
Termination of Lazy Rewriting

Revisited

Felix Schernhammer and Bernhard Gramlich

November 2007

Technical Report E1852-2007-01

Theory and Logic Group, Institute of Computer Languages (E185/2)
TU Wien, Favoritenstraße 9, A-1040 Wien, Austria

Termination of Lazy Rewriting Revisited

Felix Schernhammer and Bernhard Gramlich∗

Theory and Logic Group

Institute of Computer Languages

TU Wien, Austria

November 2007

Abstract

Lazy rewriting is a proper restriction of term rewriting that dynami-
cally restricts the reduction of certain arguments of functions in order to
obtain termination. In contrast to context-sensitive rewriting, reductions
at such argument positions are not completely forbidden but delayed.
Based on the observation that the only existing (non-trivial) approach
to prove termination of such lazy rewrite systems is flawed, we develop
a modified approach for transforming lazy rewrite systems into context-
sensitive ones that is sound and complete with respect to termination.
First experimental results with this transformation based technique are
encouraging.

1 Introduction

In functional programming languages, evaluations are often carried out in a
lazy fashion. This means that in the evaluation of an expression, the result
of certain subexpressions is not computed until it is known that the particular
result is actually needed. A very similar idea is used in lazy rewriting ([FKW00])
where the reduction of certain subterms is delayed as long as possible (cf. also
[AEGL03], [HMJ76], and [Luc01]).

Termination analysis of functional programs has recently become a major
subject of research in the rewriting community. Due to the similarity of lazy
rewriting and the lazy evaluation strategy of functional programs, the use of
lazy rewriting seems promising to find new methods for proving termination
of functional programs. In particular lazy rewriting and lazy evaluation in
functional programming share the idea of postponing certain evaluation steps.
More precisely, arguments of functions are only evaluated if their final result is
needed to compute the function.

∗Email: {felixs,gramlich}@logic.at

1

Example 1.1 Consider the following functional program given in term rewrit-
ing system (TRS) syntax.

from(x) → x : from(s(x)) take(0, xs) → []
take(x, []) → [] take(s(x), y : ys) → y : take(x, ys)

Without an evaluation strategy the input term take(s(0), from(0)) is non-termi-
nating. Yet, when using a lazy evaluation strategy it is terminating and the result
is 0. The crucial difference is that in a term of the shape take(, : from())
the from subterm may not be evaluated under lazy evaluation, because its result
is not needed to evaluate any more outer function.

However, a reduction of the problem of proving termination of functional
programs to the problem of proving termination of lazy TRSs is non-trivial.
The reason is that functional programming languages typically allow for features
such as higher-order functions, typing and strategies other than lazy evaluation;
e.g., in Haskell always the “first” defining equation is applied to an object term
when several equations are applicable (at the same position) (this has already
been pointed out in [GSST06]).

Therefore, lazy rewriting can only approximate lazy (Haskell) evaluations
but clearly not simulate them in a one-to-one fashion. Yet, the described fea-
tures of functional programs can be encoded or approximated through standard
transformations such that finally lazy rewriting can be used for a termination
analysis (cf. e.g. [GTS05]).

In this work we present a transformation from lazy TRSs into context-
sensitive ones that is sound and complete w.r.t. termination and thus allows
us to reduce the problem of deciding whether a lazy TRS is terminating or not
to the same problem for context-sensitive TRSs, which has already been stud-
ied to some extent (cf. eg. [Luc06]). As this is the first sound and complete
transformation for lazy TRSs, it enables us for the first time to investigate the
use of lazy rewriting in the area of termination analysis of functional programs.

Lazy rewriting was initially introduced by [FKW00] in a graph rewriting set-
ting (although the basic underlying idea is much older, cf. e.g. [Ing61], [FW76],
[HMJ76], [HO82], [Str89], [Pv93]), [HFA+96]). However, for the termination
analysis of functional programs it makes sense to consider term rewriting in-
stead of graph rewriting, for the following reasons. First of all, using term
rewriting instead of graph rewriting is more general and does not prohibit cer-
tain evaluations a priori. Moreover, the theory of ordinary term rewriting is
much further developed as compared to graph rewriting. In particular, existing
methods for the termination analysis of ordinary as well as context-sensitive
rewrite systems can be applied where possible. Hence, in this work we will use
the notion of lazy term rewriting introduced in [Luc02b].

In [Luc02b] a transformation from lazy rewrite systems into context-sensitive
ones was proposed, which was supposed to preserve non-termination and con-
jectured to be complete w.r.t. termination. Unfortunately, a counterexample
(see Example 3.2 below) proves that this transformation is unsound w.r.t. ter-
mination. In this paper we repair the transformation and prove both soundness
and completeness of the new transformation w.r.t. termination.

2

In Section 2 of this paper we will present basic definitions and notations of
lazy rewriting. In Section 3 we introduce the transformation of [Luc02b] and
give a counterexample to its soundness w.r.t. termination. We then propose a
modified version of the transformation which is proved to be sound and complete
w.r.t. termination. Section 4 contains a discussion of the presented approach
and of some experimental results.1

2 Preliminaries

We assume familiarity with the basic concepts and notations in term rewriting
as well as context-sensitive term rewriting as provided for instance in [BN98,
Luc98].

As in [FKW00] and [Luc02b] we are concerned with left-linear lazy rewrite
systems in this work.
General assumption: Throughout the paper we assume that all lazy rewrite
systems are left-linear2 and finite.

Lazy rewriting operates on labelled terms. Each function and variable sym-
bol of a term has either an eager label e or a lazy label l which we will write
as superscripts. So, given a signature Σ = {f1, ..., fn}, we consider a new sig-
nature Σ′ = {fe

1 , f l
1, ..., f

e
n, f l

n}. We denote by V ′ the set of labelled variables,
so T (Σ′, V ′) is the set of labelled terms of a labelled signature Σ′. The no-
tation te (resp. tl) for a labelled term t indicates that t has an eager (resp.
lazy) root label. Following [Luc02b] we use a replacement map µ to specify
for each function f ∈ Σ which arguments should be evaluated eagerly. Given
a replacement map µ we define the canonical labelling of terms as a mapping
labelµ : T (Σ, V) → T (Σ′, V ′), where Σ′ is the labelled signature and V ′ are the
labelled variables [Luc02b]:

labelµ(t) = labeleµ(t)

labelαµ(x) = xα (α ∈ {e, l})

labelαµ(f(t1, ..., tn)) = fα(labelα1

µ (t1), ..., labelαn
µ (tn))

where αi = e if i ∈ µ(f), l otherwise, and α ∈ {e, l}

Given a labelled term t, the unlabeled term erase(t) is constructed from t by
omitting all labels. A position p of a term t is said to be eager (resp. lazy), if
the symbol at the root of the subterm starting at position p of t has an eager
(resp. lazy) label. Note that the lazy positions of a term are not the same as
the non-replacing positions in context-sensitive rewriting. The reason is that in
lazy rewriting eager positions may occur below lazy ones whereas in context-
sensitive rewriting all positions which are below a non-replacing position are
non-replacing.

1The proofs of Propositions 3.1, 3.2 and 3.3 and of the Lemmata 3.1, 3.2, 3.3, 3.4 and 3.5)
can be found in the appendix.

2Nevertheless, for clarity we will mention this assumption in the main results.

3

However, rewrite steps may only be performed at so-called active positions.
A position p is called active if all positions on the path from the root to p are
eager. Note that, given an unlabeled term t and a replacement map µ, the active
positions of labelµ(t) are exactly the replacing positions w.r.t. context-sensitive
rewriting.

Definition 2.1 ([Luc02b], [FKW00]) The active positions of a labelled term
t (denoted Act(t)) are recursively defined as follows.

• The root position ǫ of t is active.

• If p is an active position and position p.i is eager, then position p.i is
active.

Example 2.1 Consider a labelled term fe(al, ge(hl(ae))). Positions ǫ, 2 and
2.1.1 are eager. Positions 1 and 2.1 are lazy and positions ǫ and 2 are active.

Definition 2.2 ([Luc02b], [FKW00]) Let l ∈ T (Σ, V) be linear, t ∈ T (Σ′, V ′)
be a labelled term and let p be an active position of t. Then l matches t|p modulo
laziness if either

• l ∈ V or

• if l = f(l1, ..., ln) and t|p = fe(tα1 , ..., tαn) (α ∈ {e, l}), then for all eager
subterms tei , li matches modulo laziness tei .

If tli at position p.i is a lazy subterm and li 6∈ V , then position p.i is called
essential.

Informally, a matching modulo laziness is a partial matching ignoring (possible)
clashes at lazy positions. Positions where such clashes occur may be activated
(i.e., their label may be changed from lazy to eager).

Definition 2.3 ([Luc02b]) Let R = (Σ, R) be a (left-linear) TRS. Let t be
a labelled term and let l be the left-hand side of a rule of R. If l matches
modulo laziness t|p, and this matching gives rise to an essential position p.i

(t|p.i = f l(t1, ..., tn)), then t
A
→ t[fe(t1, ..., tn)]p.i. The relation

A
→R is called

activation relation.

Example 2.2 Let l = f(a, b) be a linear unlabeled left-hand side of a rule, and
t = fe(ae, cl). Then l matches t modulo laziness giving rise to the essential

position 2 and we have fe(ae, cl)
A
→ fe(ae, ce). The left-hand side l does not

match the labelled term fe(ae, ce) modulo laziness.

Definition 2.4 ([Luc02b]) Let l be the (linear) left-hand side of a rewrite rule
and t be a labelled term. If l matches erase(t), then the mapping σl,t : V ar(l) →
T (Σ′, V ′) is defined as follows. For all x ∈ V , with l|q = x : σl,t(x) = t|q.

