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1 Introduction

Stewart Shapiro (Shapiro, 2006) presents a model for reasoning with vague propo-
sitions with a special focus on Sorites situations (Hyde, 2008). He maintains
that the extensions and anti-extensions of vague predicates such as bald and red

strongly depend on the conversational context. At the beginning of a conversa-
tion this context is empty; the extensions and anti-extensions of vague predicates
are undefined for many objects, the so-called borderline cases. During a conver-
sation these notions are sharpened, such that borderline cases, which have been
undecided so far, get assigned to the (anti-)extension of the vague predicates in
question.(It is the counterpart to the notion of supertruth in supervaluationist
theories) Shapiro introduces logical connectives operating on formulas containing
such vague predicates. Additionally to the classical connectives, he introduces
new ones operating globally on trees of possible contexts.

This contribution introduces a Hintikka-style game for evaluating formulas
according to Shapiro’s model of vagueness. This is motivated by the following
two observations:

• Shapiro’s main setting, a so-called forced march version of the Sorites para-
dox (Hyde, 2008), already includes dialogue situations and conversational
records. A dialogue game to evaluate composite propositions is just a nat-
ural consolidation of this concept.

• The game provides an explicit mechanism for the evaluation of formulas.
In particular Shapiro’s falsehood and indefiniteness conditions for global
connectives and quantifiers are rather indirect. The dialogue rules provide
a much more direct and mechanical characterization of truth in a model.
As we will see, the defined connectives can be expressed in terms of a finite
two-player zero-sum game with perfect information.

∗This work is supported by Eurocores-ESF/FWF grant 1143-G15 (LogICCC-LoMoReVI)
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2 Shapiro’s approach to vagueness

Below I sketch the main points of Shapiro’s account of vagueness as presented in
(Shapiro, 2006) and (Shapiro, 2008). This sketch is in no way complete; topics
irrelevant for the dialogue game are left out. For example, Shapiro’s treatments
of higher order vagueness and vague objects within his framework are not subject
of the presented game, and thus are omitted here.

Central notions of Shapiro’s work are judgment dependence, open texture, and
the principle of tolerance. Judgment dependence means that the extensions and
anti-extensions for the borderline cases of vague predicates are solely determined
by the decisions of competent speakers. Vagueness in Shapiro’s framework is
characterized by judgment dependence. More generally, Shapiro holds that the
extension and anti-extension of a vague predicate uttered in a conversation depend
on the conversational context. Decisions made by the conversationalists are put
on the conversational record together with (explicit or implicit) assumptions. This
includes, for example, assumptions, statements made by them so far, and (logical)
consequences thereof. Moreover it is possible that statements can, explicitly or
implicitly, be withdrawn from the conversational record, which plays a crucial role
when in Sorites situations.

Open texture means that for a vague predicate P there exists an object a such
that a competent speaker can decide that P (a) holds or that P (a) does not hold
without her competency being compromised. Note that the notion of ‘competent
speaker (of the English language)’ is also vague; this is where the model can be
extended to higher order vagueness.

The principle of tolerance is closely related to open texture. Its precise formu-
lation as used in (Shapiro, 2008) is:

Suppose that two objects a, b in the field of P differ only marginally in
the relevant respect (on which P is tolerant). Then if one competently
judges a to have P , then she cannot competently judge b in any other
manner.

The main settings described by Shapiro are so-called forced march Sorites
situations: Imagine 2000 men lined up where man #1 has full hair and man
#2000 has no hair at all. The men are ordered by their amount of hair. A group
of conversationalists is repeatedly asked if they judge man #i as bald, starting
with man #1, continuing until man #2000 is reached. At each step we require
them to return a communal verdict. At the beginning, they will unequivocally
vote for ‘not bald’, but at some point they will begin to discuss and finally switch
to ‘bald’. Shapiro holds, that at this point not only information is added to the
conversational record, but also the last few judgments are implicitly retracted.

