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Abstract Termination and confluence properties of term rewriting systems are of
fundamental importance, both from a theoretical point of view and also concerning
many practical applications in computer science and mathematics. We study structural
aspects of termination and confluence properties of unconditional and conditional term
rewriting systems. Two types of structural aspects are considered.

First we investigate single rewrite systems. In a systematic manner we analyze how
restricted versions of termination and confluence relate to each other and to general
termination and confluence. In particular we focus on innermost rewriting and its
properties. Various structural syntactic and semantic conditions are isolated which
guarantee equivalence of general termination (and confluence) and weakened versions
of these properties.

In a second major part we consider structural aspects of combining systems. Here we
investigate modularity and preservation properties of rewrite systems under various
types of combinations. We survey known results in a unifying framework and develop
new approaches, in particular for ensuring the preservation of termination under various
types of combinations. The abstract results obtained provide a deeper insight into the
striking phenomena that rewriting in combined systems may exhibit, and entail various
interesting positive consequences.

Zusammenfassung Terminierungs- und Konfluenzeigenschaften von Termer-
setzungssystemen sind von fundamentaler Bedeutung sowohl in theoretischer Hin-
sicht als auch im Hinblick auf viele praktische Anwendungen in Informatik und Ma-
thematik. Wir untersuchen strukturelle Aspekte von Terminierungs- und Konfluenz-
eigenschaften bei unbedingten und bedingten Termersetzungssystemen. Dabei werden
zweierlei Arten von strukturellen Aspekten betrachtet.

Zunächst werden einzelne Ersetzungssysteme behandelt. In systematischer Art und
Weise analysieren wir, wie abgeschwächte Formen von Termination und Konfluenz
miteinander in Beziehung stehen, und welche Beziehungen zwischen ihnen und all-
gemeiner Termination und Konfluenz bestehen. Besondere Berücksichtigung findet
dabei die ‘innermost’-Reduktionsrelation, bei der minimale Teilterme, d.h. Teilterme
an innnersten Stellen, ersetzt werden. Es werden verschiedene strukturelle, sowohl syn-
taktische als auch semantische, Bedingungen hergeleitet, die hinreichend sind für die
Äquivalenz von allgemeiner Termination (und Konfluenz) und abgeschwächten Formen
von Termination (und Konfluenz).

Im zweiten Teil betrachten wir strukturelle Aspekte bei der Kombination mehrerer Sys-
teme. Dabei werden Modularitäts- und Erhaltungseigenschaften unter verschiedenen
Kombinationstypen untersucht. Bekannte Ergebnisse werden in einem einheitlichen
Rahmen systematisch präsentiert. Wir entwickeln wesentlich neue Ansätze zur Erhal-
tung von Termination unter verschiedenen Kombinationstypen. Die hierbei erzielten
abstrakten Resultate ermöglichen eine tiefere Einsicht in die erstaunlichen Phänomene,
die beim Termersetzen in kombinierten Systemen auftreten können. Ferner lassen sich
viele interessante positive Konsequenzen und Erhaltungssätze elegant daraus herleiten.
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Matthias Fuchs, Carlos Loŕıa-Saénz and Rita Kohl for their helpfulness.

Special thanks to Andrea Sattler-Klein and Joachim Steinbach for many interesting
discussions and feedback on topics related to this thesis, and to Claus-Peter Wirth for
an intensive and fruitful cooperation on several related subjects.

For their support with various LATEX problems I am grateful to Thomas Deiß and Eric
Domenjoud.

I am much obliged to Aart Middeldorp, for many stimulating and clarifying discussions
on modularity issues as well as for his detailed and useful comments on a preliminary
version of this thesis. Moreover, I wish to thank Vincent van Oostrom, Yoshihito
Toyama, Nachum Dershowitz and David Plaisted for various feedback on my work and
interesting discussions on related issues.

And finally, I would like to apologize to all those who have suffered somehow during
the last years because of all the time and energy I devoted to writing this thesis.





Contents

1 Introduction and Overview 1

2 Preliminaries 9

2.1 Abstract Reduction Systems . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Term Rewriting Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Confluence Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Termination Criteria . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Conditional Term Rewriting Systems . . . . . . . . . . . . . . . . . . . 36

2.3.1 Confluence without Termination . . . . . . . . . . . . . . . . . . 42

2.3.2 Confluence with Termination . . . . . . . . . . . . . . . . . . . 44

2.4 Combined Systems and Modularity Behaviour . . . . . . . . . . . . . . 45

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.2 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Relating Termination and Confluence Properties 57

3.1 Orthogonal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Non-Overlapping Systems . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Locally Confluent Overlay Systems . . . . . . . . . . . . . . . . . . . . 63

3.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Confluence of Innermost Reduction . . . . . . . . . . . . . . . . . . . . 83

3.6 Conditional Rewrite Systems . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6.1 Non-Overlapping Conditional Systems . . . . . . . . . . . . . . 92

3.6.2 Conditional Overlay Systems with Joinable Critical Pairs . . . . 95

4 Modularity of Confluence Properties 99

4.1 Confluence and Local Confluence . . . . . . . . . . . . . . . . . . . . . 99

4.2 Unique Normal Form Properties . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Non-Disjoint Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



4.4 Conditional Rewrite Systems . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Modularity of Termination Properties 113

5.1 History and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.1 Some History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.2 Basic Counterexamples . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.3 Classification of Approaches . . . . . . . . . . . . . . . . . . . . 118

5.2 Restricted Termination Properties . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Weak Termination and Weak Innermost Termination . . . . . . 119

5.2.2 Strong Innermost Termination . . . . . . . . . . . . . . . . . . . 121

5.3 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.1 The General Approach via an Abstract Structure Theorem . . . 121

5.3.2 The Modular Approach via Innermost Termination . . . . . . . 137

5.3.3 The Syntactic Approach via Left-Linearity . . . . . . . . . . . . 141

5.4 Non-Disjoint Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4.1 Restricted Termination Properties and Semi-Completeness . . . 145

5.4.2 Termination of Constructor Sharing / Composable Systems . . . 146

5.5 Conditional Rewrite Systems . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5.1 Termination Properties under Signature Extensions . . . . . . . 151

5.5.2 Restricted Termination Properties . . . . . . . . . . . . . . . . . 161

5.5.3 Termination and Completeness . . . . . . . . . . . . . . . . . . 163

5.5.4 Non-Disjoint Unions . . . . . . . . . . . . . . . . . . . . . . . . 166

6 Related Topics and Concluding Remarks 169

6.1 Hierarchical and Other Types of Combinations . . . . . . . . . . . . . . 169

6.2 Combining Abstract Reduction Systems . . . . . . . . . . . . . . . . . 171

6.3 Related Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A Proofs 175

B A Parameterized Version of the Well-Founded Induction Principle 185

Bibliography 193

Index 209

Symbols 215



Chapter 1

Introduction and Overview

In this introduction we shall first sketch the background of this thesis, namely the field
of term rewriting, its basic idea, some history and applications. Then the main moti-
vations for this work, its context and goals pursued are briefly discussed. A detailed
summary of the thesis and its main contributions follow. And finally, we mention some
aspects concerning the presentation philosophy.

Term Rewriting: Basic Idea, History and Applications

Term rewriting systems provide an elegant, abstract and simple, yet powerful, com-
putation mechanism. The basic idea is very simple: replacement of equals by equals
by applying symbolic equations over symbolically structured objects, terms . Apply-
ing equations in one direction only immediately leads to the concept of (directed)
term rewriting . Since different parts of structured objects, the subterms , can be re-
placed by applying different term rewriting or rewrite rules, this obviously leads to
non-deterministic computations. Moreover, after one computation (rewrite) step the
same kind of computation may be possible again. Hence two basic questions naturally
arise:

• Do all computations eventually stop?

• If there exist diverging computations (i.e., computations which proceed along
different branches) issuing from the same origin (starting term), can the corre-
sponding different intermediate results be brought together again (by appropriate
further computations)?

The first problem is usually called the termination problem, the second one the con-
fluence problem. A term which cannot be rewritten any more is in normal form or
irreducible. For terminating systems normal forms always exist (and usually can be
constructively computed in finite time). If a system is both terminating and confluent,
then normal forms always exist and are even unique, irrespective of the computation
(rewriting) strategy. For this reason, too, termination is a very useful and desirable
property. In the case of non-terminating but confluent systems, normal forms need
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not exist, however, if a normal form exists, it is still unique. This corresponds to the
general observation that computations (described by programs in some computation
formalism) need not always stop, but if they do, the final results should – hopefully
and provably – be unique. In a non-terminating but confluent rewrite system one even
knows that (intermediate results of) infinite diverging computations can be joined
again. In some cases, non-termination is inherently unavoidable, in other cases it may
be very difficult to verify the termination property. Hence the problem of proving
confluence (with or without termination) is of fundamental importance, too. In fact,
virtually any computation formalism which is based on rewriting systems heavily relies
on (various versions of) the fundamental properties of termination and confluence.

If the objects of computation do not have any additional internal structure, one arrives
at an abstracted version of term rewriting systems (TRSs), namely abstract reduction
(rewrite) systems (ARSs). In fact, many basic properties and results for rewrite systems
can already be formulated in this more abstract setting. Then it is instructive to see
which properties and results for term rewriting systems do not depend on the additional
structure which one encounters there, and which ones do indeed make essential use
of the term structure. For instance, for abstract reduction systems it is well-known
that, under termination, confluence is equivalent to local confluence (which means
that all one-step divergences can be joined), via Newman’s Lemma ([New42]). For term
rewriting systems, local confluence can be characterized by confluence of critical pairs
(which make essential use of the term structure) as expressed by the well-known Critical
Pair Lemma ([KB70], [Hue80]). Hence, for (finite) terminating TRSs, this critical pair
test yields decidability of confluence. For proving confluence of non-terminating ARSs
or TRSs, however, one usually needs much stronger local confluence properties.

The first systematic investigations related to term rewriting date back to the first half
of this century. At that time basic computation formalisms like λ-calculus ([Chu41],
[Bar84]) and combinatory logic ([Cur30a; Cur30b], [CF58], [CHS72]) were developed
and studied. Also, first fundamental properties of abstract reductions systems were
established at that time ([CR36], [New42]). The field of term rewriting got a decisive
impact by the pioneering paper of Knuth & Bendix ([KB70]) which paved the way
for a systematic study of ways to complete non-confluent (terminating) term rewriting
systems to confluent (terminating) ones via so-called completion procedures .

Term rewriting has various applications in many fields of computer science and math-
ematics. Almost any conceivable form of symbolic computation is amenable to term
rewriting techniques. In particular, term rewriting has been successfully applied in
the fields of functional programming, functional-logic programming, equational pro-
gramming, unification theory, abstract data type specifications, program verification,
transformation, implementation, optimization and synthesis, general and inductive the-
orem proving in equational and first-order logic.

Motivation and Goals

Our main motivations concerning the topics of this thesis are essentially two-fold.
First of all, we think that still nowadays many basic features and phenomena in term



3

rewriting are largely unexplored, and lack a satisfactory explanation. In other words, we
think that much more work towards a better understanding of rewriting mechanisms
is indispensable, and might turn out to be very fruitful in other contexts, too. For
instance, the theory of orthogonal , i.e., non-overlapping and left-linear , rewrite systems
is fairly well-explored, however, not much is actually known for less restricted classes
of rewrite systems.

A second, more concrete motivation was provided by the project background in which
I was working for the last years. Here the main theme was ‘Equational Reasoning’
with a special focus on algebraic specification and inductive theorem proving in an
equational setting. Using term rewriting as operational semantics for equational speci-
fications of functions many questions naturally arise. For instance, what are the exact
relations to other, more operational formalisms for specifying functions and algorithms
where a fixed evaluation strategy (most often a kind of innermost evaluation) is pre-
scribed? How do the corresponding properties of and proof techniques for the different
frameworks compare to each other? In a sense, the investigations to be presented in
Chapter 3 correspond closely to these basic questions. Another related issue is the
general difficulty of proving termination and confluence properties. In algebraic speci-
fication very often some kind of incremental or modular specification discipline is used,
for obvious reasons. Hence, an investigation of modular aspects of such equational or
rewrite specifications is quite natural and indeed necessary. Modularity and preserva-
tion properties of combination mechanisms for rewrite systems are extremely useful for
analyzing complex specifications by appropriate decompositions (divide and conquer),
and, from a dual point of view, for an incremental or modular construction of com-
plex systems from smaller, less complicated ones. In fact, this is a general observation
which applies to many fields and problems. In the general term rewriting setting, how-
ever, things are rather complicated. The systematic study of such modular aspects in
this field started with the pioneering work of Toyama about ten years ago ([Toy87b;
Toy87a]) who established the modularity of confluence for disjoint unions and discov-
ered the non-modularity of termination. Subsequently, Middeldorp ([Mid90]) and oth-
ers obtained further very interesting results. Meanwhile, the study of modular aspects
of term rewriting has turned out to be a very active and fruitful field of research.

Our main goals pursued in this thesis can be summarized as follows. We wish to
contribute to

• a deeper understanding of structural termination and confluence properties of
term rewriting, and

• a thorough analysis of the crucial phenomena and (non-)modular aspects con-
cerning the combination of rewrite systems.

Structure of the Thesis

Essentially this thesis consists of two main parts, one dealing with structural termi-
nation (and confluence) properties of single rewrite systems (Chapter 2) and another
one where properties of structured combinations of rewrite systems are investigated
(Chapters 4 and 5).
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In the second chapter we collect in a systematic form the necessary preliminaries needed
later on. In Section 2.1 we first introduce the basic theory of abstract reduction systems
(ARSs) which in essence are just sets equipped with a binary relation. The relevant
properties of ARSs and the most important basic results are presented in a concise and
self-contained manner. In Section 2.2 we provide the basic terminology of and theory
about term rewriting systems (TRSs) which are ARSs with some additional structure.
The format of term rewriting is extended in Section 2.3 where we consider conditional
term rewriting systems (CTRSs). Here the applicability of rewrite rules is restricted by
conditions which have to be recursively evaluated using the same rewrite mechanism.
Basic problems with this extended notion of rewriting are also briefly touched. This
introduction of abstract reduction systems and (unconditional as well as conditional)
term rewriting focuses on known results, methods and techniques for verifying the
fundamentally important properties of confluence and termination. Finally, in Section
2.4 different kinds of combinations of systems as well as basic problems arising are
discussed. For the special case of disjoint unions we introduce the necessary terminology
and basic theory. This is then extended to non-disjoint combinations of constructor
sharing and of composable systems.

Chapter 3 constitutes the first major part of this thesis. We review in Section 3.1
known results on termination and confluence properties of orthogonal TRSs. Then we
show in Section 3.2 how to generalize almost all of these results to non-overlapping,
but not necessarily left-linear systems. We give various counterexamples showing that
the preconditions of the obtained results cannot be dropped. Then, in Section 3.3 we
relax the non-overlapping restriction by requiring the systems to be only overlaying and
locally confluent. We show that the most important result for non-overlapping systems,
namely the equivalence of innermost and general termination, does indeed also hold for
this more general class of TRSs. In Section 3.4 we develop an alternate, incompatible
approach for showing the equivalence of innermost and general termination, thereby
generalizing most of the results of Section 3.2. In Section 3.5 we exclusively deal
with properties of innermost rewriting and relate them to the corresponding properties
of general rewriting, which again leads to a couple of new results and generalized
versions of already known ones. Finally, in Section 3.6, we extend the previous analysis
to conditional systems and show how to cope with the additional complications and
problems arising there. In particular, we prove here a key lemma which expresses an
interesting localized completeness property for conditional overlay systems without a
full termination assumption.

In Chapter 4 the modularity of confluence and related properties is dealt with. We
provide a comprehensive overview of known results and sketch the basic problems,
ideas and proof techniques. The systematic and unifying presentation entails some
slight improvements / simplifications of already known modularity results and proofs,
respectively. Furthermore, we show by counterexamples that the properties local con-
fluence and joinability of all critical pairs , which are well-known to be non-equivalent
for conditional systems, are not even preserved under signature extensions. Finally,
modularity of confluence properties for non-disjoint unions of conditional systems is
briefly discussed.
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Chapter 5 constitutes the second major part of this thesis. Modular aspects of termi-
nation properties are comprehensively treated here. An overview is provided in Section
5.1. First we give a brief historic account of the crucial papers, ideas, approaches and
results that have been obtained up to date. Furthermore, basic counterexamples to
the modularity of termination in the disjoint union case are collected in a systematic
manner. We point out their characteristic features and develop a rough classification
of corresponding successful approaches for obtaining positive modularity results for
termination. Then, in Section 5.2, the known modularity results for weak termination,
weak and strong innermost termination are recapitulated as well as their consequences,
for instance concerning semi-completeness. Section 5.3 comprehensively deals with the
modularity of various versions of general termination. First we show how, via an
abstract structure theorem characterizing minimal counterexamples, many previous
results can be generalized and presented in a unifying framework. This powerful ab-
stract structure theorem entails a lot of derived results and criteria for modularity of
termination. Then we show how, via a modular approach exploiting the modularity of
innermost termination and the main results of Chapter 3, further interesting criteria
for the preservation of termination and completeness can be obtained relatively easily.
And finally, a third basic approach for ensuring modularity of termination is reviewed.
In essence, it relies on commutation properties guaranteed by left-linearity and certain
uniqueness properties of collapsing reduction. For all three approaches both symmetric
and asymmetric criteria for the preservation of termination under disjoint unions are
presented. In Section 5.4 it is shown how to extend many previously presented results
to combinations of constructor sharing or even of composable systems. Special empha-
sis is put on the crucial differences of the latter more general combination mechanisms
as compared to disjoint unions. And in fact, in most cases the basic ideas and proof
techniques for the disjoint union case are also applicable in this more general setting,
taking adequately the additional sources of complications into account. Section 5.5
summarizes the corresponding results for conditional rewrite systems. Here we demon-
strate in particular that some intuitively appealing assertions are fallacious. Namely,
we give counterexamples showing that weak termination as well as weak and strong
innermost termination are not even preserved under signature extensions.

Finally, in chapter 6 we give an outline of issues that have not yet been explicitly treated
or only touched. Crucial ideas and proof techniques which are generally applicable
are mentioned. In Section 6.1 further more general, in particular hierarchical, types
of combining rewrite systems are briefly discussed. We give pointers to the relevant
literature and sketch basic new problems arising when one considers hierarchically
structured combinations of systems. General aspects of combining abstract reduction
systems and known approaches in this field are very briefly dealt with in Section 6.2.
Topics and fields which are more or less closely related to the main themes in this
thesis but which had to be neglected or omitted in the presentation are summarized in
Section 6.3.

Appendix B constitutes an independent and self-contained investigation of a param-
eterized version of the well-founded induction principle. For the sake of readability
of the main text the non-trivial and lengthy proof of the important Theorem 3.6.1 is
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postponed and given in Appendix A.1

Main Contributions

From a more abstract conceptual point of view, and corresponding to the overall struc-
ture of this thesis, we think that its main contributions are as follows.

• We have initiated a systematic study of relating termination and confluence
properties of general rewriting and restricted versions of rewriting, in particu-
lar innermost rewriting, resulting in the discovery of some remarkable structural
properties. These results entail new insights into the essence of sources for non-
termination and non-confluence. Or, to put it positively, our analysis provides
new techniques for verifying termination and confluence by a reduction to simpler
problems.

• We have developed two new basic approaches for establishing modularity of termi-
nation. The first general approach proceeds by a careful analysis of minimal coun-
terexamples and reveals an interesting structural property whose consequences
subsume many results in a unifying framework. The second modular approach
crucially relies on equivalence conditions for innermost and general termination
and provides new powerful means for analyzing combined systems. Interestingly,
the essential ideas of both approaches extend naturally, both to conditional sys-
tems as well as to combinations of systems that are more general than disjoint
unions.

On a more concrete level we think that the most notable results obtained are the
following:

• equivalence conditions for weak, weak innermost, strong innermost and general
termination of rewrite systems (Theorems 3.2.11, 3.3.12, 3.4.11, 3.4.17, 3.4.33,
3.6.17, 3.6.19)

• a localized structural confluence property for conditional overlay system without
a full termination assumption (Theorem 3.6.1)

• new results concerning confluence of innermost rewriting and its relation to gen-
eral rewriting (Theorems / Corollaries 3.5.2, 3.5.4, 3.5.13)

• a general structure theorem characterizing non-modularity of termination (The-
orems 5.3.8(a), 5.4.4, 5.5.31)

• modularity criteria for completeness (Theorems 5.3.31, 5.3.38, 5.3.42, 5.4.11,
5.4.12, 5.5.27, 5.5.37)

1Actually, subtle aspects in this proof motivated the study of conditions which guarantee correct-
ness of parameterized versions of the well-founded induction principle.
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• counterexamples showing that local confluence, joinability of critical pairs, weak
termination, weak innermost termination and strong innermost termination of
conditional rewrite systems are not even preserved under signature extensions
(Examples 4.4.3, 4.4.4, 5.5.2, 5.5.3), and corresponding positive results describing
better-behaved cases (Theorems 5.5.20, 5.5.21).

Style of Presentation

Some comments seem in order to ease reading and enhance comprehension of the
underlying structure of the thesis and its form of presentation.

Unfortunately, we had to omit a lot of material in order to keep the thesis reasonable
in size. For related own, partially joint work with others which is not or only briefly
touched, the reader is referred to [MG93; MG95], [WG93; WG94], [Gra95b], [Gra95e],
[GW96].

Own results presented in this thesis have already been partially published (for the
corresponding most polished paper versions we refer to [Gra94a], [Gra93b], [Gra95a],
[Gra95d], [Gra96b], [Gra95c], [Gra96a]).

Concerning the history of ideas and results, we have tried to the best of our knowledge
to systematically label or name the origin of important concepts, ideas, definitions and
results. Due to this reason we sometimes refer to early or preliminary paper versions.
Furthermore, in order to improve readability and to be able to quickly recall things we
often use keywords to label introduced concepts / definitions and presented results.

A major presentation problem we were faced with is due to the fact that in some sense
the modularity issues treated here have a three-dimensional structure. One dimension
is due to the properties considered (like termination, confluence, etc.), another one to
the cases of unconditional and conditional TRSs, and a third one stems from the kind of
union under consideration (disjoint / constructor sharing / composable systems). Our
chosen linearization of this three-dimensional structure (which concerns Chapters 4 and
5), is roughly as follows. The first choice is the property (or class of properties) to be
discussed, namely confluence (and related) properties and then termination properties.
Secondly, we focus on the (less complicated) unconditional case, and finally we treat
disjoint unions in detail. The latter decision has the advantage that the basic ideas,
approaches and proof techniques (which are often already quite involved) can be more
adequately exhibited than when starting from scratch within the more complicated
setting. Consequently, for the remaining cases we only develop (or sometimes only
sketch) the necessary adaptations.





Chapter 2

Preliminaries

In Section 2.1 we first introduce the basic theory of abstract reduction systems (ARSs)
which in essence are just sets equipped with a binary relation. The relevant properties
of ARSs and the most important basic results are presented in a concise and self-
contained manner. In Section 2.2 we provide the basic terminology of and theory
about term rewriting systems (TRSs) which are ARSs with some additional structure.
The format of term rewriting is extended in Section 2.3 where we consider conditional
term rewriting systems (CTRSs).

Here the applicability of (term) rewrite rules is restricted by a conjunction of conditions
which have to be recursively evaluated using the same rewrite mechanism. Basic prob-
lems with this extended notion of rewriting are also briefly touched. This introduction
of abstract reduction systems and (unconditional as well as conditional) term rewrit-
ing focuses on known results, methods and techniques for verifying the fundamentally
important properties of confluence and termination. Finally, in Section 2.4 we give a
compact introduction into the combination setting. Different kinds of combinations of
systems are discussed as well as basic problems arising. For the special case of dis-
joint unions we then introduce the necessary terminology and basic theory. This is
finally extended to non-disjoint combinations of constructor sharing and of composable
systems.

Readers familiar with the theory of abstract reduction systems, term rewriting and
modularity may skip these preliminaries for a first reading and consult them by need.

2.1 Abstract Reduction Systems

First let us remark that we assume familiarity with basic mathematical no(ta)tions,
terminology, and facts about sets, relations, functions, pairs, tuples etc..

For more details concerning the following basic no(ta)tions and results for abstract
reduction systems the reader is referred to [Klo92] (cf. also [Hue80], [New42], [Ros73],
[Sta75]).
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Definition 2.1.1 (abstract reduction system)
An abstract reduction system (ARS for short) is a pair A = 〈A,→〉 consisting of a
(base) set A and a binary relation →⊆ A×A also called reduction or rewrite relation.
Instead of (a, b) ∈→ we write a → b. The (binary) identity relation {(a, a) | a ∈ A} on
A is denoted by idA. A reduction(sequence) or derivation (in A) is a (finite or infinite)
sequence a1, a2, a3, . . . of elements in A such that a1 → a2 → a3 → . . ..