4

Informally, σl,t is the matcher when matching l against erase(t), where one
adds the appropriate labels of t.

This substitution is modified to operate on labelled terms in the following
way, yielding the mapping σs,t : V ′ → T (Σ′, V ′) [Luc02b]:

σs,t(x
e) =

{
ye

fe(t1, ..., tn)
if σs,t(x) = yα ∈ V ′

if σs,t(x) = fα(t1, ..., tn)

σs,t(x
l) =

{
yl

f l(t1, ..., tn)
if σs,t(x) = yα ∈ V ′

if σs,t(x) = fα(t1, ..., tn)
σ is homeomorphically extended to a mapping T (Σ′, V ′) → T (Σ′, V ′) as

usual.

Definition 2.5 ([Luc02b]) Let R = (Σ, R) be a (left-linear) TRS with re-

placement map µ. The active rewrite relation
R
→µ: T (Σ′, V ′) × T (Σ′, V ′) is

defined as follows: Let t be a labelled term such that the left-hand side of a
rewrite rule l → r matches erase(t|p) with σl,t|p and let p ∈ Act(t). Then

t
R
→µ t[σl,t|p(labelµ(r))]p.

Informally, the active rewrite relation
R
→µ performs rewrite steps according

to rewrite rules as usual, but only at active positions, and taking labels into
account when constructing the contractum.

Example 2.3 Let l = f(x, b) → g(x) be a rewrite rule and t = fe(he(al), be)
be a labelled term. Furthermore, consider a replacement map µ(f) = µ(h) =
{1}, µ(g) = ∅. Then σl,t(x) = he(al) and σl,t(x

l) as appearing in the labelled

right-hand side of the rule is hl(al). Thus we have fe(he(al), be)
R
→µ ge(hl(al)).

The lazy rewrite relation
LR
→µ is the union of the activation relation and the

active rewrite relation.

Definition 2.6 ([Luc02b]) Let R be a (left-linear) TRS and let µ be a re-

placement map for R. The lazy rewrite relation
LR
→µ induced by (R, µ) is the

union of the two relations
A
→ and

R
→µ (

LR
→µ=

A
→R ∪

R
→µ).

Example 2.4 Consider the functional program of Example 1.1.

from(x) → x : from(s(x)) take(0, xs) → []
take(x, []) → [] take(s(x), y : ys) → y : take(x, ys)

Now we interpret it as lazy term rewriting system with a replacement map µ

given by µ(f) = ∅ for all functions f . When evaluating the canonically labelled
term takee(sl(0l), froml(0l)) it is obvious that the subterm froml(0l) must be
activated and evaluated before take can be computed. According to the lazy

rewrite relation we have: takee(sl(0l), froml(0l))
LR
→µ takee(sl(0l), frome(0l))

LR
→µ takee(sl(0l), 0l : froml(sl(0l)))

LR
→µ 0l : takee(0l, frome(sl(0l)))

LR
→µ 0l.

5

Definition 2.7 Let R be a TRS with a replacement map µ. Then R is LR(µ)-

terminating if there is no infinite
LR
→µ-sequence starting from a term t, whose

labelling is canonical or more liberal (i.e., whenever labelµ(erase(t))|p is eager,
then t|p is eager as well).

Informally, we call a labelled term t more liberal than its canonically labelled
version labelµ(erase(t)) if it has strictly more eager labels. The reason for
considering terms with canonical or more liberal labelling in the definition of
LR(µ)-termination is that only such terms appear in lazy reduction sequences
starting from canonically labelled terms, in which we are actually interested.

Example 2.5 Consider a lazy TRS consisting of one rule f(a) → b with a
replacement map µ(f) = ∅. Now, when considering the canonically labelled
term fe(al) we can reduce it to fe(ae) according to the lazy rewrite relation.
The latter term is more liberally labelled than its canonically labelled version.

Note that LR(µ)-termination and well-foundedness of
LR
→µ do not coincide in

general. The reason is that LR(µ)-termination concerns the non-existence of
lazy reduction sequences starting from canonically (or more liberally) labelled
terms, while there may still be infinite reduction sequences starting from other
terms. Example 2.6 shows that the two notions are indeed different.

Example 2.6 Consider the TRS {g(f(a), c) → a, h(x, f(b)) → g(x, h(x, x))}
with a replacement map µ(f) = µ(g) = {1} and µ(h) = {1, 2}. This system
is LR(µ)-terminating. This can be shown with the transformation of Definition

3.5 and Theorem 3.2. However,
LR
→µ is not well-founded:

ge(fe(bl), hl(fe(bl), fe(bl)))
LR
→µ ge(fe(bl), he(fe(bl), fe(bl)))
LR
→µ ge(fe(bl), ge(fe(bl), hl(fe(bl), fe(bl))))
LR
→µ . . .

Note that the term bl at position 1.1 of the starting term is lazy while it would
have been eager in the canonically labelled version of the starting term. This
being more lazy is the key for the existence of the infinite reduction sequence.

3 Transforming Lazy Rewrite Systems

3.1 Lucas’ Transformation

We start with the definition of the transformation of [Luc02b], because it pro-
vides the basic ideas for our new one. The main idea of the transformation is
to explicitly mimic activation steps of lazy rewriting through special activation
rules in the transformed system which basically exchange function symbols to
make them more eager (this goes back to [Ngu01]). Activations in lazy rewriting

6

are possible at positions which correspond to a non-variable position of the left-
hand side of some rule in a partial matching. This is why in the transformation
we are concerned with non-variable lazy positions of left-hand sides of rules.

The transformation is iterative. In each iteration new rules are created until
a fixed point is reached. The following definition identifies for a rule l → r and
a position p the positions p.i which are lazy in labelµ(l). These positions are
dealt with in parallel in one step of the transformation.

Definition 3.1 ([Luc02b]) Let l → r be a rewrite rule and p a non-variable
position of l, then

I(l, p) = {i ∈ {1, ..., ar(root(l|p))} | i 6∈ µ(root(l|p)) ∧ p.i ∈ PosΣ(l)}.

Example 3.1 Consider a rewrite rule l = f(a, b, x) → r and a replacement
map µ(f) = {1}. Then I(l, ǫ) = {2}.

Definition 3.2 ([Luc02b]) Let R = (Σ, R) be a TRS with replacement map
µ and let I(l, p) = {i1, . . . , in} 6= ∅ for some rule l → r ∈ R and p ∈ PosΣ(l)
where root(l|p) = f . The transformed system R⋄ = (Σ⋄, R⋄) and µ⋄ are defined
as follows:

• Σ⋄ = Σ ∪ {fj | 1 ≤ j ≤ n} where fj are new function symbols of arity
ar(fj) = ar(f)

• µ⋄(fj) = µ(f) ∪ {ij} for all 1 ≤ j ≤ n and µ⋄(g) = µ(g) for all g ∈ Σ

• R⋄ = R−{l → r}∪{l′ij
→ r | 1 ≤ j ≤ n}∪{l[x]p.ij

→ l′j [x]p.ij
| 1 ≤ j ≤ n}

where l′j = l[fj(l|p.1, ..., l|p.m)]p if ar(f) = m, and x is a fresh variable.

The transformation of Definition 3.2 is iterated until arriving at a system
R♮ = (Σ♮, R♮) and µ♮ such that I(l, p) = ∅ for every rule l → r ∈ R♮ and
every position p ∈ PosΣ(l). For further motivation and examples concerning
Definition 3.2 we refer to [Luc02b].

In [Luc02b] it remains unspecified how the pair l, p is selected in one step of
the transformation. However, it turns out that the order in which those pairs
are considered can be essential.

Example 3.2 Consider the TRS Consider the TRS

f(g(a), a) → a b → f(g(c), b)

with a replacement map µ(f) = {1} and µ(g) = ∅. This system is not LR(µ)-
terminating:

be LR
→µ fe(ge(cl), bl)

LR
→µ fe(ge(cl), be)

LR
→µ fe(ge(cl), fe(ge(cl), bl))

LR
→µ . . .

However, if we start the transformation with the first rule and position p = ǫ,
and consider position 1 of the first rule in the second step of the transformation,
then we arrive at the context-sensitive system

7

f2(g1(a), a) → a f(g′1(a), x) → f2(g(a), x)
f2(g(x), a) → f2(g1(x), a) f(g(x), y) → f(g′1(x), y)

b → f(g(c), b)

with µ(f) = µ(g1) = µ(g′1) = {1} and µ(f2) = {1, 2}.3This system is µ-
terminating (proved with AProVE [GTSK06]). The lazy reduction sequence
starting from b cannot be mimicked anymore, because due to the two trans-
formation steps first the argument of g has to be activated which prevents the
activation of the b in the second argument of f .

3.2 The New Transformation

3.2.1 Definition

In Lucas’ transformation, positions that are dealt with last during the transfor-
mation must be activated first in rewrite sequences of the transformed system.
This can be seen in Example 3.2 where I(f(g(a), a), ǫ) is considered in the
first step of the transformation but position 2 must be activated after posi-
tion 1.1 (whose activation is enabled by a later transformation step considering
I(f(g(a), x), 1)).

Thus, the order in which lazy positions of rules are dealt with during the
transformation is the reverse order in which they may be activated in the result-
ing transformed system. Since we want to simulate lazy rewriting, and in lazy
rewriting only outermost lazy positions may be activated in a labelled term,
we consider more inner lazy positions first in our new transformation. There-
fore, with the resulting context-sensitive system more outer positions may be
activated only before more inner ones.

Despite considering more inner positions first in the transformation, we do
not want to prioritize any (orthogonal) lazy positions. Thus, we define I(l)
which identifies the innermost lazy positions in a term with respect to a given
replacement map µ.