2.1 Shapiro’s model theory

In order to reflect these notions in the model theory, Shapiro uses a Kripke-like
tree structure, called frame. Each frame, denoted 〈W,M〉, consists of a set of
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worlds W with one designated world M ∈ W called the base of the frame. A
world is a partial valuation of atoms assigning either true, false, or indefinite to
all predicates in question1; all worlds in a frame are over the same domain. The
world N ′ is called a sharpening of the world N , denoted as N ′ � N , if and only
if each atom which is true or false at N is also true or false, respectively, at N ′.
At the base M propositions are fixed which are determined outside the current
conversation. This includes (non-linguistic) facts, external contextual factors,
relevant thoughts and practices, etc. Thus it is required that for all N ∈ W , the
world N is a sharpening of M . As � is a partial order, a frame can be considered as
a tree of precisifications with root M . Note that, in contrast to supervaluationist
approaches (Fine, 1975), the completability requirement is not enforced. This
means that we do not require that at the leaves of the tree structure a vague
predicate P is decided for all objects, i.e., we may leave P undecided for some
objects. Shapiro argues that in Sorites situations complete sharpenings (where P
is decided for all instances) violate the principle of tolerance (or the externally
determined facts that man #1 is not bald and man #2000 is bald), thus they are
artifacts of the model theory.

In a Sorites situation initially only the externally determined facts are avail-
able on the conversational record. Making (competent) judgments corresponds
to moving alongside a branch, away from the root M and thus precifying the
asserted statements. In the beginning of a forced situation the conversationalists
will repeatedly vote for ‘not bald’ until, at some point they will switch to ‘bald’.
With the principle of tolerance in force they have to withdraw some statements
from the conversational record; this amounts to jumping to another branch in the
frame. It is possible to formalize from which worlds to which worlds such jumps
are allowed and where not.

Shapiro argues that determinate truth in a frame is best characterized by the
notion of forcing. A formula φ is forced at a sharpening N , if for each sharpening
N ′ of N there is a further sharpening N ′′ of N ′ such that φ holds at N ′′. Intu-
itively, φ being forced at N means that φ will eventually get true: a formula φ is
determinately true at if φ is forced at the base of F . (Determinate truth is the
counterpart to the notion of supertruth in supervaluationist theories.) Moreover,
the notions of validity and, more generally, consequence are defined in terms of
forcing: Γ |= φ if and only if φ is forced at every sharpening in every frame in
which all formulas of Γ = {ψ1, ψ2, . . .} are forced.

Of course not all possible frames are adequate for a given (Sorites) situation.
For example, we can exclude frames which contain partial interpretations where
man #i is declared to be bald, but another man #j with j > i, who has more
hair, is judged not to be bald. Such constraints on adequate frames are called
penumbral connections. They do not have to check each sharpening separately; it
is also possible to require that some condition holds not locally at a sharpening
but globally for the frame, e.g. by requiring that some proposition is forced at

1Shapiro defends the notion that there are conceptually only two truth values, true and false;
indefinite is to be interpreted as the absence of a classical truth value.
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the base. Note that tolerance can also be formulated as a penumbral connection.

2.2 Defining connectives and quantifiers

2.2.1 Local operators

Shapiro first defines local logical connectives for negation ‘¬’, conjunction ‘∧’,
disjunction ‘∨’, and implication ‘→’. These all adhere to the standard Kleene
truth tables as given by Figure 1, where 0 denotes false, 1 denotes true, and u

denotes indefinite. The quantifiers ‘∃’ and ‘∀’ are defined as expected.