Definition 2.1.2 Let A = 〈A,→〉 be an ARS.

(1) → is the one-step rewrite relation with transitive closure →+ and transitive-
reflexive closure →∗. If a →∗ b we say that a reduces or rewrites to b and that
b is a reduct or successor of a. The n-fold composition →n of → (for n ≥ 0) is
defined by →0 := idA and →n+1 := →n ◦ →.

(2) →= := →≤1 := → ∪ →0 denotes the reflexive closure of →.

(3) ← := →−1 := {(b, a) | a → b} denotes the inverse of →. Analogously, =← and
∗← stand for the reflexive and transitive-reflexive closure of ←, respectively.

(4) ↔ := → ∪ ← denotes the symmetric closure of →. The transitive-reflexive
closure ↔∗ of ↔ is called conversion or convertibility relation.

(5) ↓ := →∗ ◦ ∗← is the joinability or common successor relation. If a ↓ b then
there exists some c with a →∗ c ∗← b. Such an element c is called a common
reduct of a and b.

Note that the base set of the derived reduction relations →+, →∗ etc. is tacitly assumed
to be A thus yielding ARSs over the same base set.

Given some ARS A = 〈A,→〉 one is often interested in properties of the reduction
relation on some specific subset of A. This leads to the following concept.

Definition 2.1.3 (Sub-ARS)
Let A = 〈A,→α〉 and B = 〈B,→β〉 be two ARSs. Then A is a sub-ARS of B, if the
following conditions are satisfied:

(1) A ⊆ B.

(2) →α is the restriction of →β to A, i.e., ∀a, a′ ∈ A. a →α a′ ⇐⇒ a →β a′.

(3) A is closed under →β, i.e., ∀a ∈ A∀b ∈ B. a →β b =⇒ b ∈ A.

Of particular interest is the sub-ARS determined by an element a in an ARS.

Definition 2.1.4 (reduction graph)
Let A = 〈A,→〉 be an ARS and a ∈ A. Then G(a), the reduction graph of a, is the
smallest sub-ARS of A containing a, i.e., G(a) = 〈G(a),→ ∩ (G(A) × G(A))〉 with
G(a) = {b ∈ A | a →∗ b}.
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Next we introduce various basic properties of ARSs. If an ARS A = 〈A,→〉 has some
property P (which does not directly depend on the base set A but only on →1 ) we
also say that → has property P . In this case, or if A is clear from the context, we also
write P(→) or simply P instead of P(A). If P is a universally quantified property of
A of the form ∀a ∈ A.P ′(a) then, slightly abusing notation, we also write P(a) for the
‘local’ version P ′(a) of the property P . In order to make clear the respective reduction
relation, we also write P(a,→) instead of P(a). Instead of “〈A,→〉 is an ARS” we also
say “→ is a reduction relation on A”.

Definition 2.1.5 (confluence properties)
Let A = 〈A,→〉 be an ARS.

(1) A is confluent (CONF) if ∗← ◦ →∗⊆→∗ ◦ ∗←.

(2) A is Church-Rosser (CR) if ↔∗ ⊆→∗ ◦ ∗←.

(3) A is locally confluent or weakly Church-Rosser (WCR) if ← ◦ →⊆→∗ ◦ ∗←.

(4) A is strongly confluent (SCR) if ← ◦ →⊆→∗ ◦ =←.

(5) A is subcommutative (WCR≤1) if ← ◦ →⊆→= ◦ =←.

(6) A is uniformly confluent (WCR1) if ← ◦ →⊆ idA ∪ (→ ◦ ←).

(7) A has the diamond property (♦) if ← ◦ →⊆→ ◦ ←.

Note that if the reduction relation → of A = 〈A,→〉 is reflexive, then the diamond
property, subcommutativity and uniform confluence of A are equivalent.

All confluence properties above except (2) specialize in a straightforward way to ele-
ments a ∈ A by taking a to be the start of the diverging reductions. For instance, we
say that a ∈ A is confluent if for all b, c ∈ A with b ∗← a →∗ c there exists d ∈ A with
b →∗ d ∗← c.

Lemma 2.1.6 (characterizations of confluence)
Let A = 〈A,→〉 be an ARS. Then the following properties are equivalent:

(1) → is Church-Rosser.

(2) → is confluent.

(3) →∗ has the diamond property.

(4) →∗ is locally confluent.

(5) →∗ is subcommutative.

(6) ← ◦ →∗ ⊆→∗ ◦ ∗←.

Proof: The implications (1) =⇒ (2) =⇒ . . . =⇒ (6) are trivial. (6) =⇒ (1) follows
from ∀n ≥ 0 :↔n ⊆→∗ ◦ ∗← which is easily proved by induction on n.

1More precisely, this means: P(〈A,→〉) ⇐⇒ P(〈B,→〉), where B = {a ∈ A | ∃b ∈ A. a → b}∪{b ∈
A | ∃a ∈ A. a → b}.
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Remark 2.1.7 Justified by the equivalence of (1) and (2) above and following a
widespread convention we shall subsequently denote the confluence property by CR.

Remark 2.1.8 Note that due to the equivalences CR(→) ⇐⇒ ♦(→∗) ⇐⇒ CR(→∗)
(by idempotence of ·∗), for proving confluence of → it suffices to prove confluence of
Ã for some reduction relation Ã with the same transitive-reflexive closure, i.e., with
Ã∗=→∗.

The next result summarizes the relationships between the various confluence proper-
ties introduced in Definition 2.1.5 above. It provides interesting sufficient criteria for
proving confluence by strengthened versions of local confluence.

Theorem 2.1.9 (confluence by strengthening local confluence)
Let A = 〈A,→〉 be an ARS. Then the following implications hold:

♦ =⇒ WCR1 =⇒ WCR≤1 =⇒ SCR =⇒ CR.

Proof: All implications except the last one are trivial. For proving SCR =⇒ CR one
shows ∀n. ← ◦ →n ⊆→∗ ◦ =← by induction on n which implies ← ◦ →∗ ⊆→∗ ◦ ∗←.
Applying Lemma 2.1.6 then yields CR.

Refining a given reduction relation may also be useful for proving confluence.

Definition 2.1.10 (compatible refinement, [Sta75])
An ARS 〈A,→1〉 is called a refinement of an ARS 〈A,→〉 if →⊆→∗

1. Such a refinement
is called compatible if →∗

1 ⊆→∗ ◦ ∗←.

Compatibility of refinements can be characterized as follows.

Lemma 2.1.11 ([Sta75])
A refinement 〈A,→1〉 of an ARS 〈A,→〉 is compatible if and only if →1 ◦ →∗ ⊆→∗

◦ ∗←.

Proof: The “=⇒”-direction is trivial. For proving the converse “⇐=” one shows
∀n ≥ 0 : . →n+1

1 =→1 ◦ →n
1 ⊆→∗ ◦ ∗← by an easy induction on n.

Theorem 2.1.12 (confluence by compatible refinements, [Sta75])
Let 〈A,→〉 be an ARS. Then the following statements are equivalent:

(1) 〈A,→〉 is confluent.

(2) There exists a compatible refinement 〈A,→1〉 of 〈A,→〉 which is confluent.

(3) Every compatible refinement 〈A,→1〉 of 〈A,→〉 is confluent.

Proof: Since every ARS is a compatible refinement of itself it suffices to show
CR(→) ⇐⇒ CR(→1), for an arbitrary compatible refinement 〈A,→1〉 of 〈A,→〉. Sup-
pose CR(→). Then ∗

1← ◦ →∗
1 ⊆→∗ ◦ ∗← ◦ →∗ ◦ ∗←⊆→∗ ◦ →∗ ◦ ∗← ◦ ∗←=→∗ ◦ ∗←

⊆→∗
1 ◦ ∗

1← by compatibility of →1, confluence of →, and the refinement property of



2.1. ABSTRACT REDUCTION SYSTEMS 13

→1. Conversely, suppose CR(→1). Then we have ∗← ◦ →∗ ⊆ ∗
1← ◦ →∗

1 ⊆→∗
1 ◦ ∗

1←
by the refinement property of →1 and confluence of →1. Compatibility of →1 yields
→∗

1 ⊆→∗ ◦ ∗←, hence ∗← ◦ →∗ ⊆→∗ ◦ ∗← ◦ ∗
1←. Finally, by the refinement property

and compatibility of →1 we obtain ∗← ◦ →∗ ⊆→∗ ◦ ∗← ◦ ∗
1←⊆→∗ ◦ ∗

1←⊆→∗ ◦ →∗

◦ ∗←=→∗ ◦ ∗← as desired.

The condition for being a compatible refinement, →⊆→∗
1 ⊆→∗ ◦ ∗←, is obviously

satisfied if →∗
1 is some intermediate reduction relation in between → and →∗ (cf.

Remark 2.1.8).

Corollary 2.1.13 An ARS 〈A,→〉 is confluent if there exists a confluent ARS 〈A,→1〉
satisfying →⊆→∗

1 ⊆→∗.

For further interesting results on confluence of ARSs we refer to [Oos94a; Oos94b].

Next we introduce further basic properties of ARSs.

Definition 2.1.14 (termination properties)
Let A = 〈A,→〉 be an ARS.

(1) An element a ∈ A is a normal form or irreducible (w.r.t. →) if there is no b ∈ A
with a → b. An element a ∈ A has a normal form if a →∗ b for some normal
form b. The set of normal forms of A is denoted by NF(A) or NF(→) when A
is clear from the context.

(2) A is weakly normalizing or weakly terminating (WN) if every a ∈ A has a normal
form.

(3) A is strongly normalizing or terminating or Noetherian (SN) if there are no
infinite derivations a1 → a2 → a3 → . . . in A, i.e., every derivation eventually
ends in some normal form.

(4) A is well-founded if every non-empty subset of A has a minimal element w.r.t.
→. Here, a ∈ B ⊆ A is minimal (in B w.r.t. →) if a → b implies b 6∈ B.

It is well-known that – by the Axiom of Choice – termination and well-foundedness are
equivalent concepts. We shall use the latter notion mainly for ordering relations.

Definition 2.1.15 (properties related to termination)
Let A = 〈A,→〉 be an ARS.

(1) A is inductive (IND) if for every (possibly infinite) derivation a1 → a2 → a3 →
. . . in A there is an a ∈ A such that an →∗ a for all n ≥ 1.

(2) A is increasing (INC) if there is a mapping |.| : A → IN such that ∀a, b ∈ A. a →
b =⇒ |a| < |b| (where < is the usual ordering on the natural numbers).

(3) A is finitely branching if for all a ∈ A the set of one-step reducts, {b ∈ A | a → b},
is finite.

(4) A is acyclic if →+ is irreflexive.
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A well-known criterion for termination of finitely branching reduction relations is the
following.

Lemma 2.1.16 (König’s Lemma)
Let A = 〈A,→〉 be a finitely branching and acyclic ARS, and let a ∈ A. Then G(a)
is finite if and only if a is terminating (this is usually phrased as “a finitely branching
tree is infinite if and only if it contains an infinite path”).

Definition 2.1.17 (properties related to normal forms)
Let A = 〈A,→〉 be an ARS.

(1) A has unique normal forms (UN) if different normal forms are not convertible,
i.e., for all a, b ∈ A, if a ↔∗ b and a, b ∈ NF(A) then a = b.

(2) A has unique normal forms w.r.t. reduction (UN→) if no element of A reduces
to different normal forms, i.e., for all a, b, c ∈ A, if a ∗← c →∗ b and a, b ∈ NF(A)
then a = b.

(3) A has the normal form property (NF) if every element of A convertible to a
normal form reduces to that normal form, i.e., for all a, b, c ∈ A, if a ↔∗ b and
b ∈ NF(A) then a →∗ b.

Definition 2.1.18 (completeness properties)
An ARS is complete or convergent (COMP) if it is confluent and strongly normaliz-
ing. It is called semi-complete or uniquely normalizing if it is confluent and weakly
normalizing.

The following lemma summarizes the basic relations between confluence and properties
related to normal forms. Note that missing implications do not hold as is easily verified.

Lemma 2.1.19 (confluence vs. normal form properties)
For any ARS the following properties hold:

(1) CR =⇒ NF =⇒ UN =⇒ UN→.

(2) WN ∧ UN→ =⇒ CR.

Local confluence does in general not imply confluence, but only under the additional
assumption of termination. This fundamentally important result, known as Newman’s
Lemma, is at the heart of many confluence proofs in the literature.

Theorem 2.1.20 (Newman’s Lemma, [New42])
A terminating ARS A = 〈A,→〉 is confluent if and only if it is locally confluent
(WCR ∧ SN =⇒ CR).

Proof: This result was first shown in [New42], but with an unnecessarily complex
proof. The following simple proof by well-founded induction (using →+ as the well-
founded ordering) stems from [Hue80]. Let P (x) be the predicate ∀y, z. y ∗← x →∗

z =⇒ y ↓ z. Suppose y m← x →n y. If m = 0 or n = 0 then y ↓ z is trivially
satisfied. Otherwise, we may assume y ∗← y1 ← x → z1 →

∗ z for some y1, z1. By local
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confluence there exists some u with y1 →∗ u ∗← z1. By induction hypothesis we have
P (y1) yielding some v with y →∗ v ∗← u. Again by induction hypothesis we know
P (z1). Hence there exists some w with v →∗ w ∗← z which finally yields y ↓ z as
desired.

Next we focus on abstract criteria for ensuring termination of ARSs. An easy result
due to Nederpelt ([Ned73]) is the following.

Lemma 2.1.21 ([Ned73])
Let A = 〈A,→〉 be an ARS. If A is increasing and inductive then it is terminating
(INC ∧ IND =⇒ SN).

Proof: Suppose a1 → a2 → . . . is an infinite derivation in A. By IND there exists
some a ∈ A such that an →∗ a for all n ≥ 1. By INC there is a mapping |.| : A → IN
with |a1| < |a2| < . . .. Since we also have |an| < |a| for all n ≥ 1 this yields a contra-
diction.

Useful criteria for inferring termination from a combination of restricted confluence
and termination properties are the following.

Theorem 2.1.22 ([Klo80])
Let A = 〈A,→〉 be an ARS and a ∈ A. Suppose:

(1) G(a) is locally confluent (WCR(G(a))), and

(2) a has a normal form b such that the length of reductions from a to b is bounded,
i.e., ∃n ∈ IN∀m ∈ IN. a →m b =⇒ m ≤ n.

Then G(a) is terminating (SN(G(a))), and hence also confluent (CR(G(a))).

Proof: We sketch the elegant proof idea detailed in [Klo80]. For reasoning by
contradiction suppose there is an infinite derivation D : a = a1 → a2 → . . .. Let
B := {c ∈ G(a) | c →∗ b}. Then, by assumption (2), D must leave B eventually, i.e.,

∃k ∈ IN∀j ≥ k. aj 6∈ B. (*)

Now define for every c ∈ B the natural number

|c| := max{m | c →m b}.

By assumption (2), |c| is well-defined. Note that for all c, c′ ∈ B:

c → c′ =⇒ |c| > |c′|.

Now one can prove by (course-of-values) induction on |c| (using local confluence below
a) that B is closed under reduction, i.e.,

c ∈ B ∧ c → c′ =⇒ c′ ∈ B.

This gives a contradiction with (*) above, hence we are done.
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Lemma 2.1.23 ([Klo80])
Let A = 〈A,→〉 be an ARS. If A is locally confluent, weakly normalizing and increasing
then it is strongly normalizing (WCR ∧ WN ∧ INC =⇒ SN).

Proof: This follows from Theorem 2.1.22 since INC (together with WN) implies the
boundedness condition in hypothesis (2) of Theorem 2.1.22.

Another very useful consequence of Theorem 2.1.22 which will be exploited later on in
Chapter 3 is the following result.

Lemma 2.1.24 (termination by weak termination and uniform confluence,
[New42])
Let A = 〈A,→〉 be an ARS. If A is uniformly confluent and weakly normalizing then
it is strongly normalizing (WCR1 ∧ WN =⇒ SN).

Proof: Here the boundedness condition in hypothesis (2) of Theorem 2.1.22 is sat-
isfied since all reductions of some element to its (unique) normal form must have the
same length.

Remark 2.1.25 (local versions of properties)
Note that the properties CR, WCR, SCR, WCR≤1, WCR1, ♦, WN, SN, IND, INC,
FB, UN, UN→, NF are all preserved downwards w.r.t. taking sub-ARSs, e.g. if A is
a sub-ARS of B and B is SN, then A is also SN. Furthermore note that there are
obvious relationships between global and local versions of most of these properties.
To be more precise, for an ARS 〈A,→〉 and an element a ∈ A consider the following
local termination and confluence properties: SN(a) (every derivation issuing from a
eventually ends in some normal form), WN(a) (a has a normal form), CR(a) (∀b, c ∈
G(a). b ∗← a →∗ c =⇒ b →∗ ◦ ∗← c), WCR(a) (∀b, c ∈ G(a). b ← a → c =⇒ b →∗

◦ ∗← c). The other local versions of confluence properties, WCR1 etc., are defined
analogously. Then we clearly have

SN(G(a)) ⇐⇒ SN(a).

WN(G(a)) =⇒ WN(a) but WN(a) ; WN(G(a)).

And moreover

CR(G(a)) ⇐⇒ CR(a).

WCR(G(a)) =⇒ WCR(a) but WCR(a) ; WCR(G(a)).

WCR1(G(a)) =⇒ WCR1(a) but WCR1(a) ; WCR1(G(a)), etc..

The most important criteria for local versions of confluence (not to be confused with
local confluence!) and termination used subsequently are the following.

Theorem 2.1.26 (local version of Newman’s Lemma, cf. Theorem 2.1.20)
Let A = 〈A,→〉 be an ARS and a ∈ A. Then we have: WCR(G(a)) ∧ SN(a) =⇒
CR(a) ( ⇐⇒ CR(G(a)) ).
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Lemma 2.1.27 (local version of Lemma 2.1.24)
Let A = 〈A,→〉 be an ARS and a ∈ A. Then we have: WCR1(G(a)) ∧ WN(a) =⇒
SN(a) ( ⇐⇒ SN(G(a)) ).

Note that the last result is not a direct consequence of Lemma 2.1.24 but follows from
Theorem 2.1.22 or by a direct proof showing that whenever WCR1(G(a)) and WN(a)
with b some normal form of a, then every reduction sequence issuing from a eventually
ends in b, and all these derivations have the same length.

Finally let us recall some basic definitions and facts about orderings which are ARSs
with special properties, and basic extension constructions for ARSs.

Definition 2.1.28 (orderings)

(1) An ARS 〈A,>〉 is a (strict or irreflexive) partial ordering if > is irreflexive and
transitive.

(2) An ARS 〈A,&〉 is a quasi-ordering if & is reflexive and transitive. Given a
quasi-ordering 〈A,&〉 its associated partial ordering (or its strict part) is defined
by a > b if a & b but b 6& a. Its associated equivalence ∼ is given by: a ∼ b if
both a & b and b & a.

(3) An ARS 〈A,≥〉 is a reflexive partial ordering if it is an anti-symmetric quasi-
ordering. Given a reflexive partial ordering 〈A,≥〉 its associated partial ordering
(or its strict part) is defined by a > b if a ≥ b but b 6= a.

Definition 2.1.29 (lexicographic product, multiset extension)

(1) The lexicographic product of n ARSs 〈Ai, >i〉, 1 ≤ i ≤ n, is the ARS 〈A1 ×
. . . × An, >

lex〉 defined by (a1, . . . , an) >lex (b1, . . . , bn) if aj >j bj for the least
j ∈ {1, . . . , n} with aj 6= bj.

(2) A multiset over a set A is an unordered collection of elements of A in which ele-
ments may have multiple occurrences. To distinguish between sets and multisets
we use brackets instead of braces for the latter. Furthermore we use standard
set notation for operations on multisets, with the obvious meaning. The set of
all finite multisets over A is denoted by M(A). Formally, a multiset may be
viewed as a mapping from A to IN which indicates how many copies of each
element are in the multiset.

(3) The multiset extension of an ARS 〈A,>〉 is the ARS 〈M(A), >mul〉 with >mul

defined as follows: M1 >mul M2 if there exist multisets X,Y ∈ M(A) such that

• [] 6= X ⊆ M1,

• M2 = (M1 \ X) ∪ Y ,

• ∀y ∈ Y ∃x ∈ X. x > y.

Lexicographic products as well as multiset extensions enjoy many nice properties.
For instance, they preserve (ir)reflexivity, transitivity and totality, hence in particular
(strict) partial orderings. The fundamentally important property is the preservation
of well-foundedness which is non-trivial, in particular for multiset extensions.
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Theorem 2.1.30 (lexicographic products preserve well-foundedness)
A lexicographic product of well-founded ARSs is again well-founded.

Theorem 2.1.31 (multiset extensions preserve well-foundedness, [DM79])
The multiset extension 〈M(A), >mul〉 of an ARS 〈A,>〉 is well-founded if and only if
〈A,>〉 is well-founded.

As a nice application of multiset extension consider the following (proof of a) strength-
ening of Newman’s Lemma 2.1.20.

Theorem 2.1.32 ([WB86])
Let A = 〈A,→〉 be an ARS and let > be a well-founded partial ordering such that
→⊆>. Then A is confluent if and only if for every local divergence b ← a → c there
exists a conversion b = d1 ↔ d2 ↔ . . . ↔ dm−1 ↔ dm = c such that a > dk for all
k ∈ {1, . . . ,m}.

Proof: For an arbitrary conversion a1 ↔ . . . ↔ am define its complexity to be the
multiset [a1, . . . , am]. Then, by induction over the complexity of conversions using the
multiset extension >mul as well-founded ordering, one easily shows that every peak
ai−1 ← ai → ai+1 can be turned into a valley ai−1 →

∗ ◦ ∗← ai+1 thus yielding a1 ↓ am.

2.2 Term Rewriting Systems

Now we introduce the basic concepts of term rewriting systems which are ARSs with
some additional structure. More precisely, the domain of interest consists of a set of
inductively constructed objects (terms) and the reduction relation is induced by a set
of generic rewrite rules. We focus on those aspects of term rewriting systems which will
be needed later on. For a more exhaustive treatment of term rewriting systems and
equational reasoning we refer to the surveys [HO80], [DJ90], [Klo92], [AM90], [Pla94]

and [Nip94]. Suggestions for fixing some standard notations for rewriting theory are
given in [DJ91]. Here we focus in particular on confluence criteria (Section 2.2.1) and
termination criteria (Section 2.2.2) for term rewriting systems.

Definition 2.2.1 (signature, terms)

(1) A signature (vocabulary, alphabet) is a countable set F of function symbols.
Associated with every f ∈ F is a natural number denoting its arity , i.e. the
number of its arguments. Hence F =

⋃
n≥0 F

n where Fn denotes the set of all
function symbols of arity n. Function symbols of arity 0 are called constants .
To indicate the arity n of some f ∈ Fn we sometimes also write fn.

(2) The set T (F ,V) of terms over a signature F and some countably infinite set V of
variables with F∩V = ∅ is the smallest set containing V such that f(t1, . . . , tn) ∈
T (F ,V) whenever f ∈ Fn and ti ∈ T (F ,V) for i = 1, . . . , n. If c ∈ F is a
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constant we write c instead of c(). In examples we shall use sometimes mixed
infix and prefix notation as well as omit braces for unary operators. Terms
containing no variables are called ground or closed terms. The subset of all
ground terms of T (F ,V) is denoted by T (F).

In the sequel we shall assume that some set T (F ,V) of terms over F and V is given.
Furthermore F is supposed to contain at least one constant which entails that the set
T (F) of ground terms is non-empty. 2

Definition 2.2.2 (root symbol, size, depth)
Let T (F ,V) be given, and t ∈ T (F ,V). The set of all function symbols occurring in
t is denoted by Fun(t), the set of all variables in t by V ar(t). The root symbol of t
is defined by root(t) = t if t ∈ V and root(t) = f if t = f(t1, . . . , tn). The number of
occurrences of a symbol sym ∈ F ∪ V in t is denoted by |t|sym. The size of t, denoted
by |t|, is the number of all occurrences of symbols from T (F ,V) in t. The depth of a
term t is the number of symbols on a longest ‘path’ of t from its root to a ‘leaf’ (in
the usual tree representation), i.e.: depth(t) = 1 if t is a variable or a constant, and
depth(f(t1, . . . , tn)) = 1 + maxi∈{1,...,n}{depth(ti)}.

Definition 2.2.3 (positions, prefix ordering, subterms, replacement)

(1) The set Pos(t) of positions (occurrences) of a term t ∈ T (F ,V) is defined by

Pos(t) =





{λ}, if t ∈ V ∪ F0

{λ} ∪ {ip | p ∈ Pos(ti), 1 ≤ i ≤ n},
if t = f(t1, . . . , tn), n ≥ 1 .

Hence, positions are sequences of natural numbers with λ denoting the empty
sequence (concatenation is denoted by juxtaposition).