Definition 3.3

I(l) = {p ∈ PosΣ(l) | p is lazy in labelµ(l) ∧

∧ (∄q ∈ PosΣ(l) : q lazy in labelµ(l) ∧ q > p)}.

Before presenting the formal definition of our new transformation (see Defini-
tion 3.5 below), which crucially relies on Definition 3.3, we want give an informal
explanation and illustration of its essential features. In our transformation we
distinguish two kinds of rules that are generated. On the one hand we have
activation rules which are characterized by the fact that in these rules the left-
and right-hand side differ only at exactly one position, where in the right-hand
side a different function symbol as in the left-hand side is used. While having

3Here and subsequently the subscripts of function symbols indicate additional replacing
positions. So the replacement map of a symbol fi differs from that of f in that i is replacing
in fi.

8

the same arity, the different function symbol in the right-hand side has exactly
one more replacing position and the argument at that position is a variable (in
both sides). All other rules are active rewrite rules.

The actual transformation proceeds in 3 stages. First, a set of initial ac-
tivation rules is created. These rules enable the activation of one innermost
position of a left-hand side of the original rules of the lazy TRS. As already
indicated, by a rule activating position p.i we mean a rule l → r where l and
r differ only in the function symbol at position p and p.i is replacing in r but
non-replacing in l.

In the second stage one rule l → r (activating a position p) created in stage
1 (or stage 2) is replaced by a set of activation rules. This set contains two
activation rules for each innermost lazy non-variable position of l. Let q be
such a position (note that q is either above or orthogonal to p). Then the first
of these two rules is a rule which activates q. Apart from that, both sides of this
rule are identical to l (i.e. position p is still inactive). The second rule activates
position p. However, in this rule position q is already active. So the second rule
differs from the initial rule l → r only in that position q is replacing in both
sides (cf. Example 3.3).

Example 3.3 Assume an activation rule f(g(x), a) → f(g1(x), a) was gener-
ated in step 1 of the transformation where µ(g) = µ(f) = ∅ and µ(g1) = {1}.
The rule activates position p = 1.1. The left-hand side of this rule (if canoni-
cally labelled) has two innermost non-variable lazy positions {1, 2}. Thus, it will
be replaced by a set of new rules. We first consider the innermost lazy position
q = 1. So first, a rule is created which activates q where p is non-replacing (in
this special case position p does not even occur in the rule). This rule is

f(y, a) → f1(y, a)

Second, we create a rule which activates p while q already is active.

f1(g(x), a) → f1(g1(x), a)

These two rules illustrate that in a system obtained by this kind of transformation
more outer positions (like position 1) may be activated only before more inner
ones (like 1.1). For the second innermost lazy position of the original rule we
also obtain two rules:

f(g(x), z) → f2(g(x), z) f2(g(x), a) → f2(g1(x), a)

We have µ(f1) = {1} and µ(f2) = {2}. Note that all of the generated rules
still have non-replacing non-variable positions in their left-hand sides. Hence,
each of them must be transformed (and replaced) further in the same way as the
original rule of this example was processed.

This construction ensures that with the obtained rules in every derivation q

(which was considered after p in the transformation) is activated before p, which

9

is sound as p is a more inner (or parallel) position compared to q (since it was
considered first).

The latter construction is repeated until the rules obtained do not have any
lazy (non-variable) positions. We would like to point out once again that, as
we consider innermost positions of terms in stage one and one iteration of stage
two in our transformation, the outermost lazy positions of the initial rules of
the lazy system are dealt with last. Hence, these are the positions which may
be activated first in reduction sequences of the transformed system.

In the third stage of the transformation for each rule of the original lazy
system one active rewrite rule is created. This rule differs from the original
rule from which it was created only in the fact that the left-hand side is fully
activated, i.e. it contains no lazy non-variable position. The reason is that
whenever an active reduction step is performed on a lazy sequence it can be
simulated by first fully activating the redex with the generated activation rules
and afterwards performing the actual active step. This is done in derivations of
our transformed system.

Since all new function symbols which are introduced by the transformation
are substituted for function symbols of the original signature, we define the
mapping orig from the signature of the transformed system into the original
signature which identifies for each new function symbol the original one for
which it was substituted.

Definition 3.4 Let R = (Σ, R) be a TRS with replacement map µ. If in one
step of the transformation f ∈ Σ is replaced by a new function symbol f ′, then
orig(f ′) = f . Furthermore, if f ′ is substituted for a function symbol g 6∈ Σ,
then orig(f ′) = orig(g). For function symbols h ∈ Σ, we set orig(h) = h and
for variables we have orig(x) = x.

Definition 3.5 Let R = (Σ, R) be a TRS with replacement map µ. The trans-

formed system R̃ = (Σ̃, R̃) with µ̃ is constructed in the following three stages.

1 Generation of Initial Activation Rules. The transformed signature
Σ̃ ⊇ Σ and the set A(l) for every rule l → r ∈ R are defined as the least
sets satisfying

l[x]p.i → l′[x]p.i ∈ A(l) if p.i ∈ I(l) and l′ = l[fi(l|p.1, ..., l|p.n)]p (1)

∧ fi ∈ Σ̃

∧ orig(g) = orig(h) ∧ µ̃(g) = µ̃(h) ⇒ g = h for all g, h ∈ Σ̃

where µ̃ is defined by µ̃(f) = µ(f) for all f ∈ Σ and µ̃(fi) = µ(orig(fi))∪

{i} if fi was introduced in (1). Then we have R̃ :=
⋃

l→r∈R A(l).

2 Saturation of Activation Rules.
2.a Processing one Activation Rule Let R̃ = A(l1)∪ ...∪A(lm) and let
l → r ∈ A(lj) for some j ∈ {1, ...,m} such that I(l) is not empty. Then
we modify the set A(lj) in the following way:

10

A(lj) = A(lj) − {l → r} ∪ {l[x]p.i → l′[x]p.i} ∪ {l′ → r′}

∀p.i ∈ I(l) where l′ = l[fi(l|p.1, ..., l|p.n)]p and r′ = r[f ′
i(r|p.1, ..., r|p.n)]p.

If there is no g ∈ Σ̃ with orig(g) = orig(fi) and µ̃(g) = µ̃(root(l|p))∪ {i},

then Σ̃ = Σ̃ ∪ {fi} and µ̃(fi) = µ̃(root(l|p)) ∪ {i}, otherwise fi = g.

Analogously, if there is no g ∈ Σ̃ with orig(g) = orig(f ′
i) and µ̃(g) =

µ̃(root(r|p)) ∪ {i}, then Σ̃ = Σ̃ ∪ {f ′
i} and µ̃(f ′

i) = µ̃(root(r|p)) ∪ {i},
otherwise f ′

i = g.

R̃ :=
⋃

l→r∈R

A(l)

2.b Iteration Step 2.a is iterated until for all rules l → r of R̃ we have
that I(l) = ∅.

3 Generation of Active Rewrite Rules. For each rule l → r ∈ R we add
one active rewrite rule to R̃. For every position p ∈ PosΣ(l), we consider
the set

Symb(p, l) = {root(r′|p) | l′ → r′ ∈ A(l) ∧ p ∈ PosΣ(r′)}.

The function symbol which is least restrictive in this set (i.e., the maximal
element of µ̃(f) w.r.t. the subset relation of all f ∈ Symb(p, l)) is unique
and denoted by maxSymb(p, l). We set

R̃ := R̃ ∪
⋃

l→r∈R

l′′ → r

where l′′ is given by Pos(l) = Pos(l′′), root(l′′|p) = maxSymb(p, l) for all
p ∈ PosΣ(l) and root(l′′|p) = root(l|p) for all p ∈ PosV (l). The signature
of the transformed system is not altered in this stage.

Proposition 3.1 Let R be a TRS with replacement map µ and let R̃ = (Σ̃, R̃)

be the transformed system with replacement map µ̃. For f, g ∈ Σ̃

orig(f) = orig(g) ∧ µ̃(f) = µ̃(g) ⇒ f = g .

Proposition 3.2 The transformation of Definition 3.5 terminates and yields a
finite transformed system for every TRS R and every replacement map µ.

Proposition 3.3 Let R be a TRS with replacement map µ. Let R̃ and µ̃ be the
TRS (resp. replacement map) obtained after stages 1 and 2 of the transformation
of Definition 3.5. Then the symbol maxSymb(p, l) is unique for every rule
l → r ∈ R and every p ∈ PosΣ(l).

Example 3.4 Consider the TRS from Example 3.2

l1 = f(g(a), a) → a l2 = b → f(g(c), b)

11

with a replacement map µ s.t. µ(f) = {1} and µ(g) = ∅. In the first stage of the
transformation we have I(l1) = {1.1, 2} and the following two initial activation
rules are added (i.e., A(l1)).

f(g(x), a) → f(g1(x), a) f(g(a), x) → f2(g(a), x)

with µ̃(g1) = {1} and µ̃(f2) = {1, 2}. A(l2) = ∅, because l2 does not contain any
lazy non-variable positions. In step 2.a, the first rule of A(l1) is replaced by

f(g(x), y) → f2(g(x), y) f2(g(x), a) → f2(g1(x), a)

where the position p.i that was used is 2 (i.e., ǫ.2) and thus the new function
symbol introduced is f2. In the second iteration, the second rule of A(l1) is
replaced by

f(g(x), y) → f(g1(x), y) f(g1(a), x) → f2(g1(a), x).

Here, the position p.i that was used is 1.1 and thus the new function symbol is
g1. Finally, the following active rewrite rules are added:

f2(g1(a), a) → a b → f(g(c), b).

For l1 we have Symb(ǫ, l1) = {f, f2}, Symb(1, l1) = {g, g1} and Symb(1.1, l1) =
Symb(2, l1) = {a}. Therefore, maxSymb(ǫ, l1) = f2, maxSymb(1, l1) = g1 and
maxSymb(1.1, l1) = maxSymb(2, l1) = a. For l2 we have maxSymb(ǫ, l2) = b.