∧ 0 u 1

0 0 0 0
u 0 u u

1 0 u 1

∨ 0 u 1

0 0 u 1
u u u 1
1 1 1 1

→ 0 u 1

0 1 u 0
u 1 u u

1 1 1 1

¬

0 1
u u

1 0

Figure 1: Kleene truth tables for local connectives

Note that all these connectives obey to the monotonicity principle on sharp-
enings which we have encountered above for atomic propositions. That means, if
a (compound) formula φ is true (or false) at a sharpening N then φ is true (or
false, respectively) also at all sharpenings N ′ of N . Because of this, forcing is not
present in the object language, but only at the meta-level: it is easy to construct
a frame where it is false that a formula φ is forced at a sharpening N , but where
it is true that φ is forced at a sharpening N ′ of N .

2.2.2 Global operators

Additionally to the standard logical connectives and quantifiers, Shapiro intro-
duces new non-local ones operating on whole subtrees instead of a single sharp-
ening. One of them is the new non-local implication ‘⇒’ with the following se-
mantics:

φ⇒ ψ is true at a sharpening N if at each sharpening N ′ of N if φ is
true, then also ψ is true.

This connective is used extensively by Shapiro to define penumbral connections
as seen by the following example: assume a Sorites situation as explained above.
Then we can stipulate as a penumbral connection, that for all i and j the formu-
las (B(mj) ∧ S(mi,mj)) ⇒ B(mi) and (¬B(mi) ∧ S(mi,mj)) ⇒ ¬B(mj), with
S(x, y) iff x has more hair than y, hold at the base (and thus at all sharpenings).
This ensures that at a sharpening where man mi is judged ‘bald’, all men with
less hair are judged ‘bald’ as well. Vice versa, at a sharpening where man mj is
judged ‘not bald’, all men with more hair as mj are judged ‘not bald’ as well.

In order to preserve monotonicity we also give a falsehood condition for each
new connective. Just stating that φ ⇒ ψ is false if it is not true would violate
monotonicity; this can be seen in the following example frame:
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M

N : P (a),¬P (b) N ′ : P (a), P (b)

At the base M the formula P (a) ⇒ P (b) is not true because the condition
is violated at N , but it is true at N ′. Thus, the only way not to violate the
monotonicity principle is to leave P (a) ⇒ P (b) undecided at M . Therefore,
Shapiro makes use of the so-called stable failure:

The formula P (a) ⇒ P (b) is false at the sharpening N if and only if
there is no sharpening N ′ of N such that P (a) ⇒ P (b) is true at N .

This ensures that also falsehood is preserved in the tree structure, thus if a formula
φ⇒ Ψ is false at a sharpening N , it is also false at each sharpening of N .

Another new connective is the intuitionistic-style negation ‘−’. The proposition
−P (a) is true at the sharpening N if there is no sharpening N ′ of N where P (a)
is true.2

Shapiro observes that, as in supervaluationist theories, a formula ∃x.φ(x) can
be forced at a sharpening N without φ(a) being forced at N for any particular
witness a. In order to make the existence of such witnesses expressible in the
object language, he introduces a new global existential quantifier E with the
following semantics:

The formula Ex.φ(x) is true at N if and only if there exists a such
that φ(a) is forced at N .

Similarly it is possible to define the new global universial quantifier A:

The formula Ax.φ(x) is true at N if and only if for all x it holds that
φ(x) is forced at N .

As seen above, it is also necessary to give falsehood conditions for all the new
connectives in order to preserve monotonicity. Therefore the falsehood conditions
for ‘−’, ‘E’, and ‘A’ are obtained by their stable failure analogously to ‘⇒’.

We obtain the following lemma:

Lemma 1. Let φ be a formula of the form −ψ or Ax.ψ(x): φ is indefinite at a

sharpening N in F if and only if there exist sharpenings N ′ and N ′′ of N such

that φ is true at N ′ and false at N ′′.