(2) For p ∈ Pos(t) the subterm (occurrence) t/p of t at position p is given by

t/p =

{
t, if p = λ

ti/q, if p = iq, 1 ≤ i ≤ n, t = f(t1, . . . , tn) .

In the latter case the subterms ti = t/i, 1 ≤ i ≤ n, are called immediate or
direct subterms of t. Any subterm t/p of t with p 6= λ is a proper subterm of
t. We use E (with inverse D) and ⊳ (with inverse ⊲) for denoting the subterm
and proper subterm ordering relation, respectively. For subterms s/p, s/q of s
with p ≤ q we say that s/p is a superterm of s/q (in s). In this case we call s/p
a proper superterm of s/q (in s) if p < q. And, if s/q is an immediate subterm
of s/p (in s) we call s/p the3 immediate superterm of s/q (in s).

(3) The sets of variable and of non-variable positions of t are given by

VPos(t) = {p ∈ Pos(t) | t/p ∈ V}

2This is not a severe restriction and sometimes simplifies the discussion by excluding degenerate
cases.

3Note that the immediate superterm of a some subterm (in a given term) is uniquely determined
provided it exists.
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and

FPos(t) = {p ∈ Pos(t) | root(t/p) ∈ F} ,

respectively.

(4) Positions are partially ordered by the prefix ordering ≥ where p ≥ q if p = qr for
some r. If p ≥ q we say that p is below q or q is above p. If p ≥ q and p 6= q we
say that p is strictly below q or q strictly above p (denoted by p > q). If neither
p ≥ q nor q ≥ p then p and q are disjoint (parallel, independent), which is also
denoted by p|q. For p ≥ q we define p\q = r where r is given by p = qr.

(5) Replacing in t ∈ T (F ,V) the subterm at position p ∈ Pos(t) by s ∈ T (F ,V) is
defined by

t[p ← s] =





s, if p = λ
f(t1, . . . , ti[q ← s], . . . , tn),

if p = iq, 1 ≤ i ≤ n, t = f(t1, . . . , tn) .

Parallel replacement of subterms of t at mutually disjoint positions p1, . . . , pn ∈
Pos(t) by respective terms s1, . . . , sn is denoted by t[p1 ← s1] . . . [pn ← sn] or
t[pi ← si | 1 ≤ i ≤ n].

In order to be able to speak about terms having a certain shape the notion of context
is very useful.

Definition 2.2.4 (contexts)
A context is a ‘term with holes’ where holes are represented by a distinguished variable
¤ (which is exclusively used for that purpose).4 Following [Mid90] we distinguish
between three kinds of contexts. This allows for a compact reasoning in proofs later
on concerning the treatment of many degenerate cases of contexts.

• C[, . . . , ] denotes a context containing at least one occurrence of ¤.

• C〈, . . . , 〉 denotes a context containing zero or more occurrences of ¤.

• C{, . . . , } denotes a context containing zero or more occurrences of ¤ which is
different from ¤.

Contexts of the form C[, . . . , ] are called strict . If C[, . . . , ] is a (strict) context with
n ≥ 1 occurrences of ¤ and t1, . . . , tn are terms, then C[t1, . . . , tn] is the result of
replacing (from left to right) the occurrences of ¤ by t1, . . . , tn. A context C[, . . . , ]
containing exactly one occurrence of ¤ is also denoted by C[]. Note that s is a subterm
of t if and only if there exists a context C[] with t = C[s]. If we want to indicate the
position p of s in t we write t = C[s]p. Similarly, C[t1, . . . , tn]p1,...,pn

indicates the
positions of the subterms t1, . . . , tn. Slightly abusing notation we write t = C[s]P for
C[s, . . . , s]p1,...,pn

if P = {p1, . . . , pn} is the set of all (mutually disjoint) positions of

4Alternately, one may also view ¤ as a special fresh constant which is always tacitly available.
More formally, contexts can be viewed as ‘terms’ with bound variables (cf. [DJ91]). But in order to
avoid corresponding lambda-notations like λx.C[x] we stick to the notation presented here which will
be convenient for our purposes.
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¤ in C[, . . . , ]. The corresponding notations for C〈, . . . , 〉 and C{, . . . , } are defined
analogously. A context C[, . . . , ] 6= ¤ is said to be non-empty .

Definition 2.2.5 (substitution)
A substitution σ is a mapping from V to T (F ,V) such that its domain Dom(σ) = {x ∈
V |σ(x) 6= x} is finite. The variable range of a substitution σ is given by VRan(σ) =⋃

x∈Dom(σ) V ar(σ(x)). The empty substitution is denoted by ǫ (with Dom(ǫ) = ∅).
Substitutions are (uniquely) extended to morphisms from T (F ,V) to T (F ,V) via
σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)) for f ∈ Fn and t1, . . . , tn ∈ T (F ,V). Instead of
σ(s) we shall also write σs. The composition σ ◦ τ of two substitutions σ and τ is
defined by (σ ◦ τ)(x) = σ(τ(x)). We call σ(t) an instance of t. Two terms s and t are
unifiable if there is a substitution σ such that σ(s) = σ(t).5 Such a σ is a unifier of s
and t. It is a most general unifier (mgu) (of s and t) if for every unifier τ there exists
a substitution ρ with τ = ρ ◦ σ.

Definition 2.2.6 (term rewriting system)
A term rewriting system or rewrite system (TRS for short) is a pair (F ,R) consisting
of a signature F and a set R ⊆ T (F ,V)×T (F ,V) of (rewrite or reduction ) rules (l, r),
denoted by l → r with l 6∈ V and V ar(r) ⊆ V ar(l). Instead of (F ,R) we also write RF

or simply R when F is clear from the context or irrelevant. The set of left- and right-
hand sides of R are given by lhs(R) = {l | l → r ∈ R} and rhs(R) = {r | l → r ∈ R}.

Remark 2.2.7 (restrictions on rewrite rules)
Note that the restrictions imposed on rewrite rules l → r which forbid variable left
hand sides and extra variables on the right hand side are quite natural and not severe.
In particular, concerning termination, they only exclude trivial cases. However, in a
more general equational setting it makes sense to lift these restrictions in order to be
get nice symmetry properties (cf. [Ges90] for a more detailed discussion of this aspect).

Furthermore note that rewrite rules are implicitly universally quantified. Hence, equal-
ity of rewrite rules is interpreted modulo variable renamings. When considering distinct
rewrite rules we may always assume w.l.o.g. that they do not have common variables.

Definition 2.2.8 (rewrite relation)
A binary relation → on terms is a rewrite relation if it is closed under contexts and
substitutions, i.e. if s → t then C[s] → C[t] and σs → σt for all contexts C[] and
substitutions σ.

In the literature closure under contexts is also called monotonicity or replacement
property . Closure under substitutions is also phrased as stability , compatibility or full
invariance property .

Definition 2.2.9 (rewrite relation induced by a TRS)
The rewrite or reduction relation →R on T (F ,V) induced by a TRS RF is the smallest

5See e.g. [BS94] for a recent survey on unification theory.
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rewrite relation containing R. Equivalently, s →R t if there exists a substitution σ and
a context C[] such that s = C[σl] and t = C[σr]. We say that s rewrites or reduces to
t by contracting redex σl. Here a redex (reducible expression) is an instance of a left-
hand side of a rewrite rule.6 We call s → t a rewrite step or reduction step. In order to
indicate the position p of the contracted redex, the corresponding substitution σ and
the applied rule l → r, we also use notations like s →p t, s →p,l→r t and s →p,σ,l→r t.
A step of the form s →λ t is called a root reduction step.

By associating with every TRS RF the ARS 〈T (F ,V),→R〉 all notions defined in the
preceding section for ARSs carry over to TRSs. If →R has a certain property we also
equivalently say that R has that property.

Note that rewriting a term in a TRS involves essentially two kinds of non-determinism,
namely the choice of the redex to be contracted and the choice of the rule to be applied.
Non-determinism of the first kind can be eliminated or restricted by imposing certain
(position selection) strategies on rewriting. We consider here two basic variants where
either minimal or maximal redexes are chosen for replacement.

Definition 2.2.10 (innermost/outermost reduction)
Let R be a TRS. If s = C[σl]p → C[σr]p = t (for some C[]p, σ and l → r ∈ R) such
that s/q is irreducible for every q ∈ Pos(s) with q > p (i.e., every proper subterm of
σl is irreducible), we write s

i
−→t. If s = C[σl]p → C[σr]p = t (for some C[]p, σ and

l → r ∈ R) such that s/q is not a redex for every q ∈ Pos(s) with q < p, we write
s

o
−→t. The relations

i
−→ and

o
−→ are called innermost and outermost reduction,

respectively. We also use notations like s
i

−→p,σ,l→rt, s
i

−→pt, s
o
−→p,σ,l→rt, s

o
−→pt for

indicating the position of the innermost/outermost redex to be contracted, the applied
substitution and rule. R is weakly innermost normalizing (WIN) or weakly innermost
terminating if the innermost reduction relation

i
−→ is weakly normalizing. R is strongly

innermost normalizing (SIN) or innermost terminating if
i

−→ is strongly normalizing.
Weak and strong outermost normalization are defined analogously. R is said to be
innermost/outermost confluent if innermost/outermost reduction is confluent.

Let us remark that innermost and outermost reduction can of course be seen as abstract
reduction relations, but they are no rewrite relations in the sense of 2.2.8. Innermost
reduction is not closed under substitutions, and outermost reduction is neither closed
under substitutions nor under contexts.

Innermost confluence is interesting, since denotational or operational semantics of com-
putational formalisms is often defined by a kind of innermost evaluation procedure,
which is similar to innermost reduction. For instance, the call by value parameter
passing style in functional programming languages essentially means innermost eval-
uation. Outermost reduction can be viewed as a kind a lazy computation. Hence,
outermost confluence is interesting for ensuring well-definedness of lazy semantics.

6Note that in order to specify uniquely the contractum of (i.e., the result of contracting) a term
t = σl into t′ = σr, one needs in general σ, l and r (or, equivalently, t and the applicable rule l → r).
However, for non-overlapping (cf. Definition 2.2.16) TRSs the contractum of a (root-reducible) term
as well as the applied rule are unique.
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Before proceeding with criteria and techniques for proving confluence and termination
of TRSs let us introduce some more basic syntactic terminology needed later on.

Definition 2.2.11 (syntactical properties of rules, TRSs)
A term is linear if every variable occurs at most once in it. A rule l → r is

(1) left-linear if l is linear,

(2) right-linear if r is linear,

(3) linear if both l and r are linear,

(4) non-erasing (or variable-preserving) if V ar(l) = V ar(r),7

(5) collapsing if r ∈ V,

(6) duplicating if there is a variable x ∈ V with |l|x < |r|x.

A TRS R is left-linear (LL) / right-linear (RL) / linear / non-erasing (NE) if all its
rules have the respective property. It is collapsing (COL) / duplicating (DUP) if one
of its rewrite rules has the respective property. It is non-collapsing or collapse-free
(NCOL) if it is not collapsing, and non-duplicating8 (NDUP) if it is not duplicating.

R is called interreduced (or irreducible) if, for every rule l → r ∈ R, r is irreducible
w.r.t. R and l is irreducible w.r.t. R \ {l → r}.

Function symbols of a TRS can always be classified syntactically as follows.

Definition 2.2.12 (constructor, defined function symbol)
For any TRS RF the rules of R partition F into a set D = {root(l) | l → r ∈ R} of
defined (function) symbols and a set C = F \ D of constructors (with F = C ⊎ D).

Restricting the function symbols in left-hand side arguments to be constructors leads
to the following.

Definition 2.2.13 (constructor system)
A TRS RF with F = C ⊎D (as above) is a constructor system (CS) if every left-hand
side f(t1, . . . , tn) of a rule in R satisfies t1, . . . , tn ∈ T (C,V).

Any TRS is a ‘TRS with constructors (and defined symbols)’ in the sense of Definition
2.2.12 but not necessarily a constructor system. Rewrite specification with construc-
tor systems corresponds to the intuition that functions are defined by declaring their
behaviour on data arguments (constructor terms). This is usually meant when one
speaks of imposing a constructor discipline for specification.

7Consequently, l → r is called erasing if V ar(l) \ V ar(r) 6= ∅.
8called conservative in [FJ95].
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2.2.1 Confluence Criteria

Local confluence for TRSs can be characterized by considering critical local divergences
of rewrite steps. For this purpose one needs the following concept discovered by Knuth
and Bendix in their pioneering paper [KB70].

Definition 2.2.14 (critical peak, critical pair)

(1) Let l1 → r1 and l2 → r2 be two rules of a TRS R that have no variables
in common. Let p ∈ FPos(l1) such that l1/p and l2 are unifiable with mgu
σ. Then the divergence (σl1)[p ← σr2] p←σl1 →λ σr1 is a critical peak of R,
determined by overlapping l2 → r2 into l1 → r1 at position p. The pair of
reducts 〈(σl1)[p ← σr2], σr1〉 is the corresponding critical pair . If the two rules
are renamed versions of the same rule we do not consider the case p = λ (which
gives only rise to improper divergences).

(2) A critical peak s p←u →λ t (and its corresponding critical pair 〈s, t〉 of R) is
joinable if s ↓R t. It is called trivial as well as the corresponding critical pair, if
s = t.

(3) The set of all critical pairs between rules of R is denoted by CP(R). Joinability
of all critical pairs of R is abbreviated by JCP(R) or simply JCP.

Remark 2.2.15 (critical peaks / pairs are asymmetric)
Observe the asymmetry in the definition of critical peaks / pairs. This entails in
particular, that for a critical overlay t1 λ←s →λ t2 we always get another critical
overlay t2 λ←s →λ t1, hence also two corresponding critical pairs, namely 〈t1, t2〉 and
〈t2, t1〉. Moreover we note, that a critical pair may correspond to (i.e., be obtained
from) several distinct critical peaks (taking into account the position of the inside
rewrite step and the applied rules). For the sake of readability we dispense here with
a completely formal definition of critical peaks which is straightforward.

Definition 2.2.16 (non-overlapping, orthogonal, overlay system)
Let R be a TRS.

(1) R is non-overlapping (NO) or non-ambiguous if CP(R) = ∅. R is weakly non-
overlapping (WNO) or weakly non-ambiguous if all its critical pairs are trivial.

(2) R is orthogonal (ORTH) if it is non-overlapping and left-linear. R is weakly
orthogonal (WORTH) if it is weakly non-overlapping and left-linear.

(3) R is an overlay system (OS) or overlaying if every critical pair of R originates
from an overlay , i.e., by overlapping rules at root position.

Note that for instance any constructor system is an overlay system, but not necessarily
vice versa.

Lemma 2.2.17 (Critical Pair Lemma, [Hue80])
A TRS is locally confluent if and only if all its critical pairs are joinable (WCR ⇐⇒
JCP).
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Combining Newman’s Lemma and the Critical Pair Lemma yields the following fun-
damental result.

Theorem 2.2.18 ([KB70])
A terminating TRS is confluent (hence complete) if and only if all its critical pairs are
joinable (SN =⇒ [CR ⇐⇒ JCP]).

This result provides the basis for transforming a terminating TRS into an equivalent
confluent one by so-called completion procedures which – roughly speaking – try to
resolve critical pair divergences by adding appropriate new rewrite rules.

Proving confluence of TRSs without termination is in general much more difficult.
Below we shall present two such criteria which rely on the corresponding results for
ARSs.

First we note that even the absence of critical pairs which guarantees local confluence,
due to Lemma 2.2.17, is not sufficient for confluence.

Example 2.2.19 ([Hue80])
The TRS

R =





f(x, x) → a
f(x, g(x)) → b

c → g(c)

has no critical pairs, hence is non-overlapping and thus locally confluent. But for
instance the term f(c, c) has two distinct normal forms:

a ← f(c, c) → f(c, g(c)) → b .

So R lacks unique normal forms and is not confluent.

Another interesting counterexample due to Barendregt and Klop is the following.

Example 2.2.20 ([Klo80])
The TRS

R =





f(x, x) → a
g(x) → f(x, g(x))

b → g(b)

is non-overlapping and has unique normal forms. But we have

g(b) → f(b, g(b)) → f(g(b), g(b)) → a

and hence

g(b) → g(g(b)) →∗ g(a) .

Since a and g(a) are not joinable, R is not confluent.

Note that both TRSs in the examples above contain non-linear rules. By forbidding
such rules and imposing a kind of strong joinability requirement on critical pairs con-
fluence can be guaranteed.
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Definition 2.2.21 (strongly closed)
A TRS R is strongly closed if for every critical pair 〈s, t〉 there exist terms u and v
such that s →∗ u =← t and s →= v ∗← t.

Theorem 2.2.22 (linearity plus strong closedness implies confluence,
[Hue80])
A left- and right-linear strongly closed TRS is strongly confluent, hence confluent.

Without right-linearity, strong closedness is not sufficient to ensure confluence, as
shown by the following nice counterexample due to J.-J. Lévy.

Example 2.2.23 ([Hue80])
The TRS R given by

R =





f(a, a) → g(b, b)
a → a′

f(x, a′) → f(x, x)
f(a′, x) → f(x, x)

g(b, b) → f(a, a)
b → b′

g(x, b′) → g(x, x)
g(b′, x) → g(x, x)

is left-linear, strongly closed and locally confluent, but not right-linear and not conflu-
ent. We have for instance f(a′, a′) ↔∗ g(b′, b′) with f(a′, a′) 6↓ g(b′, b′).

One way to get rid of the rather unnatural right-linearity condition in Theorem 2.2.22
above is to look for another reduction relation with the same transitive-reflexive closure
(as that of →) and to change the closure property for critical pairs appropriately in
order to obtain strong confluence of the new reduction relation (cf. Remark 2.1.8 and
Theorem 2.1.9). For that purpose we need the following definitions.

Definition 2.2.24 (parallel reduction)
Given a TRS R its induced parallel reduction relation −−‖−→R (or simply −−‖−→) is defined
as the smallest reflexive relation containing →R and verifying

s1 −−‖−→ t1 ∧ . . . sn −−‖−→ tn =⇒ f(s1, . . . , sn) −−‖−→ f(t1, . . . , tn)

for all f ∈ F (n-ary). If s reduces to t by a parallel step contracting the redexes in s at
some set P = {p1, . . . , pk} of parallel positions from P , this is also denoted by s−−‖−→P t.
Writing s −−‖−→≥p t means that all redexes contracted are at pairwise disjoint positions
below p ∈ Pos(s).

Clearly, parallel and ordinary reduction are related as follows: →⊆ −−‖−→⊆→∗, hence
also →∗ = −−‖−→∗. Thus, for showing confluence of →, it suffices to prove (strong)
confluence of −−‖−→.

Definition 2.2.25 (parallel closed)
A TRS is called parallel closed if every critical pair 〈s, t〉 satisfies s −−‖−→ t.

Theorem 2.2.26 (left-linearity plus parallel closedness implies confluence,
[Hue80])
If R is a left-linear and parallel closed TRS, then −−‖−→R is subcommutative, and hence
→ (or R) is confluent.
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Proof: The ingenious proof in [Hue80] proceeds by considering parallel one-step di-
vergences of the form t P←‖−− s −−‖−→Q u. By induction over the sum of the sizes of those
‘P - and Q-redexes’ which are affected in both steps, and by case analysis according to
the positions in P , Q, it is shown that −−‖−→ is subcommutative (WCR≤1(−−‖−→)), hence
confluent (by Theorem 2.1.9) which implies confluence of → (by Remark 2.1.8) since
−−‖−→∗ =→∗.

This result is important in practice. An immediate consequence is the following older
result.

Theorem 2.2.27 (confluence by orthogonality, [Ros73])
Every orthogonal TRS is confluent.

Before proceeding let us elaborate a bit on variations of critical pair conditions for
ensuring confluence of left-linear TRSs. Huet’s result above states that

(1) s −−‖−→ t for every critical pair 〈s, t〉 of R

suffices for ensuring confluence. Surprisingly, it still seems to be unknown whether any
of the following conditions also suffices (see [DJK91], Problem 13 of J.-J. Lévy).

(2) s −−‖−→ t or t −−‖−→ s for every critical pair 〈s, t〉 of R.

(3) s →= t or t →= s for every critical pair 〈s, t〉 of R.

(4) t −−‖−→ s for every critical pair 〈s, t〉 of R.

(5) t →= s for every critical pair 〈s, t〉 of R.

Clearly, the following implications hold between these conditions: (5) =⇒ (3) =⇒ (2),
(5) =⇒ (4) =⇒ (2). We remark that due to Theorem 2.2.22 and Theorem 2.2.18
potential counterexamples for (3) and (5) would have to be (besides left-linear) non-
right-linear, non-terminating and non-orthogonal. Moreover, a potential proof for (2)
or (4) is not possible via showing strong confluence (or even subcommutativity) of
parallel reduction as in Theorem 2.2.26. This can be seen from the following example.

Example 2.2.28 The TRS

R =





f(a, x) → f(a, g(x))
a → b

g(x) → x

is left- (and even right-) linear and satisfies conditions (2) and (4) above – the only
critical peak f(b, x) 1←f(a, x) →λ f(a, g(x)) is joinable by one parallel step from right
to left: f(a, g(x))−−‖−→ f(b, x). Confluence of R cannot be shown using any of the results
above. In particular, R is non-terminating and neither parallel closed nor strongly
closed. Moreover, parallel reduction is also not strongly confluent. For instance we
have: f(b, b) ←‖−− f(a, a)−−‖−→ f(a, g(a)), where f(a, g(a)) reduces in two parallel steps to
f(b, b) but there is no term t with f(b, b) −−‖−→∗ t =←‖−− f(a, g(a).

On the positive side we mention one slight generalization of Theorem 2.2.26 which is
indeed possible, using a restricted variant of condition (2).
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Theorem 2.2.29 (a slightly generalized version of Theorem 2.2.26)
Let R be a left-linear TRS satisfying the following condition. For every critical peak
s p←u →λ t of R we have: s −−‖−→ t or t −−‖−→≥p s. Then −−‖−→R is subcommutative, and
hence → (or R) is confluent.

Proof (idea): We can use essentially the same inductive proof as for Theorem 2.2.26
but have to consider an additional case when analysing one-step −−‖−→-divergences. More
precisely, the argumentation is as follows: First we remark that it suffices to analyse
one-step −−‖−→-divergences of the (degenerate) form s′′ P←‖−−u′ →λ t′. Now, if some
p ∈ P is ‘critical’ here w.r.t. the root reduction step, we decompose the divergence into
s′′ P\{p}←‖−− s′ p←u′ →λ t′. For the case that the critical peak s p←u →λ t corresponding
to s′ p←u′ →λ t′ is joinable via s−−‖−→ t we get s′′ P\{p}←‖−− s′ −−‖−→ t′ and can appeal to the
induction hypothesis (as in the proof of Theorem 2.2.26) in order to obtain s′′−−‖−→ ◦ ←‖−− t′.
Otherwise, i.e., if joinability is via t −−‖−→≥p s, we get s′′ P\{p}←‖−− s′ ≥p←‖−− t′ which obvi-
ously can be merged into one parallel step: s′′ ←‖−− t′. Hence, in this case we directly
obtain the desired joinability (s′′−−‖−→ ◦ ←‖−− t′) without using the induction hypothesis.

A simple example where this result but none of the previous ones applies is the TRS

R =





f(g(x)) → f(h(x, x))
g(a) → g(g(a))

h(a, a) → g(g(a))

which has only one critical peak f(g(g(a))) 1←f(g(a)) →λ f(h(a, a)) that is joinable
by f(h(a, a)) −−‖−→≥1 f(g(g(a))).

For another interesting generalization of Theorem 2.2.26 we refer to [Toy88]. Further,
more recent investigations by van Oostrom show how one can extend the range of such
criteria by appropriately generalizing the notion of being parallel ([Oos94b; Oos95]).
For another recent approach to confluence of possibly non-terminating, left-linear TRSs
via parallel critical pairs we refer to [Gra95b].

2.2.2 Termination Criteria

Termination of (finite) TRSs is an undecidable property ([HL78]), even for one-rule
systems ([Dau92]). But due to its fundamental importance for computation by rewrit-
ing many sufficient criteria, techniques and methods for proving termination have been
developed (cf. [Der87] for a fairly comprehensive survey). We review here some of the
most important concepts and results.

First we remark that termination of a TRS RF over T (F ,V) is equivalent to termina-
tion of RF on all ground terms – provided that T (F) is non-empty as always assumed.
Furthermore, RF is terminating if and only →+ is a well-founded partial ordering
on T (F). Hence, a general method for proving termination of RF works as follows.9

9According to [Der87] this result — for finite RF — dates back to [MN70] and [Lan75].
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Define a partial ordering > on T (F) such that

(1) > is well-founded, and

(2) ∀s, t ∈ T (F). s → t =⇒ s > t .