Hence, the system R̃ consists of

f(g(x), y) → f2(g(x), y) f2(g(x), a) → f2(g1(x), a)
f(g(x), y) → f(g1(x), y) f(g1(a), x) → f2(g1(a), x)

f2(g1(a), a) → a b → f(g(c), b)

with µ̃(f) = µ̃(g1) = {1}, µ̃(f2) = {1, 2} and µ̃(g) = ∅. R̃ is not µ̃-terminating:

b →eµ f(g(c), b) →eµ f2(g(c), b) →eµ f2(g(c), f(g(c), b)) →eµ . . .

Remark 3.1 Note that the above system could not have been derived with Lu-
cas’ transformation regardless of the order in which the positions are processed
there. The reason is that when applied to this example, Lucas’ transformation
always enforces some order of activation of the two orthogonal lazy positions,
whereas the new transformation does not.

The rest of the paper is concerned with the proof of soundness and com-
pleteness of the transformation of Definition 3.5 w.r.t. termination. First, we
will deal with the simpler case of completeness.

3.2.2 Soundness and Completeness

Theorem 3.1 Let R = (Σ, R) be a left-linear TRS with replacement map µ,

and let R̃ = (Σ̃, R̃), µ̃ be the transformed system (resp. replacement map) ac-

cording to Definition 3.5. If R is LR(µ)-terminating, then R̃ is µ̃-terminating.

12

Proof: We will prove the result indirectly by showing that every infinite R̃eµ-
derivation implies the existence of an infinite lazy R-derivation. Assume there
is an infinite R̃eµ-sequence starting from a term t. Then we construct an infinite
lazy reduction sequence starting from the labelled term t′ defined by

Pos(t) = Pos(t′) ∧ ∀p ∈ Pos(t) : (orig(root(t|p)) = root(erase(t′|p)) ∧ t′|p is
eager iff labeleµ(t)|p is eager).

In this case we write t′ ≈ t. Note that t′ is labelled canonically or more liberally
because µ(orig(f)) ⊆ µ(f) for all f ∈ Σ̃. Now consider a µ̃-step t →eµ s and a
labelled term t′ with t′ ≈ t. We will prove that there is a labelled term s′, such

that t′
LR
→µ s′ and s′ ≈ s. We make a case distinction on the type of µ̃-step.

1. First assume the step is an activation step. Then there is an activation
rule l′ → l′′ in R̃ which can be applied to t. This activation rule stems
from a rule l → r ∈ R, and we have that orig(root(l′|p)) = root(l|p) for
all non-variable positions p of l′. Furthermore, all variable positions of l′

which are non-variable in l are lazy in labeleµ(l′) and thus in t′. Hence, l

matches modulo laziness t′ and the same position as in t can be activated
yielding s′ with s′ ≈ s (note that the active positions of t′ are exactly the
replacing positions of t).

2. If the step t →eµ s is an active rewrite step, a rule l′ → r matches (a
subterm of) t. This rule is the transformed version of a rule l → r ∈ R

with orig(root(l′|p)) = root(l|p) for all p ∈ Pos(l) = Pos(l′). Thus, l

matches erase(t′) and the rule can be applied to t′ yielding s′ with s′ ≈ s.
The reason is that orig(root(s′|p)) = root(s|p) for all position of s (note
that the right-hand-sides of the rules applied to t and t′ are identical).
Regarding the labels of s′ assume that the rewrite steps were performed
at a position q (in t and t′). For all positions o ∈ Pos(t) with o||q∨o < q we
have s′|o is eager if and only if labeleµ(s)|o is eager because this has already
been the case in t′ and t. Furthermore, positions q.o where o ∈ Pos(r)
are eager in s′ if and only if they are eager in labeleµ(s) because of the
canonical labelling of r inside s′. Finally, positions q.o where o 6∈ Pos(r)
are eager in s′ if and only if they are eager in labeleµ(s), because a proper
superterm of each term s′|q.o occurred already in t′ and thus, if an eager
position of s′ had not been eager in labeleµ(s) (or vice versa), then this
would be a contradiction to t′ ≈ t.

In order to prove the soundness of our transformation, we are going to show the
existence of an infinite reduction sequence in the transformed system, whenever
there is an infinite lazy reduction sequence in the original system. So assume
there is an infinite lazy reduction sequence in a TRS R with replacement map
µ. The first observation is that every lazy reduction sequence naturally corre-
sponds to a context-free (i.e. ordinary) →R-sequence, which performs the active

13

t′1

erase(t1)

t1

t′2

erase(t2)

t2

t′3

erase(t3)

t3

t′4

erase(t4)

t4

. . .

. . .

. . .

6

?

6

?

6

?

6

?

-

-

-

-

-

-

-

-

-

-

-

-

= = = =

∗

eµ
∗

eµ
∗

eµ
∗

eµ

∗ eµc
∗ eµc

∗ eµc
∗ eµc

erase erase erase erase

LR
µ

LR
µ

LR
µ

LR
µ

Figure 1: Relation between the various rewrite sequences occurring in the sound-
ness proof.

rewrite steps of the lazy reduction sequence. We will construct a →eµ-reduction

sequence in the transformed system R̃ that corresponds to a context-free →R-
sequence, cf. Figure 1. Terms in the context-free →R-sequence and terms in the
corresponding µ̃-sequence are in a special relationship.

Definition 3.6 Let R = (Σ, R) be a TRS, µ a replacement map and let s, t ∈
T (Σ, V) be two terms. Abusing notation we write s →∗

µc t if and only if

1. for all positions p ∈ Posµ(t) we have root(t|p) = root(s|p), and

2. for all minimal positions q ∈ Pos(t) \ Posµ(t) we have s|q →∗
µ s′ and

s′ →∗
µc t|q.

The idea behind →∗
µc is that context-free reduction steps which occur at posi-

tions that are in the replacing part of the simulating term should be simulated,
thus the replacing parts of two terms s and t with s →∗

µc t must be entirely
equal. On the other hand, context-free steps that occur at positions which are
forbidden in the simulating term are ignored. Yet, if the forbidden subterm
in which they occur eventually gets activated, then these steps may still be
simulated.

As minimal non-replacing positions in a term are always strictly below the
root, the recursive description of →∗

µc in Definition 3.6 is well-defined.
We have s = t ⇒ s →∗

µc t. Figure 1 illustrates the correspondence between
a lazy reduction sequence, the corresponding context-free one, and the →eµ-
sequence. Note that if the lazy reduction sequence is infinite, then there are
infinitely many non-empty steps in the context-free reduction sequence, as every
labelled term admits only finitely many activation steps.

In the first part of the soundness proof we show the existence of a →eµ-
sequence of the shape as in Figure 1.

The next lemma provides a criterion for the existence of an activation rule
in the transformed system that is able to activate a certain position in a term t

over the new signature.

14

Lemma 3.1 Let (R = (Σ, R), µ) be a TRS with replacement map and let (R̃ =

(Σ̃, R̃), µ̃) be the system obtained by the transformation of Definition 3.5. Let

t ∈ T (Σ̃, V) be a term and α : l → r ∈ R a rewrite rule of the original TRS,
such that the following preconditions hold.

1. For all replacing positions p in t with p ∈ PosΣ(l) : orig(root(t|p)) =
root(l|p).

2. For all positions p.i that are variable positions in l we have that t|q ∈
T (Σ, V) for some q ≤ p.

Then, every position q, which is minimal non-replacing in t and non-variable
in l, can be activated (i.e. we have t →eµ t′ such that q is µ̃-replacing in t′ and
orig(root(t|p)) = orig(root(t′|p)) for all p ∈ Pos(t)).

The next lemma establishes the relationship between a context-free reduction
sequence and a corresponding →eµ reduction of Figure 1.

Lemma 3.2 Let (R = (Σ, R), µ) be a TRS with replacement map and let (R̃ =

(Σ̃, R̃), µ̃) be the system obtained by the transformation of Definition 3.5. Let s

and t be terms from T (Σ, V), such that s →∗
eµc t. If t

p
→ t∗ (with a rule l → r)

and p ∈ Poseµ(s), then s →+

eµ s∗ and s∗ →∗
eµc t∗. Otherwise, if t

p
→ t∗ and

p 6∈ Poseµ(s), then s →∗
eµ s∗ and s∗ →∗

eµc t∗.

Unfortunately, the last lemma and the correspondence of lazy, context-free
and →eµ-reduction sequences of Figure 1 are not sufficient to prove the exis-
tence of an infinite →eµ-sequence in the presence of an infinite lazy reduction
sequence, since there may be only finitely many non-empty →eµ-reductions in
the simulating sequence.

Example 3.5 Consider the TRS R

a → f(a) f(b) → b

with a replacement map µ(f) = ∅. The transformed system R̃ is

a → f(a) f(x) → f1(x) f1(b) → b

with µ̃(f) = ∅, µ̃(f1) = {1}. We have the following lazy reduction sequence

ae LR
→µ fe(al)

LR
→µ fe(ae)

LR
→µ . . .

which corresponds to the context-free sequence

a → f(a) → f(f(a)) →

Consider a corresponding sequence in the system R̃,

a →eµ f(a).

15

Then we could activate a in f(a) according to rule 2 of the transformed sys-
tem. However, it is a priori not clear whether such a step should be performed
when trying to simulate an infinite reduction sequence. The following example
illustrates the potential problems.

Example 3.6 Consider the non-terminating TRS R

f(g(x)) → f(g(x)) g(a) → g(b) a → c

with a replacement map µ(f) = {1} and µ(g) = ∅. The transformed system R̃
is

f(g(x)) → f(g(x)) g(x) → g1(x)
g1(a) → g(b) a → c

with µ̃(f) = µ̃(g1) = {1} and µ̃(g) = ∅. Consider the following context-free
reduction sequence.

f(g(a)) → f(g(c)) → f(g(c)) → . . .