Proof. If φ is true at N ′ and false at N ′′ then, due to monotonicity, it can neither
be false nor true at N . Therefore it must be indefinite at N . On the other hand,
consider, e.g., φ = Ax.ψ(x), and assume that φ is indefinite at N . According to

2Notice that a formula φ is forced at a sharpening N if and only if ¬−φ is true at N . However,
the property of being forced cannot be introduced as an unary connective at the object level.
This still violates monotonicity as is not the case that ¬−φ is false if and only if φ is not forced
at N .
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the definition of stable failure there exists at least one sharpening of N where φ is
true (otherwise φ would be false at N). Assume that there exists no sharpening
where φ is false. Then φ is either true or indefinite at any given sharpening N ′ of
N . But, as just argued, if φ is indefinite at N ′ there exists a further sharpening N ′′

where φ is true. This means that φ is forced at N . Shapiro shows that a formula
Ax.ψ(x) is forced at a sharpening exactly if it is true at that sharpening, and
consequently we conclude that φ is true at N leading to the desired contradiction.
Thus there exists a sharpening N ′′ of N such that φ is false at N ′′. For the global
negation ‘−’ we can reason analogously.

Notice that Lemma 1 does not hold for formulas of the form φ⇒ ψ or Ex.φ(x).
Such formulas can be indefinite at a sharpening N and true at all further sharp-
enings of N .

3 A Hintikka-style evaluation game

3.1 Motivation and Overview

As we have seen above, Shapiro’s logic directly refers to conversational situa-
tions, namely a forced march version of the Sorites paradox, but involves only
atomic predicates. A dialogue game to decide the semantic status of a compound
formula without leaving this dialogue setting therefore just seems a natural con-
solidation of this concept. Moreover, the game provides an explicit mechanism
for the evaluation of formulas. All moves consist of either choosing between dif-
ferent alternatives how the game should proceed, selecting a representative of the
domain, or selecting a sharpening of the current one. As we will see, especially
falsehood and indefiniteness conditions for global operators are specified much
more directly this way.

There are two players, the proponent P of a formula and the opponent O.
Initially P asserts that a formula φ is either true, false, or indefinite at an initial
sharpening N in a given frame F . This is denoted as P asserting ⊢+

N φ, ⊢−

N φ,
or ⊢∼

N φ, respectively. During the game φ is decomposed step by step into less
complex formulas according to the game rules until, in the end, P asserts the
semantic status of only an atomic formula P (a). Assume that the game ends at
the sharpening N ′. Then, if at this point P asserts ⊢+

N ′ P (a) and if a is in the
extension of P at N ′ then P is declared the winner of the game, otherwise P loses
and O wins. Analogously, P wins if he asserts ⊢−

N ′ P (a) and a is in the anti-
extension of P at N ′, or if he asserts ⊢∼

N ′ P (a) and a is neither in the extension
nor in the anti-extension of P at N ′.

Both players are assumed to agree on the frame and the initial sharpening
in the frame in which to evaluate the formula. The game is a finite two-player
zero-sum game with perfect information. Thus, by Zermelo’s Theorem (Zermelo,
1912) we conclude that the game is determined.
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3.2 Dialogue Rules

As described above, at each point in the game exactly one formula is asserted
by the proponent P to be true, false or indefinite at a certain sharpening. The
dialogue rules then specify how this formula is to be further reduced and which
player has to make which choices based on the outmost connective or quantifier.
For instance, the dialogue rule for conjunction is given in Figure 2. It can be read
as follows: if P asserts ⊢+

N φ ∧ ψ than O can choose whether P has to further
assert ⊢+

N φ or ⊢+

N ψ at the same sharpening. For ⊢−

N φ ∧ ψ, on the other hand,
P himself may choose. If P asserts ⊢∼

N φ ∧ ψ he first chooses whether to assert
that both φ and ψ are indefinite at N , or that only φ is indefinite and ψ is true,
or vice versa. In response O chooses one of the two corresponding assertions.

