridlabelcolor=color Default:

The color of the grid numbers.

subgriddiv=int Default:

The number of grid subdivisions.

subgridwidth=dim Default:

The width of subgrid lines.

subgridcolor=color Default:

The color of subgrid lines.

subgriddots=num Default:

Like griddots, but for subdivisions.

Here is a familiar looking grid which illustrates some of theparameters:

-1 0 1 2 3
-1

0

1

\psgrid[subgriddiv=1,griddots=10,gridlabels=7pt](­1,­1)(3,1)

Note that the values ofxunit and yunit are important parameters for\psgrid,
because they determine the spacing of the divisions. E.g., if the value of these is
1pt, and then you type

1 \psgrid(0,0)(10in,10in)

you will get a grid with 723 main divisions and 3615 subdivisions! (Actually,
\psgrid allows at most 500 divisions or subdivisions, to limit the damage done by
this kind of mistake.) Probably you want to setunit to .5in or 1in, as in

1 \psgrid[unit=.5in](0,0)(20,20)

Grids 19

11 Plots

The plotting commands described in this part are defined inpst­plot.tex/pst­plot.sty,
pst-plot which you must load first.

The \psdots, \psline, \pspolygon, \pscurve, \psecurve and \psccurve graphics
objects let you plot data in a variety of ways. However, first you have to generate
the data and enter it as coordinate pairs(x,y). The plotting macros in this section
give you other ways to get and use the data. (Section 26 tells you how to generate
axes.)

To parameter

plotstyle=style Default:

determines what kind of plot you get. Valid styles aredots, line, polygon, curve,
ecurve, ccurve. E.g., if theplotstyle is polygon, then the macro becomes a
variant of the\pspolygon object.

You can use arrows with the plot styles that are open curves, but there is no op-
tional argument for specifying the arrows. You have to use the arrows parameter
instead.

P
S

Warning: No PostScript error checking is provided for the data ar-
guments. Read Appendix C before including PostScript code in the
arguments.

There are system-dependent limits on the amount of data TEX and
PostScript can handle. You are much less likely to exceed the
PostScript limits when you use theline, polygon or dots plot style,
with showpoints=false, linearc=0pt, and no arrows.

Note that the lists of data generated or used by the plot commands cannot contain
units. The values of\psxunit and\psyunit are used as the unit.

\fileplot*[par]{file}

\plotfile is the simplest of the plotting functions to use. You just need a
file that contains a list of coordinates (without units), such as generated by
Mathematica or other mathematical packages. The data can bedelimited by
curly braces{ }, parentheses(), commas, and/or white space. Bracketing
all the data with square brackets[] will significantly speed up the rate at
which the data is read, but there are system-dependent limits on how much
data TEX can read like this in one chunk. (The[mustgo at the beginning
of a line.) The file should not contain anything else (not even\endinput),
except for comments marked with%.

\plotfile only recognizes theline, polygon anddots plot styles, and it ig-
nores thearrows, linearc andshowpoints parameters. The\listplot com-
mand, described below, can also plot data from file, without these restric-

Plots 20

tions and with faster TEX processing. However, you are less likely to exceed
PostScript’s memory or operand stack limits with\plotfile.

If you find that it takes TEX a long time to process your\plotfile command,
you may want to use the\PSTtoEPS command described on page 71. This
will also reduce TEX’s memory requirements.

\dataplot*[par]{commands}

\dataplot is also for plotting lists of data generated by other programs, but
you first have to retrieve the data with one of the following commands:

\savedata{command}[data]
\readdata{command}{file}

data or the data infile should conform to the rules described above for the
data in\fileplot (with \savedata, the data must be delimited by[], and
with \readdata, bracketing the data with[] speeds things up). You can
concatenate and reuse lists, as in

1 \readdata{\foo}{foo.data}

2 \readdata{\bar}{bar.data}

3 \dataplot{\foo\bar}

4 \dataplot[origin=(0,1)]{\bar}

The \readdata and \dataplot combination is faster than\fileplot if you
reuse the data.\fileplot uses less of TEX’s memory than\readdata and
\dataplot if you are also use\PSTtoEPS.

Here is a plot ofIntegral(sin(x)). The data was generated by Mathemat-
ica, with

1 Table[{x,N[SinIntegral[x]]},{x,0,20}]

and then copied to this document.

ut

ut

ut

ut
ut

ut
ut ut

ut
ut ut

ut
ut ut ut ut ut ut ut ut ut

\psset{xunit=.2cm,yunit=1.5cm}

\savedata{\mydata}[

{{0,0},{1.,0.946083},{2.,1.60541},{3.,1.84865},{4.,1.7582},

{5.,1.54993},{6.,1.42469},{7.,1.4546},{8.,1.57419},

{9.,1.66504},{10.,1.65835},{11.,1.57831},{12.,1.50497},

{13.,1.49936},{14.,1.55621},{15.,1.61819},{16.,1.6313},

{17.,1.59014},{18.,1.53661},{19.,1.51863},{20.,1.54824}}]

\dataplot[plotstyle=curve,showpoints=true,

dotstyle=triangle]{\mydata}

\psline{<­>}(0,2)(0,0)(20,0)

\listplot*[par]{list}

\listplot is yet another way of plotting lists of data. This time,list should
be a list of data (coordinate pairs), delimited only by whitespace.list is first
expanded by TEX and then by PostScript. This means thatlist might be a
PostScript program that leaves on the stack a list of data, but you can also in-
clude data that has been retrieved with\readdata and\dataplot. However,

Plots 21

when using theline, polygon or dots plotstyles withshowpoints=false,
linearc=0pt and no arrows,\dataplot is much less likely than\listplot
to exceed PostScript’s memory or stack limits. In the preceding example,
these restrictions were not satisfied, and so the example is equivalent to
when\listplot is used:

1 ...

2 \listplot[plotstyle=curve,showpoints=true,

3 dotstyle=triangle]{\mydata}

4 ...

\psplot*[par]{xmin}{xmax}{function}

\psplot can be used to plot a functionf (x), if you know a little PostScript.
function should be the PostScript code for calculatingf (x). Note that you
must usex as the dependent variable. PostScript is not designed for scien-
tific computation, but\psplot is good for graphing simple functions right
from within TEX. E.g.,

1 \psplot[plotpoints=200]{0}{720}{x sin}

plots sin(x) from 0 to 720 degrees, by calculating sin(x) roughly every 3.6
degrees and then connecting the points with\psline. Here are plots of
sin(x)cos((x/2)2) and sin2(x):

\psset{xunit=1.2pt}

\psplot[linecolor=gray,linewidth=1.5pt,plotstyle=curve]%

{0}{90}{x sin dup mul}

\psplot[plotpoints=100]{0}{90}{

x sin x 2 div 2 exp cos mul}

\psline{<­>}(0,­1)(0,1)

\psline{­>}(100,0)

\parametricplot*[par]{tmin}{tmax}{function}

This is for a parametric plot of(x(t),y(t)). function is the PostScript code
for calculating the pairx(t) y(t).

For example,

0 1 2 3
0

1

2

3 b

b

b

b

b

b
b
b
b

b
b b b

\parametricplot[plotstyle=dots,plotpoints=13]%

{­6}{6}{1.2 t exp 1.2 t neg exp}

plots 13 points from the hyperbolaxy= 1, starting with(1.2−6,1.26) and
ending with(1.26,1.2−6).

Here is a parametric plot of(sin(t),sin(2t)):

Plots 22

\psset{xunit=1.7cm}

\parametricplot[linewidth=1.2pt,plotstyle=ccurve]%

{0}{360}{t sin t 2 mul sin}

\psline{<­>}(0,­1.2)(0,1.2)

\psline{<­>}(­1.2,0)(1.2,0)

The number of points that the\psplot and\parametricplot commands calculate
is set by the

plotpoints=int Default:

parameter. Usingcurve or its variants instead ofline and increasing the value of
plotpoints are two ways to get a smoother curve. Both ways increase the imaging
time. Which is better depends on the complexity of the computation. (Note that all
PostScript lines are ultimately rendered as a series (perhaps short) line segments.)
Mathematica generally useslineto to connect the points in its plots. The default
minimum number of plot points for Mathematica is 25, but unlike \psplot and
\parametricplot, Mathematica increases the sampling frequency on sectionsof
the curve with greater fluctuation.

Plots 23

III More graphics parameters

The graphics parameters described in this part are common toall or most of the
graphics objects.

12 Coordinate systems

The following manipulations of the coordinate system applyonly to pure graphics
objects.

A simple way to move the origin of the coordinate system to(x,y) is with the

origin={coor} Default: 0pt,0pt

This is the one time that coordinatesmustbe enclosed in curly brackets{} rather
than parentheses().

A simple way to switch swap the axes is with the

swapaxes=true Default:

parameter. E.g., you might change your mind on the orientation of a plot after
generating the data.

13 Line styles

The following graphics parameters (in addition tolinewidth andlinecolor) de-
termine how the lines are drawn, whether they be open or closed curves.

linestyle=style Default:

Valid styles arenone, solid, dashed anddotted.

dash=dim1 dim2 Default:

Theblack-white dash pattern for thedashed line style. For example:

\psellipse[linestyle=dashed,dash=3pt 2pt](2,1)(2,1)

More graphics parameters 24

dotsep=dim Default:

The distance between dots in thedotted line style. For example

\psline[linestyle=dotted,dotsep=2pt]{|­»}(4,1)

border=dim Default:

A positive value draws a border of widthdim and colorbordercolor on
each side of the curve. This is useful for giving the impression that one
line passes on top of another. The value is saved in the dimension register
\psborder.

bordercolor=color Default:

Seeborder above.

For example:

\psline(0,0)(1.8,3)

\psline[border=2pt]{*­>}(0,3)(1.8,0)

\psframe*[linecolor=gray](2,0)(4,3)

\psline[linecolor=white,linewidth=1.5pt]{<­>}(2.2,0)(3.8,3)

\psellipse[linecolor=white,linewidth=1.5pt,

bordercolor=gray,border=2pt](3,1.5)(.7,1.4)

doubleline=true/false Default:

Whentrue, a double line is drawn, separated by a space that isdoublesep

wide and of colordoublecolor. This doesn’t work as expected with the
dashed linestyle, and some arrows look funny as well.

doublesep=dim Default:

Seedoubleline, above.

doublecolor=color Default:

Seedoubleline, above.

Here is an example of double lines:

\psline[doubleline=true,linearc=.5,

doublesep=1.5pt]{­>}(0,0)(3,1)(4,0)

shadow=true/false Default:

Whentrue, a shadow is drawn, at a distanceshadowsize from the original
curve, in the directionshadowangle, and of colorshadowcolor.

shadowsize=dim Default:

Seeshadow, above.

Line styles 25

shadowangle=angle Default:

Seeshadow, above.

shadowcolor=color Default:

Seeshadow, above.

Here is an example of theshadow feature, which should look familiar:

\pspolygon[linearc=2pt,shadow=true,shadowangle=45,

xunit=1.1](­1,­.55)(­1,.5)(­.8,.5)(­.8,.65)

(­.2,.65)(­.2,.5)(1,.5)(1,­.55)

Here is another graphics parameter that is related to lines but that applies only to
the closed graphics objects\psframe, \pscircle, \psellipse and\pswedge:

dimen=outer/inner/middle Default:

It determines whether the dimensions refer to the inside, outside or middle of the
boundary. The difference is noticeable when the linewidth is large:

0 1 2 3 4
0

1

2

3

\psset{linewidth=.25cm}

\psframe[dimen=inner](0,0)(2,1)

\psframe[dimen=middle](0,2)(2,3)

\psframe[dimen=outer](3,0)(4,3)

With \pswedge, this only affects the radius; the origin always lies in the middle
the boundary. The right setting of this parameter depends onhow you want to
align other objects.

14 Fill styles

The next group of graphics parameters determine how closed regions are filled.
Even open curves can be filled; this does not affect how the curve is painted.

fillstyle=style Default:

Valid styles are

none, solid, vlines, vlines*, hlines, hlines*, crosshatch
andcrosshatch*.

vlines, hlines andcrosshatch draw a pattern of lines, according to the
four parameters list below that are prefixed withhatch. The* versions
also fill the background, as in thesolid style.

Fill styles 26

fillcolor=color Default:

The background color in thesolid, vlines*, hlines* andcrosshatch*
styles.

hatchwidth=dim Default:

Width of lines.

hatchsep=dim Default:

Width of space between the lines.

hatchcolor=color Default:

Color of lines. Saved in\pshatchcolor.

hatchangle=rot Default:

Rotation of the lines, in degrees. For example, ifhatchangle is set to45,
thevlines style draws lines that run NW-SE, and thehlines style draws
lines that runSW­NE, and thecrosshatch style draws both.

Here is an example of thevlines and related fill styles:

\pspolygon[fillstyle=vlines](0,0)(0,3)(4,0)

\pspolygon[fillstyle=hlines](0,0)(4,3)(4,0)

\pspolygon[fillstyle=crosshatch*,fillcolor=black,

hatchcolor=white,hatchwidth=1.2pt,hatchsep=1.8pt,

hatchangle=0](0,3)(2,1.5)(4,3)

Don’t be surprised if the checkered part of this example (thelast\pspolygon) looks
funny on low-resolution devices. PSTricks adjusts the lines so that they all have
the same width, but the space between them, which in this caseis black, can have
varying width.

Each of the pure graphics objects (except those beginning with q) has a starred
version that produces a solid object of colorlinecolor. (It automatically sets
linewidth to zero,fillcolor to linecolor, fillstyle to solid, andlinestyle to
none.)

15 Arrowheads and such

Lines and other open curves can be terminated with various arrowheads, t-bars or
circles. The

arrows=style Default:

Arrowheads and such 27

parameter determines what you get. It can have the followingvalues, which are
pretty intuitive:5

Value Example Name

­ None

<­> Arrowheads.

>­< Reverse arrowheads.

<<­>> Double arrowheads.

>>­<< Double reverse arrowheads.

|­| T-bars, flush to endpoints.

|*­|* T-bars, centered on endpoints.

[­] Square brackets.

(­) Rounded brackets.

o­o Circles, centered on endpoints.

­ Disks, centered on endpoints.

oo­oo Circles, flush to endpoints.

­ Disks, flush to endpoints.

c­c Extended, rounded ends.

cc­cc Flush round ends.

C­C Extended, square ends.

You can also mix and match. E.g.,­>, *­) and [­> are all valid values of the
arrows parameter.

Well, perhaps thec, cc andC arrows are not so obvious.c andC correspond to
setting PostScript’slinecap to 1 and 2, respectively.cc is like c, but adjusted so
that the line flush to the endpoint. These arrows styles are noticeable when the
linewidth is thick:

­ c­c cc­cc C­C

\psline[linewidth=.5cm](0,0)(0,2)

\psline[linewidth=.5cm]{c­c}(1,0)(1,2)

\psline[linewidth=.5cm]{cc­cc}(2,0)(2,2)

\psline[linewidth=.5cm]{C­C}(3,0)(3,2)

Almost all the open curves let you include thearrows parameters as an optional
argument, enclosed in curly braces and before any other arguments (except the
optional parameters argument). E.g., instead of

1 \psline[arrows=<­,linestyle=dotted](3,4)

you can write

5This is TEX’s version of WYSIWYG.

Arrowheads and such 28

1 \psline[linestyle=dotted]{<­}(3,4)

The exceptions are a few streamlined macros that do not support the use of arrows
(these all begin withq).

