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We revisit known transformations of conditional rewrite systems to uncondi-
tional ones in a systematic way. We present a unified framework for describing
and classifying such transformations, discuss the major problems arising, pro-
vide simplified (old) and new counterexamples to certain (desirable) properties
of specific transformations, and finally present a new transformation which has
some advantages as compared to a quite recent approach, namely the one of [1].1

In this abstract, due to lack of space we focus on the latter contribution, after
briefly discussing major general issues with such transformation approaches.

Conditional term rewrite systems (CTRSs) and conditional equational spec-
ifications are very important in algebraic specification, prototyping, implemen-
tation and programming. They naturally occur in most practical applications.
Yet, compared to unconditional term rewrite systems (TRSs), CTRSs are much
more complicated, both in theory (especially concerning criteria and proof tech-
niques for major properties of such systems like confluence and termination) and
practice (implementing conditional rewriting in a clever way is far from being
obvious, due to the inherent recursion when evaluating conditions). For these
(theoretical and practical) reasons, transforming CTRSs into (unconditional)
TRSs in an adequate way has been studied for a long time cf. e.g. [3], [4], [5], [6],
[7], [8], [9], [1], [10], [11], [12]. The motivations for these transformations were
manifold, depending on the overall goal of the analysis (see below).

Roughly, all transformations work by translating the original syntax (sig-
nature and terms) into an extended or modified one using auxiliary function
symbols, and by translating the rules in a corresponding way such that the
evaluation of conditions and some control structure is (appropriately) encoded
within the resulting unconditional TRS.

Already from this abstract point of view, the main questions and problems
of such transformation approaches can be inferred:

– How are the relevant (syntactical and semantic) properties of a given CTRS
R and its transformed TRS R′ related?

– Is it possible to infer a property P (R) from P (R′) (soundness) and vice versa
(completeness). Typically, and unlike in many other settings, here complete-

ness properties are less difficult to show/obtain than soundness properties.
The intuitive reason is that the transformations are designed such that ev-
ery reduction step that was possible in the original system can be simulated

1 The work presented here is partially based on [2].
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by a reduction (sequence) in the transformed system. On the other hand,
since the evaluation of conditions in the transformed system is done using
unconditional rewrite rules, there is no obvious encapsulation any more as in
the conditional case. And this entails the danger of enabling reductions that
were originally impossible (because a failed attempt to verify a condition
in the conditional system has no further consequences). Hence, for instance
soundness usually is a problem.

– From a theoretical point of view: Is a given transformation useful for ana-
lyzing a given CTRS via its transformed unconditional version?

– From a practical point of view: Does a given transformation yield an op-
erational / executable specification / high-level implementation with good
properties, e.g. in terms of the input/output behaviour, of efficiency, of com-
prehensibility, . . . ? Is (explicit meta-level) backtracking, corresponding to
failed attempts of verifying conditions, in the transformed system avoided?

One property of transformations which is particularly important from a prac-
tical point of view, is the following: If we start a simulation (a reduction in
the transformed TRS) from an transformed initial term and obtain a normal
form in the transformed system, then the latter should correspond to a normal
form of the initial term in the original CTRS (this property, together with a few
other requirements, is called computational equivalence in [1]). Otherwise, some
form of backtracking would be needed, because then we are stuck with a failed
attempt of verifying conditions. As an example consider the (oriented normal)
CTRS R (cf. [8, 1]) consisting of the two rules

f(g(x)) → 0 ⇐ x → 0 g(g(x)) → g(x)

and the initial term t = f(g(g(0))). Unravelings following the approach of [6, 7]
use new function symbols to encode conditions and store the variable bindings
until finally – if the conditions are verified – the right-hand side may be produced:

f(g(x)) → U1(x, x) U1(0, x) → 0 g(g(x)) → g(x)

Here, t reduces to normal forms 0 and U1(g(0), g(0)). However, the latter term
does not correspond to a normal form in the original CTRS.

Transformations like the one of [8] increase the arity of some function symbols
and encode the conditions in these new “conditional” arguments. For notational
simplicity we will collect them in lists denoted by [. . .] where [ ] represents the
empty list. Using this approach, we get:

f ′(g(x), [ ]) → f ′(g(x), [x]) f ′(g(x), [0]) → 0 g(g(x)) → g(x) .

For constructor–based CTRSs, this approach of [8] yields good results, but in
our example, which is not a constructor system, we still obtain – from the trans-
formed initial term t′ = f ′(g(g(0)), [ ]) – an undesired normal form f ′(g(0), [g(0)])
that does not correspond to a normal form of the initial term t in the original
CTRS.
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To solve this problem, [1] proposed an additional unary operand {.} for “re-
setting” conditional arguments whenever an “inner” rewrite step occurs:

f ′(g(x), [ ]) → f ′(g(x), {x}) f ′(g(x), {0}) → {0} g(g(x)) → {g(x)}

f ′({x}, z) → {f ′(x, [ ])} g({x}) → {g(x)} {{x}} → {x}

Here, the only normal form of the transformed initial term t′ = f ′(g(g(0)), [ ])
is {0} which corresponds to 0 as desired. Yet, in general this transformation de-
stroys some syntactical properties of the original CTRS like being a constructor
system, reinforces sequential processing of conditions and “(too) often” resets
encoded conditions.

In our approach we encode conditions at “appropriate more inner” positions
such that propagation of “reset information” is earlier possible. This approach
also works for CTRSs with deterministic extra variables (DCTRSs), is a proper
extension of the transformation of [8] and has better support for parallel rewrit-
ing. In the example, our new transformation yields the TRS

f(g′(x, [ ])) → f(g′(x, [x])) f(g′(x, [0])) → 0 g′(g′(x, z2), z1) → g′(x, [ ]) .

Now, starting from the transformed initial term t′ = f(g′(g′(0, [ ]), [ ])) which
corresponds to t above, there is only one normal form as desired, namely 0.
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