⊢
+

N
φ ∧ ψ

⊢
+

N
φ ⊢

+

N
ψ

O chooses

⊢
−

N
φ ∧ ψ

⊢
−

N
φ ⊢

−

N
ψ

P chooses

⊢
∼

N
φ ∧ ψ

⊢
∼

N
φ ⊢

∼

N
ψ

O chooses

⊢
+

N
φ ⊢

∼

N
ψ

O chooses

⊢
∼

N
φ ⊢

+

N
ψ

O chooses

P chooses

Figure 2: Dialogue rule for conjunction

As one can see, the rules can be obtained directly from the Kleene truth tables
in Figure 1. Informally, φ ∧ ψ is indefinite at a sharpening N , if either φ is true

and ψ is indefinite, or vice versa, or both are indefinite at N . Rules for the other
local connectives can be constructed analogously.

⊢
+

N
∀x.φ(x)

⊢
+

N
φ(a)

O chooses a

⊢
−

N
∀x.φ(x)

⊢
−

N
φ(a)

P chooses a

⊢
∼

N
∀x.φ(x)

⊢
∼

N
φ(a)

P chooses a

⊢
+

N
φ(a) ⊢

∼

N
φ(a)

P chooses

O chooses

O chooses a

Figure 3: Dialogue rule for the local universial quantifier

For local quantifiers we proceed in the same way: Figure 3 shows the dialogue
rules for the universal quantifier. For ⊢+

N ∀x.φ(x) O has to choose one domain
element a and the game proceeds, whereas for ⊢−

N ∀x.φ(x) the choice is P’s. In
the third case, ⊢−

N ∀x.φ(x), first O chooses whether he wants P to select one
element a and assert ⊢∼

N a or if he wants to select a by himself, but let P choose
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whether to assert ⊢+

N φ(a) or ⊢∼

N φ(a). This rule can be informally motivated by
observing that ∀x.φ(x) is indefinite if and only if for all instances a of x it holds
that φ(a) is either true or indefinite and, moreover, there is at least one instance
a′ such that φ(a′) is indefinite. Again, a dialogue rule for the existential quantifier
can be obtained analogously.

The dialogue rules above are all local in the sense that the current sharpening
is not changed. The rules for the other, global, connectives involve choosing
sharpenings of the current one by P or O.

⊢
+

N
Ax.φ(x)

⊢
+

N ′′ φ(a)

P chooses N ′′ � N ′

O chooses N ′ � N

O chooses a

⊢
−

N
Ax.φ(x)

⊢
−

N ′′ φ(a) ⊢∼

N ′′′ φ(a)

P chooses

O chooses N ′′′ � N ′′

P chooses N ′′ � N ′

P chooses a

O chooses N ′ � N

⊢∼

N
Ax.φ(x)

⊢
+

N ′ Ax.φ(x)

P chooses N ′ � N

⊢
−

N ′′ Ax.φ(x)

O chooses

P chooses N ′′ � N

Figure 4: Dialogue rule for the global universial quantifier

The rule for the global universial quantifier ‘A’ is given in Figure 4. In the rule
for ⊢+

N Ax.φ(x) first O selects a domain element a and then chooses a sharpening
N ′ of N . Then P chooses yet a further sharpening N ′′ of N ′ and asserts ⊢+

N ′′ φ(a).
According to Shapiro’s definition, in order for Ax.φ(x) to be true at N , after O

has chosen a, the formula Ax.φ(x) must be forced at N . By letting players al-
ternatively select further sharpenings we obtain a literal translation of Shapiro’s
forcing condition to dialogue rules. The rule ⊢−

N Ax.φ(x) involves Shapiro’s defi-
nition of the stable failure of ‘A’. According to this definition P has to show that
there is no sharpening of N where Ax.φ(x) is true. Thus, after O chooses N ′ � N ,
player P selects a domain element a and then shows that φ(a) is not forced at N ′.
This is the case, if he can find a sharpening N ′′ � N ′ where either φ(a) is false, or
φ(a) is indefinite and remains so in all further sharpenings. The rule ⊢∼

N Ax.φ(x)
is directly obtained from Lemma 1 stating that Ax.φ(x) is indefinite at N if and
only if there exists sharpenings N ′ and N ′′ such that Ax.φ(x) is true at N ′ and
false at N ′′.