The size of these line terminators is controlled by the following parameters. In
the description of the parameters, the width always refers to the dimension per-
pendicular to the line, and length refers to a dimension in the direction of the
line.

arrowsize=dim num Default:

Width of arrowheads, as shown below.

arrowlength=num Default:

Length of arrowheads, as shown below.

arrowinset=num Default:

Size of inset for arrowheads, as shown below.

length

width
inset

arrowsize = dim num

width = num x linewidth + dim1

length = arrowlength x width

inset = arrowinset x height

tbarsize=dim num Default:

The width of a t-bar, square bracket or rounded bracket isnum timeslinewidth,
plusdim.

bracketlength=num Default:

The height of a square bracket isnum times its width.

rbracketlength=num Default:

The height of a round bracket isnum times its width.

dotsize=dim num Default:

The diameter of a circle or disc isnum timeslinewidth, plusdim.

arrowscale=arrowscale=num1 num2 Default:

Imagine that arrows and such point down. This scales the width of the
arrows bynum1 and the length (height) bynum2 . If you only include

Arrowheads and such 29

one number, the arrows are scaled the same in both directions. Chang-
ing arrowscale can give you special effects not possible by changing the
parameters described above. E.g., you can change the width of lines used
to draw brackets.

16 Custom styles

You can define customized versions of any macro that has parameter changes as
an optional first argument using the\newpsobject command:

\newpsobject{name}{object}{par1=value1,...}

as in

1 \newpsobject{myline}{psline}{linecolor=green,linestyle=dotted}

2 \newpsobject{\mygrid}{psgrid}{subgriddiv=1,griddots=10,

3 gridlabels=7pt}

The first argument is the name of the new command you want to define. The
second argument is the name of the graphics object. Note thatboth of these argu-
ments are given without the backslash. The third argument isthe special parameter
values that you want to set.

With the above examples, the commands\myline and\mygrid work just like the
graphics object\psline it is based on, and you can even reset the parameters that
you set when defining\myline, as in:

1 \myline[linecolor=gray,dotsep=2pt](5,6)

Another way to define custom graphics parameter configurations is with the

\newpsstyle{name}{par1=value1,...}

command. You can then set thestyle graphics parameter toname, rather than
setting the parameters given in the second argument of\newpsstyle. For example,

1 \newpsstyle{mystyle}{linecolor=green,linestyle=dotted}

2 \psline[style=mystyle](5,6)

Custom styles 30

IV Custom graphics

17 The basics

PSTricks contains a large palette of graphics objects, but sometimes you need
something special. For example, you might want to shade the region between two
curves. The

\pscustom*[par]{commands}

command lets you “roll you own” graphics object.

Let’s review how PostScript handles graphics. Apath is a line, in the mathe-
matical sense rather than the visual sense. A path can have several disconnected
segments, and it can be open or closed. PostScript has various operators for mak-
ing paths. The end of the path is called thecurrent point, but if there is no path
then there is no current point. To turn the path into something visual, PostScript
canfill the region enclosed by the path (that is whatfillstyle and such are about),
andstrokethe path (that is whatlinestyle and such are about).

At the beginning of\pscustom, there is no path. There are various commands that
you can use in\pscustom for drawing paths. Some of these (the open curves) can
also draw arrows.\pscustom fills and strokes the path at the end, and for special
effects, you can fill and stroke the path along the way using\psfill and\pstroke
(see below).

Driver notes: \pscustom uses\pstverb and \pstunit. There are system-dependent
limits on how long the argument of\special can be. You may run into this limit using
\pscustom because all the PostScript code accumulated by\pscustom is the argument of
a single\special command.

18 Parameters

You need to keep the separation between drawing, stroking and filling paths in
mind when setting graphics parameters. Thelinewidth andlinecolor parameters
affect the drawing of arrows, but since the path commands do not stroke or fill
the paths, these parameters, and thelinestyle, fillstyle and related parameters,
do not have any other effect (except that in some caseslinewidth is used in some
calculations when drawing the path).\pscustom and\fill make use offillstyle

Custom graphics 31

and related parameters, and\pscustom and \stroke make use of plinestyle and
related parameters.

For example, if you include

\psline[linewidth=2pt,linecolor=blue,fillstyle=vlines]{<­}(3,3)(4,0)

in \pscustom, then the changes tolinewidth and linecolor will affect the size
and color of the arrow but not of the line when it is stroked, and the change to
fillstyle will have no effect at all.

Theshadow, border, doublelineandshowpoints parameters are disabled in\pscustom,
and theorigin andswapaxes parameters only affect\pscustom itself, but there are
commands (described below) that let you achieve these special effects.

Thedashed anddotted line styles need to know something about the path in order
to adjust the dash or dot pattern appropriately. You can givethis information by
setting the

linetype=int Default:

parameter. If the path contains more than one disconnected segment, there is no
appropriate way to adjust the dash or dot pattern, and you might as well leave the
default value oflinetype. Here are the values for simple paths:

Value Type of path

0 Open curve without arrows.

-1 Open curve with an arrow at the beginning.

-2 Open curve with an arrow at the end.

-3 Open curve with an arrow at both ends.

1 Closed curve with no particular symmetry.

n>1 Closed curve withn symmetric segments.

19 Graphics objects

You can use most of the graphics objects in\pscustom. These draw paths and
making arrows, but do not fill and stroke the paths.

There are three types of graphics objects:

Special Special graphics objects include\psgrid, \psdots, \qline and \qdisk.
You cannot use special graphics objects in\pscustom.

Closed You are allowed to use closed graphics objects in\pscustom, but their ef-
fect is unpredictable.6 Usually you would use the open curves plus\closepath

(see below) to draw closed curves.

6The closed objects never use the current point as an coordinate, but typically they will close
any existing paths, and they might draw a line between the currentpoint and the closed curved.

Graphics objects 32

Open The open graphics objects are the most useful commands for drawing paths
with \pscustom. By piecing together several open curves, you can draw
arbitrary paths. The rest of this section pertains to the open graphics objects.

By default, the open curves draw a straight line between the current point, if it
exists, and the beginning of the curve, except when the curvebegins with an arrow.
For example

0 1 2 3
0

1

2

3

\pscustom{

\psarc(0,0){1.5}{5}{85}

\psarcn{­>}(0,0){3}{85}{5}}

Also, the following curves make use of the current point, if it exists, as a first
coordinate:

\psline and\pscurve.
The plot commands, with theline or curve plotstyle.
\psbezier if you only include three coordinates.

For example:

0 1 2 3 4
0

1

2

3

\pscustom[linewidth=1.5pt]{

\psplot[plotstyle=curve]{.67}{4}{2 x div}

\psline(4,3)}

We’ll see later how to make that one more interesting. Here isanother example

0 1 2 3 4
0

1

2

3

\pscustom{

\psline[linearc=.2]{|­}(0,2)(0,0)(2,2)

\psbezier{­>}(3,3)(1,0)(4,3)}

However, you can control how the open curves treat the current point with the

liftpen=0/1/2 Default:

parameter.

If liftpen=0, you get the default behavior described above. For example

Graphics objects 33

0 1 2 3 4
0

1

2

3

\pscustom[linewidth=2pt,fillstyle=solid,fillcolor=gray]{

\pscurve(0,2)(1,2.5)(2,1.5)(4,3)

\pscurve(4,1)(3,0.5)(2,1)(1,0)(0,.5)}

If liftpen=1, the curves do not use the current point as the first coordinate (except
\psbezier, but you can avoid this by explicitly including the first coordinate as an
argument). For example:

0 1 2 3 4
0

1

2

3

\pscustom[linewidth=2pt,fillstyle=solid,fillcolor=gray]{

\pscurve(0,2)(1,2.5)(2,1.5)(4,3)

\pscurve[liftpen=1](4,1)(3,0.5)(2,1)(1,0)(0,.5)}

If liftpen=2, the curves do not use the current point as the first coordinate, and
they do not draw a line between the current point and the beginning of the curve.
For example

0 1 2 3 4
0

1

2

3

\pscustom[linewidth=2pt,fillstyle=solid,fillcolor=gray]{

\pscurve(0,2)(1,2.5)(2,1.5)(4,3)

\pscurve[liftpen=2](4,1)(3,0.5)(2,1)(1,0)(0,.5)}

Later we will use the second example to fill the region betweenthe two curves,
and then draw the curves.

20 Safe tricks

The commands described under this heading, which can only beused in\pscustom,
do not run a risk of PostScript errors (assuming your document compiles without
TEX errors).

Let’s start with some path, fill and stroke commands:

\newpath

Clear the path and the current point.

\moveto(coor)

This moves the current point to(x,y).

Safe tricks 34

\closepath

This closes the path, joining the beginning and end of each piece (there may
be more than one piece if you use\moveto).7

\stroke[par]

This strokes the path (non-destructively).\pscustom automatically strokes
the path, but you might want to stroke it twice, e.g., to add a border. Here
is an example that makes a double line and adds a border (this example is
kept so simple that it doesn’t need\pscustom at all):

0 1 2 3 4
0

1

2

3

\psline(0,3)(4,0)

\pscustom[linecolor=white,linewidth=1.5pt]{%

\psline(0,0)(4,3)

\stroke[linewidth=5\pslinewidth]

\stroke[linewidth=3\pslinewidth,linecolor=black]}

\fill[par]

This fills the region (non-destructively).\pscustom automatically fills the
region as well.

\gsave

This saves the current graphics state (i.e., the path, color, line width, co-
ordinate system, etc.)\grestore restores the graphics state.\gsave and
\grestoremust be used in pairs, properly nested with respect to TEX groups.
You can have have nested\gsave-\grestore pairs.

\grestore

See above.

Here is an example that fixes an earlier example, using\gsave and\grestore:

\psline{<­>}(0,3)(0,0)(4,0)

\pscustom[linewidth=1.5pt]{

\psplot[plotstyle=curve]{.67}{4}{2 x div}

\gsave

\psline(4,3)

\fill[fillstyle=solid,fillcolor=gray]

\grestore}

Observe how the line added by\psline(4,3) is never stroked, because it
is nested in\gsave and\grestore.

Here is another example:

7Note that the path is automatically closed when the region isfilled. Use\closepath if you
also want to close the boundary.

Safe tricks 35

0 1 2 3 4
0

1

2

3
\pscustom[linewidth=1.5pt]{

\pscurve(0,2)(1,2.5)(2,1.5)(4,3)

\gsave

\pscurve[liftpen=1](4,1)(3,0.5)(2,1)(1,0)(0,.5)

\fill[fillstyle=solid,fillcolor=gray]

\grestore}

\pscurve[linewidth=1.5pt](4,1)(3,0.5)(2,1)(1,0)(0,.5)

Note how I had to repeat the second\pscurve (I could have repeated it
within \pscustom, with liftpen=2), because I wanted to draw a line between
the two curves to enclose the region but I didn’t want this line to be stroked.

The next set of commands modify the coordinate system.

\translate(coor)

Translate coordinate system by(x,y). This shifts everything that comes
later by(x,y), but doesn’t affect what has already been drawn.

\scale{num1 num2}

Scale the coordinate system in both directions bynum1 , or horizontally by
num1 and vertically bynum2 .

\rotate{angle}

Rotate the coordinate system byangle.

\swapaxes

Switch the x and y coordinates. This is equivalent to

1 \rotate{­90}

2 \scale{­1 1 scale}

\msave

Save the current coordinate system. You can then restore it with \mrestore.
You can have nested\msave-\mrestore pairs. \msave and\mrestore do not
have to be properly nested with respect to TEX groups or\gsave and\grestore.
However, remember that\gsave and \grestorealso affect the coordinate
system. \msave-\mrestore lets you change the coordinate system while
drawing part of a path, and then restore the old coordinate system without
destroying the path.\gsave-\grestore, on the other hand, affect the path
and all other componments of the graphics state.

\mrestore

See above.

And now here are a few shadow tricks:

\openshadow[par]

Strokes a replica of the current path, using the various shadow parameters.

Safe tricks 36

\closedshadow[par]

Makes a shadow of the region enclosed by the current path as ifit were
opaque regions.

\movepath(coor)

Moves the path by(x,y). Use\gsave-\grestore if you don’t want to lose
the original path.

21 Pretty safe tricks

The next group of commands are safe,as long as there is a current point!

\lineto(coor)

This is a quick version of\psline(<coor>).

\rlineto(coor)

This is like\lineto, but(x,y) is interpreted relative to the current point.

\curveto(x1,y1)(x2,y2)(x3,y3)

This is a quick version of\psbezier(x1,y1)(x2,y2)(x3,y3).

\rcurveto(x1,y1)(x2,y2)(x3,y3)

This is like \curveto, but (x1,y1), (x2,y2) and (x3,y3) are interpreted
relative to the current point.

22 For hackers only

For PostScript hackers, there are a few more commands. Be sure to read Appendix
C before using these. Needless to say:

P
S Warning: Misuse of the commands in this section can cause

PostScript errors.

The PostScript environment in effect with\pscustom has one unit equal to one TEX
pt.

\code{code}

Insert the raw PostScript code.

\dim{dim}

Convert the PSTricks dimension to the number ofpt’s, and inserts it in the
PostScript code.

Pretty safe tricks 37

\coor(x1,y1)(x2,y2)...(xn,yn)

Convert one or more PSTricks coordinates to a pair of numbers(usingpt
units), and insert them in the PostScript code.

\rcoor(x1,y1)(x2,y2)...(xn,yn)

Like \coor, but insert the coordinates in reverse order.

\file{file}

This is like \code, but the raw PostScript is copied verbatim (except com-
ments delimited by%) from file.

\arrows{arrows}

This defines the PostScript operatorsArrowA andArrowB so that

1 x2 y2 x1 y1 ArrowA

2 x2 y2 x1 y1 ArrowB

each draws an arrow(head) with the tip at(x1,y1) and pointing from(x2,y2).
ArrowA leaves the current point at end of the arrowhead, where a connect
line should start, and leaves(x2,y2) on the stack.ArrowB does not change
the current point, but leaves

1 x2 y2 x1’ y1’

on the stack, where(x1’,y1’) is the point where a connecting line should
join. To give an idea of how this work, the following is roughly how
PSTricks draws a bezier curve with arrows at the end:

0 1 2 3 4
0

1

2

3

\pscustom{

\arrows{|­>}

\code{

80 140 5 5 ArrowA

30 ­30 110 75 ArrowB

curveto}}

\setcolor{color}

Set the color tocolor .

For hackers only 38

V Picture Tools

23 Pictures

The graphics objects and\rput and its variants do not change TEX’s current point
(i.e., they create a 0-dimensional box). If you string several of these together (and
any other 0-dimensional objects), they share the same coordinate system, and so
you can create a picture. For this reason, these macros are called picture objects.

If you create a picture this way, you will probably want to give the whole pic-
ture a certain size. You can do this by putting the picture objects in apspicture
environment, as in:

\pspicture*[baseline](x0 ,y0)(x1,y1)
picture objects \endpspicture

The picture objects are put in a box whose lower left-hand corner is at(x0,y0)

(by default,(0,0)) and whose upper right-hand corner is at(x1,y1).

By default, the baseline is set at the bottom of the box, but the optional argument
[<baseline>] sets the baseline fractionbaseline from the bottom. Thus,baseline

is a number, generally but not necessarily between 0 and 1. Ifyou include this
argument but leave it empty ([]), then the baseline passes through the origin.