If we activate position 1.1 in f(g(a)) in the simulating →eµ-sequence, we cannot
further simulate the sequence, i.e. we get

f(g(a)) →eµ f(g1(a)) →eµ f(g1(c)),

but the term f(g1(c)) is a →eµ-normal form.

The crucial difference why the activation of a subterm is essential in Example
3.5 and unnecessary in Example 3.6 is that in the former example the activated
subterm itself initiates an infinite lazy reduction sequence. This observation will
be used in the second part of the soundness proof (cf. Theorem 3.2).

When constructing an infinite reduction sequence in the transformed system
corresponding to an infinite lazy sequence in the soundness proof, we will identify
those activations that activate a non-terminating subterms sinf and simulate
them by activating the corresponding subterm s′inf in the simulating sequence.
Afterwards, we will focus only on an infinite lazy reduction sequence initiated
by sinf . This way the simulated activation, i.e., the introduction of a function
symbol of the new signature, is of no relevance for the further simulation as it
happened outside of s′inf .

With the following definition we intend to identify labelled terms in an in-
finite lazy reduction sequence with non-terminating proper subterms that have
possibly been activated. For such terms t, the predicate mininf(t) does not
hold.

Definition 3.7 Let Σ be a signature and µ be a replacement map for Σ. A
labelled term t is said to be minimal non-terminating if it admits an infinite lazy
reduction sequence and for each eager labelled proper subterm t|p of t, either t|p
does not initiate an infinite lazy rewrite sequence, or position p is eager in the
term labelµ(erase(t)). We write mininf(t) if t has this property.

16

Definition 3.8 Let R = (Σ, R) be a TRS with replacement map µ. Let t be a

labelled term t and t
LR
→µ s be an activation step. This activation step is called

inf-activating (thus it is an inf-activation step) if and only if mininf(t) but not
mininf(s).

It is easy to see that whenever mininf(t) holds for a labelled term t, there is
no active position p ∈ Act(t) which is non-active in labelµ(erase(t)), such that
t|p initiates an infinite lazy reduction sequence.

In the second part of the soundness proof we will show that each infinite lazy
reduction sequence contains either an inf-activation step or an active rewrite step

s
LR
→µ t at position p such that p is µ-replacing in erase(s). Furthermore, such

steps result in non-empty simulations by the →eµ-sequence.

Lemma 3.3 Let R = (Σ, R) be a TRS with replacement map µ. Let t be a
labelled term satisfying mininf(t). Then we have:

1. If t
LR
→µ s with an inf-activation step at position q1 activating position

q2 and q1 < p ≤ q2 is the maximal (w.r.t. ≤) eager position in s which
does initiate an infinite reduction sequence s.t. t|p does not, then we have
mininf(s|p).

2. If t
LR
→µ s with any other step than in (i) (i.e., activation steps which are

not inf-activating, or active rewrite steps), then mininf(s).

Lemma 3.4 Let R = (Σ, R) be a TRS with a replacement map µ. Let t ∈
T (Σ, V) be an unlabeled term. If t initiates an infinite context-free reduction
sequence with infinitely many root reduction steps, then a labelled term t′ initi-
ates an infinite lazy reduction sequence if erase(t′) = t and t′ has an eager root
label.

The next lemma characterizes infinite lazy reduction sequences starting from
minimal non-terminating labelled terms. It states that in such an infinite lazy
reduction sequence after finitely many steps there is either an active rewrite
step si

LR
→µ si+1 at some position p which is active in labelµ(erase(si)) or there

is an inf-activation step. We know from Lemma 3.2 that active rewrite steps at
such positions can be simulated by a non-empty sequence in the transformed
system (remember that the active rewrite steps of a lazy reduction sequence
correspond to a context-free derivation). In Theorem 3.2 we will prove that the
same is true for inf-activation steps.

Lemma 3.5 Let R = (Σ, R) be a TRS with a replacement map µ. Let t0 be

a labelled term with the property mininf(t0). Let P : t0
LR
→µ t1

LR
→µ . . .

LR
→µ

tn
LR
→µ . . . be an infinite lazy reduction sequence starting from t0. Then, either

there is an active rewrite step ti
LR
→µ ti+1 at position p, where p is active in

labelµ(erase(ti)), or there is an inf-activation step in P .

17

Theorem 3.2 Let (R = (Σ, R), µ) be a left-linear TRS with replacement map

and let (R̃ = (Σ̃, R̃), µ̃) be the system obtained by the transformation of Defini-

tion 3.5. If R̃ is µ̃-terminating, then R is LR(µ)-terminating.

Proof: We will show that the existence of an infinite lazy reduction sequence

P : t0
LR
→µ t1

LR
→µ . . . (where t0 is canonically or more liberally labelled) implies

the existence of an infinite reduction sequence in the transformed system. The
following invariant will be maintained for every labelled term ti of an infinite re-
duction sequence P . Let s0 →eµ s1 →eµ . . . be the simulating reduction sequence
we are going to construct:
There is a sj and a position o such that

sj |o →∗
eµc erase(ti|o) ∧ mininf(ti|o)

and position o is µ̃-replacing in sj and active in ti. Furthermore, ti|o is at least
as eager as its canonically labelled version (i.e., whenever labelµ(erase(ti|o)) has
an eager label at some position q, then the label of ti|o is eager at that position,
too). Note that the latter condition is trivially fulfilled by all terms ti in P , and
thus by all subterms, since no “deactivations” are possible in lazy rewriting and
active rewrite steps only introduce canonically labelled terms.
We show that a finite initial subsequence of P implies the existence of a non-
empty reduction sequence in the transformed system which preserves the invari-
ant. As each term ti|o itself initiates an infinite lazy reduction sequence, this
suffices to show that there is an infinite reduction sequence in the transformed
system.
In order to apply Lemma 3.5, we assume mininf(t0). This minimality constraint
can be satisfied, as w.l.o.g. we can find a t0 such that each proper subterm of
t0 with an eager label does not initiate an infinite lazy reduction sequence.
The infinite reduction sequence we are going to construct in the transformed
system starts with the term s0 = erase(t0). We have s0 →∗

eµc erase(t0).
Lemma 3.5 states that in the lazy reduction sequence starting from t0 there is

either an active rewrite step ti
LR
→µ ti+1 at position p such that p is active in

labelµ(erase(ti)), or there is an inf-activation step. Let tj
LR
→µ tj+1 be the first

such step.
The goal is to show that the reduction sequence t0

LR
→∗

µ tj+1 can be simulated

by a sequence s0 →+

eµ si such that si|o →∗
eµc erase(tj+1|o) and mininf(tj+1|o)

holds for some position o which is active in tj+1 and replacing in si. We make

a case distinction on whether the step tj
LR
→µ tj+1 is an active rewrite step or

an inf-activation step.

(i). Assume the step tj
LR
→µ tj+1 is an active rewrite step at position p such that

p is active in labelµ(erase(tj)). We have (according to Lemma 3.2) s0 →∗
eµ si and

si →
∗
eµc erase(tj). If position p is active in labelµ(erase(tj)), then p is replacing

in si (note that si ∈ T (Σ, V)). Thus, with Lemma 3.2 we have s0 →∗
eµ si →

+

eµ

si+1 and si+1 →∗
eµc erase(tj+1). Furthermore, we have mininf(tj+1) according

to Lemma 3.3.

18

(ii). Assume the step tj
LR
→µ tj+1 is an inf-activation step. Again by Lemma

3.2 we have s0 →∗
eµ si and si →∗

eµc erase(tj) (si ∈ T (Σ, V)). The matching
modulo laziness of a rule with tj was established at a position qinf which is
active in labelµ(erase(tj)). The reason is that otherwise in tj there would be a
non-terminating active subterm which is non-active in labelµ(erase(tj)). Thus,
mininf(tj) would not hold, which contradicts Lemma 3.3.
The fact that the activation step from tj to tj+1 is inf-activating implies that
there is a unique maximal active subterm tj+1|p of tj+1 which is non-active in
labelµ(erase(tj+1)) and initiates an infinite lazy reduction sequence. For this
position p we have p ≤ q where q is the position that is activated in the inf-
activation step: If we had p > q or p||q, then tj |p = tj+1|p. Furthermore, as
labelµ(erase(tj)) = labelµ(erase(tj+1)), this would contradict mininf(tj).
Note that, since the position qinf where the matching modulo laziness was
established in tj is active in labelµ(erase(tj)), we have that qinf < p ≤ q.
In the simulating sequence we will activate position p in the term si. We note
that p is non-replacing in si (as it is non-active in labelµ(erase(tj))), but it is
not necessarily minimal non-replacing. Thus, in order to activate position p in
si, we possibly need to activate positions o < p in si first.
Let o < p be the minimal non-replacing position in si. According to Lemma
3.1 we can activate o in si yielding s′i. Note that as tj is at least as eager
as labelµ(erase(tj)), we have orig(root(si|qinf .q′)) = root(erase(tj |qinf .q′)) for
every replacing position qinf .q′ of si and root(erase(tj |qinf .q′)) = l|q′ for some
rule l → r. Then, as si →∗

eµc erase(tj), we have s′i
≥o
→∗

eµ s′′i such that s′′i |o →∗
eµc

erase(tj |o) according to Definition 3.6. Position o is replacing in s′′i . If there is
still a non-replacing position o′ < p in s′′i , it is again activated and s′′i is reduced
to a term s′′′i such that s′′′i |o′ →∗

eµc erase(tj |o′). This construction is repeated
until position p is replacing in a term s∗i and we have s∗i |p →∗

eµc erase(tj |p).
Note that s∗i |p is a term over the original signature Σ, so it does not contain
any function symbols introduced by the transformation. Clearly, we have that
s∗i |p →∗

eµc erase(tj+1|p), since erase(tj) = erase(tj+1). Finally, according to
Lemma 3.3 we have mininf(tj+1|p).