The dialogue rules in Figure 5 for the global negation ‘−’ follow the same
scheme: Rules for ⊢+

N −φ and ⊢−

N −φ are obtained directly from Shapiro’s truth
and falsehood conditions; the rule for ⊢∼

N −φ is again obtained from Lemma 1.
Since, as noted above, forcing can be expressed in terms of this operator, we can
read the dialogue rule for ⊢−

N −φ directly as a rule for forcing: if the proponent
P wants to state that a formula φ is forced at a sharpening N , he does so by
asserting ⊢−

N −φ.

Figure 6 shows the dialogue rules for the global existential quantifier ‘E’. The
difference between the rules for ⊢+

N Ex.φ(x) and ⊢−

N Ex.φ(x) and their counter-
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⊢
+

N
−φ

⊢∼

N ′ φ ⊢
−

N ′ φ

P chooses

O chooses N ′

⊢
−

N
−φ

⊢
+

N ′′ φ

P chooses N ′′ � N ′

O chooses N ′ � N

⊢∼

N
−φ

⊢
+

N ′ −φ

P chooses N ′ � N

⊢
−

N ′′ −φ

P chooses N ′′ � N

O chooses

Figure 5: Dialogue rule for the global negation

⊢
+

N
Ex.φ(x)

⊢
+

N ′′ φ(a)

P chooses N ′′ � N ′

O chooses N ′ � N

P chooses a

⊢
−

N
Ex.φ(x)

⊢
−

N ′′ φ(a) ⊢∼

N ′′′ φ(a)

P chooses

O chooses N ′′′ � N ′′

P chooses N ′′ � N ′

O chooses a

O chooses N ′ � N

⊢∼

N
Ex.φ(x)

⊢
−

N ′ φ(a) ⊢∼

N ′′ φ(a)

P chooses

O chooses N ′′ � N ′

P chooses N ′ � N

O chooses a
⊢

+

N ′ Ex.φ(x)

O chooses

P chooses N ′ � N

Figure 6: Dialogue rule for the global existential quantifier

parts for the global universial quantifier is only that here the proponent P has to
pick one element of the domain instead of the opponent O. However, as Lemma 1
does not hold for the global existential quantifier ‘E’, we have to give another
rule for ⊢∼

N Ex.φ(x): if P asserts that Ex.φ(x) is indefinite at N , he has to be
able to show that it is not true and to show that it is not false at N . The former
case amounts to the left branch: for any given element a, player P asserts that
φ(a) is not forced by providing a sharpening N ′ of N where φ(a) is either false, or
indefinite and remains indefinite at each further sharpening. In the latter case P

shows that the Ex.φ(x) is not false at N by providing a sharpening of N where
the formula is true.

The connective for the global implication ‘⇒’ is used by Shapiro solely to
formulate penumbral connections, that are constraints on possible frames. As the
game is an evaluation game which takes place in a given frame, such contraints
are not directly subject to the game. However, one can still specify dialogue rules
for the ‘⇒’ connective in the same way as for the others. Due to space restrictions
the exact formulation of these rules is omitted here.

3.3 Adequacy of the game

We claim that the dialogue rules are adequate for Shapiro’s logic in the following
sense:

Theorem 1. Given a frame F and a sharpening N in F , a formula φ is true
at N in F if and only if the player P has a winning strategy for the game where
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he initially asserts ⊢+

N φ. φ is false at N if and only if P has a winning strategy

for the game where he initially asserts ⊢−

N φ and indefinite if and only if P has a

winning strategy for the game where he initially asserts ⊢∼

N φ.