Normally, the picture objects can extend outside the boundaries of the box. How-
ever, if you include the*, anything outside the boundaries is clipped.

Besides picture objects, you can put anything in a\pspicture that does not take
up space. E.g., you can put in font declarations and use\psset, and you can put
in braces for grouping. PSTricks will alert you if you include something that does
take up space.8

LATEX users can type

\begin{pspicture} . . . \end{pspicture}

8When PSTricks picture objects are included in a\pspicture environment, they gobble up
any spaces that follow, and any preceding spaces as well, making it less likely that extraneous space
gets inserted. (PSTricks objects always ignore spaces thatfollow. If you also want them to try
to neutralize preceding space when used outside the\pspicture environment (e.g., in a LATEX
picture environment), then use the command\KillGlue. The command\DontKillGlue turns
this behavior back off.)

Picture Tools 39

You can use PSTricks picture objects in a LATEX picture environment, and you
can use LATEX picture objects in a PSTrickspspicture environment. However,
thepspicture environment makes LATEX’s picture environment obsolete, and has
a few small advantages over the latter. Note that the arguments of thepspicture
environment work differently from the arguments of LATEX’s picture environment
(i.e., the right way versus the wrong way).

Driver notes: The clipping option (*) uses\pstVerb and\pstverbscale.

24 Placing and rotating whatever

PSTricks contains several commands for positioning and rotating an HR-mode
argument. All of these commands end input, and bear some similarity to LATEX’s
\put command, but with additional capabilities. Like LATEX’s \put and unlike the
box rotation macros described in Section 29, these commandsdo not take up any
space. They can be used inside and outside\pspicture environments.

Most of the PSTricksput commands are of the form:

\put*arg{<rotation>}(<coor>){<stuff>}

With the optional* argument,stuff is first put in a

\psframebox*[boxsep=false]{<stuff>}

thereby blotting out whatever is behindstuff . This is useful for positioning text
on top of something else.

arg refers to other arguments that vary from oneput command to another, The
optional rotation is the angle by whichstuff should be rotated; this arguments
works pretty much the same for allput commands and is described further below.
The(<coor>) argument is the coordinate for positioningstuff , but what this really
means is different for eachput command. The(<coor>) argument is shown to be
obligatory, but you can actually omit it if you include therotation argument.

Therotation argument should be an angle, as described in Section 4, but the angle
can be preceded by an*. This causes all the rotations (except the box rotations
described in Section 29) within which the\rput command is be nested to be un-
done before setting the angle of rotation. This is mainly useful for getting a piece
of text right side up when it is nested inside rotations. For example,

stuff

\rput{34}{%

\psframe(­1,0)(2,1)

\rput[br]{*0}(2,1){\em stuff}}

There are also some letter abbreviations for the command angles. These indicate
which way is up:

Placing and rotating whatever 40

Letter Short for Equiv. to

U Up 0

L Left 90

D Down 180

R Right 270

Letter Short for Equiv. to

N North *0

W West *90

S South *180

E East *270

This section describes just a two of the PSTricksput commands. The most basic
one command is

\rput*[refpoint]{rotation}(x,y){stuff }

refpoint determines the reference point ofstuff , and this reference point is trans-
lated to(x,y).

By default, the reference point is the center of the box. Thiscan be changed by
including one or two of the following in the optionalrefpoint argument:

Horizontal Vertical

l Left t Top

r Right b Bottom

B Baseline

Visually, here is where the reference point is set of the various combinations (the
dashed line is the baseline):

t

b

B
l

Bl

bl

tl

r
Br

br

tr

There are numerous examples of\rput in this documentation, but for now here is
a simple one:

H
er

e
is

a
m

ar
gi

na
ln

ot
e.

\rput[b]{90}(­1,0){Here is a marginal note.}

One common use of a macro such as\rput is to put labels on things. PSTricks
has a variant of\rput that is especially designed for labels:

\uput*{labelsep}[refangle]{rotation}(x,y){stuff }

This placesstuff distancelabelsep from (x,y), in the directionrefangle.

The default value oflabelsep is the dimension register

\pslabelsep

You can also change this be setting the

Placing and rotating whatever 41

labelsep=dim Default:

parameter (but remember that\uput does have an optional argument for setting
parameters).

Here is a simple example:

(1,1) \qdisk(1,1){1pt}

\uput[45](1,1){(1,1)}

Here is a more interesting example where\uput is used to make a pie chart:9

\psset{unit=1.2cm}

\pspicture(­2.2,­2.2)(2.2,2.2)

\pswedge[fillstyle=solid,fillcolor=gray]{2}{0}{70}

\pswedge[fillstyle=solid,fillcolor=lightgray]{2}{70}{200}

\pswedge[fillstyle=solid,fillcolor=darkgray]{2}{200}{360}

\SpecialCoor

\psset{framesep=1.5pt}

\rput(1.2;35){\psframebox*{\small\$9.0M}}

\uput{2.2}[45](0,0){Oreos}

\rput(1.2;135){\psframebox*{\small\$16.7M}}

\uput{2.2}[135](0,0){Heath}

\rput(1.2;280){\psframebox*{\small\$23.1M}}

\uput{2.2}[280](0,0){M\&M}

\endpspicture

$9.0M

Oreos

$16.7M

Heath

$23.1M

M&M

You can use the following abbreviations forrefangle, which indicate the direction
the angle points:1011

9PSTricks is distributed with a useful tool for converting data to piecharts:piechart.sh. This
is a UNIX sh script written by Denis Girou.

10Using the abbreviations when applicable is more efficient.
11There is an obsolete command\Rput that has the same syntax as\uput and that works almost

Placing and rotating whatever 42

Letter Short for Equiv. to

r right 0

u up 90

l left 180

d down 270

Letter Short for Equiv. to

ur up-right 45

ul up-left 135

dl down-left 225

dr down-right 315

The first example could thus have been written:

(1,1) \qdisk(1,1){1pt}

\uput[ur](1,1){(1,1)}

Driver notes: The rotation macros use\pstVerb and\pstrotate.

25 Repetition

The macro

\multirput*[refpoint]{angle}(x0,y0)(x1,y1){int}{stuff }

is a variant of\rput that puts downint copies, starting at(x0,y0) and advancing
by (x1,y1) each time.(x0,y0) and(x1,y1) are always interpreted as Cartesian
coordinates. For example:

* * * * * * * * * * * *
\multirput(.5,0)(.3,.1){12}{*}

If you want copies of pure graphics, it is more efficient to use

\multips{angle}(x0,y0)(x1,y1){int}{graphics}

graphics can be one or more of the pure graphics objects described in Part II, or
\pscustom. Note that\multips has the same syntax as\multirput, except that

the same way, except therefangle argument has the syntax of\rput’s refpoint argument, and it
gives the point instuff that should be aligned with(x,y). E.g.,

\qdisk(4,0){2pt}

(x,y)\Rput[tl](4,0){(x,y)}

Here is the equivalence between\uput’s refangle abbreviations and\Rput’s refpoint abbrevia-
tions:

\uput r u l d ur ul dr dl

\Rput l b r t bl br tr rl

Some people prefer\Rput’s convention for specifying the position ofstuff over\uput’s.

Repetition 43

there is norefpoint argument (since the graphics are zero dimensional anyway).
Also, unlike\multirput, the coordinates can be of any type. AnOverfull \hbox

warning indicates that thegraphics argument contains extraneous output or space.
For example:

\def\zigzag{\psline(0,0)(.5,1)(1.5,­1)(2,0)}%

\psset{unit=.25,linewidth=1.5pt}

\multips(0,0)(2,0){8}{\zigzag}

PSTricks is distributed with a much more general loop macro,called \multido.
You must input the filemultido.tex or multido.sty. See the documentation

multido multido.doc for details. Here is a sample of what you can do:

\begin{pspicture}(­3.4,­3.4)(3.4,3.4)

\newgray{mygray}{0} % Initialize ‘mygray’ for benefit

\psset{fillstyle=solid,fillcolor=mygray} % of this line.

\SpecialCoor

\degrees[1.1]

\multido{\n=0.0+.1}{11}{%

\newgray{mygray}{\n}

\rput{\n}{\pswedge{3}{­.05}{.05}}

\uput{3.2}[\n](0,0){\small\n}}

\end{pspicture}

0.0

0.1

0.2
0.3

0.4

0.5

0.6

0.7

0.8
0.9

1.0

All of these loop macros can be nested.

26 Axes

The axes command described in this section is defined inpst­plot.tex / pst­plot.sty,
pst-plot which you must input first.pst­plot.tex, in turn, will automatically inputmultido.tex,

which is used for putting the labels on the axes.

Axes 44

The macro for making axes is:

\psaxes*[par]{arrows}(x0,y0)(x1,y1)(x2,y2)

The coordinates must be Cartesian coordinates. They work the same way as with
\psgrid. That is, if we imagine that the axes are enclosed in a rectangle, (x1,y1)

and(x2,y2) are opposing corners of the rectangle. (I.e., the x-axis extends from
x1 to x2 and the y-axis extends fromy1 to y2 .) The axes intersect at(x0,y0). For
example:

0 1 2 3 4
0

1

2

3

(x2,y2)
(x0,y0)

(x1,y1)

\psaxes[linewidth=1.2pt,labels=none,

ticks=none]{<­>}(2,1)(0,0)(4,3)

If (x0,y0) is omitted, then the origin is(x1,y1). If both (x0,y0) and(x1,y1)

are omitted,(0,0) is used as the default. For example, when the axes enclose a
single orthont, only(x2,y2) is needed:

0 1 2 3
0

1
\psaxes{­>}(4,2)

Labels (numbers) are put next to the axes, on the same side asx1 andy1 . Thus, if
we enclose a different orthont, the numbers end up in the right place:

0 1 2 3
0

−1
\psaxes{­>}(4,­2)

Also, if you set thearrows parameter, the first arrow is used for the tips atx1 and
y1 , while the second arrow is used for the tips atx2 andy2 . Thus, in the preceding
examples, the arrowheads ended up in the right place too.12

When the axes don’t just enclose an orthont, that is, when theorigin is not at a
corner, there is some discretion as to where the numbers should go. The rules for
positioning the numbers and arrows described above still apply, and so you can
position the numbers as you please by switchingy1 and y2 , or x1 andx2 . For
example, compare

12Including a first arrow in these examples would have had no effect because arrows are never
drawn at the origin.

Axes 45

0 1 2−1−2

1

2

\psaxes{<­>}(0,0)(­2.5,0)(2.5,2.5)

with what we get whenx1 andx2 are switched:

0−1−2 1 2

1

2

\psaxes{<­>}(0,0)(2.5,0)(­2.5,2.5)

\psaxes puts the ticks and numbers on the axes at regular intervals, using the
following parameters:

Horitontal Vertical Dflt Description

Ox=num Oy=num 0 Label at origin.

Dx=num Dy=num 1 Label increment.

dx=dim oy=dim 0pt Dist btwn labels.

Whendx is 0,Dx\psxunit is used instead, and similarly fordy. Hence, the default
values of0pt for dx anddy are not as peculiar as they seem.

You have to be very careful when settingOx, Dx, Oy andDy to non-integer values.
multido.tex increments the labels using rudimentary fixed-point arithmetic, and
it will come up with the wrong answer unlessOx andDx, or Oy andDy, have the
same number of digits to the right of the decimal. The only exception is thatOx or
Oy can always be an integer, even ifDx or Dy is not. (The converse does not work,
however.)13

Note that\psaxes’s first coordinate argument determines the physical position of
the origin, but it doesn’t affect the label at the origin. E.g., if the origin is at(1,1),
the origin is still labeled0 along each axis, unless you explicitly changeOx andOy.
For example:

−2 −1 0 1 2
0

1

2

3

\psaxes[Ox=­2](­2,0)(2,3)

13For example,Ox=1.0 andDx=1.4 is okay, as isOx=1 andDx=1.4, butOx=1.4 andDx=1, or
Ox=1.4 andDx=1.15, is not okay. If you get this wrong, PSTricks won’t complain,but you won’t
get the right labels either.

Axes 46

The ticks and labels use a few other parameters as well:

labels=all/x/y/none Default:

To specify whether labels appear on both axes, the x-axis, the y-axis, or
neither.

showorigin=true/false Default:

If true, then labels are placed at the origin, as long as the label doesn’t end
up on one of the axes. Iffalse, the labels are never placed at the origin.

ticks=all/x/y/none Default:

To specify whether ticks appear on both axes, the x-axis, they-axis, or
neither.

tickstyle=full/top/bottom Default:

For example, iftickstyle=top, then the ticks are only on the side of the axes
away from the labels. Iftickstyle=bottom, the ticks are on the same side as
the labels.full gives ticks extending on both sides.

ticksize=dim Default:

Ticks extenddim above and/or below the axis.

The distance between ticks and labels is\pslabelsep, which you can change with
thelabelsep parameter.

The labels are set in the current font (ome of the examples above were preceded
by \small so that the labels would be smaller). You can do fancy things with the
labels by redefining the commands:

\psxlabel

\psylabel

E.g., if you want change the font of the horizontal labels, but not the vertical
labels, try something like

1 \def\psxlabel#1{\small #1}

You can choose to have a frame instead of axes, or no axes at all(but you still get
the ticks and labels), with the parameter:

axesstyle=axes/frame/none Default:

The usuallinestyle, fillstyle and related paremeters apply.

For example:

Axes 47

0−0.5−1.0−1.5
0

1

2

3

\psaxes[Dx=.5,dx=1,tickstyle=top,axesstyle=frame](­3,3)

The\psaxes macro is pretty flexible, but PSTricks contains some other tools for
making axes from scratch. E.g., you can use\psline and\psframe to draw axes
and frames, respectively,\multido to generate labels (see the documentation for
multido.tex), and\multips to make ticks.

Axes 48

VI Text Tricks

27 Framed boxes

The macros for framing boxes take their argument, put it in an\hbox, and put a
PostScript frame around it. (They are analogous to LATEX’s \fbox). Thus, they are
composite objects rather than pure graphics objects. In addition to the graphics
parameters for\psframe, these macros use the following parameters:

framesep=dim Default:

Distance between each side of a frame and the enclosed box.

boxsep=true/false Default:

Whentrue, the box that is produced is the size of the frame or whatever
that is drawn around the object. Whenfalse, the box that is produced is the
size of whatever is inside, and so the frame is “transparent”to TEX. This
parameter only applies to\psframebox, \pscirclebox, and\psovalbox.

Here are the three box-framing macros:

\psframebox*[par]{stuff }

A simple frame (perhaps with rounded corners) is drawn using\psframe.
The* option is of particular interest. It generates a solid framewhose color
is fillcolor (rather thanlinecolor, as with the closed graphics objects).
Recall that the default value offillcolor is white, and so this has the effect
of blotting out whatever is behind the box. For example,

Label
\pspolygon[fillcolor=gray,fillstyle=crosshatch*](0,0)(3,0)

(3,2)(2,2)

\rput(2,1){\psframebox*[framearc=.3]{Label}}

\psdblframebox*[par]{stuff }

This draws a double frame. It is just a variant of\psframebox, defined by

1 \newpsobject{psdblframebox}{psframebox}{doublesep=\pslinewidth}

For example,

Text Tricks 49

\psdblframebox[linewidth=1.5pt]{%

\parbox[c]{6cm}{\raggedright A double frame is drawn

with the gap between lines equal to {\tt doublesep}}}

A double frame is drawn with the gap
between lines equal todoublesep

\psshadowbox*[par]{stuff }

This draws a single frame, with a shadow.