Now given an infinite lazy reduction sequence P starting from a labelled term t0
and a term s0 with s0 →∗

eµc erase(t0), we have shown that a finite subsequence

t0
LR
→+

µ ti of a special shape implies the existence of a non-empty sequence

s0 →+

eµ sj such that sj |p →∗
eµc erase(ti|p), where p is active in ti and replacing

in sj , mininf(ti|p) holds and ti|p initiates an infinite lazy reduction sequence.
Thus, again the infinite lazy sequence starting at ti|p has a finite subsequence,
that can be simulated by a non-empty reduction sequence in the transformed
system. By repeating this construction, we get an infinite reduction sequence
in the transformed system starting at s0.

19

4 Experiments

Whenever developing methods for proving termination of a certain kind of TRSs
it is important to know how well the approach performs in practice. A series
of tests were performed to answer this question for our lazy TRSs. As this is
the first experimental termination analysis of lazy TRSs, neither lazy test TRSs
nor benchmarks of other methods for proving lazy termination were readily
available. Thus, we used the context-sensitive TRSs from the [TPDB] and
interpreted these systems as lazy ones. Out of 53 lazy systems that were tested,
lazy termination of 35 (with a time limit of 10 seconds) and 37 (with a time
limit of 120 seconds) could be shown. The tests were performed using AProVE
([GTSK06]) for proving context-sensitive termination of the CSRSs obtained by
our transformation. When interpreting these results one has to keep in mind
that the example TRSs considered were actually supposed to be considered
context-sensitive by their authors. Thus, in many cases the changes made by
our transformation were only minimal. Figure 2 shows some interesting results
of our experiments. Note that there were only 5 context-sensitively terminating
systems which could not be shown terminating in the lazy case. As one can see
in Figure 2 these systems are Ex14 AEGL02, Ex1 GL02, Ex1 Zan97, Ex24 Luc06

and Ex9 Luc06. However, at least 4 of these systems, namely Ex14 AEGL02,
Ex1 Zan97, Ex24 Luc06 and Ex9 Luc06 actually become non-terminating in the
lazy case.4

5 Discussion

In the proof of Theorem 3.2 we saw that the CSRS obtained by our transforma-
tion cannot simulate lazy reduction sequences in a one-to-one fashion. When
simulating infinite lazy reduction sequences, after every inf-activation step in the
lazy reduction an entirely new infinite lazy sequence was considered, namely the
one initiated by the activated subterm. Thus, the question arises whether we can
define a transformation from lazy rewrite systems into context-sensitive ones,
such that the transformed system is able to fully simulate the lazy reduction
system. We conjecture that this is indeed possible ([Sch07]), but would ren-
der termination proofs more difficult. The reason is that such a transformation
would need to introduce even more rules that alter the status (i.e., lazy or eager)
of positions in lazy terms (to be more precise, more activation rules would be
needed).

Regarding the size of the transformed system, we have that the number
of rules created by our transformation is in general exponentially higher than
the number of lazy non-variable subterms in left-hand sides of rules of the lazy
system. However, we found that in our test series that was taken from the
termination problem database ([TPDB]), this number was not too high in most
of the systems. This indicates that in many practical cases the analysis of

4See http://www.logic.at/people/schernhammer/lazy rewriting/experiments.html for
a more detailed description of the experiments.

20

Termination analysis succeeded...
System lazy (10 sec) lazy (120 sec) cs (120 sec)

Ex1 2 AEL03 yes yes yes
Ex1 2 Luc02c yes yes yes
Ex14 AEGL02 no no yes
Ex15 Luc06 yes yes yes
Ex1 GL02a no no yes
Ex1 GM99 no no no
Ex1 Zan97 no no yes
Ex24 GM04 no no no
Ex24 Luc06 no no yes
Ex49 GM04 yes yes yes

Ex4 DLMMU04 no no no
Ex6 15 AEL02 no no no

Ex6 GM04 yes yes yes
Ex9 Luc04 no no no
Ex9 Luc06 no no yes

Figure 2: Termination analysis of lazy TRSs

lazy termination with our approach may well be feasible and a priori not too
hard. Furthermore, lazy termination analysis can greatly benefit from ongoing
research in the field of context-sensitive termination.

Acknowledgements We would like to thank the anonymous reviewers of the
previous workshop submission for numerous useful hints and criticisms.

References

[AEGL03] M. Alpuente, S. Escobar, B. Gramlich, and S. Lucas. On-demand
strategy annotations revisited. Technical Report DSIC–II/18/03,
UPV, Valencia, Spain, 2003.

[BN98] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge
University Press, New York, NY, USA, 1998.

[FKW00] W. Fokkink, J. Kamperman, and P. Walters. Lazy rewriting on
eager machinery. ACM Transactions on Programming Languages
and Systems, 22(1):45–86, 2000.

[FW76] D. P. Friedman and D. S. Wise. CONS should not evaluate its
arguments. In S. Michaelson and R. Milner, eds., Proc. 3rd ICALP,
pp. 257–284. Edinburgh University Press, 1976.

21

[GTSK06] J. Giesl, R. Thiemann, and P. Schneider-Kamp. AProVE 1.2: Au-
tomatic termination proofs in the dependency pair framework. In
Ulrich Furbach and Natarajan Shankar eds., Proc. IJCAR’06, LNCS
4130, pp. 281–286, 2006.

[GSST06] J. Giesl, S. Swiderski, R. Thiemann, and P. Schneider-Kamp. Au-
tomated Termination Analysis for Haskell: From Term Rewriting to
Programming Languages In F. Pfenning, ed., Proc. RTA’06, LNCS
4098, pp. 297–312. Springer, 2006.

[GTS05] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and Dis-
proving Termination of Higher-Order Functions In B. Gramlich, ed.,
Proc. FROCOS’05, LNAI 3717, pp. 216–231. Springer, 2005.

[HFA+96] P. H. Hartel, M. Feeley, M. Alt, L. Augustsson, P. Baumann, M.
Beemster, E. Chailloux, C. H. Flood, W. Grieskamp, J. H. G. v.
Groningen, K. Hammond, B. Hausman, M. Y. Ivory, R. E. Jones, J.
Kamperman, P. Lee, X. Leroy, R. D. Lins, S. Loosemore, N. Röjemo,
M. Serrano, J. Talpin, J. Thackray, S. Thomas, P. Walters, P. Weis,
and P. Wentworth. Benchmarking implementations of functional
languages with ‘pseudoknot’, a float-intensive benchmark. Journal
of Functional Programming, 6(4):621–655, January 1996.

[HMJ76] P. Henderson and J. H. Morris Jr. A lazy evaluator. In Confer-
ence Record of the Third ACM Symp. on Principles of Programming
Languages, Atlanta, Georgia, Jan. 1976, pp. 95–103, 1976.

[HO82] C. M. Hoffmann and M. J. O’Donnell. Programming with equa-
tions. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(1):83–112, January 1982.

[Ing61] P. Z. Ingerman. Thunks: A way of compiling procedure statements
with some comments on procedure declarations. Communications of
the ACM, 4:55–58, 1961.

[Luc98] S. Lucas. Context-sensitive computations in functional and func-
tional logic programs. Journal of Functional and Logic Programming,
1998(1), 1998.

[Luc01] S. Lucas. Termination of on-demand rewriting and termination of
OBJ programs. In H. Sondergaard, ed., Proc. PPDP’01, pp. 82–93,
2001. ACM Press, New York.

[Luc02b] S. Lucas. Lazy rewriting and context-sensitive rewriting. In M.
Hanus, ed., Proc. WFLP’01, ENTCS 64, Elsevier, 2002.

[Luc06] S. Lucas. Proving termination of context-sensitive rewriting by trans-
formation. Information and Computation, 204(1):1782–1846, 2006.

22

[Ngu01] Q. H. Nguyen. Compact normalisation trace via lazy rewriting. In
B. Gramlich and S. Lucas, eds., Proc. WRS’01, ENTCS 57, 2001.

[Pv93] M. J. Plasmeijer and M. C. J. D. van Eekelen. Functional program-
ming and parallel graph rewriting. Addison-Wesley, 1993.

[Str89] R. Strandh. Classes of equational programs that compile into efficient
machine code. In N. Dershowitz, ed., Proc. RTA’89, LNCS 355,
pp. 449–461. Springer, 1989.

[Sch07] F. Schernhammer. On context-sensitive term rewriting. Master’s
thesis, TU Wien, 2007.

[SG07] F. Schernhammer and B. Gramlich. Termination of lazy
rewriting revisited. Technical Report E1852-2007-01 (available
at http://www.logic.at/people/schernhammer/papers/), TU
Wien, 2007.

[TPDB] Termination Problem Database. Available at
http://www.lri.fr/∼marche/tpdb.

23

Appendix: Missing Proofs

Proof of Proposition 3.1

The result is an immediate consequence of Definition 3.5, as no new function
symbol is introduced unless there is none with the same restrictions and the
same original symbol.

Proof of Proposition 3.2

Clearly, steps 1 and 3 of Definition 3.5 terminate and produce only finitely many
new rules. In step 2.a one rule is replaced by finitely many new rules. Thus,
all the rules created in step 2 can be viewed as a (finitely branching) tree. To
show that the iteration in step 2 of this definition terminates it is thus sufficient
to show that there is no infinite path in this tree. Whenever a rule is replaced
in step 2.a, the number of non-replacing non-variable positions is smaller in the
new rules than in the original one. As this number is greater than or equal to
zero in every term, there cannot be an infinite path. Thus, the construction of
activation rules terminates for every TRS and every replacement map.