Then, obviously, RF is terminating. And conversely, if RF is terminating then →+

satisfies (1) and (2). The well-founded mapping method ([HO80]) suggests to take
a well-founded partial ordering >D on some set D and some termination function
τ : T (F) → D for defining >D by

(3) s > t ⇐⇒ τ(s) >D τ(t) .

This method is specialized to the increasing interpretation ([HO80], [Lan77]) or mono-
tone algebra method ([Zan94]) by taking D to be an F -algebra and τ to be the unique
F -homomorphism from T (F) to D. Then, (2) is guaranteed by closure of > under
context, i.e.

(4) ∀s, t ∈ T (F)∀f ∈ F . s > t =⇒ f(. . . , s, . . .) > f(. . . , t, . . .) , and

and closure (of (2), for the rules) under (ground) substitution, i.e.

(5) ∀l → r ∈ RF .∀σ , σ T (F)-ground substitution. σl > σr .

Note that closure of > under context, (4), can be weakened into

(4′) ∀s, t ∈ T (F)∀f ∈ F . s → t ∧ s > t =⇒ f(. . . , s, . . .) > f(. . . , t, . . .) .

without affecting soundness (and completeness) of the method ([KL80]). Furthermore
note that variables can easily be taken into account by defining for s, t ∈ T (F ,V):

(3′) s > t ⇐⇒ [∀α : V → D. (α(s))D >D (α(t))D ]

where the term evaluation α : T (F ,V) → D (in the algebra D) induced by a variable
assignment α : V → D is inductively defined by

α(f(t1, . . . , tn)) = fD(α(t1), . . . , α(tn)) .

In the terminology of [Zan94], a structure 〈D,>D〉 with D an F -algebra for which the
underlying set is equipped with a well-founded ordering >D and where each algebra op-
eration is strictly monotone in all arguments (w.r.t. >D) is called a well-founded mono-
tone F -algebra. Then the above approach for characterizing termination of rewriting
may be rephrased semantically as follows ([Zan94]): A TRS RF over T (F ,V) is ter-
minating if and only if there exists some non-empty well-founded monotone algebra
satisfying l > r for every rule l → r ∈ RF (with > as in (3′)).

For the special ‘syntactical’ case that the F -algebra considered is the term algebra
T (F ,V), the above considerations motivate the following notions.

Definition 2.2.30 (rewrite ordering, reduction ordering, compatibility)

(1) A rewrite ordering is a partial ordering on T (F ,V) which is a rewrite relation,
i.e., which is closed under context and substitution (see Definition 2.2.8).

(2) A reduction ordering is a well-founded rewrite ordering.
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(3) A TRS R is compatible with a partial ordering > if there exists a rewrite ordering
≻ extending both →+

R and >, i.e., with →+
R ∪ >⊆≻.10

Obviously, a TRS R is terminating if and only if →+
R is contained in some reduction

ordering. If one wants to prove termination of a TRS by some recursively defined or-
dering on T (F ,V) then closure under context and substitution are often easy to verify.
Proving irreflexivity and transitivity often also turns out to be feasible, using some
inductive reasoning and case analysis. But the most difficult task usually is to show
well-foundedness which may be very hard to tackle directly. Fortunately, there is an
important class of orderings for which well-foundedness is obtained for free, namely so-
called simplification orderings which were first defined by Dershowitz ([Der79]). This
result is based on the deep and powerful Tree Theorem of Kruskal ([Kru60]). Recently,
simplification orderings and related notions of simple termination have attracted much
attention since they enjoy interesting characterization and modularity properties. But
there has also been considerable confusion about these notions as well as various dif-
ferent definitions in the literature. In particular, for the case of infinite signatures,
things become rather subtle. The presentation here mainly follows the recent approach
of Middeldorp and Zantema ([MZ94]) who succeeded to bring the definition of sim-
plification orderings and simple termination in full accordance with Kruskal’s Tree
Theorem which is the basic motivation for the notion of simplification. This notion of
simplification comprises two ingredients, namely:

(1) a term decreases by removing parts of it, and

(2) a term decreases by replacing a function symbol by a smaller one (w.r.t. some
given precedence, i.e. partial ordering, on the signature).

If the signature is infinite, both of these ingredients are essential for the applicability of
Kruksal’s Tree Theorem which has not been taken fully into account in previous works.
We shall also adopt the approach of [MZ94] to base the definition of simplification
orderings on (strict) partial orderings instead of quasi-orderings11 and consequently
on partial well-orderings instead of well-quasi-orderings since this is less susceptive to
mistakes and partially results in weaker proof obligations.12

Definition 2.2.31 (subterm property, homeomorphic embedding, self-
embedding)
Let T (F ,V) be given.

(1) A binary relation R on T (F ,V) has the subterm property if ⊲⊆ R (cf. Definition
2.2.3(2)).

(2) The TRS Emb(F) consists of all embedding or projection rules

f(x1, . . . , xn) → xi

10Note that our definition of compatibility is different from containment (in the sense: l ≻ r for all
l → r ∈ R). In the literature, different definitions of compatibility are used, cf. e.g. [MZ94].

11However, here we shall not explicitly treat quasi-simplification orderings.
12But cf. also [Kru72] for advantages of wqo’s.
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with f ∈ Fn and i ∈ {1, . . . , n}, where x1, . . . , xn are pairwise distinct variables.
We abbreviate →+

Emb(F) by ⊲emb and ←∗
Emb(F) by Eemb. The relation Eemb is

called (homeomorphic) embedding .

(3) An infinite sequence t1, t2, t3, . . . of terms in T (F ,V) is self-embedding if there
exist indices i, j with 1 < i < j such that ti Eemb tj.

(4) A TRS RF is self-embedding if there exists an infinite derivation t1 → t2 → t3 →
. . . in RF with ti Eemb tj for some i, j with 1 < i < j.

The embedding relation and the subterm property are related as follows.

Lemma 2.2.32 A rewrite ordering ≻ on T (F ,V) has the subterm property if and only
if it contains the transitive closure of the reduction relation induced by the embedding
rules, i.e. ≻⊇⊲emb.

For finite signatures the embedding relation enjoys the following fundamental property.

Theorem 2.2.33 (Kruskal’s Tree Theorem – finite version, [Kru60])
Every infinite sequence of ground terms over some finite signature is self-embedding.

This motivates the definition of some properties of (rewrite) orderings and TRSs which
are related to embedding.

Definition 2.2.34 (subterm compatibility, subterm compatible termination,
simplification ordering, simple termination)

(1) A TRS RF is subterm compatible (or simplifying) if R is contained in some
rewrite ordering with the subterm property. RF is subterm compatibly termi-
nating if R is contained in some well-founded rewrite ordering (i.e. reduction
ordering) with the subterm property.

(2) For a finite signature F a simplification ordering (on T (F ,V)) is a rewrite or-
dering (on T (F ,V)) with the subterm property. A TRS RF over some finite
signature F is said to be simply terminating if R is contained in some simplifi-
cation ordering (on T (F ,V)).

The notion simple termination is justified by the following result which in essence is
due to Dershowitz ([Der79]).

Theorem 2.2.35 (simple termination implies termination for finite signa-
tures)
Any simply terminating TRS RF over some finite signature F is terminating.
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Proof: Suppose RF is simply terminating, but not terminating. Hence R is contained
in some simplification ordering ≻ on T (F ,V), and there exists a infinite reduction se-
quence t1 →R t2 →R t3 →R . . . involving only ground terms (∈ T (F)). Kruskal’s Tree
Theorem 2.2.33 now implies the existence of i, j with 1 < i < j such that ti Eemb tj. By
Lemma 2.2.32 and the fact that ≻ is a simplification ordering we get tj < ti. However,
since R is contained in ≻, ti →

+
R tj implies ti ≻ tj. But this is a contradiction with

the fact that ≻ is a partial ordering. Hence RF must be terminating.

Unfortunately, also simple termination of (finite) TRSs is undecidable, even for one-rule
systems ([MG95]).

We note in particular, that simple termination and subterm compatible termination
are equivalent notions for TRSs over finite signatures. More generally, the following
equivalent characterizations are easy to prove.13

Lemma 2.2.36 (characterizations of simple termination for finite signatures,
[KO90a], [KO90b], [Zan93], [Gra91], [Ohl92])
Let RF be a TRS over some finite signature F . Then the following assertions are
equivalent.

(1) R is simply terminating.

(2) R is subterm compatibly terminating.

(3) R∪ Emb(F) is terminating.

(4) R is subterm compatible and terminating.

(5) R is subterm compatible.

(6) R∪ Emb(F) is acyclic.

For infinite signatures it is well-known that a rewrite ordering with the subterm prop-
erty need not be well-founded.

Example 2.2.37 (subterm compatibility does not imply termination)
Consider for instance the TRS RF consisting of infinitely many constants ai and rewrite
rules ai → ai+1 for all i ≥ 1. The rewrite ordering →+

R vacuously satisfies the subterm
property, but RF is non-terminating:

a1 →R a2 →R a3 →R . . . .

The reason is that Kruskal’s Tree Theorem (its finite version above ) is not applica-
ble any more. But – as it is also well-known – applicability of the general version
of Kruskal’s Tree Theorem (see below) can be recovered by imposing an additional
condition on the signature, namely to be well-quasi-ordered or, closely related, to be
well-partially ordered . Syntactically this approach leads to a definition and charac-
terization of the general version of simplification ordering and simple termination by
means of an extended version of embedding.

13Kurihara and Ohuchi ([KO90a], [KO92]) were the first to make explicit some of these relations,
by means of the embedding rules.
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Definition 2.2.38 (extended embedding, [MZ94])
Let ≻ be a partial ordering on a signature F . The TRS Emb(F ,≻) (over the signature
F) consists of all rewrite rules of Emb(F) together with all rewrite rules

f(x1, . . . , xn) → g(xi1 , . . . , xim)

with f ∈ Fn, g ∈ Fm, n ≥ m ≥ 0, f ≻ g, and 1 ≤ i1 < . . . < im ≤ n whenever
m ≥ 1. Here x1, . . . , xn are pairwise distinct variables. We abbreviate →+

Emb(F ,≻) by
≻emb and ←∗

Emb(F ,≻) by 4emb. The latter relation is called extended (homeomorphic)

embedding .14

Since Emb(F , ∅) = Emb(F), extended (homeomorphic) embedding generalizes (home-
omorphic) embedding.

Next we turn to the required property for signatures. We only recall here those (well-
known) concepts and results from [MZ94] which are needed for the sake of understand-
ing.15

Definition 2.2.39 (partial well-ordering)
A partial ordering ≻ on a set A is called a partial well-ordering (PWO for short) if
every partial ordering extending ≻ (including ≻ itself) is well-founded.16

Every well-founded ordering on some finite set is a PWO. By definition every PWO is
a well-founded ordering, but not vice versa in general. For instance, the empty relation
on an infinite set is obviously a well-founded ordering but not a PWO. Clearly, every
total well-founded ordering (also called well-ordering) is a PWO. Furthermore, PWOs
enjoy many nice properties, e.g. they are preserved under intersection (on the same
set) and under multiset extension. The following fundamental result due to Kruskal
([Kru60])17 is the generalization of Theorem 2.2.33 to the case of arbitrary signatures.

Theorem 2.2.40 (Kruskal’s Tree Theorem – general version, [Kru60])
If ≻ is a PWO on a signature F then ≻emb is a PWO on T (F).

If a precedence ≻ is a PWO on a signature F one may ask whether ≻emb can be
restricted while retaining the property of being a PWO on T (F). In particular, one
may ask whether all rewrite rules in Emb(F ,≻) are really necessary. In case there is a
uniform bound on the arities of function symbols in F , it is indeed possible to reduce
the set Emb(F ,≻) (see [MZ94] for more details). And in the finite signature case the
rules of Emb(F) are clearly sufficient since the empty relation is a PWO on any finite
set.

14In [MZ94] this extended version is called homeomorphic embedding and the ordinary version
embedding . In order to be consistent with most definitions in the literature we prefer extended (home-
omorphic) embedding and (homeomorphic) embedding .

15See [Kru72] for an early survey of the rich and well-developed theory of well-quasi-orderings (and
partial well-orderings)

16For some equivalent definitions in terms of good (and bad) sequences, chains or antichains see
[MZ94].

17Cf. [NW63] for a beautiful non-constructive proof.
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The revised version of the notions of simplification ordering and simple termination for
the arbitrary signature case now reads as follows.

Definition 2.2.41 (simplification ordering, simple termination, [MZ94])

(1) A simplification ordering is a rewrite ordering on T (F ,V) that contains ≻emb

for some PWO ≻ on F .

(2) A TRS RF is simply terminating if R is contained in some simplification ordering
on T (F ,V).18

For the case of finite signatures this definition coincides with Definition 2.2.34(2). In
other words, a rewrite ordering on T (F ,V) with F finite is a simplification ordering
(according to Definition. 2.2.41) if and only if it has the subterm property. Moreover,
simple termination does also imply termination for arbitrary signatures.

Theorem 2.2.42 (simple termination implies termination, [MZ94])
Any simply terminating TRS is terminating.

Finally, the very useful characterization of simple termination of RF by termination of
R ∪ Emb(F) for the finite signature case (cf. Lemma 2.2.36) also extends to the case
of arbitrary signatures.

Lemma 2.2.43 (characterization of simple termination, [MZ94; MZ95])
For any TRS RF the following statements are equivalent:

(1) RF is simply terminating.

(2) RF ∪ Emb(F ,≻) is terminating for some PWO ≻ on F .

(3) RF ∪ Emb(F ,≻) is acyclic19 for some PWO ≻ on F .

Next we collect the relations between the introduced notions for the case of arbitrary
signatures.

Lemma 2.2.44 (subterm related notions of termination, general case)
For a TRS RF over an arbitrary signature F the following implications hold:

(1a) R is simply terminating.
⇐⇒ (1b) R∪ Emb(F ,≻) is terminating.
⇐⇒ (1c) R∪ Emb(F ,≻) is acyclic.
=⇒ (2) R is subterm compatibly terminating.
⇐⇒ (3) R∪ Emb(F) is terminating.
=⇒ (4) R is subterm compatible and terminating.
=⇒ (5) R is subterm compatible.
⇐⇒ (6) R∪ Emb(F) is acyclic.

18In view of this revised definition of simplification ordering and simple termination, compared
to previous terminology, Middeldorp & Zantema ([MZ95]) use the notion pseudo-simple termination
instead of our subterm compatible termination.

19i.e., →+
R∪Emb(F,≻) is irreflexive
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We note in particular that the proofs of the corresponding implications in Lemma 2.2.36
essentially carry over to the case of arbitrary signatures. Missing implications do not
hold. The implication (5) =⇒ (4) is refuted by Example 2.2.37. Counterexamples to
(2) =⇒ (1) and (4) =⇒ (2) are the following.

Example 2.2.45 ([MZ94])
Consider the TRS RF over the signature F = {fi, gi | i ∈ IN} with R consisting of all
rules

fi(gj(x)) → fj(gj(x))

where i, j ∈ IN with i < j. This system is not simply terminating. To see this, let ≻ be
any PWO on F and consider the infinite sequence (fi)i≥1. Due to the PWO property
of ≻ we have fj ≻ fi for some i < j. Hence Emb(F ,≻) contains the rule fj(x) → fi(x),
yielding the infinite derivation

fi(gj(x)) → fj(gj(x)) → fi(gj(x)) → . . .

in the TRS R∪Emb(F ,≻) ([MZ94]). But RF is subterm compatibly terminating since
R ∪ Emb(F) = {fi(gj(x)) → fj(gj(x)) | i, j ∈ IN, i < j} ∪ {fi(x) → x, gi(x) → x} is
terminating as is easily proved by a lexicographic argument.20

Example 2.2.46 ([Ohl92])
Consider the TRS RF over the signature F = {a, g, fi | i ∈ IN} with R consisting of
all rules

fj(a) → fj+1(g(a))

where j ∈ IN. Clearly, RF is terminating and also subterm compatible, since →+
R∪Emb(F)

(which is irreflexive) is a rewrite ordering with the subterm property containing R
(more precisely, →+

R∪Emb(F) is the smallest rewrite ordering with the subterm property

containing R). But RF is not subterm compatibly terminating because R ∪ Emb(F)
is not terminating. For instance, we have the infinite derivation

f1(a) → f2(g(a)) → f2(a) → f3(g(a)) → f3(a) → . . .

in R ∪ Emb(F). This means that any rewrite ordering with the subterm property
containing →+

R is not well-founded.

Remark 2.2.47 (extensions of Lemma 2.2.44)
We note that the properties (2)-(6) in Lemma 2.2.44 are equivalent to each other not
only in the case of finite signatures (cf. Lemma 2.2.36) but also for more general
cases. The crucial point is to ensure applicability of Kruskal’s Tree Theorem. This is
guaranteed if for some given TRS RF every reduction sequence involves only finitely
many function symbols. Simple ways of ensuring this property are to require finiteness
of either F or R. A more refined criterion is to require that RF introduces only finitely
many function symbols ([Ohl92]), i.e., to require finiteness of

⋃
l→r∈R(Fun(r)\Fun(l)).

The most prominent and best known example of a well-founded rewrite ordering with
the subterm property is the recursive path ordering of Dershowitz ([Der82]).

20In [MZ94] RF is shown to be even polynomially, hence totally terminating.
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Definition 2.2.48 (recursive path ordering, [Der82])
Let ≻ be a partial ordering (precedence) on some (arbitrary) signature F . The (in-
duced) recursive path ordering (RPO for short) >rpo on T (F ,V) is defined recursively
as follows:21

s = f(s1, . . . , sn) >rpo g(t1, . . . , tm) = t if

• f = g (and m = n) and [s1, . . . , sn] >mul
rpo [t1, . . . , tn], or

• f ≻ g and [s] >mul
rpo [t1, . . . , tm], or

• si &rpo t for some i ∈ {1, . . . , n}.22

Theorem 2.2.49 ([Der82])
Any recursive path ordering is a rewrite ordering with the subterm property, and it is
well-founded if and only if the precedence is well-founded.

The well-foundedness property of a recursive path ordering (over a well-founded prece-
dence) is proved in [Der82] by applying Kruskal’s Tree Theorem 2.2.33, exploiting the
incrementality of the RPO-construction (i.e., extending the precedence extends the
induced RPO) and the well-known fact that every well-founded partial ordering can
be extended to a total well-founded partial ordering. Since >rpo extends ≻emb, for any
precedence ≻ on the signature, >rpo is a simplification ordering (according to Definition
2.2.41) whenever the precedence is a PWO. In particular, if the signature is finite then
every RPO is a simplification ordering. In the case of arbitrary signatures every RPO
is included in some simplification ordering. Hence, every TRS whose rewrite relation is
included in some RPO over a well-founded precedence is simply terminating ([MZ94]).

Extensions and generalizations of RPO-like orderings have been investigated in [KL80]

and subsequently by many authors. Many other variations of precedence based syntac-
tical ordering have been developed, too, see [Ste94; Ste95b] for a comprehensive survey
on simplification orderings (over finite signatures). Particularly interesting from a
practical point of view are orderings or ordering schemes which allow for a flexible in-
tegration and combination of both syntactical and semantical termination arguments,
for instance the general path ordering of Dershowitz & Hoot ([DH95])23 Interesting
transformation based techniques for proving termination are explored among others in
[BD86], [BL90], [FZ95] [Zan94; Zan95], [Ste95a].

2.3 Conditional Term Rewriting Systems

In this Section we shall introduce conditional term rewriting systems. First some basic
terminology is recalled, different ways of assigning operational semantics as well as
aspects of expressive power are discussed. Moreover, additional complications which
are specific for conditional rewriting are stressed. The focus of the presentation is on

21Variables are interpreted as constants which are unrelated w.r.t. the precedence.
22Here &rpo denotes the associated quasi-ordering obtained by identifying permutatively equivalent

terms, i.e. terms which are equal up to (recursive) permutation of arguments.
23Cf. also [Ges94] for an improved version.
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confluence criteria for conditional rewriting, with or without termination (see Sections
2.3.1 and 2.3.2, respectively).

Definition 2.3.1 (conditional term rewriting system)
A conditional term rewriting system (CTRS for short) is a pair (F ,R) consisting of a
signature F and a set R of conditional rewrite rules of the form

l → r ⇐= s1 = t1, . . . , sn = tn

with l, r, s1, . . . , sn , t1, . . . , tn ∈ T (F ,V). The equations s1 = t1, . . . , sn = tn are the
conditions24 of the rule. As for unconditional TRSs (cf. Definition 2.2.6) we require
l 6∈ V and V ar(r) ⊆ V ar(l), i.e. no variable left-hand sides and no extra variables
on right-hand sides. Extra variables in conditions are allowed if not stated otherwise.
Rules without conditions (i.e., n = 0) will be written as l → r. Instead of (F ,R) we
also write RF or simply R if F is clear from the context or irrelevant.

Remark 2.3.2 The CTRS




0 ≤ y → true
s(x) ≤ 0 → false

s(x) ≤ s(y) → x ≤ y
x ≤ y → true ⇐= x ≤ z = true, z ≤ y = true

defining ≤ on natural numbers and expressing transitivity of ≤ has as extra variable
z in the condition of the last rule which is ok. From a programming point of view
examples like (cf. [DOS88b])

{
fib(0) → 〈0, s(0)〉

fib(s(x)) → 〈z, y + z〉 ⇐= fib(x) = 〈y, z〉

involving extra variables on right-hand sides, too, are also interesting, but will not
be considered here due to severe technical complications. Restricted classes of such
systems are treated for instance in [ALS94] and [SMI95].

Note that, due to the implicit universal quantification of conditional rewrite rules
(equations), when applying such a rule l → r ⇐= s1 = t1, . . . , sn = tn extra variables
in the right hand side r and in the conditions si = ti may be viewed to be existentially
quantified. This means that checking such a rule for applicability involves (besides
recursive evaluation of the conditions) a search for appropriate instantiations of the
extra variables.

Depending on the interpretation of the equality sign in the conditions of rewrite rules
different rewrite relations may be associated with a given CTRS.

Definition 2.3.3 (types of CTRSs, [BK86], [DOS88a], [Klo92])

(1) In a join CTRS R equality in conditions is interpreted as joinability. Formally:
s → t if there exists a rewrite rule l → r ⇐= s1 = t1, . . . , sn = tn ∈ R, a sub-
stitution σ and a context C[] such that s = C[σl], t = C[σr] and σsi ↓ σti for

24which are conjunctively connected.



38 CHAPTER 2. PRELIMINARIES

all i ∈ {1, . . . , n}. For rewrite rules of a join CTRS we shall henceforth use the
notation

l → r ⇐= s1 ↓ t1, . . . , sn ↓ tn .

(2) A normal CTRS R is a join CTRS with the additional property that for every
rule l → r ⇐= s1 ↓ t1, . . . , sn ↓ tn all right-hand sides ti of the conditions
are ground terms which are irreducible w.r.t. Ru = {l → r | l → r ⇐= s1 ↓
t1, . . . , sn ↓ tn ∈ R}. Due to the latter property, rules of a normal CTRS are
denoted by

l → r ⇐= s1 →
∗ t1, . . . , sn →∗ tn .

(3) Semi-equational CTRSs are obtained by interpreting equality in conditions as
convertibility, i.e. as ↔∗. The corresponding notation for rules is

l → r ⇐= s1 ↔
∗ t1, . . . , sn ↔∗ tn .

(4) A generalized CTRS has rules of the form

l → r ⇐= P1, . . . , Pn

where the conditions Pi are formulated in some general mathematical framework,
e.g. in some first-order language.

Remark 2.3.4 (a slightly more general notion of normality)
Note that for finite CTRSs normality according to the above definition can easily be
decided. A slightly more general, yet well-defined (but undecidable) notion of normality
is obtained by requiring that the right hand sides of conditions are ground terms which
are irreducible w.r.t. the reduction relation induced by join semantics.

Since the conditions in the rewrite rules of join, normal and semi-equational CTRSs
are positive, the rewrite relation →R in these cases is well-defined, notwithstanding
the circularity in its definition. In the case of generalized CTRSs well-definedness of
the rewrite relation has to be ensured explicitly. CTRSs with positive and negative
(equational) conditions have been studied in [Kap88] and more recently in [WG94]

from an algebraic specification point of view.

By associating with a given CTRS RF the ARS 〈T (F ,V),→R〉 all notions defined in
Section 2.2 carry over to CTRSs. For the sake of readability we shall use in the following
compact notations for conditional rules and conjunctions of conditions. When writing
l → r ⇐= P for some conditional rewrite rule then P stands for the conjunction of all
conditions. Similarly, P ↓ means joinability of all conditions in P , and σ(P ) (or σP )
means that all conditions in P are instantiated by σ.

For establishing properties of CTRSs the following inductive definition of the reduction
relation →R is fundamental.