Great Idea!! \psshadowbox{\bf Great Idea!!}

You can get the shadow with\psframebox just be setting theshadowsize
parameter, but with\psframebox the dimensions of the box won’t reflect the
shadow (which may be what you want!).

\pscirclebox*[par]{stuff }

This draws a circle. Withboxsep=true, the size of the box is close to but
may be larger than the size of the circle. For example:

You are

here
\pscirclebox{\begin{tabular}{c} You are \\ here \end{tabular}}

\cput*[par]{angle}(x,y){stuff }

This combines the functions of\pscirclebox and\rput. It is like

\rput{<angle>}(x0,y0){\string\pscirclebox*[<par>]{<stuff>}}

but it is more efficient. Unlike the\rput command, there is no argument
for changing the reference point; it is always the center of the box. In-
stead, there is an optional argument for changing graphics parameters. For
example

0 1 2
0

1

K1 \cput[doubleline=true](1,.5){\large K_1}

\psovalbox*[par]{stuff }

This draws an ellipse. If you want an oval with square sides and rounded
corners, then use\psframebox with a positive value forrectarc or linearc
(depending on whethercornersize is relative or absolute). Here is an
example that usesboxsep=false:

At the introductory
price of$13.99, it pays
to act now!

At the introductory price of

\psovalbox[boxsep=false,linecolor=darkgray]{\$13.99},

it pays to act now!

Framed boxes 50

You can define variants of these box framing macros using the\newpsobject com-
mand.

If you want to control the final size of the frame, independently of the material
inside, neststuff in something like LATEX’s \makebox command.

28 Clipping

The command

\clipbox[dim]{stuff }

putsstuff in an\hbox and then clips around the boundary of the box, at a distance
dim from the box (the default is0pt).

The\pspicture environment also lets you clip the picture to the boundary.

The command

\psclip{graphics} ... \endpsclip

sets the clipping path to the path drawn by the graphics object(s), until the\endpsclip
command is reached.\psclip and\endpsclip must be properly nested with re-
spect to TEX grouping. Only pure graphics (those described in Part II and \pscustom)
are permitted. AnOverfull \hbox warning indicates that thegraphics argument
contains extraneous output or space. Note that the graphicsobjects otherwise act
as usual, and the\psclip does not otherwise affect the surrounded text. Here is an
example:

“One of the best new plays I
have seen all year: cool, po-
etic, ironic . . . ” proclaimedThe
Guardianupon the London pre-
miere of this extraordinary play
about a Czech director and his

\parbox{4.5cm}{%

\psclip{\psccurve[linestyle=none](­3,­2)

(0.3,­1.5)(2.3,­2)(4.3,­1.5)(6.3,­2)(8,­1.5)(8,2)(­3,2)}

‘‘One of the best new plays I have seen all year: cool,

ironic \ldots” proclaimed {\em The Guardian} upon the London

premiere of this extraordinary play about a Czech director

his actress wife, confronting exile in America.\vspace{­1cm}

\endpsclip}

If you don’t want the outline to be painted, you need to include linestyle=none in
the parameter changes. You can actually include more than one graphics object
in the argument, in which case the clipping path is set to the intersection of the
paths.

\psclip can be a useful tool in picture environments. For example, here it is used
to shade the region between two curves:

Clipping 51

0 1 2 3 4
0

1

2

3

4

\psclip{%

\pscustom[linestyle=none]{%

\psplot{.5}{4}{2 x div}

\lineto(4,4)}

\pscustom[linestyle=none]{%

\psplot{0}{3}{3 x x mul 3 div sub}

\lineto(0,0)}}

\psframe*[linecolor=gray](0,0)(4,4)

\endpsclip

\psplot[linewidth=1.5pt]{.5}{4}{2 x div}

\psplot[linewidth=1.5pt]{0}{3}{3 x x mul 3 div sub}

\psaxes(4,4)

Driver notes: The clipping macros use\pstverbscale and\pstVerb. Don’t be sur-
prised if PSTricks’s clipping does not work or causes problem—it is never robust.\endpsclip
usesinitclip. This can interfere with other clipping operations, and especially if the TEX
document is converted to an Encapsulated PostScript file. The command\AltClipMode
causes\psclip and\endpsclip to usegsave andgrestore instead. This bothers some
drivers, such as NeXTTeX’s TeXView, especially if\psclip and\endpsclip do not end
up on the same page.

29 Rotation and scaling boxes

There are versions of the standard box rotation macros:

\rotateleft{stuff }

\rotateright{stuff }

\rotatedown{stuff }

stuff is put in an\hbox and then rotated or scaled, leaving the appropriate amount
of spaces. Here are a few uninteresting examples:

Le
ft Down

R
ight

\Large\bf \rotateleft{Left} \rotatedown{Down} \rotateright{Right}

There are also two box scaling macros:

\psscalebox{num1 num2}{stuff }

If you give two numbers in the first argument,num1 is used to scale hor-
izontally andnum2 is used to scale vertically. If you give just one num-
ber, the box is scaled by the same in both directions. You can’t scale by
zero, but negative numbers are OK, and have the effect of flipping the box
around the axis. You never know when you need to do something like this
(\psscalebox{­1 1}{this}).

\psscaleboxto(x,y){stuff }

Rotation and scaling boxes 52

This time, the first argument is a (Cartesian) coordinate, and the box is
scaled to have widthx and height (plus depth)y . If one of the dimensions
is 0, the box is scaled by the same amount in both directions. For example:

Big and long \psscaleboxto(4,2){Big and long}

PSTricks defines LR-box environments for all these box rotation and scaling com-
mands:

1 \pslongbox{Rotateleft}{\rotateleft}

2 \pslongbox{Rotateright}{\rotateright}

3 \pslongbox{Rotatedown}{\rotatedown}

4 \pslongbox{Scalebox}{\psscalebox}

5 \pslongbox{Scaleboxto}{\psscaleboxto}

Here is an example where we\Rotatedown for the answers to exercises:

Question: How do
Democrats organize a
firing squad?

Answer:Firsttheygetin
acircle,...

Question: How do Democrats organize a firing squad?

\begin{Rotatedown}

\parbox{\hsize}{Answer: First they get in a circle, \ldots\hss}%

\end{Rotatedown}

See the documentation offancybox.sty for tips on rotating a LATEX table or
figure environment, and other boxes.

Rotation and scaling boxes 53

VII Nodes and Node Connections

All the commands described in this part are contained in the filepst­node.tex/pst­node.st
pst-node

The node and node connection macros let you connect information and place la-
bels, without knowing the exact position of what you are connecting or of where
the lines should connect. These macros are useful for makinggraphs and trees,
mathematical diagrams, linguistic syntax diagrams, and connecting ideas of any
kind. They are the trickiest tricks in PSTricks!

Although you might use these macros in pictures, positioning and rotating them
with \rput, you can actually use them anywhere. For example, I might do some-
thing like this in a guide about page styles:

With themyfooters page
style, the name of the
current section appears at
the bottom of each page.

\makeatletter

\gdef\ps@temp{\def\@oddhead{}\def\@evenhead{}

\def\@oddfoot{\small\sf

\ovalnode[boxsep=false]{A}{\rightmark}

\nccurve[ncurv=.5,angleB=240,angleA=180,nodesep=6pt]{<­}{A}{B}

\hfil\thepage}

\let\@evenfoot\@oddfoot}

\makeatother

\thispagestyle{empty}

With the {\tt myfooters} page style, the name of the current

appears at the bottom of each \rnode{B}{page}.

You can use nodes in math mode and in alignment environments as well. Here is
an example of a commutative diagram:

A

B C

f g

h

$

\begin{array}{c@{\hskip 1cm}c}

& \rnode{a}{A}\\[2cm]

\rnode{b}{B} & \rnode{c}{C}

\end{array}

\psset{nodesep=3pt}

\everypsbox{\scriptstyle}

\ncline{­>}{a}{b}\Bput{f}

\ncline{­>}{a}{c}\Aput{g}

\ncline[linestyle=dotted]{­>}{b}{c}\Aput{h}

$

There are three components to the node macros:

Nodes and Node Connections 54

Node definitions The node definitions let you assign a name and shape to an
object. See Section 30.

Node connectionsThe node connections connect two nodes, identified by their
names. See Section 31.

Node labels The node label commands let you affix labels to the node connec-
tions. See Section 32.

30 Nodes

Thename of a node must contain only letters and numbers, and must begin with a
letter.

P
S Warning: Bad node names can cause PostScript errors.

\rnode[refpoint]{name}{stuff }

This assigns thename to the node, which will have a rectangular shape for
the purpose of making connections, with the “center” at the reference point
(i.e., node connections will point to the reference point.\rnode was used in
the two examples above.

\Rnode(x,y){name}{stuff }

This is like \rnode, but the reference point is calculated differently. It is
set to the middle of the box’s baseline, plus(x,y). If you omit the(x,y)

argument, command

\RnodeRef

is substituted. The default definition of\RnodeRef is 0,.7ex. E.g, the fol-
lowing are equivalent:

1 \Rnode(0,.6ex){stuff}

2 {\def\RnodeRef{0,.6ex}\Rnode{stuff}}

\Rnode is useful when aligning nodes by their baaelines, such as in com-
mutative diagrams. With\rnode horizontal node connections might not be
quite horizontal, because of differences in the size of letters.

\pnode(x,y){name}

This creates a zero dimensional node at the point(x,y) (default(0,0)).

\cnode*[par](x,y){radius}{name}

This draws a circle and assigns thename to it.

\circlenode*[par]{name}{stuff }

This is a variant of\pscirclebox that gives the node the shape of the circle.

Nodes 55

\cnodeput*[par]{angle}(x,y){name}{stuff }

This is a variant of\cput that gives the node the shape of the circle.

\ovalnode*[par]{name}{stuff }

This is a variant of\psovalbox that gives the node the shape of the ellipse.

The reason that there is no\framenode command is that using\psframebox (or
\psshadowbox or \psdblframebox) in the argument of\rnode gives the desired re-
sult.

31 Node connections

All the node connection commands begin withnc, and they all have the same
syntax:

\<nodeconnection>[<par>]{<arrows>}{<nodeA>}{<nodeB>}

A line of some sort is drawn fromnodeA to nodeB. Some of the node connection
commands are a little confusing, but with a little experimentation you will figure
them out, and you will be amazed at the things you can do.

The node and point connections can be used with\pscustom. The beginning of
the node connection is attached to the current point by a straight line, as with
\psarc.14

When we refer to theA andB nodes below, we are referring only to the order in
which the names are given as arguments to the node connectionmacros.

When a node name cannot be found on the same page as the node connection
command, you get either no node connection or a nonsense nodeconnection.
However, TEX will not report any errors.

The node connections use the following parameters:

nodesep=dim Default:

The border around the nodes added for the purpose of determining where
to connect the lines.

offset=dim Default:

After the node connection point is calculated, it is shift upfor nodeA and
down fornodeB by dim, where “up” and “down” assume that the connecting
line points to the right from the node.

arm=dim Default:

Some node connections start with a segment of lengthdim before turning
somewhere.

14See page 64 if you want to use the nodes as coordinates in otherPSTricks macros.

Node connections 56

angle=angle Default:

Some node connections let you specify the angle that the nodeconnection
should connect to the node.

arcangle=angle Default:

This applies only to\ncarc, and is described below.

ncurv=num Default:

This applies only to\nccurve and\pccurve, and is described below.

loopsize=dim Default:

This applies only the\ncloop and\pcloop, and is described below.

You can set these parameters separately for the two nodes. Just add anA or B to
the parameter name. E.g.

1 \psset{nodesepA=3pt, offsetA=5pt, offsetB=3pt, arm=1cm}

setsnodesep for the A node, but leaves the value for theB node unchanged, sets
offset for theA andB nodes to different values, and setsarm for theA andB nodes
to the same value.

Don’t forget that by using theborder parameter, you can create the impression
that one node connection passes over another.

Here is a description of the individual node connection commands:

\ncline*[par]{arrows}{nodeA}{nodeB}

This draws a straight line between the nodes. Only theoffset andnodesep
parameters are used.

Idea 1

Idea 2

\rput[bl](0,0){\rnode{A}{Idea 1}}

\rput[tr](4,3){\rnode{B}{Idea 2}}

\ncline[nodesep=3pt]{<­>}{A}{B}

\ncLine*[par]{arrows}{nodeA}{nodeB}

This is like\ncline, but the labels (with\lput, etc) are positioned as if the
line began and ended at the center of the nodes. This is usefulif you have
multiple parallel lines and you want the labels to line up, even though the
nodes are of varying size, e.g., in commutative diagrams.

\nccurve*[par]{arrows}{nodeA}{nodeB}

This draws a bezier curve between the nodes. It uses thenodesep, offset,
angle andncurv parameters.

Node connections 57

Node A

Node B

\rput[bl](0,0){\rnode{A}{\psframebox{Node A}}}

\rput[tr](4,3){\ovalnode{B}{Node B}}

\nccurve[angleB=180]{A}{B}

\ncarc*[par]{arrows}{nodeA}{nodeB}

This is actually a variant of\nccurve. I.e., it also connects the nodes with
a bezier curve, using thenodesep, offset, andncurv parameters. However,
the curve connects to nodeA at an anglearcangleA from the line betweenA
andB, and connects to nodeB at an angle -arcangleB from the line between
B andA. For small, equal values ofangleA andangleB (e.g., the default value
of 8) and with the default value ofncurv, the curve approximates an arc of
a circle.\ncarc is a nice way to connect two nodes with two lines.

X

Y \cnodeput(0,0){A}{X}

\cnodeput(3,2){B}{Y}

\psset{nodesep=3pt}

\ncarc{­>}{A}{B}

\ncarc{­>}{B}{A}

\ncbar*[par]{arrows}{nodeA}{nodeB}

First, lines are drawn attaching to both nodes at an angleangleA and of
lengthsarmA andarmB. Then one of the arms is extended so that when the
two are connected, the finished line contains 3 segments meeting at right
angles. Generally, the whole line has three straight segments. The value of
linearc is used for rounding the corners.

Connect some words!
\rnode{A}{Connect} some \rnode{B}{words}!

\ncbar[nodesep=3pt,angle=­90]{<­**}{A}{B}

\ncdiag*[par]{arrows}{nodeA}{nodeB}

First, the arms are drawn usingangle andarm. Then they are connected with
a straight line. Generally, the whole line has three straight segments. The
value oflinearc is used for rounding the corners.

Node A

Node B

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncdiag[angleA=­90,angleB=90,arm=.5,linearc=.2]{A}{B}

\ncdiagg*[par]{arrows}{nodeA}{nodeB}

Node connections 58

This is similar to\ncdiag, but only the arm for node A is drawn. The end of
this arm is then connected directly to node B. The connectiontypically has
two segments. The value oflinearc is used for rounding the corners.