Proof of Proposition 3.3

Consider the set

Symb(p, l) = {root(r|p) | l′ → r′ ∈ A(l) ∧ p ∈ PosΣ(r)}

for some l → r ∈ R and some position p ∈ PosΣ(l). We will show that if
there are two symbols f and g from the set Symb(p, l), such that µ(f) and
µ(g) are incomparable, then either f or g is not maximal (i.e. there is a sym-
bol h ∈ Symb(p, l) such that µ(h)) µ(f) or µ(h)) µ(g). First, note that
µ(orig(f)) ⊆ µ(f) (resp. ⊆ µ(g)). W.l.o.g. we may assume i ∈ µ(f) and
i 6∈ µ(g). Then p.i is non-variable in l. Thus, for the rule l → r from A(l)
containing g at position p of the right-hand side, we have I(p) 6= ∅. Hence,
there is another rule l′ → r′ ∈ A(l) such that r′|p = h with orig(g) = orig(h)
and µ(h) = µ(g) ∪ {i}. So g is not a maximal symbol in Symb(p, l).

Proof of Lemma 3.1

We will prove the existence of an activation rule l∗ → lq in the transformed
system which activates q in t. To this end, we will consider the non-variable
positions of l and look at how they are altered during the transformation. To
do this, the positions of t are partitioned into 4 classes:

1. the position q which is subject to activation,

2. the minimal positions P l of t which are non-replacing in t and non-variable
in l without q,

3. the positions P e of t which are replacing in t and non-variable and lazy in
labelµ(l), and

4. all other the positions of t.

24

First we consider the positions of P l: P l can be extended to a set P l
α by adding

all positions p ∈ PosΣ(l) which are below some position of P l or q such that p

is lazy in labelµ(l). Now consider the transformation of the rule α. If p ∈ P l
α is

a maximal (i.e. innermost) position of P l
α, then α is replaced by a set of initial

activation rules containing

l[x]p → r .

In the next step of the transformation this rule is replaced by a set of rules
containing (if p′ is minimal in P l

α \ {p})

l[x]p[y]p′ → r′ .

This way, after a certain number of transformation steps we obtain an activation
rule

l → r

such that all positions o ∈ P l are variable positions in l (note that l is linear).
Then position q is innermost non-variable lazy in l (note that minimal non-
replacing positions of t are lazy in labelµ(l)). Thus in the next step of the
transformation the following rule is created:

l[x]q → l
′
[x]q ,

where l
′
is the same as l except that position q is µ-replacing (cf. Definition 3.5

Item 2).
Now consider the positions P e. Let p be a maximal (i.e., innermost) position of
P e. Then the previous rule is replaced by a set of rules containing

l1 → l2

where l1 is the same as l[x]q (resp. l2 is the same as l
′
[x]q) except that position

p is µ-replacing (cf. Definition 3.5 Item 2).
Again by considering all positions of P e we deduce that there is a rule

l∗ → lq

where l∗ is the same as l[x]q (resp. lq is the same as l
′
[x]q) except that all

positions of P e are µ-replacing (cf. Definition 3.5 Item 2).
As there are no non-variable lazy positions in l∗, this rule is actually in the
transformed system. Now we have the following: For all non-variable positions
o of l∗ we have that orig(root(t|o)) = orig(root(l∗|o)). Furthermore, a position
o of l∗ is µ-replacing if and only if it is µ-replacing in t (at this point it is
crucial to demand precondition 2). The latter statement is not trivial. Positions
o ∈ PosΣ(l∗) are µ-replacing in t as well as in l∗. The remaining positions o ∈
PosV (l∗) are divided into two classes. First consider the positions o ∈ PosV (l∗),
such that o 6∈ PosV (l). These positions are non-replacing in l∗ and non-replacing
in t, because otherwise l|o would not have been replaced by a variable in l∗ (these
are positions which were in the set P l). On the other hand consider positions

25

o ∈ PosV (l∗) ∧ o ∈ PosV (l). Let o = q.i, then according to precondition 2
we have root(l∗|q) = root(t|q). Furthermore, position q is µ-replacing in both
t and l∗. Thus, l|o is µ-replacing if and only if t|o is µ-replacing. We have the
following property for all function symbols f, g ∈ Σ according to Proposition
3.1:

orig(f) = orig(g) ∧ µ(f) = µ(g) ⇒ f = g.

Thus, we have that root(l∗|o) = root(t|o) for all o ∈ PosΣ(l∗), and as l∗ is linear
we get t = σl∗. Thus we obtain t →µ t′ and q is active in t′.

Proof of Lemma 3.2

First assume that position p is in Posµ(s) and t|p = σl. As s →∗
µc t, t|p = σl and

s does not contain any function symbols of Σ \ Σ, we can apply Lemma 3.1 in
order to activate one minimal non-replacing position p.q of s (q non-variable in l)
if there is such a position. From Definition 3.6 we know that there is a µ-rewrite

sequence s
≥p.q
→ µ s′ such that s′|p.q →∗

µc t|p.q and s′|p.q ∈ T (Σ, V). Thus, we can
activate position p.q in s and reduce it to s′, where p.q is replacing in s′ and
root(s′|p.q) = root(t|p.q) because s′|p.q →∗

µc t|p.q. This sequence of activation
and simulation of subterms at positions p.q′, where q′ is non-replacing in (a
successor of) s and non-variable in l, is repeated until we arrive at a term s

(s →∗
µ s), such that all positions p.o where o is non-variable in l are replacing.

Furthermore, we have for all these positions that orig(root(s|p.o)) = root(l|o).
Thus, s|p = σ′l′ (where l′ → r is transformed version of l → r) and we have
σ′x →∗

µ sx →∗
µc σx, for each variable x. The reason is that positions p.o′ where

o′ ∈ PosV (l)(= PosV (l′)) are replacing or minimal non-replacing in s because
all positions of s which correspond to non-variable positions of l′ are replacing.
Besides, for each p.o′ there is a position p′ ≤ p.o′ such that s|p′ →∗

µc t|p′ . As
s|p = σ′l′ and p is µ-replacing in s, a rewrite step s →µ s′ is possible. Finally,
for all replacing positions p.q where q ∈ PosV (r) and r|q = x (note that these
positions are parallel) the sequences s′|p.q = σ′x →∗

µ sx are performed yielding
the term s∗ with s∗ →∗

µc t∗. Note that at least one step, namely the step from
s to s′, was performed in the reduction sequence from s to s∗, thus we have
s →+

µ s∗.
Secondly, assume that position p is non-replacing in s. Then we will show that
s∗ = s and s∗ →∗

µc t∗. We know that

s →∗
µc t

p
→ t∗

and we want to show that s →∗
µ s∗ →∗

µc t∗. Let q ≤ p be the (unique) minimal
non-replacing position of s. We know that s|q →∗

µ t′ with

t′ →∗
µc t|q

p′

→ t∗|q

where (p = q.p′) and in order to show that s∗ = s and s∗ →∗
µc t∗, it suffices

to show that t′ →∗
µ t′′ →∗

µc t∗|q. If p′ is replacing in t|q (and thus in t′), the
first part of the proof can be used to show t′ →∗

µ t′′ →∗
µc t∗|q. Otherwise, we

26

consider the minimal non-replacing position q′ of t|q (resp. t′) and reduce the

problem as before to the following. Given t′|q′ →∗
µ t

′
with

t
′
→∗

µc t|q.q′

p′′

→ t∗|q.q′ ,

we want to show that t
′
→∗

µ t
′′
→∗

µc t∗|q.q′ . Here, p′ = q′.p′′.
This way, the problem is reduced to subterms of to and t∗o until the step from to
to t∗o is in the replacing part of to. Then part one of this proof can be applied
to show that s∗ = s and s∗ →∗

µc t∗.

Proof of Lemma 3.3

ad(i): For positions p < o ≤ q2 it holds that if s|o initiates an infinite lazy
reduction sequence, so does t|o, because p was chosen to be the maximal po-
sition such that s|o initiates an infinite lazy reduction sequence where t|o does
not. Furthermore, if such a position is also lazy in label|µ(erase(s)), it is lazy
in label|µ(erase(t)) and this contradicts mininf(t). So, let o be a position
such that o > q2. For each such position we have t|o = s|o. Furthermore, as
labelµ(erase(s)) = labelµ(erase(t)), if s|o is eager and initiates an infinite lazy
reduction sequence, then the same is true for t|o, thus the statement holds.
ad(ii): First consider an active rewrite step at a position p. For all positions
q ≤ p we have that the root labels of s|q are the same as in t|q (and are also equal
in labelµ(erase(s)) and labelµ(erase(t))). Furthermore, if s|q does initiate an

infinite reduction sequence, so does t|q, as p is active in t, and thus t|q
LR
→µ s|q.

Root labels of terms s|p.o where o ∈ O(r) (if l → r ∈ R is the active rewrite rule
which has been applied) are the same as root labels of terms labelµ(erase(s))|p.o

as s = t[σlabelµ(r)]p. So if s|p.o is eager, labelµ(erase(s))|p.o is eager as well.
Thirdly, consider positions p.o where o 6∈ O(r). Then a proper superterm of
s|p.o was bound to a variable in the matching σ. Thus, this superterm occurred
already in t. After the rewrite step only the root label of this superterm changed.
Thus, if p.o were an eager position of s which is lazy in labelµ(erase(s)) and s|p.o

initiated an infinite reduction sequence, then there would be a corresponding
position in t having the same properties, which contradicts the assumption that
there are no such positions in t. Finally, for positions o||p we have that t|o = s|o,
thus, as the demanded properties hold for t|o, they hold for s|o, too.
If an activation step which is not an inf-activation step has been applied to t,
then we have mininf(s) according to Definition 3.8.