Definition 2.3.5 (inductive definition of →R, depth)
The reduction relation corresponding to a given (join, normal or semi-equational)
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CTRS R can also be inductively defined as follows (¤ denotes ↓, →∗ or ↔∗, respec-
tively):

R0 = ∅ ,
Ri+1 = {σl → σr | l → r ⇐= P ∈ R, σu¤Ri

σv for all u¤v in P} .25

Note that Ri ⊆ Ri+1, for all i ≥ 0. Furthermore we have s →R t if and only if s →Ri

for some i ≥ 0, hence →R =
⋃

i≥0
→Ri

.

If s →R t then the depth of s →R t is defined to be the minimal n with s →Rn
t. For

s →∗
R t and s ↓R t depths are defined analogously. More precisely, if s →∗

R t then the
depth of s →∗

R t is defined to be the minimal n with s →∗
Rn

t. The depth of s ↓R t is
the minimal n with s ↓Rn

t. If the depth of s →∗
R t is less than or equal to n we denote

this by s
n

−→
∗

R t.

Remark 2.3.6 (encoding of conditions via an equality predicate)
Note that instead of a CTRS R one may somehow equivalently consider the extended
system R′ := R ⊎ {eq(x, x) → true}. More precisely, taking – within a many-sorted
framework – R′ := R⊎{eq(x, x) → true}, with eq a fresh binary function symbol and
true a fresh constant of a new sort (with x a variable of the ‘old’ sort), it is easily shown
that R′ is a conservative extension of R in the following sense: for all ‘old’ terms s, t
we have:26

s
n

−→R t ⇐⇒ s
n

−→R′ t,

s →R t ⇐⇒ s →R′ t,

s¤n
Rt ⇐⇒ eq(s, t)¤n

R′true (for n ≥ 1),27

eq(s, t)
n

−→
∗

R′ eq(u, v) ⇐⇒ s
n

−→
∗

R u ∧ t
n

−→
∗

R v,

eq(s, t)
n

−→
∗

R′ true ⇐⇒ ∃w : eq(s, t)
n

−→
∗

R eq(w,w) →R′ true (for n ≥ 1),

for ¤ denoting ↓ or ↔∗, respectively. From these properties it is straightforward to
infer that properties like termination, confluence, local confluence and joinability of
critical pairs are not affected by considering R′ instead of R, or vice versa. Note in
particular, that for join CTRSs the equivalence s ↓n

R t ⇐⇒ eq(s, t) ↓n
R′ true (for

n ≥ 1) means: s ↓n
R t ⇐⇒ eq(s, t)

n
−→

∗

R′ true, since true is irreducible. This
(depth preserving!) encoding of joinability into reducibility by means of an equality
predicate is particularly useful for proof-technical reasons as we shall see later on (in
the proof of Theorem 3.6.1). Furthermore, observe that the above encoding allows
to transform a given (join) CTRS into a non-left-linear normal one which behaves
essentially equivalently. The non-left-linearity of the transformed system – due to the
rule eq(x, x) → true – can in general not be avoided.

25Note in particular that all unconditional rules of R are contained in R1 (because the empty
conditions are vacuously satisfied) as well as all conditional rules with trivial conditions only, i.e.
conditions of the form s¤s. In fact, rules of the latter class can be considered to be essentially
unconditional.

26Note that s¤n
R

t is to denote that the depth of s¤Rt is at most n.
27In order to obtain the equivalence s¤n

R
t ⇐⇒ eq(s, t)¤n

R′true for n = 0, too, one would have to
include the rule eq(x, x) → true into R0 instead of R1 in Definition 2.3.5 as it is sometimes done in
the literature.
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Remark 2.3.7 (expressive power)
Concerning the logical strength of semi-equational and join CTRSs compared to the
purely equational interpretation the following relations hold (here we denote by =R

the congruence induced by R when considered as a set of equations). The semi-
equational and purely equational interpretation of some given CTRS R yield the same
congruences: ↔∗

R = =R. But for join systems ↔∗
R = =R need not hold, i.e., ↔∗

R ⊇=R

may be violated. However, if R is confluent as a join system then all three congruences
coincide and R is also confluent as a semi-equational CTRS ([Kap84]). Hence, when
considering the most important type of CTRSs, namely join CTRSs, we don’t lose
expressive power provided confluence is given.

Definition 2.3.8 (conditional critical pairs)
Let R be a join CTRS, and let l1 → r1 ⇐= P1, l2 → r2 ⇐= P2 be two rewrite rules
of R which have no variables in common. Let p ∈ FPos(l1) such that l1/p and l2
are unifiable with mgu σ. Then 〈(σl1)[p ← σr2] = σr1〉 ⇐= σ(P1), σ(P2) is said
to be a (conditional) critical pair of R, determined by overlapping l2 → r2 ⇐= P2

into l1 → R1 ⇐= P1 at position p. If the two rules are renamed versions of the same
rule of R, we do not consider an overlap at root position. A (conditional) critical pair
〈s = t〉 ⇐= P is said to be joinable if σs ↓ σt for every substitution σ with (σP ) ↓.
A substitution σ which satisfies the conditions, i.e. for which (σP ) ↓ holds, is said to
be feasible. Otherwise, σ is infeasible. Analogously, a (conditional) critical pair is said
to be feasible (infeasible) if there exists some (no) feasible substitution for it. The set
of all (conditional) critical pairs between rules of R is denoted by CP(R). Joinability
of (all) critical pairs of R is abbreviated by JCP(R).

Note that testing joinability of conditional critical pairs is in general much more difficult
than in the unconditional case since one has to consider all substitutions which satisfy
the correspondingly instantiated conditions.

Definition 2.3.9 (non-overlapping, overlay CTRSs)
(cf. [BK86], [Klo92]) Let R be a CTRS and let Ru be its unconditional version, i.e.,
Ru = {l → r | l → r ⇐= P ∈ R}. Then R is said to be non-overlapping (NO) / weakly
non-overlapping (WNO) / orthogonal (ORTH) / weakly orthogonal (WORTH) / a
(conditional) overlay system (OS) if Ru is non-overlapping / weakly non-overlapping
/ orthogonal / weakly orthogonal / an (unconditional) overlay system.

Conditional rewriting is inherently much more complicated than unconditional rewrit-
ing. Intuitively, the main reason is that for applying some rule l → r ⇐= P the appro-
priately instantiated conditions must be verified recursively using again the reduction
relation. This may lead to a non-terminating evaluation process for the conditions,
even for terminating systems. In fact, the rewrite relation (and reducibility) may be
undecidable even for (finite) complete (join) CTRSs without extra variables in the
conditions ([Kap84]). A sufficient (but rather restrictive) condition for the decidabil-
ity of irreducibility in normal CTRSs which does not imply termination is given in
[BK86]. In the general case of join CTRSs one has to impose a stronger condition than
termination for ensuring decidability of the basic notions.
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Definition 2.3.10 (decreasing, reductive, simplifying)
Let R be a (join / normal / semi-equational) CTRS.28 Then R is decreasing ([DOS88a])
if there exists a partial ordering > satisfying

(1) > is well-founded.

(2) →R ⊆>.

(3) If l → r ⇐= s1 = t1, . . . , sn = tn is a rule in R and σ is a substitution then
σl > σsi and σl > σti for i = 1, . . . , n, and

(4) > has the subterm property, i.e. C[s] > s for every term s and every non-empty
context C[].

R is reductive ([JW86]) if there exists a partial ordering > satisfying (1)-(3) and

(5) > is closed under contexts.

R is simplifying ([Kap87]) if there exists a rewrite ordering > with the subterm property
such that

(3’) If l → r ⇐= s1 = t1, . . . , sn = tn is a rule in R then l > r and l > si, l > ti for
i = 1, . . . , n

holds (note that in this case, > satisfies (2)-(5) and is closed under substitutions).

It is easy to see that every reductive system R is decreasing: If > is a partial ordering
satisfying the reductivity conditions (w.r.t. R), then the extended ordering (> ∪ D)+

satisfies the decreasingness conditions, in particular it is well-founded, too. Moreover,
any decreasing system is clearly terminating. If RF is simplifying, with some rewrite
ordering > having the subterm property, such that > is well-founded, then it is also
reductive, hence decreasing. As mentioned earlier this is for instance the case if R or
F is finite. Note that a system may be decreasing but not reductive.

Example 2.3.11 (decreasing ; reductive, [DOS88a])
The (join or semi-equational) CTRS





b → c
f(b) → f(a)

a → c ⇐= b = c

is easily shown to be decreasing, but it is not reductive since the third rule enforces
a > b, hence f(a) > f(b) by closure under context which contradicts the orientation of
the second rule.

Note that a decreasing semi-equational CTRS is also decreasing as a join system but
not vice versa in general.

28We write here l → r ⇐= s1 = t1, . . . , sn = tn for denoting rules of a join, normal or semi-
equational CTRS.
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Example 2.3.12 (decreasingness is type-dependent)
Consider the CTRS

R =





a → a ⇐= c = d
b → c
b → d .

As join CTRS R is clearly decreasing due to unsatisfiability of c ↓ d but as semi-
equational CTRS it is obviously non-terminating, hence cannot be decreasing.

Decreasingness exactly captures the finiteness of recursive evaluation of terms. For
finite decreasing join CTRSs (such that the decreasing ordering > is decidable) all
the basic notions are decidable, e.g. reducibility and joinability (cf. [Kap87], [JW86],
[DOS88a]).29 Observe that this does not apply to semi-equational systems because
there the recursive evaluation of conditions si ↔∗ ti may require inverse reduction
steps which does not yield the desired decrease w.r.t. the corresponding ordering.

The problems of verifying confluence and termination of CTRSs are in general much
more difficult than in the unconditional case. Concerning termination, it is quite
natural to try to extend the existing machinery to the conditional case. If one can
prove termination of the unconditional version Ru = {l → r | l → r ⇐= P ∈ R} of
some given CTRS R then R is obviously terminating, too. In general, however, one has
to take into account some semantic knowledge for proving termination of conditional
rewriting. Namely, for some rewrite rule l → r ⇐= P of R one must have σl > σr (with
> some well-founded rewrite ordering) only for those substitutions which satisfy the
instantiated condition σP . Natural candidates for such an approach are the semantic
path odering of [KL80] and the general path ordering of [DH95], cf. also [Bev93]. But,
from a practical and automation point of view, this approach is quite challenging and
has not been much investigated yet. In fact, this is a field of research which is closely
related to automating termination proofs of recursively defined algorithms within a
functional framework (cf. [BM79], [Wal94b], [Gie95]).

2.3.1 Confluence without Termination

Testing confluence of CTRSs is in general much more difficult than for unconditional
TRSs. For instance, the Critical Pair Lemma (cf. Lemma 2.2.17) does not hold for
join CTRSs any more. And orthogonal join CTRSs need not be (locally) confluent (cf.
Theorem 2.2.27).

Example 2.3.13 (orthogonal join CTRSs need not be confluent, [BK86])
The join CTRS

R =

{
f(x) → a ⇐= f(x) ↓ x

b → f(b)

is non-overlapping and left-linear, hence orthogonal, but non-confluent and not even
locally confluent. We have e.g. f(a) ← f(f(b)) → a, but not f(a) ↓ a, since both a

29For slightly generalized versions of decreasingness cf. [WG94].



2.3. CONDITIONAL TERM REWRITING SYSTEMS 43

and f(a) are irreducible.

The crucial point here is that, unlike the unconditional case, variable overlaps may
be critical: Let σl → σr due to the satisfied conditions σsi ↓ σti for some rule
l → r ⇐= s1 ↓ t1, . . . , sn ↓ tn . Now, if σx → σ′x for some x ∈ V(l), then we obvi-
ously have σ′l +← σl → σr →∗ σ′r, but not necessarily σ′l → σ′r since σ′si ↓ σ′ti need
not hold any more.

By requiring additionally normality this problem can be avoided.

Theorem 2.3.14 (confluence by orthogonality plus normality, [BK86],
[Klo92])
Any weakly orthogonal, normal CTRS is confluent.

In fact, as remarked in [GM88], the proof in [BK86] shows level-confluence. More
precisely, it even shows shallow-confluence.

Definition 2.3.15 (shallow-confluence, level-confluence)
Let R be a CTRS.

(1) R is level-confluent ([GM88]) if for all n ≥ 0 and all terms s, t, u with s
n

−→ t,
s

n
−→ u there exists a term v such that t

n
−→

∗
v and u

n
−→

∗
v, i.e., if Rn

(cf. Definition 2.3.5) is confluent for all n ≥ 0. R is level-complete if it is
level-confluent and terminating.

(2) R is shallow-confluent ([DOS88b]) if for all m,n ≥ 0 and all terms s, t, u with
s

m
−→

∗
t, s

n
−→

∗
u there exists a term v such that t

n
−→

∗
v and u

m
−→

∗
v. R

is shallow-complete if it is shallow-confluent and terminating. A critical pair
〈s = t〉 ⇐= P of R, obtained from a critical overlap s ← u → t, is shallow-
joinable if, for each feasible substitution σ, i.e. with (σP ) ↓, with σu

m
−→ σs,

σu
n

−→ σt there exists a term v such that σs
n

−→
∗

v, σt
m
−→

∗
v.

Clearly, we have the implications: shallow-confluence =⇒ level-confluence =⇒ con-
fluence, both of which are proper. Level-confluence is interesting since it guarantees
the completeness of narrowing for (join) CTRSs with extra variables in the conditions
allowed ([GM88]). Recently, Theorem 2.3.14 has been extended to certain orthogonal
CTRSs allowing extra-variables in right-hand sides, too (cf. [SMI95]).

Whereas the Critical Pair Lemma does not hold for join CTRSs in general, see Example
2.3.13 above, it does hold for semi-equational systems as is easily verified: Considering
one-step divergences s ← u → t, the variable overlap case is no problem if conditions
are interpreted semi-equationally.

Definition 2.3.16 (closed predicate/CTRS, [Klo92])
Let RF be a CTRS with rewrite relation → and let P be an n-ary predicate on T (F ,V).
Then P is said to be closed with respect to → if for all terms ti, t

′
i ∈ T (F ,V) such that

ti →
∗ t′i (i = 1, . . . , n):

P (t1, . . . , tn) =⇒ P (t′1, . . . , t
′
n) .
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R is said to be closed if all conditions (appearing in some conditional rewrite rule
of R), viewed as predicates with the variables ranging over terms from T (F ,V), are
closed with respect to →.

Theorem 2.3.17 (confluence criteria for closed CTRSs, [O’D77], [Klo92])

(1) Any generalized, weakly orthogonal, closed CTRS is confluent (cf. [O’D77],
[Klo92]).

(2) Any weakly orthogonal, semi-equational CTRS is confluent.30

It seems open to what extent further confluence criteria which do not presume ter-
mination can be generalized from the unconditional to the conditional case (cf. e.g.
Theorem 2.2.22). This should be clarified in future research.31

2.3.2 Confluence with Termination

Unfortunately, the Critical Pair Lemma does not even hold for terminating (join)
CTRSs, cf. [DOS88b] for some illustrative counterexamples. A very simple counterex-
ample (due to Aart Middeldorp) is the following.

Example 2.3.18 (SN ∧ JCP 6=⇒ WCR)
Let

R =





h(x) → k(b) ⇐= h(x) ↓ k(x)
k(a) → h(a)

a → b

This system is easily shown to be terminating and the only critical peak (between the
last two unconditional rules) k(b) ← k(a) → h(a) is joinable since h(a) → k(b) by
the first rule (due to h(a) ↓ k(a)). But we have h(b) ← h(a) → k(b) (again due to
h(a) ↓ k(a)) with both h(b) and k(b) irreducible.

We observe that in this example R is not shallow-joinable, since the step from h(a) to
k(b) has depth 2. Furthermore R is left-linear, not normal, no overlay system and not
decreasing. Normality (more precisely, its slightly more general version, cf. Remark
2.3.4) can easily be obtained by modifying the first rule appropriately.

Example 2.3.19 The join CTRS

R =





h(x) → k(b) ⇐= k(x) ↓ h(b)
k(a) → h(a)

a → b

is terminating, left-linear, normal (in the sense of Remark 2.3.4), has exactly one
joinable, but not shallow-joinable, critical pair and is not shallow-joinable and not
locally confluent (for the same reason as above).

30This is a corollary of (1).
31Some very recent progress in this direction is reported in [Wir95], within the more general setting

of positive/negative CTRSs.
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Dershowitz, Okada and Sivakumar succeeded to prove the following confluence criteria
for terminating CTRSs. Note that in all three cases none of the conditions can be
dropped as exemplified by counterexamples in [DOS88b].

Theorem 2.3.20 (shallow-confluence criterion, [DOS88b])
A terminating, left-linear, normal CTRS is (shallow-)confluent, if all its critical pairs
are shallow-joinable.

Theorem 2.3.21 (overlay criterion for confluence, [DOS88b])
A terminating overlay (join) CTRS is confluent, if all its critical pairs are joinable.

Theorem 2.3.22 (confluence criterion for decreasing CTRSs, [DOS88b])
A decreasing (join) CTRS is confluent, if all its critical pairs are joinable.

Moreover, if a semi-equational CTRS is decreasing and has joinable critical pairs, then
it is confluent, and in this case the corresponding join CTRS is (decreasing and) con-
fluent, too ([DOS88a]. If a terminating semi-equational CTRS is confluent, then it
need not be confluent as a join CTRS (cf. e.g. Examples 2.3.18, 2.3.19 above). We re-
mark that Theorem 2.3.22 slightly generalizes the corresponding results for simplifying
([Kap87]) and reductive ([JW86]) join CTRSs. In Theorem 2.3.20 it is not possible
to weaken shallow-joinability of critical pairs to level-joinability as demonstrated in
[DO90].

Considering Theorem 2.3.21, we would like to mention that some generalizations are
still possible (but are not treated here in order to keep this thesis reasonable in size).
One may indeed allow non-overlay critical pairs, but then one needs a stronger condition
than joinability of critical pairs, namely quasi-overlay joinability of (all) shared parallel
critical pairs (peaks), cf. [WG94], [GW96], [Wir95].

2.4 Combined Systems and Modularity Behaviour

In this section we give a brief introduction into the combination setting. Different
kinds of combinations of systems are discussed as well as basic problems arising. For
the special case of disjoint unions we then introduce in Section 2.4.2 the necessary ter-
minology and basic theory. This is finally extended also to combinations of constructor
sharing and of composable systems.

2.4.1 Introduction

Since all interesting properties of TRSs like confluence and termination are undecid-
able, the need for sufficient criteria, methods and proof techniques for verifying such
properties is evident. In particular, it would be very desirable to have a well-developed
structure theory for (term) rewriting which would allow for a modular analysis of com-
bined systems (via a divide and conquer approach) and — from a dual point of view
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— for a modular construction of complex systems with some desired properties (via
general inheritance mechanisms). Unfortunately, under the combination of arbitrary
TRSs all interesting properties get lost. For instance, combining the terminating one-
rule TRSs a → b and b → a leads to non-termination, and combining the confluent
one-rule TRSs a → b and a → c yields a non-confluent system.

Various structural restrictions are conceivable for specifying certain classes of combi-
nations:

(a) structural restrictions concerning the signatures of the involved TRSs and the
overall shape of their rules;

(b) syntactic and semantic restrictions concerning the required form and properties
of rules and rule systems;

(c) combinations of (a) and (b).

The simplest type of restriction according to (a) above is the concept of disjoint union
where the signatures of the component TRSs are required to be disjoint (hence also
the corresponding rule sets).

Definition 2.4.1 (union, disjoint union)
Let RF1

1 and RF2

2 be two TRSs. Their union or combination RF is defined by RF :=
RF1

1 ∪RF2

2 := (R1 ∪R2)
F1∪F2 . We say that RF1

1 and RF2

2 are disjoint if F1 ∩F2 = ∅.
In that case RF = RF1

1 ⊕RF2

2 (or simply R = R1 ⊕R2) denotes their (disjoint) union.

Definition 2.4.2 (modularity of TRS properties)
Let P be a property of TRSs.

• We say that P is modular (for arbitrary TRSs) if, for all TRSs RF1

1 , RF2

2 , RF

with RF = RF1

1 ∪RF2

2 : P (RF1

1 ) ∧ P (RF2

2 ) ⇐⇒ P (RF).

• We say that P is modular for disjoint TRSs (or modular for disjoint unions of
TRSs) if, for all TRSs RF1

1 , RF2

2 and RF with RF = RF1

1 ⊕ RF2

2 : P (RF1

1 ) ∧
P (RF2

2 ) ⇐⇒ P (RF).

As already mentioned all interesting semantic properties like termination and conflu-
ence are not modular for arbitrary TRSs. However, many syntactic properties like left-
(right- or full) linearity or being non-erasing are indeed modular (for arbitrary TRSs).
This will be (sometimes tacitly) exploited.

Often, in particular for disjoint unions, one implication of the modularity of some
property P , namely P (RF) =⇒ P (RF1

1 ) ∧ P (RF2

2 ), is trivial (which is sometimes
tacitly exploited, too). In such cases it suffices to concentrate on the difficult part
P (RF1

1 ) ∧ P (RF2

2 ) =⇒ P (RF), i.e., to show preservation of P under the combination.

Some basic observations concerning modularity (for disjoint TRSs) are the following:
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• If P =⇒ Q and P is modular, then Q need not be modular. To see this, take
for instance confluence for P and ground confluence for Q. Then P is modular
by Toyama’s Theorem 4.1.2 and Q is not modular, since it is well-known that
ground confluence is not even preserved under signature extensions.

• If P =⇒ Q and Q is modular, then P need not be modular. For instance, one
can take termination (SN) for P , weak termination (WN) for Q and observe
the non-modularity of SN (Example 5.1.1) and the modularity of WN (Theorem
5.2.2).

• If P is modular, then ¬ P need not be modular. For instance, taking the modular
CR for P , we clearly have ¬CR(RF1

1 )∧¬CR(RF2

2 ) =⇒ ¬CR(RF1

1 ⊕RF2

2 ) but not
¬CR(RF1

1 ⊕RF2

2 ) =⇒ ¬CR(RF1

1 ) ∧ ¬CR(RF2

2 ).

Furthermore we observe that the more interesting part of the modularity of some
property P usually entails a two-step approach, in the following sense: For proving
modularity of P , first prove

(1) P (RF) =⇒ P (RF ′
) for any F ′ ⊇ F (preservation of P under signature exten-

sion), and then

(2) P (R1
F) ∧ P (R2

F) =⇒ P (RF) where RF = RF1

1 ∪RF2

2 (preservation of P under
combination over the same signature).

For TRSs part (1) is often trivial or easy (and thus sometimes even omitted or ignored).
However, (1) may be non-trivial, as we will see, for various properties of CTRSs.

As to the interaction possibilities of rewriting in a combined system RF = RF1

1 ∪RF2

2 , it
is clear that TRSs satisfy the basic decomposition property (for terms s, t ∈ T (F ,V))

s →R t =⇒ s →R1
t ∨ s →R2

t

and consequently →R =→R1
∪ →R2

. This property is, however, violated for CTRSs
as observed by Middeldorp ([Mid90]), since a reduction step s →R t in the (disjoint
or non-disjoint) union RF = RF1

1 ∪ RF2

2 , let’s say using an R1-rule, may need R2-
rules for satisfying the corresponding conditions. In fact, this is one of the additional
complications arising when analyzing combinations of CTRSs.

Secondly, we observe that interaction of rewriting in a combined system is enabled by
shared function symbols as well as by the (always) shared variables. Hence, even in a
disjoint union interaction is possible due to the presence of variables. More precisely,
it turns out that the main problems are caused by collapsing rules, i.e., rules with
a variable as right hand side. For non-disjoint unions, additionally those rules are
problematic which have a shared function symbol on top of their right hand side.
Applying such rules may essentially modify the ‘homogeneous’ parts of ‘mixed’ terms
thereby enabling the application of rules which were previously not applicable. Further
problems of interaction (which are not specific for the combination setting here) are
due to non-left-linear rules.
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Relaxing the disjointness requirement for disjoint unions is possible in various ways.
For instance, one may insist on the disjointness of the sets of defined symbols but allow
shared constructors (cf. Definition 2.2.12), yielding combinations of constructor sharing
systems. A further weakening is to allow even shared defined symbols provided the
respective defining rules occur in both systems, yielding combinations of composable
systems. Asymmetric hierarchical combinations are obtained by requiring that one
system (the base system) does not depend — in a sense to be made precise — on the
other one (the extension), but possibly vice versa. Hierarchical combinations as well
as some other types of combinations that have been investigated in the literature will
be briefly discussed in Chapter 6. Here we restrict ourselves to constructor sharing and
composable systems.

Definition 2.4.3 (constructor sharing / composable TRSs, cf. [KO92], [MT91;
MT93], [Ohl94c])
For RFi

i be TRSs with sets Di of defined symbols and Ci of constructors, respectively,
for i = 1, 2. Let RF = RF1

1 ∪RF2

2 . Then the set F s of shared function symbols is given
by F1∩F2, the set Rs of shared rules by R1∩R2. The sets Fns

i and Rns
i of non-shared

Fi-symbols and non-shared Ri-rules32 (for i = 1, 2) are defined by Fns
i = Fi \ F

s and
Rns

i = {l → r ∈ Ri | root(l) ∈ Fns
i }.