H

T

\cnode(0,0){4pt}{a}

\rput[l](3,1){\rnode{b}{H}}

\rput[l](3,­1){\rnode{c}{T}}

\ncdiagg[angleA=180,armA=2cm,nodesepA=3pt]{b}{a}

\ncdiagg[angleA=180,armA=2cm,nodesepA=3pt]{c}{a}

\ncangle*[par]{arrows}{nodeA}{nodeB}

The node connection points are determined byangleA andangleB (andnodesep
andoffset). Then an arm is drawn for nodeB usingarmB. This arm is con-
nected to nodeA by a right angle, that also meets nodeA at angleangleA.
Generally, the whole line has three straight segments, but it can have fewer.
The value oflinearc is used for rounding the corners. Simple, right? Here
is an example:

Node A

Node B

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncangle[angleA=­90,angleB=90,arm=.4cm,

linestyle=dashed]{A}{B}

\ncangles*[par]{arrows}{nodeA}{nodeB}

This is similar to\ncangle, but botharmA and armB are used. The arms
are connected by a right angle that meets armA at a right angle as well.
Generally there are four segments (hence one more angle than\ncangle,
and hence thes in \ncangles). The value oflinearc is used for rounding
the corners. Compare this example with the previous one:

Node A

Node B

\rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}

\rput[br](4,0){\ovalnode{B}{Node B}}

\ncangles[angleA=­90,arm=.4cm,linearc=.15]{A}{B}

\ncloop*[par]{arrows}{nodeA}{nodeB}

The first segment isarmA, then it makes a 90 degree turn to the left, drawing
a segment of lengthloopsize. The next segment is again at a right angle; it
connects toarmB. For example:

A loop \rnode{a}{\psframebox{\Huge A loop}}

\ncloop[angleB=180,loopsize=1,arm=.5,linearc=.2]{­>}{a}{a}

Node connections 59

\nccircle*[par]{arrows}{node}{radius}

This draws a circle from a node to itself. It is the only node connection
command of this sort. The circle starts at angleangleA and goes around the
node counterclockwise, at a distancenodesepA from the node.

The node connection commands make interesting drawing tools as well, as an
alternative to\psline for connecting two points. There are variants of the node
connection commands for this purpose. Each begins withpc (for “point connec-
tion”) rather thannc. E.g.,

1 \pcarc{<­>}(3,4)(6,9)

gives the same result as

1 \pnode(3,4){A}\pnode(6,9){B}\pcarc{<­>}{A}{B}

Only \ncLine and\nccircle do not havepc variants:

\pcline*[par]{arrows}(x1,y1)(x2,y2)

Like \ncline.

\pccurve*[par]{arrows}(x1,y1)(x2,y2)

Like \nccurve.

\pcarc*[par]{arrows}(x1,y1)(x2,y2)

Like \ncarc.

\pcbar*[par]{arrows}(x1,y1)(x2,y2)

Like \ncbar.

\pcdiag*[par]{arrows}(x1,y1)(x2,y2)

Like \ncdiag.

\pcangle*[par]{arrows}(x1,y1)(x2,y2)

Like \ncangle.

\pcloop*[par]{arrows}(x1,y1)(x2,y2)

Like \ncloop.

32 Attaching labels to node connections

Now we come to the commands for attaching labels to the node connections. The
node label command must come right after the node connectionto which the label
is to be attached. You can attach more than one label to a node connection, and a
label can include more nodes.

Attaching labels to node connections 60

The node label commands must end up on the same TEX page as the node con-
nection to which the label corresponds.

The coordinate argument in other PSTricksput commands is a single number in
the node label commands:(<pos>). This number selects a point on the node
connection, roughly according to the following scheme: Each node connection
has potentially one or more segments, including the arms andconnecting lines. A
numberposbetween 0 and 1 picks a point on the first segment from nodeA to B,
(fraction posfrom the beginning to the end of the segment), a number between 1
and 2 picks a number on the second segment, and so on. Each nodeconnection
has its own default value of the positioning coordinate, which is used by some
short versions of the label commands.

Here are the details for each node connection:

Connection Segments Range Default

\ncline 1 0≤ pos≤ 1 0.5

\nccurve 1 0≤ pos≤ 1 0.5

\ncarc 1 0≤ pos≤ 1 0.5

\ncbar 3 0≤ pos≤ 3 1.5

\ncdiag 3 0≤ pos≤ 3 1.5

\ncdiagg 2 0≤ pos≤ 2 0.5

\ncangle 3 0≤ pos≤ 3 1.5

\ncloop 5 0≤ pos≤ 4 2.5

\nccircle 1 0≤ pos≤ 1 0.5

There is another difference between the node label commandsand otherput com-
mands. In addition to the various ways of specifying the angle of rotation for
\rput, with the node label commands the angle can be of the form{:<angle>}.
In this case, the angle is calculated after rotating the coordinate system so that the
node connection at the position of the label points to the right (from nodesA to B).
E.g., if the angle is{:U}, then the label runs parallel to the node connection.

Here are the node label commands:

\lput*[refpoint]{rotation}(pos){stuff }

The l stands for “label”. Here is an example illustrating the use of the
optional star and:<angle> with \lput, as well as the use of theoffset
parameter with\pcline:

Length \pspolygon(0,0)(4,2)(4,0)

\pcline[offset=12pt]{|­|}(0,0)(4,2)

\lput*{:U}{Length}

Attaching labels to node connections 61

(Remember that with theput commands, you can omit the coordinate if
you include the angle of rotation. You are likely to use this feature with the
node label commands.)

With \lput and \rput, you have a lot of control over the position of the
label. E.g.,

label \pcline(0,0)(4,2)

\lput{:U}{\rput[r]{N}(0,.4){label}}

puts the label upright on the page, with right side located .4centimeters
“above” the position.5 of the node connection (above if the node connec-
tion points to the right). However, the\aput and\bput commands described
below handle the most common cases without\rput.15

\aput*[labelsep]{angle}(pos){stuff }

stuff is positioned distance\pslabelsep abovethe node connection, given
the convention that node connections point to the right.\aput is a node-
connection variant of\uput. For example:

Hypotenuse
\pspolygon(0,0)(4,2)(4,0)

\pcline[linestyle=none](0,0)(4,2)

\aput{:U}{Hypotenuse}

\bput*[labelsep]{angle}(pos){stuff }

This is like\aput, but stuff is positionedbelowthe node connection.

It is fairly common to want to use the default position and rotation with these node
connections, but you have to include at least one of these arguments. Therefore,
PSTricks contains some variants:

\mput*[refpoint]{stuff }

\Aput*[labelsep]{stuff }

\Bput*[labelsep]{stuff }

15There is also an obsolete command\Lput for putting labels next to node connections. The
syntax is

\Lput{<labelsep>}[<refpoint>]{<rotation>}(<pos>){<stuff>}

It is a combination of\Rput and\lput, equivalent to

\lput(<pos>){\Rput{<labelsep>}[<refpoint>]{<rotation>}(0,0){<stuff>}}

\Mput is a short version of\Lput with no {<rotation>} or (<pos>) argument.\Lput and\Mput
remain part of PSTricks only for backwards compatibility.

Attaching labels to node connections 62

of \lput, \aput and\bput, respectively, that have no angle or positioning argu-
ment. For example:

1

\cnode*(0,0){3pt}{A}

\cnode*(4,2){3pt}{B}

\ncline[nodesep=3pt]{A}{B}

\mput*{1}

Here is another:

Label \pcline{<­>}(0,0)(4,2)

\Aput{Label}

Now we can compare\ncline with \ncLine, and\rnode with \Rnode. First, here is
a mathematical diagram with\ncLine and\Rnode:

\[

\setlength{\arraycolsep}{1cm}

\def\tX{\tilde{\tilde{X}}}

\begin{array}{cc}

\Rnode{a}{(X­A,N­A)} & \Rnode{b}{(\tX,a)}\\[1.5cm]

\Rnode{c}{(X,N)} & \Rnode{d}{\LARGE(\tX,N)}\\[1.5cm]

\end{array}

\psset{nodesep=5pt,arrows=­>}

\everypsbox{\scriptstyle}

\ncLine{a}{b}\Aput{a}

\ncLine{a}{c}\Bput{r}

\ncLine[linestyle=dashed]{c}{d}\Bput{b}

\ncLine{b}{d}\Bput{s}

\]

(X −A,N−A) (˜̃X,a)

(X,N) (˜̃X,N)

a

r

b

s

Attaching labels to node connections 63

Here is the same one, but with\ncline and\rnode instead:

(X −A,N−A) (˜̃X,a)

(X,N) (˜̃X,N)

a

r

b

s

Driver notes: The node macros use\pstVerb and\pstverbscale.

Attaching labels to node connections 64

VIII Special Tricks

33 Coils and zigzags

The filepst­coil.tex/pst­coil.sty (and optionally the header filepst­coil.pro)
pst-coil defines the following graphics objects for coils and zigzags:

\pscoil*[par]{arrows}(x0,y0)(x1,y1)
\psCoil*[par]{angle1}{angle2}
\pszigzag*[par]{arrows}(x0,y0)(x1,y1)

These graphics objects use the following parameters:

coilwidth=dim Default:
coilheight=num Default:
coilarm=dim Default:
coilaspect=angle Default:
coilinc=angle Default:

All coil and zigzag objects draw a coil or zigzag whose width (diameter) iscoilwidth,
and with the distance along the axes for each period (360 degrees) equal to

coilheight x coilwidth.

Both\pscoil and\psCoil draw a “3D” coil, projected onto the xz-axes. The center
of the 3D coil lies on the yz-plane at angle pcoilaspect to thez-axis. The coil is
drawn with PostScript’slineto, joining points that lie at anglecoilinc from each
other along the coil. Hence, increasingcoilinc makes the curve smoother but the
printing slower.\pszigzag does not use thecoilaspect andcoilinc parameters.

\pscoiland \pszigzag connect(x0,y0) and (x1,y1), starting and ending with
straight line segments of lengthcoilarmA andcoilarmB, resp. Settingcoilarm is
the same as settingcoilarmA andcoilarmB.

Here is an example of\pscoil:

\pscoil[coilarm=.5cm,linewidth=1.5pt,coilwidth=.5cm]{<­|}(4,2)

Here is an example of\pszigzag:

Special Tricks 65

\pszigzag[coilarm=.5,linearc=.1]{<­>}(4,0)

Note that\pszigzag uses thelinearc parameters, and that the beginning and end-
ing segments may be longer thancoilarm to take up slack.

\psCoil just draws the coil horizontally fromangle1 to angle2 . Use\rput to rotate
and translate the coil, if desired.\psCoil does not use thecoilarm parameter. For
example, withcoilaspect=0 we get a sine curve:

\psCoil[coilaspect=0,coilheight=1.33,

coilwidth=.75,linewidth=1.5pt]{0}{1440}

pst­coil.texalso contains coil and zigzag node connections. You must also load
pst-node pst­node.tex / pst­node.sty to use these. The node connections are:

\nccoil*[par]{arrows}{nodeA}{nodeB}

\nczigzag*[par]{arrows}{nodeA}{nodeB}

\pccoil*[par]{arrows}(x1,y1)(x2,y2)
\pczigzag*[par]{arrows}(x1,y1)(x2,y2)

The end points are chosen the same as for\ncline and \pcline, and otherwise
these commands work like\pscoil and\pszigzag. For example:

\cnode(.5,.5){.5}{A}

\cnode[fillstyle=solid,fillcolor=lightgray](3.5,2.5){.5}{B}

\nccoil[coilwidth=.3]{<­>}{A}{B}

34 Special coordinates

The command

\SpecialCoor

enables a special feature that lets you specify coordinatesin a variety of ways,
in addition to the usual Cartesian coordinates.16 Processing is slightly slower and

16There is an obsolete command\Polar that causes coordinates in the form(<r>,<a>) to be
interpreted as polar coordinates. The use of\Polar is not recommended because it does not allow
one to mix Cartesian and polar coordinates the way\SpecialCoor does, and because it is not as
apparent when examining an input file whether, e.g.,(3,2) is a Cartesian or polar coordinate. The
command for undoing\Polar is \Cartesian. It has an optional argument for setting the default
units. I.e.,

\Cartesian(<x>,<y>)

Special coordinates 66

less robust, which is why this feature is available on demandrather than by default,
but you probably won’t notice the difference.

Here are the coordinates you can use:

(x,y) The usual Cartesian coordinate. E.g.,(3,4).

(r;a) Polar coordinate, with radiusr and anglea. The default unit forr is unit.
E.g.,(3;110).

(node) The center ofnode. E.g.,(A).

([par]node) The position relative tonode determined using theangle, nodesep
andoffset parameters. E.g.,([angle=45]A).

(!ps) Raw PostScript code.ps should expand to a coordinate pair. The units
xunit andyunit are used. For example, if I want to use a polar coordinate
(3,110) that is scaled along withxunit andyunit, I can write

1 (!3 110 cos mul 3 110 sin mul)

(coor1|coor2) The x coordinate fromcoor1 and they coordinate fromcoor2 .
coor1 and coor2 can be any other coordinates for use with\SpecialCoor.
For example,(A|1in;30).

\SpecialCoor also lets you specify angles in several ways:

num A number, as usual, with units given by the\degrees command.

(coor) A coordinate, indicating where the angle points to. Be sure to include the
(), in addition to whatever other delimiters the angle argument uses. For
example, the following are two ways to draw an arc of .8 inch radius from
0 to 135 degrees:

\SpecialCoor

\psarc(0,0){.8in}{0}{135}

\psarc(0,0){.8in}{0}{(­1,1)}

!ps Raw PostScript code.ps should expand to a number. The same units are used
as withnum.

The command

\NormalCoor

disables the\SpecialCoor features.

has the effect of

\psset{xunit=<x>,yunit=<y>}

\Cartesian can be used for this purpose without using\Polar.

Special coordinates 67

35 Overlays

Overlays are mainly of interest for making slides, and the overlay macros de-
scribed in this section are mainly of interest to TEX macro writers who want to
implement overlays in a slide macro package. For example, the seminar.sty

package, a LATEX style for notes and slides, uses PSTricks to implement overlays.

Overlays are made by creating an\hbox and then outputting the box several times,
printing different material in the box each time. The box is created by the com-
mands

\overlaybox stuff \endoverlaybox

LATEX users can instead write:

\begin{overlaybox} <stuff> \end{overlaybox}

The material for overlaystring should go within the scope of the command

\psoverlay{string}

string can be any string, after expansion. Anything not in the scopeof any\psoverlay
command goes on overlaymain, and material within the scope of\psoverlay{all}
goes on all the overlays.\psoverlay commands can be nested and can be used in
math mode.

The command

\putoverlaybox{string}

then prints overlaystring .

Here is an example:

\overlaybox

\psoverlay{all}

\psframebox[framearc=.15,linewidth=1.5pt]{%

\psoverlay{main}

\parbox{3.5cm}{\raggedright

Foam Cups Damage Environment {\psoverlay{one} Less than

Paper Cups,} Study Says.}}

\endoverlaybox

\putoverlaybox{main} \hspace{.5in} \putoverlaybox{one}

Foam Cups Damage
Environment

Study Says.

Less
than Paper Cups,

Driver notes: Overlays use\pstVerb and\pstverbscale.