Proof. We proof by induction on the complexity of φ that the game rules are
adequate for Shapiro’s logic. If φ is atomic, this is obvious. Otherwise, applying
one of the dialogue rules reduces φ to a less complex formula except for the rules
for ⊢∼

N Ax.φ(x), ⊢∼

N Ex.φ(x), and ⊢∼

N −φ. However, the latter cases reduce to the
respective rules for ⊢+

N Ax.φ(x), ⊢−

N Ax.φ(x), ⊢+

N Ex.φ(x), ⊢+

N −φ, and ⊢−

N −φ
and therefore are covered by the induction as well. Due to space restrictions this
checking of rules is only carried out here for some exemplary ones.

Assume, for example, that P asserts ⊢+

N ∀x.ψ(x). If ∀x.ψ(x) is true at N , then
no matter which domain element a player O chooses, ψ(a) is true at N . By the
induction hypothesis player P asserting ⊢+

N ψ(a) wins the game. On the other
hand, if ⊢+

N φ is not true at N , then there exists an element b such that ψ(b) is
not true at N . If O selects b, player P has to assert ψ(b), and, again by applying
the induction hypothesis we see that P loses the game.

As a slightly more complex example assume that P asserts ⊢∼

N Ex.ψ(x). Player
P wins if and only he can show that Ex.ψ(x) is neither true nor false at N .
Assume, O chooses the left branch. Then P wins if for each domain element a
he can find a sharpening N ′ such that either ψ(a) is false at N ′ or there for all
sharpenings of N ′ it holds that ψ(a) is indefinite at N ’. But this exactly means
that there is a sharpening of N where there is no further sharpening such that
ψ(a) is true; in short, ψ(a) is not forced at N . Since a was chosen by O, player
P wins if there is no a which is forced at N . In other words, Ex.ψ(x) is not true

at N . On the other hand, if O chooses the right branch, P wins if there exists a
sharpening of N where Ex.ψ(x) is true, thus, according to the definition of stable
failure, P wins when Ex.ψ(x) is not false. Since O chooses between the left and
the right branch, it is the case that P wins exactly if Ex.ψ(x) is neither true nor
false at N .

As noted above, forcing can be expressed in terms of the global negation ‘−’.
The following corollary follows immediately from Theorem 1.

Corollary 1. Given a frame F and a sharpening N in F , a formula φ is forced

at N in F if and only if the player P has a winning strategy for the game starting

in ⊢−

N −φ.

4 Conclusion and future work

In this contribution we have presented a dialogue game for the evaluation of
formulas in Shapiro’s logic in a given frame. At each point in the game the initial
proponent of the formula φ in question asserts that a subformula of φ is true, false,
or indefinite at a given sharpening. Compound formulas are being subsequently
reduced to less complex formulas until, in the end, an atomic formula can easily be
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evaluated by checking the (anti-)extensions of the vague predicates in question at
the final sharpening reached. The dialogue rules consist of simple operations like
choosing a domain element, choosing a sharpening, or choosing between different
succeeding assertions, which yields a rather mechanic characterisation for the
connectives of Shapiro’s logic.

In future work we plan to investigate other types of games adequate for this
logic. In particular evaluation games in the spirit of dialogue games as defined
by Paul Lorenzen (Lorenzen, 1960) and, more specifically, by Robin Giles (Giles,
1974) for  Lukasiewicz logic seem promising. Such games strictly separate the
stepwise decomposition of compound formulas into their atomic parts from the
evaluation of atomic game states. In contrast to the game presented here, both
players may assert a multiset of formulas at each point in the game. The charac-
terisation of indefiniteness is an interesting property of this game: we can observe
that truth of a formula φ coincides with the existence of a winning strategy for the
player asserting φ in the beginning, while falsehood coincides with the existence
of a winning strategy for the other player. For indefinite formulas neither player
has a winning strategy, which fits Shapiro’s point of view that indefiniteness in
his logic is not just a third truth value, but merely signifies the lack of a classical
one.
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