• RF1

1 and RF2

2 are said to be constructor sharing if F1 ∩ D2 = ∅ = F2 ∩ D1, i.e.,
if they share at most constructors (and no rules).33

• RF1

1 and RF2

2 are said to be composable if C1 ∩ D2 = ∅ = C2 ∩ D1 and {l → r ∈
R | root(l) ∈ D1 ∩D2} = R1 ∩R2, i.e., if they share (some) constructors and the
defining rules for all shared defined symbols. 34

The notion of modularity is extended to constructor sharing and composable TRSs as
follows.

Definition 2.4.4 (modularity: constructor sharing / composable TRSs)
Let P be a property of TRSs.

• We say that P is modular for constructor sharing TRSs (or modular for construc-
tor sharing unions) if, for all TRSs RF1

1 , RF2

2 , RF with RF = RF1

1 ∪ RF2

2 such
that RF1

1 and RF2

2 are constructor sharing: P (RF1

1 ) ∧ P (RF2

2 ) ⇐⇒ P (RF).

• We say that P is modular for composable TRSs (or modular for composable
unions) if, for all TRSs RF1

1 , RF2

2 , RF with RF = RF1

1 ∪ RF2

2 such that RF1

1

and RF2

2 are composable: P (RF1

1 ) ∧ P (RF2

2 ) ⇐⇒ P (RF).

32i.e., Ri-rules defining the non-shared (defined) function symbols from F1
33In other words: Fs ⊆ C1 ∪ C2 and Rs = ∅, or, equivalently: Ri = Rns

i for i = 1, 2 (and
consequently: R = R1

ns ⊎R2
ns).

34In other words: Ri = Rns
i ⊎Rs for i = 1, 2 (and consequently: R = R1

ns ⊎R2
ns ⊎Rs).
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Clearly, disjoint TRSs are constructor sharing, and constructor sharing TRSs are com-
posable, but not necessarily the other way round. Moreover, all these types of com-
binations and modularity definitions extend in the obvious way to conditional TRSs
(CTRSs). Furthermore, the extension to corresponding combinations of more than two
systems is also straightforward.

As we will see, many modularity results do only hold under certain conditions. When
stating such results later on, we will use the following convention for the sake of read-
ability (which applies in an analogous manner to the cases of constructor sharing and
of composable systems). Assertions of the form

Some property P is modular for disjoint (C)TRSs satisfying Q

have to be interpreted as

(P ∧ Q) is modular for disjoint (C)TRSs

i.e., implicitly the modularity of the conjunction of P and Q is meant. This convention
allows to emphasize the important part of corresponding modularity results (in fact,
often Q will be obviously modular).

2.4.2 Basic Terminology

Disjoint Unions

Here we introduce the basic terminology, notions, notations and facts needed for dealing
adequately with disjoint unions of TRSs following mainly [Toy87b], [Mid90].

Let us assume subsequently that RF1

1 and RF2

2 are disjoint TRSs with RF denoting
their disjoint union RF1

1 ⊕RF2

2 . Furthermore we shall use the abbreviating notations
T = T (F ,V) and Ti = T (Fi,V) for i = 1, 2. Instead of →R we shall also simply use
→.

Many definitions, notations and case distinctions are symmetric w.r.t. the two systems.
The non-explicit case is therefore often indicated in parentheses (or omitted). First
of all, in order to achieve better readability we introduce the mostly used chromatic
terminology.

Definition 2.4.5 (chromatic terminology)
Function symbols from F1 (F2) are called black (white). Variables are transparent ,
i.e., have no colour. A term s ∈ T (F ,V) is called black (white) if s ∈ T1 (s ∈ T2).
We say that s is top black (top white, top transparent) if root(s) ∈ F1 (root(s) ∈ F2,
root(s) ∈ V). Terms in T1∪T2 are called homogeneous , terms from T \ (T1∪T2) mixed .

Obviously every term s ∈ T has unique representations

s =





Cb〈s1, . . . , sl〉 with Cb〈, . . . , 〉 ∈ T (F1,V), root(si) ∈ F2

Cw〈t1, . . . , tm〉 with Cw〈, . . . , 〉 ∈ T (F2,V), root(tj) ∈ F1

Ct〈u1, . . . , un〉 with Ct〈, . . . , 〉 ∈ T (F1 ∩ F2,V), root(uk) ∈ F1 ∪ F2
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which will subsequently be indicated by writing35

s =





Cb 〈〈 s1, . . . , sl〉〉
Cw 〈〈 t1, . . . , tm〉〉
Ct 〈〈u1, . . . , un〉〉

According to our conventions for denoting contexts (cf. Definition 2.2.4) we shall also
use the notations

s =

{
Cb [[ s1, . . . , sl]]
Cw [[ t1, . . . , tm]]

in the case of strict contexts. Thus, any any mixed term s must be either of the form
s = Cb [[ s1, . . . , sl]] (if it is top black) or else of the form s = Cw [[ t1, . . . , tm]] (if it is top
white). In this case we shall often also drop the superscripts (for black and white) and
simply write e.g. s = C [[ s1, . . . , sl]] .

Definition 2.4.6 (alien / special subterm, rank, top)

(1) A top black (top white) subterm s/p of s ∈ T (F ,V), i.e., with root(s/p) ∈ F1

(root(s) ∈ F2), is called a black (white) alien or special subterm of s if the
immediate superterm of s/p in s (if existent) is top white (top black). If s =
Cb [[ s1, . . . , sn]] (s = Cw [[ s1, . . . , sn]] ) the si’s, i.e., the maximal white (black) aliens
of s, are called the white (black) principal aliens or principal subterms of s. For
s = C [[ s1, . . . , sn]] (meaning to stand for both cases) the si’s are simply called
principal aliens or principal subterms.

(2) The rank of a term s ∈ T (F ,V) is defined by

rank(s) =





0 if s ∈ V
1 if s ∈ (T1 ∪ T2) \ V
1 + max{rank(si) | 1 ≤ i ≤ n} if s = C [[ s1, . . . , sn]]

The rank of a (possibly infinite) derivation

D : s1 → s2 . . .

is defined by rank(D) = min{rank(si) | si occurs in D}.

(3) The topmost homogeneous part top(s) of a term s ∈ T (F ,V) is defined by

top(s) =

{
s if s ∈ V
C[, . . . , ] if s = C [[ s1, . . . , sn]]

Definition 2.4.7 (inner / outer reduction, destructive steps)

(1) If s → t by applying some rule in one of the principal aliens of s, we write s
i
→ t,

otherwise s
o
→ t. The relations

i
→ and

o
→ are called inner and outer reduction,

respectively.

35Actually, the last case is degenerate here since for disjoint unions a top transparent term must
be a variable. However, for constructor sharing and composable systems these notations can be
conveniently extended.
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(2) A rewrite step s → t is destructive at level 1 if the root symbols of s and t have
different colours, i.e., if either s is top black and t top white or top transparent,
or s is top white and t top black or top transparent. The rewrite step s → t is

destructive at level n + 1 if s = C [[ s1, . . . , sj, . . . , sn]]
i
→ C[s1, . . . , tj, . . . , sn] with

sj → tj destructive at level n. A step s → t is destructive if it is destructive at
some level n ≥ 1.

Clearly, if a step s → t is destructive then the applied rule36 must be collapsing.

Lemma 2.4.8 (form of outer and inner steps)

(1) If s
o
→ t then s = C {{ s1, . . . , sn}} and t = C ′ 〈〈 si1 , . . . , sim〉〉 for some contexts

C{, . . . , } and C ′〈, . . . , 〉, terms s1, . . . , sn, and indices i1, . . . , im ∈ {1, . . . , n}.
Moreover, if s

o
→ t is not destructive at level 1, then t has the form t =

C ′ {{ si1 , . . . , sim}} . If additionally rank(t) > 1 then t = C ′ [[ si1 , . . . , sim ]] .

(2) If s
i
→ t then s = C [[ s1, . . . , sj, . . . , sn]] and t = C[s1, . . . , tj, . . . , sn] for some

context C[, . . . , ], terms s1, . . . , sn, tj and j ∈ {1, . . . , n} with sj → tj. Moreover,

if s
i
→ t is not destructive at level 2 then t has the form t = C [[ s1, . . . , tj, . . . , sn]] .

An important basic fact is that reduction in the disjoint union is rank decreasing. This
enables proofs by induction on the rank of terms.

Lemma 2.4.9 (reduction in the disjoint union is rank decreasing)
If s →∗ t then rank(s) ≥ rank(t).

Definition 2.4.10 (consistent replacement)
Let s1, . . . , sn, t1, . . . , tn ∈ T .

(1) We write 〈s1, . . . , sn〉 ∝ 〈t1, . . . , tn〉 if ti = tj whenever si = sj, for all 1 ≤ i <
j ≤ n (consistent replacement).

(2) We write 〈s1, . . . , sn〉∞〈t1, . . . , tn〉 if both 〈s1, . . . , sn〉 ∝ 〈t1, . . . , tn〉 and
〈t1, . . . , tn〉 ∝ 〈s1, . . . , sn〉, i.e., if si = sj ⇐⇒ ti = tj, for all 1 ≤ i < j ≤ n.

Lemma 2.4.11 (identifying / injective abstraction)
Let s = C {{ s1, . . . , sn}}

o
→l→r C ′ 〈〈 si1 , . . . , sim〉〉 = t. Then we have:

(1) C{t1, . . . , tn}
o
→l→r C ′〈ti1 , . . . , tim〉 for all terms t1, . . . , tn with 〈s1, . . . , sn〉 ∝

〈t1, . . . , tn〉 (consistent replacement). Furthermore, if l → r is left-linear then
the restriction 〈s1, . . . , sn〉 ∝ 〈t1, . . . , tn〉 can be omitted.

(2) In particular: top(s) = C{, . . . , }
o
→l→r C ′〈, . . . , 〉 = top(t) (identifying abstrac-

tion37 ).

36which need not be uniquely determined
37This means (consistent) replacement with maximal identification, i.e., all principal aliens are

replaced by some (the same!) fresh variable (or constant ¤).
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(3) And furthermore: C{x1, . . . , xn}
o
→l→r C ′〈xi1 , . . . , xim〉 for all fresh variables

x1, . . . , xn with 〈s1, . . . , sn〉∞〈x1, . . . , xn〉 (injective abstraction38 ). In this case
we additionally get: If s

o
→l→r t is an innermost reduction step, then the ab-

stracted step C{x1, . . . , xn}
o
→l→r C ′〈xi1 , . . . , xim〉 is innermost, too. (A subtle

point here is that ‘freshness’ of the xi’s is to be interpreted w.r.t. to all variables
appearing in s (and t) because otherwise unnecessary identifications between ab-
stracted principal aliens and variables occurring in s but not inside its principal
aliens might become possible!)39

Definition 2.4.12 (colour changing reduction, preserved / inner preserved
terms, collapsing reduction)

(1) A reduction (sequence) s →+ t with s top black (top white) is said to be colour
changing if t is top white or top transparent (top black or top transparent).

(2) A term s ∈ T (F ,V) is called preserved if no (→)-derivation issuing from s
contains a destructive step (at some level ≥ 1). We say that s is inner preserved
if all its principal aliens are preserved.

(3) The collapsing (or layer coalescing) reduction relation →c (on T (F ,V) w.r.t.
→) is defined as follows: s →c t if s = C[s1], t = C[t1], s1 is an alien of s,
s1 →

+ t1, and s1 →
+ t1 is colour changing.

Lemma 2.4.13 (relating colour changing reduction, preservation and col-
lapsing reduction)

(1) If s →c t then s →∗ t.

(2) s is preserved if and only if it is →c-irreducible.

(3) s is preserved if and only if none of its aliens allows a colour changing reduction
(sequence).

(4) WN(s,→c) implies that s has a preserved reduct (w.r.t. →).

Definition 2.4.14 (extended notions for substitutions)
Let σ and τ be substitutions (over T (F ,V)).

(1) We write σ ∝ τ if σx = σy implies τx = τy for all x, y ∈ V.

(2) By σ →∗ τ we mean σx →∗ τx for all x ∈ V.

(3) σ is said to be irreducible or in normal form (w.r.t. →) if σx is irreducible (w.r.t.
→) for all x ∈ Dom(σ).

(4) σ is called black (white) if σx is black (white) for all x ∈ Dom(σ). It is top black
(top white) if σx is top black (top white) for all x ∈ Dom(σ).

38This means consistent replacement with minimal identification, i.e., distinct principal aliens are
replaced by distinct fresh variables.

39We remark that a technically more elegant version of injective abstraction is possible (cf. [FJ95]).
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Lemma 2.4.15 (decomposition of substitutions)
Every substitution σ (over T (F ,V)) can be decomposed into σ2 ◦ σ1 such that σ1 is
black, σ2 top white, and σ2 ∝ ǫ (recall that ǫ denotes the empty substitution).

Definition 2.4.16 (auxiliary relations for conditional case, [Mid93b, Defini-
tion 3.2])
Let RF1

1 , RF2

2 be disjoint CTRSs with R = R1⊕R2. Then the rewrite relation →1 (on
T (F ,V)) is defined as follows: s →1 t if there exists a rule l → r ⇐= s1 ↓ t1, . . . , sn ↓
tn in R1, a context C[] and a substitution σ such that s = C[σ(l)], t = C[σ(r)] and
σ(si) ↓o

1 σ(ti) for i = 1, . . . , n, where σ(si) ↓o
1 σ(ti) means that si and ti are joinable

using only
o
→1-reduction steps. The relation →2 is defined analogously. The union of

→1 and →2 is denoted by →1,2.

Non-Disjoint Unions: Constructor Sharing and Composable Systems

For constructor sharing and for composable systems the basic notations, definitions and
facts essentially carry over, with the following adaptations and extensions. Here we
mainly follow Ohlebusch ([Ohl94a]), with some slight differences, however. We assume
subsequently that RF1

1 and RF2

2 are two composable systems (note that this subsumes
the case of constructor sharing systems) with RF denoting their union. Again we shall
use the abbreviating notations T = T (F ,V) and Ti = T (Fi,V) for i = 1, 2. Instead of
→R we shall also simply use →.

First of all, the chromatic terminology extends (more precisely, is refined) by consid-
ering only the non-shared function symbols from F1 (F2), i.e., the elements of Fns

1

(Fns
2 ), to be black (white) and all shared function symbols, i.e., those from F s, as well

as the variables to be transparent. Then the definitions of black (white), top black
(top white), homogeneous and mixed extend in the obvious way. The same holds for
the unique context notations which now have the form

s =





Cb 〈〈 s1, . . . , sl〉〉 with Cb〈, . . . , 〉 ∈ T1, root(si) ∈ F2
ns

Cw 〈〈 t1, . . . , tm〉〉 with Cw〈, . . . , 〉 ∈ T2, root(tj) ∈ F1
ns

Ct 〈〈u1, . . . , un〉〉 with Ct〈, . . . , 〉 ∈ T (F s,V), root(uk) ∈ F1
ns ∪ F2

ns

The si’s are the white principal subterms (or white principle aliens) of s, the tj’s the
black principal subterms (or black principle aliens) of s.

In particular, we observe that a mixed term must now have one of the following forms:

(1) s = Cb [[ s1, . . . , sl]] if s is top black (then the si’s are all white principal aliens,
and s is the only black principal alien, or else

(2) s = Cw [[ t1, . . . , tm]] if s is top white (then the tj’s are all black principal aliens,
and s is the only white principal alien), or else

(3) s = Ct [[ u1, . . . , un]] if s is top transparent (then the uk’s are white or black
principal aliens of s).
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The important notion of rank also naturally extends as follows (such that in particular
transparent parts of a term do not contribute to its rank).

rank(s) =





0 if s ∈ T (F s,V)
1 if s ∈ (T1 ∪ T2) \ T (F s,V)
1 + max{rank(si) | 1 ≤ i ≤ n} if s = C [[ s1, . . . , sn]]

As before, the rank of a derivation D is the minimal rank of all terms occurring in D.
Moreover, the definition of the topmost homogeneous part is refined into a black and
white version:

topb(s) = Cb〈, . . . , 〉

and

topw(s) = Cw〈, . . . , 〉

using the unique representations form above.

The notion of inner and outer reduction is extended (and refined) as follows:

(1) Let s be top black. If s = Cb [[ s1, . . . , sj, . . . , sn]] → Cb[s1, . . . , tj, . . . , sn] = t and

sj → tj then s
i
→ t (as before), otherwise we write s

o
→b t (the applied rule must

be a black or transparent one, i.e., from R1).

(2) Let s be top white. If s = Cw [[ s1, . . . , sj, . . . , sn]] → Cw[s1, . . . , tj, . . . , sn] = t

and sj → tj then s
i
→ t (as before), otherwise we write s

o
→w t (the applied rule

must be a white or transparent one, i.e., from R2).

(3) Let s be top transparent. If s = Ct [[ s1, . . . , sj, . . . , sn]] → Ct[s1, . . . , tj, . . . , sn] =

t and sj
i
→ tj then s

i
→ t. If s = Ct [[ s1, . . . , sj, . . . , sn]] → Ct[s1, . . . , tj, . . . , sn] =

t and sj
o
→b tj (with sj top black), then s

o
→b t. If s = Ct [[ s1, . . . , sj, . . . , sn]] →

Ct[s1, . . . , tj, . . . , sn] = t and sj
o
→w tj (with sj top white), then s

o
→w t. If s → t

by applying some transparent rule l → r, i.e., with l → r ∈ Rs, at a position in

the topmost transparent layer Ct {{ , . . . , }} of s = Ct {{ s1, . . . , sn}} then s
t
→ t.

The relations
i
→,

o
→b,

o
→w,

o
→=

o
→b ∪

o
→w, and

t
→ are called inner , black outer , white

outer , outer and transparent reduction, respectively. Further abbreviations used are
t,o
→b =

t
→ ∪

o
→b,

t,o
→w =

t
→ ∪

o
→w, and

t,o
→=

t
→ ∪

o
→. Notice that every reduction step

must either be inner or black outer or white outer or transparent.

Destructive steps (at levels n ≥ 1) s → t for s top black or top white are defined as
before. For the additional case that s is top transparent, and s → t we define: s → t
is destructive at level 0 if t is top black or top white (i.e., non-top-transparent), and
it is destructive at level m ≥ 1 if s = Ct [[ s1, . . . , sj, . . . , sn]] → Ct[s1, . . . , tj, . . . , sn] = t
with sj → tj destructive at level m.

Again it is easy to show that reduction in the union RF is rank decreasing.

The notion of colour changing reduction as well as that of collapsing (or layer coalesc-
ing) reduction is as before.40 The same holds for the property of terms to be preserved .

40This is a slight but crucial difference to Ohlebusch ([Ohl94a]) who also defines destructive steps at
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Inner preservation is refined as follows: A term s is black (white) preserved if all its
black (white) principal aliens are preserved. With these adaptations Lemma 2.4.13 im-
mediately extends to the more general setting. Furthermore the remaining notations
and properties for the disjoint union case extend in the obvious way.

However, we need some more definitions in order to deal appropriately with the new
‘layer coalescing’ effect that rules with transparent right hand side root symbol can
cause.

Definition 2.4.17 (constructor lifting / shared function symbol lifting /
shared symbol lifting / layer preserving rules / systems)
We say that a rule l → r ∈ R is

• constructor lifting if root(r) is a shared constructor,

• shared function symbol lifting if root(l) ∈ F1
ns ⊎ F2

ns and root(r) ∈ F s (i.e.,
ifroot(l) is a non-shared function symbol of either R1 or R2, and root(r) is a
transparent (shared) function symbol),

• shared symbol lifting if root(l) ∈ F1
ns ⊎ F2

ns and root(r) ∈ F s ⊎ V (i.e., if l → r
is a non-shared rule of either R1 or R2 such that root(r) is a transparent (shared
function or variable) symbol).

We say that Ri (for i = 1, 2) is

• constructor lifting / shared function symbol lifting / shared symbol lifting if it has
a constructor lifting / shared function symbol lifting / shared symbol lifting rule,
respectively.

• layer preserving if it is not shared symbol lifting.

Hence, for the case of constructor sharing systems RF1

1 , RF2

2 the notions constructor
lifting and shared function symbol lifting coincide (which is not the case if RF1

1 , RF2

2

are composable). Thus, two constructor sharing systems RF1

1 , RF2

2 are layer preserving
if and only if they are non-collapsing and not constructor lifting. Furthermore, observe
that two disjoint systems RF1

1 , RF2

2 are layer preserving if and only if they are non-
collapsing. This means that layer preservation naturally extends the (important) non-
collapsing property from the disjoint union case to the case of composable systems.

Finally, let us provide one more definition for denoting sets of normal forms: NF(RF) :=
{s ∈ T (F ,V) | s R-irreducible}.

level 0 to be collapsing. Hence, also our notion of preservation slightly differs from the one of [Ohl94a].





Chapter 3

Relating Termination and
Confluence Properties

Here we first review known results on termination and confluence properties of orthog-
onal TRSs. Then we show in Section 3.2 how to generalize almost all of these results
to non-overlapping, but not necessarily left-linear systems. We give various counterex-
amples showing that the preconditions of obtained results cannot be dropped. Then,
in Section 3.3 we relax the non-overlapping restriction by requiring the systems to be
only overlaying and locally confluent. We show that the most important result for
non-overlapping systems, namely the equivalence of innermost and general termina-
tion, does indeed also hold for this more general class of TRSs. In Section 3.4 we
develop an alternate, incompatible approach for showing the equivalence of innermost
and general termination thereby generalizing most of the results of Section 3.2. In
Section 3.5 we exclusively deal with properties of innermost reduction and relate them
to the corresponding properties of general reduction, which again leads to a couple of
new results and to generalized versions of already known ones. Finally, in Section 3.6,
we extend the previous analysis to conditional systems and show how to cope with the
additional complications and problems arising there. In particular, we prove here a key
lemma which expresses an interesting localized completeness property for conditional
overlay systems without a full termination assumption.

The indeterminism of arbitrary rewriting considerably complicates termination proofs
(and makes the confluence problem non-trivial). Essentially there are two kinds of
indeterminism involved in computation by term rewriting, namely the choice of sub-
terms as potential redexes and the choice of the rule(s) to be applied. Here we shall
only be concerned with the first kind of restriction which amounts to rewriting under
some (redex position selection) strategy. Clearly, the termination problem for rewriting
under such a strategy may be considerably easier than for unrestricted rewriting.

Restricting rewriting derivations with such a strategy is quite common in many rewrit-
ing based computation models, e.g. in functional programming languages. For in-
stance, a frequent restriction is innermost reduction, i.e. to require that every reduc-
tion step takes place at an innermost position of the term to be reduced. Inner-
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most reduction corresponds closely to the functional evaluation mechanism employed
in functional programming languages like LISP or ML. Other kinds of restrictions im-
posed on rewriting steps might also be conceivable according to the intended purpose,
e.g. leftmost-outermost, parallel-outermost, top-down, bottom-up or other context-
dependent strategies.

Of course, it may be the case that correspondingly restricted computations, e.g. in-
nermost reduction sequences, always terminate but arbitrary computations (reduction
sequences) do not necessarily terminate. As a very simple example illustrating this gap
consider the TRS

R =

{
f(a) → f(a)

a → b

Here we have e.g. the infinite reduction sequence f(a) → f(a) → f(a) → ..., which
uses only non-innermost reduction steps. But of course, every innermost derivation in
R (e.g. f(a) → f(b)) is terminating.

In fact, for all conceivable strategies termination of rewriting under the strategy does
in general not imply termination of unrestricted rewriting. Unfortunately, very little is
known about termination of rewriting under such restrictions and its relation to general
termination. However, there is one major exception, namely concerning the important
and thoroughly investigated class of orthogonal TRSs, i.e., TRSs which are left-linear
and non-overlapping (see [Klo92] for a survey of basic ideas, concepts and results about
the theory of orthogonal TRSs). It is well-known that any orthogonal TRS is confluent
notwithstanding the fact that it may be non-terminating (cf. Theorem 2.2.27).

In the following we shall study properties of rewriting under some fixed strategy. We
focus here on sufficient criteria for the equivalence of termination of arbitrary rewriting
and termination of restricted rewriting, in particular innermost rewriting. Confluence
properties of restricted rewriting relations are touched, too, as by-products of the anal-
ysis (cf. also [Pla94], [Kri94a]). To this end we shall first collect and review some
known results about termination properties of orthogonal TRSs. Then we shall inves-
tigate and develop various extensions and generalizations of these known results about
orthogonal TRSs. This is done by weakening both the no-overlap and the left-linearity
requirement but still guaranteeing local confluence.