Overlays 68

36 The gradient fill style

The filegradient.tex/gradient.sty, along with the PostScript header filegradient.pro,
gradient defines thegradient fillstyle, for gradiated shading. Thisfillstyle uses the

following parameters:

gradbegin=color Default:

The starting and ending color.

gradend=color Default:

The color at the midpoint.

gradlines=int Default:

The number of lines. More lines means finer gradiation, but slower printing.

gradmidpoint=num Default:

The position of the midpoint, as a fraction of the distance from top to bot-
tom. num should be between 0 and 1.

gradangle=angle Default:

The image is rotated byangle.

gradbegin andgradend should preferably bergb colors, but grays andcmyk colors
should also work. The definitions of the colorsgradbegin andgradend are:

1 \newrgbcolor{gradbegin}{0 .1 .95}

2 \newrgbcolor{gradend}{0 1 1}

Here are two ways to change the gradient colors:

1 \newrgbcolor{gradbegin}{1 .4 0}

and

1 \psset{gradbegin=blue}

Try this example:

1 \psframe[fillstyle=gradient,gradangle=45](10,­20)

37 Adding color to tables

The filecolortab.tex/colortab.sty contains macros that, when used with color
colortab commands such as those in PSTricks, let you color the cells and lines in tables.

Seecolortab.doc for more information.

The gradient fill style 69

38 Typesetting text along a path

The filetextpath.tex/textpath.stydefines the command\pstextpath, for type-
textpath setting text along a path. It is a remarkable trick, but thereare some caveats:

• textpath.tex only works with certain DVI-to-PS drivers. Here is what is
currently known:

– It works with Rokicki’s dvips, version 5.487 or later (at least up to
v5.495).

– It does not work with earlier versions of dvips.

– It does not work with TeXview (to preview files with NeXTTeX 3.0,
convert the.dvi file to a PostScript file withdvips ­o and use Pre-
view).

– “Does not work” means that it has no effect, for better or for worse.

– This may work with other drivers. The requirement is that thedriver
only use PostScript’sshow operator, unbound and unloaded, to show
characters.

• You must also have installed the PostScript header filetextpath.ps, and
\pstheader must be properly defined inpstricks.con for your driver.

• Like other PSTricks that involve rotating text, this works best with PostScript
(outline) fonts.

• PostScript rendering withtextpath.tex is slow.

Because of all this, no samples are shown here. However, there is a test file
tp­test.texand PostScript outputtp­test.ps that are distributed with PSTricks.

Here is the command:

\pstextpath[pos](x,y){graphics object}{text}

text is placed along the path, from beginning to end, defined by thePSTricks
graphics object. (This object otherwise behaves normally.Setlinestyle=none if
you don’t want it to appear.)

text can only contain characters. No TeX rules, no PSTricks, and no other\special’s.
(These things don’t cause errors; they just don’t work right.) Math mode is OK,
but math operators that are built from several characters (e.g., large integral signs)
may break. Entire boxes (e.g.,\parbox) are OK too, but this is mainly for amuse-
ment.

pos is either

l justify on beginning of path

c center on path

r justify on end of path.

Typesetting text along a path 70

The default isl.

(<x>,<y>) is an offset. Characters are shifted distancex along path, and are
shifted up byy . “Up” means with respect to the path, at whatever point on the
path corresponding to the middle of the character.(<x>,<y>) must be Cartesian
coordinates. Both coordinates use\psunit as the default. The default coordinate
is (0,\TPoffset), where\TPoffset a command whose default value is­.7ex.
This value leads to good spacing of the characters. Rememberthat ex units are
for the font in effect when\pstextpath occurs, not inside thetext argument.

More things you might want to know:

• Like with \rput and the graphics objects, it is up to you to leave space for
\pstextpath.

• Results are unpredictable iftext is wider than length of path.

• \pstextpath leaves the typesetting to TEX. It just intercepts theshow oper-
ator to remap the coordinate system.

39 Stroking and filling character paths

The filecharpath.tex/charpath.sty defines the command:
charpath

\pscharpath*[par]{text}

It strokes and fills thetext character paths using the PSTrickslinestyle and
fillstyle.

The restrictions on DVI-to-PS drivers listed on page 68 for\pstextpath apply to
\pscharpath. Furthermore, only outline (PostScript) fonts are affected.

Sample input and output fileschartest.texandchartest.psare distributed with
PSTricks.

With the optional*, the character path is not removed from the PostScript envi-
ronment at the end. This is mainly for special hacks. For example, you can use
\pscharpath* in the first argument of\pstextpath, and thus typeset text along
the character path of some other text. See the sample filedenis1.tex. (However,
you cannot combine\pscharpath and\pstextpath in any other way. E.g., you
cannot typeset character outlines along a path, and then filland stroke the outlines
with \pscharpath.)

The command

\pscharclip*[par]{text} ... \endpscharclip

works just like\pscharpath, but it also sets the clipping path to the character path.
You may want to position this clipping path using\rput inside\pscharclip’s argu-
ment. Like\psclip and\endpsclip, \pscharclip and\endpscharclip should come

Stroking and filling character paths 71

on the same page and should be properly nested with respect toTEX groups (unless
\AltClipMode is in effect). The filedenis2.tex contains a sample of\pscharclip.

40 Importing EPS files

PSTricks does not come with any facility for including Encapsulated PostScript
files, because there are other very good and well-tested macros for exactly that. If
using Rokicki’sdvips, then tryepsf.tex/epsf.sty, by the man himself!

What PSTricksis good for is embellishing your EPS picture. You can include an
EPS file in in the argument of\rput, as in

1 \rput(3,3){\epsfbox{myfile.eps}}

and hence you can include an EPS file in the\pspicture environment. Turn on
\psgrid, and you can find the coordinates for whatever graphics or text you want
to add. This works even when the picture has a weird bounding box, because with
the arguments to\pspicture you control the bounding box from TEX’s point of
view.

This isn’t always the best way to work with an EPS file, however. If the PostScript
file’s bounding box is the size you want the resulting pictureto be, after your
additions, then try

\hbox{<picture objects> \epsfbox{<file.eps>}

This will put all your picture objects at the lower left corner of the EPS file.
\epsfbox takes care of leaving the right amount of space.

If you need to determine the bounding box of an EPS file, then you can try of the
automatic bounding box calculating programs, such asbbfig (distributed with
Rokicki’s dvips). However, all such programs are easily fooled; the only sure
way to determine the bounding box is visually.\psgrid is a good tool for this.

41 Exporting EPS files

You must loadpst2eps.texorpst2eps.sty to use the PSTricks macros described
pst2eps in this section.

If you want to export an EPS file that contains both graphics and text, then you
need to be using a DVI-to-PS driver that suports such a feature. If you just want to
export pure graphics, then you can use the\PSTricksEPS command. Both of these
options are described in this section.

Newer versions of Rokicki’sdvips support an­E option for creating EPS files
from TEX .dvi files. E.g.,

dvips f oo.dvi−E −o f oo.eps

Importing EPS files 72

Your document should be a single page.dvips will find a tight bounding box
that just encloses the printed characters on the page. This works best with outline
(PostScript) fonts, so that the EPS file is scalable and resolution independent.

There are two inconvenient aspects of this method. You may want a different
bounding box than the one calculated bydvips (in particular,dvips ignores all
the PostScript generated by PSTricks when calculating the bounding box), and
you may have to go out of your way to turn off any headers and footers that would
be added by output routines.

PSTricks contains an environment that tries to get around these two problems:

\TeXtoEPS

stuff

\endTeXtoEPS

This is all that should appear in your document, but headers and whatever that
would normally be added by output routines are ignored.dvips will again try to
find a tight bounding box, but it will treatstuff as if there was a frame around it.
Thus, the bounding box will be sure to includestuff , but might be larger if there
is output outside the boundaries of this box. If the boundingbox still isn’t right,
then you will have to edit the

%%BoundingBox <llx lly urx ury>

specification in the EPS file by hand.

If your goal is to make an EPS file for inclusion in other documents, thendvips ­E

is the way to go. However, it can also be useful to generate an EPS file from
PSTricks graphics objects and include it in the same document,17 rather than just
including the PSTricks graphics directly, because TEX gets involved with process-
ing the PSTricks graphics only when the EPS file is initially created or updated.
Hence, you can edit your file and preview the graphics, without having to pro-
cess all the PSTricks graphics each time you correct a typo. This speed-up can be
significant with complex graphics such as\pslistplot’s with a lot of data.

To create an EPS file from PSTricks graphics objects, use

\PSTtoEPS[par]{file}{graphics objects}

The file is created immediately, and hence you can include it in the same docu-
ment (after the\PSTtoEPS command) and as many times as you want. Unlike with
dvips ­E, only pure graphics objects are processed (e.g.,\rput commands have
no effect).

\PSTtoEPS cannot calculate the bounding box of the EPS file. You have to specify
it yourself, by setting the following parameters:

17See the preceding section on importing EPS files.

Exporting EPS files 73

bbllx=dim Default:
bblly=dim Default:
bburx=dim Default:
bbury=dim Default:

Note that if the EPS file is only to be included in a PSTricks picture with \rput

you might as well leave the default bounding box.

\PSTricksEPS also uses the following parameters:

headerfile=file Default: s

()This parameter is for specifying PostScript header files that are to be in-
cluded in the EPS file. The argument should contain one or morefile names,
separated by commas. If you have more than one file, however, the entire
list must be enclosed in braces{}.

headers=none/all/user Default:

Whennone, no header files are included. Whenall, the header files used
by PSTricks plus the header files specified by theheaderfile parameter are
included. Whenuser, only the header files specified by theheaderfile
parameter are included. If the EPS file is to be included in a TEX document
that uses the same PSTricks macros and hence loads the relevant PSTricks
header files anyway (in particular, if the EPS file is to be included in the
same document), thenheaders should benone or user.

Exporting EPS files 74

Help

A Boxes

Many of the PSTricks macros have an argument for text that is processed in re-
stricted horizontal mode (in LATEX parlance, LR-mode) and then transformed in
some way. This is always the macro’s last argument, and it is written {<stuff>}

in this User’s Guide. Examples are the framing, rotating, scaling, positioningand
node macros. I will call these “LR-box” macros, and use framing as the leading
example in the discussion below.

In restricted horizontal mode, the input, consisting of regular characters and boxes,
is made into one (long or short) line. There is no line-breaking, nor can there be
vertical mode material such as an entire displayed equation. However, the fact
that you can include another box means that this isn’t reallya restriction.

For one thing, alignment environments such as\halign or LATEX’s tabular are
just boxes, and thus present no problem. Picture environments and the box macros
themselves are also just boxes. Actually, there isn’t a single PSTricks command
that cannot be put directly in the argument of an LR-box macro. However, en-
tire paragraphs or other vertical mode material such as displayed equations need
to be nested in a\vbox or LATEX \parbox or minipage. LATEX users should see
fancybox.sty and its documentation,fancybox.doc, for extensive tips and trick
for using LR-box commands.

The PSTricks LR-box macros have some features that are not found in most other
LR-box macros, such as the standard LATEX LR-box commands.

With LATEX LR-box commands, the contents is always processed in text mode,
even when the box occurs in math mode. PSTricks, on the other hand, preserves
math mode, and attempts to preserve the math style as well. TEX has four math
styles: text, display, script and scriptscript. Generally, if the box macro occurs in
displayed math (but not in sub- or superscript math), the contents are processed
in display style, and otherwise the contents are processed in text style (even here
the PSTricks macros can make mistakes, but through no fault of their own). If
you don’t get the right style, explicitly include a\textstyle, \displaystyle,
\scriptstyle or \scriptscriptstyle command at the beginning of the box
macro’s argument.

In case you want your PSTricks LR-box commands to treat math in the same as
your other LR-box commands, you can switch this feature on and off with the
commands

\psmathboxtrue

\psmathboxfalse

Help 75

You can have commands (such as, but not restricted to, the math style commands)
automatically inserted at the beginning of each LR-box using the

\everypsbox{commands}

command.18

If you would like to define an LR-box environmentname from an LR-box com-
mandcmd , use

\pslongbox{name}{cmd}

For example, after

\pslongbox{MyFrame}{\psframebox}

you can write

\MyFrame <stuff>\endMyFrame

instead of

\psframebox{<stuff>}

Also, LATEX users can write

\begin{MyFrame} <stuff>\end{MyFrame}

It is up to you to be sure thatcmd is a PSTricks LR-box command; if it isn’t, nasty
errors can arise.

Environments like have nice properties:

• The syntax is clearer whenstuff is long.

• It is easier to build composite LR-box commands. For example, here is a
framed minipage environment for LATEX:

1 \pslongbox{MyFrame}{\psframebox}

2 \newenvironment{fminipage}%

3 {\MyFrame\begin{minipage}}%

4 {\end{minipage}\endMyFrame}

• You include verbatim text and other\catcode tricks in stuff .

The rest of this section elaborates on the inclusion of verbatim text in LR-box
environments and commands, for those who are interested.fancybox.sty also
contains some nice verbatim macros and tricks, some of whichare useful for LR-
box commands.

18This is a token register.

Boxes 76

The reason that you cannot normally include verbatim text inan LR-box com-
mands argument is that TEX reads the whole argument before processing the
\catcode changes, at which point it is too late to change the category codes. If
this is all Greek to you,19 then just try this LATEX example to see the problem:

\psframebox{\verb+\foo{bar}+}

The LR-box environments defined with\pslongbox do not have this problem be-
causestuff is not processed as an argument. Thus, this works:

\pslongbox{MyFrame}{\psframebox}

\MyFrame \verb+\foo{bar}+\endMyFrame

\foo{bar}

The commands

\psverbboxtrue

\psverbboxfalse

switch into and out of, respectively, a special PSTricks mode that lets you include
verbatim text in any LR-box command. For example:

\psverbboxtrue

\psframebox{\verb+\foo{bar}+}

\foo{bar}

However, this is not as robust. You must explicitly group color commands in
stuff , and LR-box commands that usually ignore spaces that follow{<stuff>}

might not do so when\psverbboxtrue is in effect.

B Tips and More Tricks

1 How do I rotate/frame this or that with LATEX?

Seefancybox.sty and its documentation.

2 How can I suppress the PostScript so that I can use my document with a
non-PostScript dvi driver?

Put the command

19Incidentally, many foreign language macros, such asgreek.tex, use\catcode tricks which
can cause problems in LR-box macros.

Tips and More Tricks 77

\PSTricksOff

at the beginning of your document. You should then be able to print or preview
drafts of your document (minus the PostScript, and perhaps pretty strange look-
ing) with any dvi driver.

3 How can I improve the rendering of halftones?

This can be an important consideration when you have a halftone in the back-
ground and text on top. You can try putting

1 \pstverb{106 45 {dup mul exch dup mul add 1.0 exch sub} setscreen}

before the halftone, or in a header (as in headers and footers, not as in PostScript
header files), if you want it to have an effect on every page.

setscreen is a device-dependent operator.

4 What special characters can be active with PSTricks?

C Including PostScript code

To learn about the PostScript language, consult Adobe’sPostScript Language Tu-
torial and Cookbook(the “Blue Book”), or Henry McGilton and Mary Campi-
one’sPostScript by Example(1992). Both are published by Addison-Wesley. You
may find that the Appendix of the Blue Book, plus an understanding of how the
stack works, is all you need to write simple code for computing numbers (e.g., to
specify coordinates or plots using PostScript).