Proof of Lemma 3.4

We introduce a relation →∗LR
µc : T (Σ′, V ′) × T (Σ, V) similar to →∗

µc , where Σ′

and V ′ are the labelled versions of Σ resp. V :

t′ →∗LR
µc t ⇔ root(erase(t′|p)) = root(t|p) ∧ (t′|q)

e LR
→∗

µ t′′, s.t. t′′ →∗LR
µc t|q

for all p ∈ Act(t′) and all q in the set of minimal non-active positions. By
(t′|q)

e we mean the term t′|q with an eager root label. Then we will show that

27

whenever t′ →∗LR
µc t and t → s, there is a reduction sequence t′

LR
→∗

µ t such that

t →∗LR
µc s and this sequence is not empty if the step t → s takes place at a

position which is active in t′. Thus, we have

t′ →∗LR
µc t

p
→ s

and we want to show that there is a t, such that t′
LR
→∗

µ t →∗LR
µc s. We distinguish

two cases according to the relative position of p.
First, assume that p 6∈ Act(t′) and let p′ be the unique minimal non-active
position in t′. As t′ →∗LR

µc t we know that (t′|p′)e LR
→∗

µ t′′ →∗LR
µc t|p′ . Thus, we

have

t′′ →∗LR
µc t|p′

q
→ s|p′

and as t and s differ only at positions below p′, it is sufficient to show that
there is a t

′
, such that t′′

LR
→∗

µ t
′
→∗LR

µc s|p′ (p = p′.q). Note that p < q as we
demanded that the root position of t′ is eager. If q is non-active in t′′, we can
use the same reasoning to reduce the problem further to subterms of t and s.
Eventually, we will arrive at the following situation. Given

t̃ →∗LR
µc t|p̃

q̃
→ s|p̃,

we have to show that there is a t̃′, such that t̃
LR
→∗

µ t̃′ →∗LR
µc s|p̃ where q̃ is an

active position in t̃. This case will be dealt with in the following.

Secondly, assume t
p
→ s with p ∈ Act(t′). t = t[σl]p for the applied rule

α : l → r. As t′ →∗LR
µc t, l matches modulo laziness t′|p. If this matching

gives rise to an essential position q, this position can be activated in t′ and
as t′|eq

LR
→∗

µ t′′ with t′′ →∗LR
µc t|q, we have t′

LR
→∗

µ t′[t′′]q →∗LR
µc t. This can be

done for all subterms of t′ which are at essential positions in the matching of
l and t′|p yielding t∗ (t′

LR
→∗

µ t∗). Then in the matching (modulo laziness) of
l and t∗ at position p there are no essential positions, thus t∗ = t∗[σ′l]p and
furthermore (σ′x)e LR

→∗
µ sx with sx →∗LR

µc σx, since t∗ →∗LR
µc t and the minimal

lazy positions of t∗ are at or below the variable positions of l in t∗|p. We can
perform the step t∗

LR
→µ s′ = t∗[σ′r]p (note that this step takes place in every

case). Then, for all active positions p.o where o ∈ OV (r), we can reduce s′|p.o

to si with si →∗LR
µc s|p.o. By performing these reductions in s′ (note that the

positions p.o are parallel) we obtain a labelled term s′′ (s′
LR
→∗

µ s′′) and we have

s′′ →∗LR
µc s.

Now consider a context-free reduction sequence starting from a term t contain-
ing infinitely many root reduction steps. We have t′ →∗LR

µc t for every term t′

with erase(t′) = t (especially for terms with eager root label). Every step of the
context-free sequence can be simulated by 0 or more steps in the lazy system.
Every root reduction step is simulated by 1 or more steps. Thus, as there are
infinitely many root reduction steps in the context-free system, an infinite lazy
reduction sequence exists.

28

Proof of Lemma 3.5

We will show that if there is no active rewrite step ti
LR
→µ ti+1 at position p

where p is active in labelµ(erase(ti)), then there must be an inf-activation step
in P . The following observations are the starting point for the proof:

• Every infinite lazy reduction sequence contains infinitely many active
rewrite steps. The reason is that between two active rewrite steps only
finitely many activation steps are possible, as there are only finitely many
positions in a labelled term which can be activated.

• Whenever a position p is active in a labelled term s, then p is active in
every term s′ with s

LR
→µ s′ (regardless of R and µ), unless the step from

s to s′ was an active rewrite step at a position o < p.

• We assume that no active reduction step in terms ti at positions p are
performed where p is active in labelµ(erase(ti)). Thus, we have that
Act(labelµ(erase(t0))) = Act(labelµ(erase(ti))) for all i ≥ 0. Therefore,
as there are infinitely many active rewrite steps, we can deduce that there
are infinitely many rewrite steps below some position q which is minimal
(w.r.t. ≤) non-active in labelµ(erase(t0)).

Let q be such a position which is a minimal (w.r.t. ≤) non-active position in
labelµ(erase(t0)) such that in the sequence P there are infinitely many active
rewrite steps at positions p ≥ q. Clearly, if an active rewrite step takes place at
a position p in a labelled term, then p must be an active position in this term.
Furthermore, it is easy to see that in an activation step, which is induced by a
matching modulo laziness at position p1 activating p2, the “distance” between
p1 and p2 (i.e. |o| where p2 = p1.o) cannot be arbitrarily high. For a given TRS
this distance cannot be higher than the maximal term depth of a left-hand side
of a rule. We will prove that if there is no inf-activation step, an increasingly
large part of the subterms ti|q does not change anymore during the rest of P as
i gets bigger. When the constant part is big enough no activation step induced
by a matching modulo laziness at a position above q can alter a subterm at
position q. Then we can show that some term ti|q initiates an infinite lazy
reduction sequence, which contradicts the non-existence of inf-activation steps
in P .
Towards a contradiction we assume that there is no inf-activation step. First,
there is a subsequence of P t0

LR
→∗

µ ti1 , such that q is active in ti1 , because there
are active rewrite steps in P which take place at positions below q. Furthermore,
as there is no active rewrite step in P at a position q′ < q, q is active in tj for
all j ≥ i1.

• As there is no inf-activation step in P , we have mininf(ti1). Thus, ti1 |q
does not initiate an infinite reduction sequence. From Lemma 3.4 we can
therefore deduce that there are not infinitely many active rewrite steps in
P at position q. Hence, we have ti1

LR
→∗

µ ti2 (as subsequence of P), such
that mininf(ti2) and the subsequence of P starting with ti2 contains no
active rewrite steps at positions p ≤ q.

29

• Positions q.i of ti2 (i ∈ {1, ..., ar(root(erase(ti2 |q)))}) cannot be “deac-
tivated” in the remainder of the sequence P (as there is no more outer
active rewrite step). Hence, all such positions q.i which get activated
in P (actually the subsequence of P starting at ti2), are activated after
finitely many steps. I.e. ti2

LR
→∗

µ ti3 , such that mininf(ti3) holds and
all positions p which are activated in the subsequence of P starting at
ti3 are either parallel to q or below some q.i (p||q ∨ p > p.i for some
i ∈ {1, ..., ar(root(erase(ti3 |q)))}).

The function symbol root(erase(ti3 |q)) is the same as root(erase(tj |q)) for all
j ≥ i3 and all labels at positions q and q.i where i ∈ {1, ..., ar(root(erase(ti3 |q)))})
are the same in all labelled terms tj for all j ≥ i3.
We show another step of this construction:

• There are not infinitely many active rewrite steps in P at positions q.i for
i ∈ {1, ..., ar(root(erase(ti3 |q)))}) (because of Lemma 3.4 and mininf(ti3)).
Thus, we have ti3

LR
→∗

µ ti4 , such that mininf(ti4) and there are is no active
rewrite step in the subsequence of P starting at ti4 at a position p ≤ q.i

for i ∈ {1, ..., ar(root(erase(ti4 |q)))}).

• We know that positions p.i.j, where j ∈ {1, ..., ar(root(erase(ti2 |q.i)))}),
cannot be deactivated in the subsequence of P starting at ti4 . Thus,
we have ti4

LR
→∗

µ ti5 , with mininf(ti5), such that all positions p which
are activated in the subsequence of P starting at ti5 are either paral-
lel to q or below one q.i.j. (p||q ∨ p > p.i.j for some p.i.j where i ∈
{1, ..., ar(root(erase(ti5 |q)))} and j{1, ..., ar(root(erase(ti5 |q.i)))}).

Now we have that positions q.i.j where
i ∈ {1, ..., ar(root(erase(ti5 |q)))}) and j ∈ {1, ..., ar(root(erase(ti5 |q.i)))}) are
not altered in P by a rewrite step at position o ≤ q.
This construction can be continued to prove that for an arbitrary number n

there is a term tin
such that mininf(tin

) and positions q.o are not altered by
rewrite steps at positions at or above q where |o| ≤ n. For a sufficiently high
n this implies that the subterm tin

|q is not altered anymore by any step at a
position at or above q in the remainder of P , because it could only be altered
by an activation induced by a matching modulo laziness at a position p ≤ q.
This is impossible as after n exceeds the maximal term depth of a left-hand in
R it would imply that some position p.o is altered.
Thus, all rewrite steps in the subsequence of P starting at tin

below position
q are also possible in tin

|q. As we assumed that in P there are infinitely many
rewrite steps below positions q, there are still infinitely many rewrite steps below
q in the subsequence of P starting at tin

. Therefore, tin
|q initiates an infinite

lazy reduction sequence. As position q is lazy in labelµ(erase(tin
)), this implies

that we do not have mininf(tin
). Thus, according to Lemma 3.3 there is an

inf-activation step in P .

30