The obtained results are very useful, from a theoretical, practical and conceptual point
of view. They

• provide powerful abstract criteria for termination and confluence of rewriting
in terms of restricted termination and confluence properties which considerably
facilitates the burden of termination (and confluence) proofs for certain classes
of TRSs

• are the basis for deriving a couple of interesting preservation results for properties
of combined systems (cf. Chapter 5)

• can be generalized in a natural way to CTRSs, though this is proof-technically
non-trivial (cf. Section 3.6).
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3.1 Orthogonal Systems

Perhaps the most important and fundamental result concerning confluence of (possibly)
non-terminating TRSs is the following: Any orthogonal TRS is confluent (cf. Theorem
2.2.27). This fundamental property is crucial for instance within the field of designing
and implementing equational programming languages (cf. e.g. [O’D77], [O’D85]) and
has initiated a couple of investigations about the class of orthogonal TRSs.

In particular, for orthogonal TRSs one also knows some sufficient criteria for termi-
nation (SN) which are formulated in terms of restricted termination properties (cf.
e.g. [O’D77], [Klo92]). But as soon as the orthogonality requirement is weakened,
either by allowing critical overlaps or by admitting non-left-linear rules, the main re-
sults (at least concerning confluence) do not hold any more, in particular the parallel
moves lemma ([CF58]) which is the technical key lemma for inferring confluence for
orthogonal TRSs.1

The most important known results about termination properties of orthogonal TRSs
can be summarized as follows (recall that NE denotes the non-erasing property).

Theorem 3.1.1 (termination properties of orthogonal TRSs, cf. [Chu41],
[Ros73], [O’D77], [Klo92])
Any orthogonal TRS R satisfies the following properties:

(1a) ∀t : [ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] .

(1b) WIN(R) ⇐⇒ SIN(R) ⇐⇒ SN(R) .

(2a) If s →p,σ,l→r t such that SN(t) and ¬SN(s) then s/p contains a proper subterm
s′ = σx, for some x ∈ V ar(l), with ¬SN(s′).2

(2b) If s
i

−→t and SN(t) then SN(s).

(3a) NE(R) =⇒ [∀t : [ WN(t) ⇐⇒ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] ] .

(3b) NE(R) =⇒ [ WN(R) ⇐⇒ WIN(R) ⇐⇒ SIN(R) ⇐⇒ SN(R) ] .

Let us now investigate what happens if we drop the left-linearity requirement in The-
orems 2.2.27 and 3.1.1. Examples 2.2.19, 2.2.20 show that if the left-linearity condi-
tion is dropped then confluence can get lost, i.e., non-overlapping TRSs need not be
confluent. A closer look at these examples reveals that in both cases the TRS R is
(necessarily non-terminating and) neither weakly innermost terminating (WIN) nor
weakly terminating (WN). Weak termination is not crucial for the existence of such
counterexamples as shown by the following example.

1directly, without making use of Theorem 2.2.26.
2This means that the non-terminating proper subterm s′ = σx of s/p is erased in the step s →p,σ,l→r

t, and implies that l → r is an erasing rule, since x ∈ V ar(l) \ V ar(r) due to SN(t).
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Example 3.1.2 (Sivakumar’86 [DJ90])
Let R be the TRS given by

R =





f(x, x) → g(x)
f(x, g(x)) → b

h(c, y) → f(h(y, c), h(y, y))

Clearly, R is non-overlapping but not confluent. We have e.g. the derivations

h(c, c) → f(h(c, c), h(c, c)) → f(h(c, c), f(h(c, c), h(c, c)))

→ f(h(c, c), g(h(c, c))) → b

and

h(c, c) → f(h(c, c), h(c, c)) → g(h(c, c)) →+ g(b) .

Here b and g(b) are in normal from. Note that R is obviously not strongly normalizing
and even not weakly innermost normalizing (consider e.g. the term h(c, c)), but weakly
normalizing. Furthermore observe that R is not non-erasing (NE) due to the second
rule.

These examples indicate that there might be some hope to generalize Theorem 3.1.1
to non-overlapping but possibly non-left-linear TRSs.

3.2 Non-Overlapping Systems

In the following we shall consider TRSs which are still non-overlapping but not nec-
essarily left-linear. In fact, we will show that all normalization properties of Theorem
3.1.1 still hold for this more general class of TRSs. Throughout the following we assume
that R is a non-overlapping TRS, i.e., NO(R) holds.

Let us start with an easy result about innermost reduction.

Lemma 3.2.1 (innermost reduction is uniformly confluent)
Innermost reduction in R is WCR1, i.e., WCR1(

i
−→) holds.

Proof: Let s
i
−→ pt and s

i
−→ qu. If the innermost redex positions p, q of s are

the same then the applied rule is unique due to NO(R) which implies t = u. Other-
wise p and q are disjoint and v is uniquely defined by s

i
−→pt i

−→qv and s
i

−→qu i
−→pv.

Combined with Theorem 2.1.9 this yields the following.

Corollary 3.2.2 (innermost reduction is confluent)
Innermost reduction in R is confluent, i.e. CR(

i
−→) holds.

Next we show that the existence of a terminating innermost derivation for some term
t implies that any innermost derivation initiated by t is finite.

Lemma 3.2.3 (weak and strong innermost termination coincide)
∀t : [ WIN(t) ⇐⇒ SIN(t) ] .
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Proof: By Lemma 3.2.1 we know that innermost reduction is WCR1. Hence, observ-
ing that WIN (SIN) is equivalent to “innermost reduction is WN (SN)”, we can simply
apply Lemma 2.1.27 which yields the desired result.

Furthermore, strong innermost normalization is equivalent to strong normalization.

Theorem 3.2.4 (innermost termination and termination coincide)
∀t : [ SIN(t) ⇐⇒ SN(t) ] .

Proof: For a proof we refer to the proof of the more general Theorem 3.3.12 which
uses a kind of parallel normalization technique. Note that a more direct proof by means
of a parallel one-step reduction technique is also possible here (cf. Section 3.4, Theorem
3.4.11).

Combined with Lemma 3.2.3 this yields the following.

Corollary 3.2.5 ∀t : [ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] .

The next result says that innermost reduction steps in non-overlapping TRSs cannot
be critical in the sense that they may destroy the possibility of infinite derivations.

Lemma 3.2.6 (innermost steps cannot be critical)
If s

i
−→t and SN(t) then SN(s).

Proof: This is an immediate consequence of Corollary 3.2.5.

The properties mentioned in Corollary 3.2.5 are in general not equivalent to WN(t).
To see this, consider the following

Example 3.2.7 (weak termination does not imply termination)
Consider the TRS

R =

{
a → f(a)

f(x) → b

which is clearly non-overlapping. We have WN(f(a)) since for instance f(a) → b with
b irreducible, but obviously not SN(f(a)).

Note that in this example the innermost redex a which is not strongly normalizing
disappears by applying the erasing rule f(x) → b. In fact, this is crucial, and the
absence of erasing rules turns out to be sufficient for the equivalence of all mentioned
normalization properties as shown next.

Lemma 3.2.8 (critical steps must be erasing non-innermost)
If s →p,σ,l→r t such that SN(t) and ¬SN(s) then s/p contains a proper subterm s′ =
σ(x), for some x ∈ V ar(l) \ V ar(r),3 with ¬SN(s′).

3This means that l → r is an erasing rule.
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Proof: Let s = C[σl]p →p,σ,l→r C[σr]p = t and SN(t), ¬SN(s). By Lemma 3.2.6
the step s →p,σ,l→r t must be non-innermost. NO(R) implies that σx is reducible
for some x ∈ V (l). And SN(t) implies in particular SN(σx) for all x ∈ V (r). Now
suppose that the rule l → r is non-erasing, i.e., V ar(l) = V ar(r). Due to SN(t)
this implies SN(σx) for all x ∈ V (l). By innermost normalizing σ we thus obtain
s = C[σl]p i

−→+C[σ′l]p → C[σ′r]p and t = C[σr]p i
−→∗C[σ′r]p with σ′x a normal form,

for all x ∈ V (l) = V (r). Furthermore, the step C[σ′l]p →p,σ′,l→r C[σ′r] is innermost
because of NO(R). Hence, from s

i
−→ ∗C[σ′r]p, t

i
−→ ∗C[σ′r]p and SN(t) we obtain

WIN(s) which, by Corollary 3.2.5, yields SN(s). But this is a contradiction to ¬SN(s).
Hence, the rule l → r must be erasing, and there must exist some x ∈ V ar(l) \ V ar(r)
with ¬(SN(σx)). This concludes the proof.

As direct consequence of this result we obtain the following.

Corollary 3.2.9 (critical steps are impossible for non-erasing TRSs)
Suppose NE(R). If s → t and SN(t) then SN(s).

Lemma 3.2.10
If NE(R) then : ∀t : [ WN(t) ⇐⇒ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] .

Proof: Let t be a term with WN(t). This means there exists some normalizing
derivation from t:

D : t =: t0 → t1 → t2 . . . → tn

with tn in normal form, hence in particular SN(tn). By a straightforward induction
on the length of the derivation D we obtain SN(t) from SN(tn) using Lemma 3.2.9.
Hence we are done.

Finally let us summarize the results obtained for non-overlapping, but not necessarily
left-linear TRSs.

Theorem 3.2.11 (termination properties of non-overlapping TRSs)
Any non-overlapping TRS R satisfies the following properties:

(1a) ∀t : [ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] .

(1b) WIN(R) ⇐⇒ SIN(R) ⇐⇒ SN(R) .

(2a) If s →p,σ,l→r t such that SN(t) and ¬SN(s) then s/p contains a proper subterm
s′ = σ(x), for some x ∈ V ar(l) \ V ar(r), with ¬SN(s′).4

(2b) If s
i

−→t and SN(t) then SN(s).

(3a) NE(R) =⇒ [∀t : [ WN(t) ⇐⇒ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] ] .

4This means that the non-terminating proper subterm s′ = σ(x) of s/p is erased in the step
s →p,σ,l→r t, and implies that l → r is an erasing rule.
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(3b) NE(R) =⇒ [ WN(R) ⇐⇒ WIN(R) ⇐⇒ SIN(R) ⇐⇒ SN(R) ] .

(4a) ∀t : [ WIN(t) =⇒ CR(t) ] .

(4b) WIN(R) =⇒ CR(R) .

(5a) NE(R) =⇒ [∀t : [ WN(t) =⇒ CR(t) ] ] .

(5b) NE(R) ∧ WN(R) =⇒ CR(R) .

Proof: (1), (2a), (2b) and (3) correspond to Corollary 3.2.5, Lemma 3.2.8, Lemma
3.2.6 and Corollary 3.2.9. (4) follows from (1) and NO(R) (by Theorem 2.2.18), and
(5) from Lemma 3.2.10 and NO(R) (again by Theorem 2.2.18).

3.3 Locally Confluent Overlay Systems

Considering Theorem 3.2.11(1) one may ask now whether instead of requiring NO(R)
and WIN(R) it could also be sufficient to require WCR(R) and WIN(R) for guaran-
teeing SN(R) (and CR(R)). But this is not sufficient as witnessed by

Example 3.3.1 (WCR ∧ WIN ; SN,CR)
For the TRS

R =





b → a
b → c
c → b
c → d

we clearly have WCR(R) and WIN(R) but neither SN(R) nor CR(R).

Even the stronger requirement WCR(R) and SIN(R) is not sufficient for ensuring
SN(R) (and CR(R)) as can be seen from

Example 3.3.2 (WCR ∧ SIN ; SN,CR)
Consider the TRS

R =





f(b) → a
f(b) → f(c)
f(c) → f(b)
f(c) → d

b → e
c → e′

f(e) → a
f(e′) → d

Here it is easily verified that WCR(R) and SIN(R) hold but neither SN(R) nor CR(R).

Another possibly tempting conjecture might be to insist on SIN(R) and even require
CR(R) instead of the weaker WCR(R) in order to infer SN(R). But this is also not
true in general.
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Example 3.3.3 (CR ∧ SIN ; SN)
Consider the TRS

R =

{
f(a) → f(a)

a → b

for which we have CR(R) and SIN(R) but not SN(R).

But a common feature of the latter two counterexamples consists in the fact that
for both systems some critical pairs were constructed by overlaps strictly below the
root. This is crucial as will be shown. More precisely, we will prove that any strongly
innermost normalizing, locally confluent overlay system is strongly normalizing (hence
also confluent and complete). To this end, we make the following

General Assumption: Henceforth (i.e., throughout this section) we are dealing with
a TRS R which is locally confluent, i.e., WCR(R) holds.

To simplify the presentation we introduce some easy definitions. Every term t can be
(uniquely) written as C〈t1, . . . , tn〉 where t1, . . . , tn are the maximal complete subterms
of t.5

Definition 3.3.4 (transformation by parallel normalization of all maximal
complete subterms)
Let Φ(t) := C〈t1 ↓, . . . , tn ↓〉. Here ti ↓ denotes the unique normal form of ti.

Clearly we have t →∗ Φ(t).

If s → t by contracting a complete redex in s (i.e., s →p t for some p ∈ Pos(s), with
s/p complete), we write s →c t. If s → t by contracting a non-complete redex in s
(i.e., s →p t for some p ∈ Pos(s), with s/p not complete), we write s →nc t. Clearly,
every reduction step can be written as s →c t or s →nc t.6 We observe that whenever
s →c t by a root reduction step (with s complete) then this implies SN(s,→c) (which
in this case is equivalent to SN(s,→). Furthermore, if C[s] →c C[t] (by contracting
some complete redex in s) then s →c t, and vice versa.

Lemma 3.3.5 (→c is terminating)
The relation →c is terminating, i.e., for all terms s we have SN(s,→c).

Proof: We proceed by induction on the term structure. If s is a variable we are
obviously done. If s is a constant then it is either irreducible or else any reduc-
tion step s →c t is a root reduction step. In both cases s is complete implying
SN(s,→c). For the induction step consider the case s = f(t1, . . . , tn) (n ≥ 1). As-
sume D : s =: s0 →c s1 →c s2 →c . . . is an infinite →c-derivation. Since we have

5Recall that a term is complete if it is both confluent and terminating. Because of the general
assumption WCR a term is complete if and only if it is terminating.

6Note however, that it is possible that s reduces to t both by contracting a complete or a non-
complete redex in s. For instance, let R = {a → b, f(a) → f(b), f(b) → f(a)}. Then we have both
f(a) →c f(b) and f(a) →nc f(b).Hence, in general we do not have →c ∩ →nc = ∅. Nevertheless this
could be enforced by slightly modifying the definition of →nc as follows: →nc =→ \ →c.
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SN(ti,→c) for all i by induction hypothesis, some (first) step in D must be a root re-
duction step sk →c sk+1. But then sk is complete which contradicts the infinity of D.

Lemma 3.3.6 (infinite derivations contain infinitely many →nc-steps)
Suppose ¬SN(R). Then every infinite derivation contains infinitely many →nc-steps
(which are not →c-steps).

Proof: This is an immediate consequence of Lemma 3.3.5.

Remark 3.3.7 (any non-terminating term even allows a minimal and con-
stricting infinite derivation)
Actually, if a term s is non-terminating, then there even exists an infinite derivation
(labelled by the positions of the contracted redexes)

s =: s1 →u1
s2 →u2

s3 →u3
. . .

which is minimal in the following sense ([Gra92b]):

∀k ≥ 1∀s′k+1. sk →>uk
s′k+1 =⇒ ¬SN(s′k+1) .

Note that this minimality property implies in particular

∀k ≥ 1∀q ∈ Pos(sk/uk), q > λ. SN(sk/ukq) ,

i.e., all proper subterms of contracted redexes are terminating.

Moreover, as observed in [Pla93] and [DH95], minimal infinite derivations may even be
chosen to be constricting . Here, an infinite (labelled) derivation as above is said to be
constricting7 if

v1 ≥ v2 ≥ v3 ≥ . . . ,

where each vk is the position of the minimal non-terminating superterm of sk/uk in sk,
formally:

vk = max{v ∈ Pos(sk) |λ ≤ v ≤ uk,¬SN(sk/v)} .

A minimal, constricting infinite rewrite sequence for a non-terminating term s can be
constructed as follows: Choose in s1 := s a non-terminating subterm t1 = s/p1

which is minimal in the sense that every proper subterm of it is terminating. Choose
in s below p1 a minimal subterm s/p1q1 with the property that s/p1q1 = σl for some
rule l → r such that s →p1q1,σ,l→r s[p1q1 ← σr] =: s′ with s/p1[q1 ← σr] = s′/p1

still non-terminating.8 If q1 > λ then repeat this process for s′. Constructing an
infinite reduction issuing from s1 in that way, eventually some non-terminating redex
at position p1 (of the current term s′2 to be rewritten) must be contracted (with the

7Note that our definition of constricting differs from the one in [Pla93]. The problem with the latter
one is that according to it any(!) infinite derivation would be constricting. However, the construction
described in [Pla93] yields indeed an infinite derivation which is minimal and constricting in our sense.

8This choice still involves some indeterminism. For instance, one may proceed here according to
a leftmost innermost strategy (as in [Pla93]), or according to any other strategy provided that the
required minimality property is guaranteed.
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contractum still non-terminating) since all proper subterms of s1/p1 are terminating.
This results in a derivation of the form

s1 →
∗
>p1

s′2 →p1
s2

such that s2/p1 is again non-terminating. Now we may repeat the whole process with
s2/p1 instead of s1. Doing this repeatedly one obtains an infinite derivation issuing
from s1 of the form

s1 →
∗
>p1

s′2 →p1
s2 →

∗
>p1p2

s′3 →p1p2
. . . sn →∗

>p1p2...pn
s′n+1 →p1p2...pn

sn+1 . . .

where in si →
∗
>p1...pi

s′i+1 only terminating redexes (at deepest possible positions) are
contracted, and in s′i+1 →p1...pi

si+1 the contracted redex s′i+1/p1 . . . pi (as well as its
contractum si+1/p1 . . . pi) is non-terminating, and moreover, all proper subterms of
s′i+1/p1 . . . pi are terminating and contracting any of these in s′i+1/p1 . . . pi would result
in a terminating term.9 Due to these properties the infinite derivation above is indeed
minimal and constricting.

Lemma 3.3.8 (projection of →c-steps)
If s →c t then Φ(s) →∗ Φ(t).

Proof: Clearly, by definition of Φ and of →c, we have t →∗ Φ(s) by performing only
reductions in complete subterms of t. Hence we get Φ(s) →∗ Φ(t).

Observe that in general we do not have Φ(s) = Φ(t) in Lemma 3.3.8 since the step
s →c t within some maximal complete subterm s/p of s may generate a new maximal
complete subterm t/q in t with q < p. Take for instance R1 = {a → b, f(a) →
f(a), f(b) → c} and consider the step s = f(a) →c f(b) = t for which we have
Φ(s) = f(b) → c = Φ(t). The analogous statement (of Lemma 3.3.8) for →nc does
not hold. Consider for instance the TRS R2 = {a → b, f(a) → g(a), g(x) → f(x)}
and the step s = f(a) →nc g(a) = t. Here we have Φ(s) = f(b) and Φ(t) = g(b), but
not Φ(s) →∗ Φ(t). Note that R2 is not an overlay system. This is essential as will be
shown next.

To this end we need the following crucial property of overlay systems.

Lemma 3.3.9 (crucial property of locally confluent overlay systems)
Suppose OS(R). If l is a left-hand side of a rule from R and σ a substitution such that
σl is not complete then Φ(σl) = (Φ ◦ σ)l. Here Φ ◦ σ denotes the composition of the
substitution σ with the mapping Φ, i.e., the substitution defined by (Φ ◦ σ)x = Φ(σx).

Proof: We have to show that normalization of all maximal complete subterms in σl
can be achieved by normalizing all maximal complete subterms in the “substitution
part σ of σl”. If no subterm of σl is complete we clearly obtain Φ(σl) = (Φ ◦ σ)l = σl

9Consequently, the constructed infinite derivation contains infinitely many such essential steps
s′i+1 →p1...pi

si+1 where contracting any proper (root-) reducible subterm of s′i+1/p1 . . . pi would
necessarily destroy non-termination. Note that this property does also hold for infinite derivations
which are minimal but not necessarily constricting! Actually, in proofs later on we shall only make
use of the minimality property. Yet, the constricting property is appealing from an intuitive point of
view and could additionally be assumed to ease comprehensibility.
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by definition of Φ. Hence, we may assume that some subterm of σl is complete. Let
σl = C[t1, . . . , tn], n ≥ 1, where the ti’s are the maximal complete subterms of σl, let’s
say with σl/pi = ti. Note that, due to the assumption that σl is not complete, we have
λ < pi for all pi. Now, if pi is below the position p of some variable x in l then we get
ti ↓= (Φ ◦ σ)(l)/pi since ti is also a maximal complete subterm of σx. If pi is a non-
variable position of l then we have ti = σ(l/pi). Since ti is complete, for every variable x
which occurs in l (strictly) below pi, σx is also complete. Let σ′x = (Φ◦σ)(x) = (σx)↓
for these variables. By definition of Φ we get ti ↓= σ(l/pi)↓= σ′(l/pi)↓. We still have
to show σ′(l/pi)↓= σ′(l/pi). From OS(R), irreducibility of σ′ and λ < pi we conclude
that σ′(l/pi) must be irreducible (because otherwise there would exist a critical pair in
R which is not an overlay). Hence we are done.

Lemma 3.3.10 (non-empty projection of →nc-steps)
Suppose OS(R). If s →nc t then Φ(s) →+ Φ(t).

Proof: Suppose s →nc t by applying some rule l → r at position p with substitution
σ, so s/p = σl and t = s[p ← σr]. Because s/p is not complete, p is a position in Φ(s).
Now, due to OS(R) we can apply Lemma 3.3.9 which yields Φ(s)/p = τ l with substitu-
tion τ defined by τx = Φ(σx) for all variables x. Hence we obtain Φ(s) → Φ(s)[p ← τr]
again by the rule l → r. Clearly we have t →∗ Φ(s)[p ← τr] by performing only re-
ductions in complete subterms of t, and thus Φ(s)[p ← τr] →∗ Φ(t). This implies
Φ(s) → Φ(s)[p ← τr] →∗ Φ(t), and hence Φ(s) →+ Φ(t).

Lemma 3.3.11 (Φ preserves non-termination for locally confluent overlay
systems)
Suppose OS(R). If SN(Φ(t)) then SN(t).

Proof: Assume ¬SN(t), i.e., there exists an infinite derivation

D : t = t0 → t1 → t2 → . . .

where every step is an →c-step or an →nc-step. By Lemma 3.3.6 there are infinitely
many →nc-steps in D. Hence, by applying Φ to D and using Lemmas 3.3.10 and 3.3.8
we obtain the infinite derivation

Φ(D) : Φ(t) = Φ(t0) →
∗ Φ(t1) →

∗ Φ(t2) → . . .

which implies ¬SN(Φ(t)).

Now we are prepared to prove the main result of this section.

Theorem 3.3.12 (innermost termination implies termination (and complete-
ness) for locally confluent overlay systems)
Suppose OS(R). If SIN(t) then SN(t). (Taking into account the general assumption
WCR(R), the global version of this result may be rephrased as follows: Any innermost
terminating, locally confluent overlay system is terminating, hence complete.)
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Proof: For a proof by contradiction, suppose that t admits an infinite derivation.
Every infinite derivation starting from t must contain a non-innermost step, due to
SIN(t). Now consider an infinite derivation D starting from t with the property that
the first non-innermost step is essential: Selecting any innermost redex at that point
would result in a term with the property SN. Let

D : t = t0 → t1 → . . . → tn → tn+1 → . . .

where tn → tn+1 is the first non-innermost step. By assumption, contracting an inner-
most redex in tn yields a strongly normalizing term. This implies that every innermost
redex in tn is complete. Since there is at least one innermost redex in tn (the step
tn → tn+1 is non-innermost!), we conclude that SN(Φ(tn)) holds. Since we also have
¬SN(tn), this contradicts Lemma 3.3.11. Hence we are done.

Note that we cannot weaken the precondition of Theorem 3.3.12 by omitting the global
assumption WCR(R). To wit, consider the following example.

Example 3.3.13 (OS ∧ SIN ; SN) Consider the TRS

R =





f(a, b, x) → f(x, x, x)
G(x, y) → x
G(x, y) → y

Obviously, R is an strongly innermost normalizing overlay system but it is not strongly
normalizing as can be seen from the infinite (cyclic) derivation

f(a, b,G(a, b)) → f(G(a, b), G(a, b), G(a, b))
→ f(a,G(a, b), G(a, b))
→ f(a, b,G(a, b))
→ · · · .

Moreover, omitting the condition OS(R) in Theorem 3.3.12 is not possible either, as
demonstrated by Example 3.3.2.

According to Theorem 3.1.1(1a) (NO ∧ LL ∧ SIN) implies SN. Theorem 3.2.11(1)
says that even (NO ∧ SIN) implies SN. Moreover, from Theorem 3.3.12 we know that
the weaker property (OS ∧ WCR ∧ SIN) implies SN, too. In view of these results
another interesting conjecture would be the following:

(CR ∧ LL ∧ SIN) =⇒ SN .