You may want to define TEX macros for including PostScript fragments in various
places. All TEX macros are expanded before being passed on to PostScript. It is
not always clear what this means. For example, suppose you write

\SpecialCoor

\def\mydata{23 43}

\psline(!47 \mydata add)

\psline(!47 \mydata\ add)

\psline(!47 \mydata~add)

\psline(!47 \mydata{} add)

You will get a PostScript error in each of the\psline commands. To see what the
argument is expanding to, try use TEX’s \edef and\show. E.g.,

\def\mydata{23 43}

\edef\temp{47 \mydata add}

\show\temp

\edef\temp{47 \mydata\ add}

\show\temp

\edef\temp{47 \mydata~add}

Including PostScript code 78

\show\temp

\edef\temp{47 \mydata{} add}

\show\temp

TEX expands the code, assigns its value to\temp, and then displays the value of
\temp on your console. Hitreturn to procede. You fill find that the four samples
expand, respectively, to:

1 47 23 43add

2 47 23 43\ add

3 47 23 43\penalty \@M \ add

4 47 23 43{} add

All you really wanted was a space between the43 andadd. The command\space
will do the trick:

\psline(!47 \mydata\space add)

You can include balance braces{ }; these will be passed on verbatim to PostScript.
However, to include an unbalanced left or right brace, you have to use, respec-
tively,

\pslbrace

\psrbrace

Don’t bother trying\} or \{.

Whenever you insert PostScript code in a PSTricks argument,the dictionary on
the top of the dictionary stack istx@Dict, which is PSTrick’s main dictionary. If
you want to define you own variables, you have two options:

Simplest Always include a@ in the variable names, because PSTricks never uses
@ in its variables names. You are at a risk of overflowing thetx@Dict dic-
tionary, depending on your PostScript interpreter. You arealso more likely
to collide with someone else’s definitions, if there are multiple authors con-
tributing to the document.

Safest Create a dictionary namedTDict for your scratch computations. Be sure
to remove it from the dictionary stack at the end of any code you insert in
an argument. E.g.,

TDict 10 dict def TDict begin <your code> end

D Troubleshooting

1 Why does the document bomb in the printer when the first item in a LATEX
file is a float?

When the first item in a LATEX file is a float,\special’s in the preamble are dis-
carded. In particular, the\special for including PSTricks’s header file is lost.

Troubleshooting 79

The workaround is to but something before the float, or to include the header file
by a command-line option with your dvi-to-ps driver.

2 I converted a .dvi file to PostScript, and then mailed it to a colleague. It
prints fine for me but bombs on her printer.

Here is the most likely (but not the only) cause of this problem. The PostScript
files you get when using PSTricks can contain long lines. Thisshould be ac-
ceptable to any proper PostScript interpreter, but the lines can get chopped when
mailing the file. There is no way to fix this in PSTricks, but youcan make a point
of wrapping the lines of your PostScript files when mailing them. E.g., on UNIX
you can useuuencode anduudecode, or you can use the following AWK script to
wrap the lines:

#! /bin/sh

This script wraps all lines

Usage (if script is named wrap):

wrap < infile > outfile

awk ’

BEGIN {

N = 78 # Max line length

}

{ if (length($0)<=N)

print

else {

currlength = 0

for (i = 1; i <=NF; i++) {

if ((currlength = currlength + length($i) + 1) > N) {

printf "\n"

printf "%s", $i

currlength = length($i)

}

else

printf \ %s", $i

}

printf "\n"

}

} ’

3 The color commands cause extraneous vertical space to be inserted.

For example, this can happen if you start a LATEX \parbox or ap{} column with
a color command. The solution usually is to precede the colorcommand with
\leavevmode.

4 The color commands interfere with other color macros I use.

Try putting the command\altcolormode at the beginning of your document. This
may or may not help. Be extra careful that the scope of color commands does not
extend across pages. This is generally a less robust color scheme.

Troubleshooting 80

5 How do I stop floats from being the same color as surrounding material?

That’s easy: Just put an explicit color command at the beginning of the float, e.g.,
\black.

6 When I use some color command in box macros or with \setbox, the colors
get all screwed up.

If \mybox is a box register, and you write

1 \green Ho Hum.

2 \setbox\mybox=\hbox{Foo bar \blue fee fum}

3 Hi Ho. \red Diddley­dee

4 \box\mybox hum dee do

then when\mybox is inserted, the current color is red and soFoo bar comes out
red (rather than green, which was the color in effect when thebox was set). The
command that returns from\blue to the current colorgreen, when the box is
set, is executed after the\hbox is closed, which means thatHi Ho is green, but
hum dee do is still blue.

This odd behavior is due to the fact that TEX does not support color internally, the
way it supports font commands. The first thing to do is to explicitly bracket any
color commands inside the box. Second, be sure that the current color is black
when setting the box. Third, make other explicit color changes where necessary
if you still have problems. The color scheme invoked by\altcolormode is slightly
better behaved if you follow the first two rules.

Note that various box macros use\setbox and so these anomalies can arise unex-
pectedly.

Troubleshooting 81

Index
\AltClipMode, 50, 70
\altcolormode, 78, 79
angle (parameter),55, 55, 56, 65
angleA (parameter), 56–58
angleB (parameter), 56, 57
\Aput, 60
\aput, 60, 60, 61
arcangle (parameter),55
arcangleA (parameter), 56
arcangleB (parameter), 56
arcsep (parameter),12
arcsepA (parameter),12, 12
arcsepB (parameter),12, 12
arm (parameter),54, 56
armA (parameter), 56, 57
armB (parameter), 56, 57
arrowinset (parameter),27, 27
arrowlength (parameter),27, 27
\arrows, 36
arrows (parameter), 9, 10, 18,25, 26, 43
arrowscale (parameter),27, 28
arrowsize (parameter),27
axesstyle (parameter),45

bbllx (parameter),72
bblly (parameter),72
bburx (parameter),72
bbury (parameter),72
\black, 79
\blue, 79
border (parameter),23, 23, 30, 55
bordercolor (parameter),23, 23
boxsep (parameter),47, 48
\Bput, 60
\bput, 60, 60, 61
bracketlength (parameter),27

\Cartesian, 64, 64, 65
\circlenode, 53
\clipbox, 49
\closedshadow, 35
\closepath, 30,33, 33
\cnode, 53
\cnodeput, 54
\code, 35, 36

coilarm (parameter),63, 63, 64
coilarmA (parameter), 63
coilarmB (parameter), 63
coilaspect (parameter),63, 63, 64
coilheight (parameter),63, 63
coilinc (parameter),63, 63
coilwidth (parameter),63, 63
\coor, 36, 36
cornersize (parameter),10, 10, 48
\cput, 48, 54
curvature (parameter),14
\curveto, 35, 35

dash (parameter),22
dashed (parameter), 30
\dataplot, 19, 19, 20
\degrees, 8, 8, 65
\dim, 35
dimen (parameter),24
\DontKillGlue, 37
dotangle (parameter),15, 15
dotscale (parameter),15
dotsep (parameter),23
dotsize (parameter), 15, 16,27
dotstyle (parameter),15, 15
dotted (parameter), 30
doublecolor (parameter),23, 23
doubleline (parameter),23, 23, 30
doublesep (parameter),23, 23
Dx (parameter), IV,44, 44
dx (parameter), IV,44, 44
Dy (parameter), IV,44, 44
dy (parameter), 44

\endoverlaybox, 66
\endpscharclip, 69, 69
\endpsclip, 49, 49, 50, 69
\endpspicture, 37
\endTeXtoEPS, 71
\everypsbox, 74

\file, 36
\fileplot, 18, 19
\fill, 29,33
fillcolor (parameter), 9,25, 25, 47

82

fillstyle (parameter), 9,24, 25, 29, 30, 45,
67, 69

framearc (parameter),10, 10
\framenode, 54
framesep (parameter),47

gradangle (parameter),67
gradbegin (parameter),67, 67
gradend (parameter),67, 67
gradlines (parameter),67
gradmidpoint (parameter),67
\gray, 5
\grestore, 33, 33–35
gridcolor (parameter),17
griddots (parameter),17, 17
gridlabelcolor (parameter),17
gridlabels (parameter),17
gridwidth (parameter),17
\gsave, 33, 33–35

hatchangle (parameter),25, 25
hatchcolor (parameter),25
hatchsep (parameter),25
hatchwidth (parameter),25
headerfile (parameter),72, 72
headers (parameter),72, 72

\KillGlue, 37

labels (parameter),45
labelsep (parameter),40, 45
liftpen (parameter),31, 31, 32, 34
linearc (parameter),10, 10, 18, 20, 48, 56,

57, 64
linecolor (parameter),9, 9, 22, 25, 29, 30,

47
linestyle (parameter),22, 23, 25, 29, 45,

49, 68, 69
\lineto, 35, 35
linetype (parameter),30, 30
linewidth (parameter),9, 9, 10, 16, 22, 25–

27, 29, 30
\listplot, 18,19, 19, 20
loopsize (parameter),55, 57
\Lput, 60, 60
\lput, 55,59, 59–61

\movepath, 35

\moveto, 32, 33
\Mput, 60, 60
\mput, 60
\mrestore, 34, 34
\msave, 34, 34
\multido, 42, 46
\multips, 41, 41, 46
\multirput, 41, 41, 42

\ncangle, 57, 57–59
\ncangles, 57, 57
\ncarc, 55,56, 56, 58, 59
\ncbar, 56, 58, 59
\nccircle, 58, 58, 59
\nccoil, 64
\nccurve, 55, 55, 56, 58, 59
\ncdiag, 56, 57–59
\ncdiagg, 56, 59
\ncLine, 55, 58, 61
\ncline, 55, 55, 58, 59, 61, 62, 64
\ncloop, 55,57, 58, 59
ncurv (parameter),55, 55, 56
\nczigzag, 64
\newcmykcolor, 6
\newgray, 5
\newhsbcolor, 6
\newpath, 32
\newpsobject, 28, 28, 49
\newpsstyle, 28, 28
\newrgbcolor, 6
nodesep (parameter),54, 55–57, 65
nodesepA (parameter), 58
\NormalCoor, 65

offset (parameter),54, 55–57, 59, 65
\openshadow, 34
origin (parameter),22, 30
\ovalnode, 54
\overlaybox, 66
Ox (parameter), IV,44, 44
Oy (parameter), IV,44, 44
oy (parameter), IV,44, 44

\parabola, 13, 13
parameters:

Dx, IV, 44, 44
Dy, IV, 44, 44
Ox, IV, 44, 44

INDEX 83

Oy, IV, 44, 44
angleA, 56–58
angleB, 56, 57
angle, 55, 55, 56, 65
arcangleA, 56
arcangleB, 56
arcangle, 55
arcsepA, 12, 12
arcsepB, 12, 12
arcsep, 12
armA, 56, 57
armB, 56, 57
arm, 54, 56
arrowinset, 27, 27
arrowlength, 27, 27
arrowscale, 27, 28
arrowsize, 27
arrows, 9, 10, 18,25, 26, 43
axesstyle, 45
bbllx, 72
bblly, 72
bburx, 72
bbury, 72
bordercolor, 23, 23
border, 23, 23, 30, 55
boxsep, 47, 48
bracketlength, 27
coilarmA, 63
coilarmB, 63
coilarm, 63, 63, 64
coilaspect, 63, 63, 64
coilheight, 63, 63
coilinc, 63, 63
coilwidth, 63, 63
cornersize, 10, 10, 48
curvature, 14
dashed, 30
dash, 22
dimen, 24
dotangle, 15, 15
dotscale, 15
dotsep, 23
dotsize, 15, 16,27
dotstyle, 15, 15
dotted, 30
doublecolor, 23, 23

doubleline, 23, 23, 30
doublesep, 23, 23
dx, IV, 44, 44
dy, 44
fillcolor, 9, 25, 25, 47
fillstyle, 9, 24, 25, 29, 30, 45, 67, 69
framearc, 10, 10
framesep, 47
gradangle, 67
gradbegin, 67, 67
gradend, 67, 67
gradlines, 67
gradmidpoint, 67
gridcolor, 17
griddots, 17, 17
gridlabelcolor, 17
gridlabels, 17
gridwidth, 17
hatchangle, 25, 25
hatchcolor, 25
hatchsep, 25
hatchwidth, 25
headerfile, 72, 72
headers, 72, 72
labelsep, 40, 45
labels, 45
liftpen, 31, 31, 32, 34
linearc, 10, 10, 18, 20, 48, 56, 57, 64
linecolor, 9, 9, 22, 25, 29, 30, 47
linestyle, 22, 23, 25, 29, 45, 49, 68,

69
linetype, 30, 30
linewidth, 9, 9, 10, 16, 22, 25–27, 29,

30
loopsize, 55, 57
ncurv, 55, 55, 56
nodesepA, 58
nodesep, 54, 55–57, 65
offset, 54, 55–57, 59, 65
origin, 22, 30
oy, IV, 44, 44
plotpoints, 21, 21
plotstyle, 18, 18, 31
pspicture, 37
rbracketlength, 27
rectarc, 48

INDEX 84

runit, 8, 8
shadowangle, 23,24
shadowcolor, 23,24
shadowsize, 23, 23, 48
shadow, 23, 23, 24, 30
showorigin, 45
showpoints, 9, 12–16, 18, 20, 30
style, 28
subgridcolor, 17
subgriddiv, 17
subgriddots, 17
subgridwidth, 17
swapaxes, 22, 30
tbarsize, 15,27
ticksize, 45
tickstyle, 45, 45
ticks, 45
unit, 7, 7, 8, 17, 65
xunit, 8, 8, 16, 17, 65
yunit, 8, 8, 16, 17, 65

\parametricplot, 20, 21
\pcangle, 58
\pcarc, 58
\pcbar, 58
\pccoil, 64
\pccurve, 55,58
\pcdiag, 58
\pcline, 58, 59, 64
\pcloop, 55,58
\pczigzag, 64
\plotfile, 18, 19
plotpoints (parameter),21, 21
plotstyle (parameter),18, 18, 31
\pnode, 53
\Polar, 64, 64, 65
\psaddtolength, 7
\psarc, 12, 12, 13, 54
\psarcn, 13, 13
\psaxes, 16,43, 44, 46
\psbezier, 13, 13, 31, 32
\psborder, 23
\psccurve, 15, 18
\pscharclip, 69, 69, 70
\pscharpath, 69, 69
\pscircle, 11, 24
\pscircle*, 11

\pscirclebox, 47,48, 48, 53
\psclip, 49, 49, 50, 69
\psCoil, 63, 63, 64
\pscoil, 63, 63, 64
\pscurve, 14, 14, 18, 31, 34
\pscustom, 13,29, 29–35, 41, 49, 54
\psdblframebox, 47, 54
\psdots, 15, 18, 30
\psecurve, 14, 18
\psellipse, 12, 24
\psfill, 29
\psframe, 9, 10,11, 11, 24, 46, 47
\psframebox, 47, 47, 48, 54
\psgrid, 16, 16, 17, 30, 43, 70
\pshatchcolor, 25
\pslabelsep, 39, 45, 60
\pslbrace, 77
\psline, 8,10, 10, 11, 18, 20, 28, 31, 46, 58,

76
\pslinecolor, 9
\pslinewidth, 9
\pslongbox, 74, 75
\psmathboxfalse, 73
\psmathboxtrue, 73
\psovalbox, 47,48, 54
\psoverlay, 66, 66
\pspicture, 16,37, 37, 38, 49, 70
pspicture (parameter), 37
\psplot, 20, 20, 21
\pspolygon, 10,11, 18, 25
\psrbrace, 77
\psrunit, 8
\psscalebox, 50
\psscaleboxto, 50
\psset, 6, 6, 7, 10, 11, 37
\pssetlength, 7
\psshadowbox, 48, 54
\pstextpath, 68, 68, 69
\pstheader, 68
\PSTricksEPS, 70, 72
\PSTricksOff, 76
\pstroke, 29
\pstrotate, 41
\PSTtoEPS, 19,71, 71
\pstunit, 29
\pstVerb, 6, 38, 41, 50, 62, 66

INDEX 85

\pstverb, 29
\pstverbscale, 38, 50, 62, 66
\psunit, 8, 69
\psverbboxfalse, 75
\psverbboxtrue, 5, 75, 75
\pswedge, 11, 24
\psxlabel, 45
\psxunit, 8, 18
\psylabel, 45
\psyunit, 8, 18
\pszigzag, 63, 63, 64
\putoverlaybox, 66

\qdisk, 11, 30
\qline, 10, 30

\radians, 8
rbracketlength (parameter),27
\rcoor, 36
\rcurveto, 35
\readdata, 19, 19
rectarc (parameter), 48
\red, 5
\rlineto, 35
\Rnode, 53, 53, 61
\rnode, 53, 53, 54, 61, 62
\RnodeRef, 53, 53
\rotate, 34
\Rotatedown, 51
\rotatedown, 50
\rotateleft, 50
\rotateright, 50
\Rput, 40, 40, 41, 60
\rput, 37, 38,39, 39, 41, 48, 52, 59, 60, 64,

69, 70, 72
runit (parameter),8, 8

\savedata, 19, 19
\scale, 34
\setcolor, 36
shadow (parameter),23, 23, 24, 30
shadowangle (parameter), 23,24
shadowcolor (parameter), 23,24
shadowsize (parameter),23, 23, 48
showorigin (parameter),45
showpoints (parameter),9, 12–16, 18, 20,

30
\SpecialCoor, 7, 8,64, 64, 65

\stroke, 30,33
style (parameter), 28
subgridcolor (parameter),17
subgriddiv (parameter),17
subgriddots (parameter),17
subgridwidth (parameter),17
\swapaxes, 34
swapaxes (parameter),22, 30

tbarsize (parameter), 15,27
\TeXtoEPS, 71
ticks (parameter),45
ticksize (parameter),45
tickstyle (parameter),45, 45
\TPoffset, 69
\translate, 34

unit (parameter),7, 7, 8, 17, 65
\uput, 39, 40, 41, 60

xunit (parameter),8, 8, 16, 17, 65

yunit (parameter),8, 8, 16, 17, 65

INDEX 86

Color

5 \newgray{color}{num}

6 \newrgbcolor{color}{num1 num2 num3}

6 \newhsbcolor{color}{num1 num2 num3}

6 \newcmykcolor{color}{num1 num2 num3 num4}

Setting graphics parameters

6 \psset{par1=value1,par2=value2,...}

Dimensions, coordinates and angles

7 unit=dim Default: 1cm

7 \pssetlength{cmd}{dim}

7 \psaddtolength{cmd}{dim}

8 xunit=dim Default: 1cm

8 yunit=dim Default: 1cm

8 runit=dim Default: 1cm

8 \degrees[num]

8 \radians

Basic graphics parameters

9 linewidth=dim Default:

9 linecolor=color Default:

9 showpoints=true/false Default:

Lines and polygons

10 linearc=dim Default:

10 framearc=num Default:

10 cornersize=relative/absolute Default:

10 \psline*[par]{arrows}(x0 ,y0)(x1 ,y1)...(xn,yn)

10 \qline(coor0)(coor1)

11 \pspolygon*[par](x0 ,y0)(x1 ,y1)(x2 ,y2)...(xn,yn)

11 \psframe*[par](x0 ,y0)(x1 ,y1)

Arcs, circles and ellipses

11 \pscircle*[par](x0 ,y0){radius}

11 \qdisk(coor){radius}

11 \pswedge*[par](x0 ,y0){radius}{angle1}{angle2}

12 \psellipse*[par](x0 ,y0)(x1 ,y1)

12 \psarc*[par]{arrows}(x,y){radius}{angleA}{angleB}

12 arcsepA=dim Default: 0pt

12 arcsepB=dim Default: 0pt

12 arcsep=dim Default:

13 \psarcn*[par]{arrows}(x,y){radius}{angleA}{angleB}

Curves

13 \psbezier*[par]{arrows}(x0 ,y0)(x1 ,y1)(x2 ,y2)(x3 ,y3)

13 \parabola*[par]{arrows}(x0,y0)(x1,y1)

14 curvature=num1 num2 num3 Default:

14 \pscurve*[par]{arrows}(x1,y1)...(xn,yn)

14 \psecurve*[par]{arrows}(x1,y1)...(xn,yn)]

15 \psccurve*[par]{arrows}(x1,y1)...(xn,yn)

Dots

15 \psdots*[par](x1 ,y1)(x2 ,y2)...(xn,yn)

15 dotstyle=style Default:

I

Dot styles

Style Example

*
b b b b b

o
bc bc bc bc bc

+ + + + + +

triangle
ut ut ut ut ut

triangle*
u u u u u

Style Example

square
rs rs rs rs rs

square*
r r r r r

pentagon
qp qp qp qp qp

pentagon*
q q q q q

| | | | | |

15 dotscale=num1 num2 Default:

15 dotangle=angle Default:

Grids

16 \psgrid(x0 ,y0)(x1 ,y1)(x2 ,y2)

17 gridwidth=dim Default:

17 gridcolor=color Default:

17 griddots=num Default:

17 gridlabels=dim Default:

17 gridlabelcolor=color Default:

17 subgriddiv=int Default:

17 subgridwidth=dim Default:

17 subgridcolor=color Default:

17 subgriddots=num Default:

Plots

18 plotstyle=style Default:

18 \fileplot*[par]{file}

19 \dataplot*[par]{commands}

19 \savedata{command}[data]

19 \readdata{command}{file}

19 \listplot*[par]{list}

20 \psplot*[par]{xmin}{xmax}{function}

20 \parametricplot*[par]{tmin}{tmax}{function}

21 plotpoints=int Default:

Coordinate systems

22 origin={coor} Default: 0pt,0pt

22 swapaxes=true Default:

Line styles

22 linestyle=style Default:

22 dash=dim1 dim2 Default:

23 dotsep=dim Default:

23 border=dim Default:

23 bordercolor=color Default:

23 doubleline=true/false Default:

23 doublesep=dim Default:

23 doublecolor=color Default:

23 shadow=true/false Default:

23 shadowsize=dim Default:

24 shadowangle=angle Default:

24 shadowcolor=color Default:

24 dimen=outer/inner/middle Default:

Fill styles

24 fillstyle=style Default:

25 fillcolor=color Default:

25 hatchwidth=dim Default:

II

25 hatchsep=dim Default:

25 hatchcolor=color Default:

25 hatchangle=rot Default:

Arrowheads and such

25 arrows=style Default:

Arrows
Value Example Name

­ None

<­> Arrowheads.

>­< Reverse arrowheads.

<<­>> Double arrowheads.

>>­<< Double reverse arrowheads.

|­| T-bars, flush to endpoints.

|*­|* T-bars, centered on endpoints.

[­] Square brackets.

(­) Rounded brackets.

o­o Circles, centered on endpoints.

­ Disks, centered on endpoints.

oo­oo Circles, flush to endpoints.

­ Disks, flush to endpoints.

c­c Extended, rounded ends.

cc­cc Flush round ends.

C­C Extended, square ends.

27 arrowsize=dim num Default:

27 arrowlength=num Default:

27 arrowinset=num Default:

27 tbarsize=dim num Default:

27 bracketlength=num Default:

27 rbracketlength=num Default:

27 dotsize=dim num Default:

27 arrowscale=arrowscale=num1 num2 Default:

Custom styles

28 \newpsobject{name}{object}{par1=value1,...}

28 \newpsstyle{name}{par1=value1,...}

The basics

29 \pscustom*[par]{commands}

Parameters

30 linetype=int Default:

Graphics objects

31 liftpen=0/1/2 Default:

Safe tricks

32 \newpath

32 \moveto(coor)

33 \closepath

33 \stroke[par]

33 \fill[par]

33 \gsave

33 \grestore

34 \translate(coor)

34 \scale{num1 num2}

III

34 \rotate{angle}

34 \swapaxes

34 \msave

34 \mrestore

34 \openshadow[par]

35 \closedshadow[par]

35 \movepath(coor)

Pretty safe tricks

35 \lineto(coor)

35 \rlineto(coor)

35 \curveto(x1,y1)(x2,y2)(x3,y3)

35 \rcurveto(x1,y1)(x2,y2)(x3,y3)

For hackers only

35 \code{code}

35 \dim{dim}

36 \coor(x1,y1)(x2,y2)...(xn,yn)

36 \rcoor(x1,y1)(x2,y2)...(xn,yn)

36 \file{file}

36 \arrows{arrows}

36 \setcolor{color}

Pictures

37 \pspicture*[baseline](x0 ,y0)(x1,y1)

37 \endpspicture

Placing and rotating whatever

39 \rput*[refpoint]{rotation}(x,y){stuff }

39 \uput*{labelsep}[refangle]{rotation}(x,y){stuff }

39 \pslabelsep

40 labelsep=dim Default:

Repetition

41 \multirput*[refpoint]{angle}(x0,y0)(x1,y1){int}{stuff }

41 \multips{angle}(x0,y0)(x1,y1){int}{graphics}

Axes

43 \psaxes*[par]{arrows}(x0,y0)(x1,y1)(x2,y2)

Axes label parameters

Horitontal Vertical Dflt Description

Ox=num Oy=num 0 Label at origin.

Dx=num Dy=num 1 Label increment.

dx=dim oy=dim 0pt Dist btwn labels.

45 labels=all/x/y/none Default:

45 showorigin=true/false Default:

45 ticks=all/x/y/none Default:

45 tickstyle=full/top/bottom Default:

45 ticksize=dim Default:

45 \psxlabel

45 \psylabel

45 axesstyle=axes/frame/none Default:

IV

Framed boxes

47 framesep=dim Default:

47 boxsep=true/false Default:

47 \psframebox*[par]{stuff }

47 \psdblframebox*[par]{stuff }

48 \psshadowbox*[par]{stuff }

48 \pscirclebox*[par]{stuff }

48 \cput*[par]{angle}(x,y){stuff }

48 \psovalbox*[par]{stuff }

Clipping

49 \clipbox[dim]{stuff }

49 \psclip{graphics} ... \endpsclip

Rotation and scaling boxes

50 \rotateleft{stuff }

50 \rotateright{stuff }

50 \rotatedown{stuff }

50 \psscalebox{num1 num2}{stuff }

50 \psscaleboxto(x,y){stuff }

Nodes

53 \rnode[refpoint]{name}{stuff }

53 \Rnode(x,y){name}{stuff }

53 \RnodeRef

53 \pnode(x,y){name}

53 \cnode*[par](x,y){radius}{name}

53 \circlenode*[par]{name}{stuff }

54 \cnodeput*[par]{angle}(x,y){name}{stuff }

54 \ovalnode*[par]{name}{stuff }

Node connections

54 nodesep=dim Default:

54 offset=dim Default:

54 arm=dim Default:

55 angle=angle Default:

55 arcangle=angle Default:

55 ncurv=num Default:

55 loopsize=dim Default:

55 \ncline*[par]{arrows}{nodeA}{nodeB}

55 \ncLine*[par]{arrows}{nodeA}{nodeB}

55 \nccurve*[par]{arrows}{nodeA}{nodeB}

56 \ncarc*[par]{arrows}{nodeA}{nodeB}

56 \ncbar*[par]{arrows}{nodeA}{nodeB}

56 \ncdiag*[par]{arrows}{nodeA}{nodeB}

56 \ncdiagg*[par]{arrows}{nodeA}{nodeB}

57 \ncangle*[par]{arrows}{nodeA}{nodeB}

57 \ncangles*[par]{arrows}{nodeA}{nodeB}

57 \ncloop*[par]{arrows}{nodeA}{nodeB}

58 \nccircle*[par]{arrows}{node}{radius}

58 \pcline*[par]{arrows}(x1,y1)(x2,y2)

58 \pccurve*[par]{arrows}(x1,y1)(x2,y2)

58 \pcarc*[par]{arrows}(x1,y1)(x2,y2)

58 \pcbar*[par]{arrows}(x1,y1)(x2,y2)

58 \pcdiag*[par]{arrows}(x1,y1)(x2,y2)

58 \pcangle*[par]{arrows}(x1,y1)(x2,y2)

58 \pcloop*[par]{arrows}(x1,y1)(x2,y2)

V

Attaching labels to node connections

59 \lput*[refpoint]{rotation}(pos){stuff }

60 \aput*[labelsep]{angle}(pos){stuff }

60 \bput*[labelsep]{angle}(pos){stuff }

60 \mput*[refpoint]{stuff }

60 \Aput*[labelsep]{stuff }

60 \Bput*[labelsep]{stuff }

Coils and zigzags

63 \pscoil*[par]{arrows}(x0,y0)(x1,y1)

63 \psCoil*[par]{angle1}{angle2}

63 \pszigzag*[par]{arrows}(x0,y0)(x1,y1)

63 coilwidth=dim Default:

63 coilheight=num Default:

63 coilarm=dim Default:

63 coilaspect=angle Default:

63 coilinc=angle Default:

64 \nccoil*[par]{arrows}{nodeA}{nodeB}

64 \nczigzag*[par]{arrows}{nodeA}{nodeB}

64 \pccoil*[par]{arrows}(x1,y1)(x2,y2)

64 \pczigzag*[par]{arrows}(x1,y1)(x2,y2)

Special coordinates

64 \SpecialCoor

Special coordinates and angles

Coordinate Example Description

(<x>,<y>) (3,4) Cartesian coordinate.

(<r>;<a>) (3;110) Polar coordinate.

(<node>) (A) Center of node.

([<par>]<node>) ([angle=45]A) Relative tonode.

(!<ps>) (!5 3.3 2 exp) Raw PostScript.

(<coor1>|<coor2>) (A|1in;30) Combination.

Angle Example Description

<num> 45 Angle.

(<coor>) (­1,1) Coordinate (vector).

!<ps> !33 sqrt Raw PostScript.

65 \NormalCoor

Overlays

66 \overlaybox stuff \endoverlaybox

66 \psoverlay{string}

66 \putoverlaybox{string}

67 gradbegin=color Default:

67 gradend=color Default:

67 gradlines=int Default:

67 gradmidpoint=num Default:

67 gradangle=angle Default:

Typesetting text along a path

68 \pstextpath[pos](x,y){graphics object}{text}

Stroking and filling character paths

69 \pscharpath*[par]{text}

V
I

69 \pscharclip*[par]{text} ... \endpscharclip

Exporting EPS files

71 \TeXtoEPS

71 \endTeXtoEPS

71 \PSTtoEPS[par]{file}{graphics objects}

72 bbllx=dim Default:

72 bblly=dim Default:

72 bburx=dim Default:

72 bbury=dim Default:

72 headerfile=file Default: s

72 headers=none/all/user Default:

Boxes

73 \psmathboxtrue

73 \psmathboxfalse

74 \everypsbox{commands}

74 \pslongbox{name}{cmd}

75 \psverbboxtrue

75 \psverbboxfalse

Tips and More Tricks

76 \PSTricksOff

Including PostScript code

77 \pslbrace

77 \psrbrace

V
II