But again this is not true in general.

Example 3.3.14 (Example 3.3.3 continued; CR ∧ LL ∧ SIN ; SN)
Let

R =

{
f(a) → f(a)

a → b

Obviously, this system is confluent, left-linear and strongly innermost normalizing but
is clearly not strongly normalizing.
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Considering Theorems 3.2.11 and 3.3.12 one might be tempted to state the following
conjectures by weakening the requirement NO to (OS ∧ WCR).

(C1) OS(R) ∧ WCR(R) =⇒ [ WIN(R) =⇒ SIN(R) ] ,

(C2) OS(R) ∧ WCR(R) =⇒ [ s
i

−→t ∧ SN(t) =⇒ SN(s)] , and

(C3) OS(R) ∧ WCR(R) ∧ NE(R) =⇒ [ WN(R) =⇒ SN(R) ].

But (C1), (C2) and (C3) are all refuted by the following very simple counterexample.

Example 3.3.15 Let

R =

{
a → a
a → b

Clearly, R is a non-erasing overlay system where the only critical pair is a joinable
overlay. Moreover, every term has a normal form that can be computed by inner-
most reduction, but obviously R is not strongly innermost normalizing and hence not
strongly normalizing, too. Furthermore we have a

i
−→b with SN(b), but not SN(a).

3.4 Extensions

Next we shall show that it is possible to prove some interesting generalizations of
the results in the previous two sections. Note that we do not presuppose any global
assumption (like local confluence) any more!

The first crucial observation is that Theorem 3.2.4 (NO =⇒ [SIN =⇒ SN]), which
is a special case of Theorem 3.3.12 (OS ∧ JCP =⇒ [SIN =⇒ SN]), can be proved
by means of a refined construction exploiting additional structural properties for the
case of non-overlapping TRSs (as well as for more general classes of TRSs). More
precisely, instead of parallel normalization of all maximal complete subterms we only
perform a parallel one-step reduction at all terminating innermost redex positions. Two
properties are essential for this construction to work.

Definition 3.4.1 (uniqueness of innermost reduction)
Let R be a TRS. We say that innermost reduction (in R) is unique (at some fixed
position), (denoted by UIR(R) or simply UIR), if

∀s, t1, t2, p ∈ Pos(s) : s
i

−→pt1 ∧ s
i

−→pt2 =⇒ t1 = t2 .

To state the second property, we first introduce a new definition and some compact
notations.

Definition 3.4.2 (innermost-uncritical / innermost-critical reduction steps)

Let R be a TRS satisfying UIR. A reduction step s → t is called innermost-uncritical ,
denoted by s

iu
−→t, if s →p,σ,l→r t (for some p, σ, l → r ∈ R) such that either s/p is an
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innermost redex (of s), or else all innermost redexes of s strictly below p correspond
to variable overlaps w.r.t. l, i.e., for every innermost redex s/pp′ of s, p′ > λ, we have:
p′ ≥ q for some q ∈ VPos(l) (if s

iu
−→t with some p, σ, l → r as above, we also

write s
iu
−→p,σ,l→rt). Otherwise, i.e., if s → t but not s

iu
−→t, the step s → t is called

innermost-critical and denoted by s
ic
−→t.

Remark 3.4.3 By definition, s
ic
−→t means s →p,σ,l→r t (for some p, σ, l → r ∈ R)

such that there exists an innermost redex s/pp′ = τ l′ (for some τ and l′ → r′ ∈ R) of s
with p′ > λ and p′ ∈ FPos(l). Obviously, this entails the existence of a corresponding
critical pair by overlapping l′ → r′ into l → r. Moreover note that an innermost
reduction step is by definition innermost-uncritical, and an innermost-critical step must
be non-innermost, due to

i
−→ ⊆

iu
−→, →=

iu
−→⊎

ic
−→.

Now the two properties required subsequently read as follows.

Definition 3.4.4 (avoidance of innermost-critical steps)
Let R be a TRS. We say that innermost-critical reduction steps can be avoided (denoted
by AICR(R) or simply AICR), if

∀s, t : [s → t =⇒ [s
iu
−→t ∨ ∃s′ : s

i
−→s′ →∗ t] ] .

This property guarantees that infinite reductions may be assumed to have a certain
shape.

Lemma 3.4.5 (innermost-critical steps in infinite derivations can be avoided
under AICR)
Let R be a TRS satisfying property AICR, and let t be a term. If t is non-terminating,
then there exists an infinite derivation D : t =: t0 → t1 → t2 . . . initiating from t which
does only contain innermost-uncritical steps, i.e., for all n ≥ 0 we have tn iu

−→tn+1.

Proof: Let t be non-terminating. We give a construction how to obtain an infinite
derivation issuing from t with the desired property. Assume that we have already
constructed an initial segment

t =: t0 → t1 → . . . → tn

of length n of an infinite derivation, i.e., with tn non-terminating such that every step
tk → tk+1, 0 ≤ k < n is innermost-uncritical. Now, if there exists a non-terminating
tn+1 such that tn iu

−→tn+1, we can simply extend the initial segment by one step of
the desired form. Otherwise, any step tn → t′n+1 with t′n+1 non-terminating must be
innermost-critical (note that at least one such t′n+1 must exist, due to non-termination
of tn). By AICR we conclude that there exists some term tn+1 with tn i

−→tn+1 →
∗ t′n+1.

This means that we can properly extend the initial segment to

t =: t0 → t1 → . . . → tn → tn+1

with tn+1 still non-terminating where all steps have the desired form (note that
i

−→ ⊆

iu
−→). By induction we finally conclude that there exists an infinite derivation issuing
from t which contains only innermost-uncritical steps.
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In the previous section, due to the general assumption JCP ( ⇐⇒ WCR), a term was
complete if and only if it was terminating. Here we do not require local confluence a
priori. Therefore we need some new notions for reduction steps contracting terminating
and non-terminating redexes, respectively. If s → t by contracting a terminating redex
in s (i.e., s →p t for some p ∈ Pos(s), with SN(s/p)), we write s →sn t. If s → t
by contracting a non-terminating redex in s (i.e., s →p t for some p ∈ Pos(s), with
¬SN(s/p)), we write s →¬sn t. Obviously, every reduction step can be written as
s →sn t or s →¬sn t. In other words, we have →=→sn ∪ →¬sn

10

The next easy result corresponds to Lemmas 3.3.5 and 3.3.6.

Lemma 3.4.6 Let R be a TRS. The relation →sn is terminating (on all terms). More-
over, any infinite →-derivation must contain infinitely many →¬sn-steps which are not
→sn-steps.

Proof: Straightforward (as for Lemmas 3.3.5 and 3.3.6).

Definition 3.4.7 (parallel one-step reduction of all terminating innermost
redexes)
Let R be a TRS satisfying property UIR. Then the transformation function Ψ on
terms is defined by a parallel one-step reduction of all terminating innermost redexes,
i.e.:

Ψ(t) := C〈t′1, . . . , t
′
n〉, if t = C[〈1, . . . , tn〉, tk i

−→λt
′
k (1 ≤ k ≤ n), 11

where the tk, 1 ≤ k ≤ n, are all the terminating innermost redexes of t (equivalently:
t −−‖−→P Ψ(t) where P consists of the positions of all terminating innermost redexes of
t).

Remark 3.4.8 Note that property UIR in the above definition ensures well-definedness
of Ψ. However, a careful inspection of the definition of Ψ reveals that the slightly weak-
ened condition

∀s, t1, t2, p ∈ Pos(s) : s
i

−→pt1 ∧ s
i

−→pt2 ∧ SN(s/p) =⇒ t1 = t2

would also suffice for guaranteeing well-definedness of Ψ.

Reduction steps in a given derivation D can be transformed into reduction steps of the
transformed derivation Ψ(D) as follows.

Lemma 3.4.9 Let R be a TRS satisfying property UIR, and let s, t be terms with
s

iu
−→p,σ,l→rt. Then we have:

(1) SN(s/p) =⇒ Ψ(s) →∗ Ψ(t).

(2) ¬SN(s/p) =⇒ Ψ(s) →+ Ψ(t).

10However, as for →c, →nc, it is possible that s reduces to t both by contracting a terminating or a
non-terminating redex in s. For R = {a → b, f(a) → f(b), f(b) → f(a)}, we have both f(a) →sn f(b)
and f(a) →¬sn f(b).Hence, in general we do not have →sn ∩ →¬sn = ∅. Nevertheless this could be
enforced by slightly modifying the definition of →¬sn as follows: →¬sn =→ \ →sn.
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Proof: Due to property UIR, the transformation Ψ is well-defined. Let P be defined
by s −−‖−→P Ψ(s).

(1) We distinguish two cases.

First assume that s/p is an innermost redex of s. Then we know by definition
of Ψ, SN(s/p) and property UIR that Ψ(s)/p = t/p, and moreover, that Ψ(s) is
obtained from t via t−−‖−→P\{p} Ψ(s). Now, in order to obtain Ψ(t) from Ψ(s) one
may have to contract additionally some newly introduced terminating innermost
redexes in t. If σ(r) is irreducible, new (terminating) innermost redexes can
only be introduced above p in t, and only at positions disjoint from those of
P \ {p}. If σ(r) is reducible, all new innermost redexes in t must be below p
(and all of these are indeed terminating, since the contracted redex s/p of s was
terminating). Hence, in both cases, we obtain Ψ(t) from Ψ(s) by an additional
parallel innermost reduction (at positions disjoint from those of P ). Thus, we
get Ψ(s) →∗ Ψ(t) as desired.

In the other case s/p is a terminating non-innermost redex. Since the step
s →p,σ,l→r t is non-innermost innermost-uncritical, every innermost redex of s
(there exists at least one!) strictly below p, s/pq (q > λ), must correspond to
a variable overlap, i.e., q ≥ u, for some u ∈ VPos(l). This implies (together
with UIR) that Ψ(s)/p is still an instance of l, let’s say Ψ(s)/p = σ′(l), with
σ −−‖−→ σ′. Hence we get s

i
−→ +

P Ψ(s) →p,σ′,l→r Ψ(s)[p ← σ′(r)] =: t′ and
s →p,σ,l→r t−−‖−→Q t′, where Q = P \ {q ∈ P | q ≥ p}∪P ′ with P ′ consisting of the
positions of those (terminating) innermost redexes of t which are descendents12 of
the terminating innermost redexes of s below p w.r.t. the step s →p,l→r t. Again,
in order to obtain Ψ(t) from t′, additionally some newly introduced terminating
innermost redexes (above or below p) may have to be reduced. Thus we obtain
Ψ(s) → t′ →∗ Ψ(t), hence Ψ(s) →+ Ψ(t) as desired.

(2) Again we distinguish two cases.

First assume that s/p is an innermost redex of s. Since s/p is non-terminating
we have p /∈ P and p|P . Hence the two steps commute: s

i
−−‖−→P Ψ(s)

i
−→ pt

′,
s

i
−→pt i

−−‖−→P t′. Moreover, Ψ(t) is obtained from t′ by additionally contracting
those terminating innermost redexes which are introduced (in t and also in t′)
by the step s

i
−→pt (and Ψ(s)

i
−→pt

′, respectively) above or below p. Again the
positions of the latter introduced (terminating) innermost redexes are disjoint
from those of P \ {p}. Hence we have s

i
−−‖−→P Ψ(s)

i
−→pt

′ −−‖−→ Ψ(t) and thus
Ψ(s) →+ Ψ(t).

In the other case s/p is a non-terminating, non-innermost redex. Hence, every
innermost redex of s (there exists at least one!) strictly below p, s/pq (q >
λ), must correspond to a variable overlap, i.e., q ≥ u, for some u ∈ VPos(l).
This implies (together with UIR) that Ψ(s)/p is still an instance of l, let’s say
Ψ(s)/p = σ′(l), with σ −−‖−→ σ′. Hence we get s

i
−→+

P Ψ(s) →q,σ′,l→r Ψ(s)[p ←
σ′(r)] =: t′ and s →q,σ,l→r t −−‖−→Q t′, where Q = P \ {q ∈ P | q ≥ p} ∪ P ′ with P ′

12It should be intuitively clear what is meant here by descendent . In fact, a formally precise
definition of this and related notions is not completely trivial (cf. e.g. [HL91]).
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consisting of the positions of those (terminating) innermost redexes of t which
are descendents of the terminating innermost redexes of s below p w.r.t. the
step s →p,l→r t. Again, in order to obtain Ψ(t) from t′, additionally some newly
introduced terminating innermost redexes (above or below p) may have to be
reduced. Thus we obtain Ψ(s) → t′ →∗ Ψ(t), hence Ψ(s) →+ Ψ(t) as desired.

Next we prove that under certain conditions the transformation Ψ preserves the pos-
sibility of infinite reductions.

Lemma 3.4.10 Let R be a TRS satisfying properties UIR and AICR. Then, for any
term t we have: SN(Ψ(t)) =⇒ SN(t).

Proof: Assume ¬SN(t), i.e., there exists an infinite derivation D issuing from t. Due
to property AICR and Lemma 3.4.5 we may assume that in

D : t =: t0 → t1 → t2 → . . .

every step is innermost-uncritical. If tk iu
−→p,σ,l→rtk+1 with SN(tk/p) (for some p, σ, l →

r), then, by Lemma 3.4.9(1), we know Ψ(tk) →∗ Ψ(tk+1). If tk iu
−→p,σ,l→rtk+1 with

¬SN(tk/p) (for some p, σ, l → r), we conclude by Lemma 3.4.9(2), that Ψ(tk) →+

Ψ(tk+1). Clearly, steps of the form are tk →p tk+1 with SN(tk/p) are →sn-steps, and
steps of the form are tk →p tk+1 with ¬SN(tk/p) are →¬sn-steps. By Lemma 3.4.6, D
contains infinitely many →¬sn-steps of the latter form tk iu

−→p,σ,l→rtk+1 with ¬SN(tk/p).
We conclude that the transformed derivation

Ψ(D) : Ψ(t) = Ψ(t0) →
∗ Ψ(t1) →

∗ Ψ(t2) →
∗ . . .

is infinite, too. Hence we are done.

Now we are in a position to establish the main result of this section.

Theorem 3.4.11 (abstract criterion for termination via innermost termina-
tion: UIR(R) ∧ AICR(R) =⇒ [∀t : SIN(t) =⇒ SN(t) ])
Let R be a TRS satisfying properties UIR and AICR. Then, for any term t we have:
SIN(t) ⇐⇒ SN(t).

Proof: For a proof by contradiction (of SIN =⇒ SN, the other direction is trivial),
suppose that t admits an infinite derivation. Every infinite derivation starting from t
must contain a non-innermost step, due to SIN(t). Now consider an infinite derivation
D starting from t with the property that the first non-innermost step is essential:
Contracting any innermost redex at that point would result in a term with the property
SN. Let

D : t =: t0 → t1 → . . . → tn → tn+1 → . . .

where tn → tn+1 is the first non-innermost step. Note that this step must be innermost-
uncritical (i.e., tn iu

−→tn+1) because, otherwise, it could not be essential in the above
sense, due to property AICR. By assumption, contracting an innermost redex in tn
yields a terminating term. This implies in particular that Ψ(tn), which is obtained
from tn by a (non-empty) parallel reduction step contracting all innermost redexes of
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tn (all of which must be terminating), is terminating. But then, by Lemma 3.4.10 we
conclude that tn is terminating, too. Hence, we have a contradiction (to the infinity of
D).

This criterion for the sufficiency of the implication (SIN =⇒ SN) is still rather abstract
in nature. Subsequently we shall investigate more concrete syntactic conditions satis-
fying the properties UIR, uniqueness of innermost reduction (at some fixed position),
and AICR, the possibility to avoid (non-innermost) innermost-critical steps in infinite
reductions. This will result in concrete critical pair conditions for the considered TRS
R.

First we introduce some more useful terminology for reasoning about critical pairs.

Definition 3.4.12 (left-to-right / overlay joinability, inside / outside critical
peak, (strongly / weakly) left-to-right joinable critical pair / peak, (weakly)
overlay joinable critical pair / peak)
Let R be a TRS.

(1) A critical peak s p←u →λ t of R (with corresponding critical pair 〈s = t〉 ∈
CP(R)) is said to be left-to-right joinable if s →∗ t. It is overlay joinable or
outside joinable if p = λ and s ↓ t. If p > λ it is an inside critical peak, if p = λ
it is an outside critical peak ([Toy88]) or critical overlay .13 If p = λ and s/p = s
is an innermost redex, we speak of an innermost critical overlay .

(2) R has left-to-right joinable critical peaks (LRJCP) if all its critical peaks are left-
to-right joinable. R has strongly left-to-right joinable critical peaks (SLRJCP)
if all its critical peaks are left-to-right joinable and, moreover, all its outside
critical peaks are even trivial. R has weakly left-to-right joinable critical peaks
(WLRJCP) if all its inside critical peaks are left-to-right joinable and all its
outside critical peaks are joinable.

(3) R has overlay joinable critical peaks (OJCP) if every critical peak of R is overlay
joinable. R has weakly overlay joinable critical peaks (WOJCP) if all its inside
critical peaks are trivial, and all its outside critical peaks are joinable.

Next we give a critical peak condition which is sufficient for the crucial properties UIR
and AICR needed above.

Definition 3.4.13 (the critical peak condition CPC)
Let R be a TRS. We say that R satisfies CPC (CPC(R) or CPC for short) if the
following holds: For every every critical peak t1 p←s →λ t2 of R we have:14

(1) if p = λ and both steps are innermost (i.e., s is an innermost redex), then t1 = t2,
and

(2) if p > λ and the inside step is innermost (i.e., s
i

−→pt1), then t1 →
∗ t2.

13Hence, a TRS is an overlay system (OS) if and only if all its critical peaks are outside ones.
14In other words, these requirements mean: every innermost critical overlay must be trivial, and

every inside critical peak where the inside step is innermost must be left-to-right joinable.
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Lemma 3.4.14 (CPC =⇒ UIR ∧ AICR)
If a TRS satisfies the critical pair condition CPC then it satisfies both UIR and AICR
(CPC =⇒ UIR ∧ AICR).

Proof: Assume CPC. Then, proving UIR, uniqueness of innermost reduction, means
to show: ∀s, t1, t2, p : s

i
−→pt1 ∧ s

i
−→pt2 =⇒ t1 = t2 . To this end it is clearly

sufficient to show: ∀s, t1, t2 : s
i
−→λt1 ∧ s

i
−→λt2 =⇒ t1 = t2. But this follows from

CPC (1) above, since any such divergence where an innermost redex s is reduced at the
root in two distinct ways (i.e., using different rules) must be an instance of a critical
peak of the form in (1).

Proving AICR, the possibility of avoiding innermost-critical steps, amounts to showing

∀s, t : [s → t =⇒ [s
iu
−→t ∨ ∃s′ : s

i
−→s′ →∗ t] ] .

Now, w.l.o.g. we may assume s → t, but not s
iu
−→t, hence s

ic
−→t. This means (cf.

Remark 3.4.3) s →p,σ,l→r t (for some p, σ, l → r) such that there exists an innermost
redex in s/p = σ(l) at some position q ∈ FPos(l), q > λ, with s/pq = σ(l)/q = τ(l′)
for some rule l′ → r′ ∈ R. But this implies that the divergence

s/p[q ← τ(r′)] q← = s/p[q ← τ(l′)] = s/pσ(l) →λ σ(r) = t/p

is an instance of a critical peak of the form in (2) above. Therefore we get s/p[q ←
τ(r′)] →∗ σ(r) and hence

s
i

−→pqs[pq ← τ(r′)] →∗ s[p ← σ(r)] = t

as desired.

Remark 3.4.15 (AICR ; CPC)
Note that the reverse implication in Lemma 3.4.14 does not hold. For example, the
TRS

R =





f(a, a) → f(a, a)
a → b

f(b, x) → f(x, x)

satisfies AICR(R) but not CPC(R). The point is that for the inside critical peak
f(a, b) >λ←f(a, a) →λ f(a, a) there exists no term t with f(a, b)

i
−→ t →∗ f(a, a).

However, the step f(a, a) → f(a, a) which is innermost-critical has two ‘innermost-
critical redexes’. And, indeed, choosing the left innermost-critical redex a corresponds
to the other critical peak f(b, a) >λ←f(a, a) →λ f(a, a) which is left-to-right-joinable,
hence yielding f(a, a)

i
−→f(b, a) → f(a, a).15

Combining Theorem 3.4.11 and Lemma 3.4.14 we obtain the following (local and global)
results.

Theorem 3.4.16 (abstract critical pair criterion for SIN ⇐⇒ SN)
Any innermost terminating (term in a) TRS R which satisfies the critical pair condition

15Due to this kind of indeterminism it seems hard to capture AICR exactly in terms of a reasonable
(finitary) critical peak condition.
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CPC is terminating.

In particular, we get the following concrete critical pair criteria, which extend the
equivalence result (SIN ⇐⇒ SN) for non-overlapping systems (cf. Theorem 3.2.11(1))
to more general classes of TRSs.

Theorem 3.4.17 (concrete critical pair criteria for SIN ⇐⇒ SN)

(1) An innermost terminating (term in a) TRS R is terminating if R is weakly
non-overlapping (i.e., WNO(R) =⇒ [∀t : SIN(t) ⇐⇒ SN(t)]).

(2) Any innermost terminating (term in a) TRS R is terminating if R has strongly
left-to-right joinable critical peaks (i.e., SLRJCP(R) =⇒ [∀t : SIN(t) ⇐⇒
SN(t)]).

(3) Any innermost terminating (term in a) TRS R is terminating if R has left-to-
right joinable critical peaks (i.e., LRJCP(R) =⇒ [∀t : SIN(t) ⇐⇒ SN(t)]).

Proof: (1) is a special case of (2). And (2) holds by Theorem 3.4.16 and the fact that
according to the definition of SLRJCP any violation of the critical pair condition CPC
(in Lemma 3.4.14) is impossible. (3) is not a direct consequence of Theorem 3.4.16
and Lemma 3.4.14, but holds for similar reasons. Namely, LRJCP(R) still implies
AICR(R) as is easily seen. However, UIR(R) need not hold any more. Nevertheless, a
careful inspection of Definitions 3.4.2, 3.4.4, 3.4.7, Lemmas 3.4.9, 3.4.10 and Theorem
3.4.11 reveals that UIR(R) is only needed in the slightly weakened version of Remark
3.4.8, namely as:

∀s, t1, t2, p ∈ Pos(s) : s
i

−→pt1 ∧ s
i

−→pt2 ∧ SN(s/p) =⇒ t1 = t2 .

And indeed, an innermost divergence t1 λ←s →λ t2 with SN(s) which is non-trivial, i.e.,
t1 6= t2, cannot be an instance of a non-trivial innermost critical overlay. Because then,
by left-to-right-joinability of all innermost critical overlays (according to LRJCP(R)),
we could conclude both t1 →

∗ t2 and t2 →
∗ t1, thus contradicting SN(s).16

In view of the latter two theorems and the situation in the preceding Sections 3.2 and
3.3, where we could infer termination from innermost termination for non-overlapping
as well as for locally confluent systems, hence also confluence and completeness, the
following question arises naturally in the current setting: Are the systems considered
above also locally confluent, hence confluent and complete? Interestingly, this need
not be the case in general for TRSs satisfying the critical pair condition CPC.

16In fact, any TRS R which has a non-trivial, left-to-right joinable critical overlay is necessarily
non-terminating. For this reason, such systems are not so interesting from a termination point of
view.
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Example 3.4.18 (CPC ; WCR)
Consider the TRS

R =





f(x) → x
f(a) → b
f(a) → c

a → f(a)

It is easy to verify that R satisfies CPC (in particular, we note that CPC ignores
the critical overlays between the first three rules since they comprise non-innermost
divergences). However, R is not locally confluent, as shown by the non-joinable critical
overlay b λ←f(a) →λ c.

We observe that in this example R is obviously not innermost terminating. And,
fortunately, it turns out that SIN combined with CPC does indeed imply not only
termination, but also confluence, hence completeness.

Theorem 3.4.19 (CPC ∧ SIN =⇒ SN ∧ CR)
Any innermost terminating TRS satisfying the critical pair condition CPC is complete.

Proof: Let R be a TRS with SIN(R) and CPC(R). By Theorem 3.4.16 we know
that R must be terminating. Thus, it remains to show confluence. This can be done
directly by induction: Using →+ as well-founded ordering, one proves

∀s : [ [∀t : s →+ t =⇒ CR(t)] =⇒ CR(s) ]

by induction via a (not too difficult, but tedious) case analysis concerning the shape of
the initial one-step divergence issuing from s in an arbitrary divergence t1

+← s →+ t2,
and exploiting CPC(R). However, we shall not present this proof in detail but simply
reduce it to a special case of some known result. More precisely, we apply the following
critical pair criterion for confluence of terminating TRSs due to [KMN88]:

If R is a terminating TRS such every critical pair which corresponds to a
prime critical peak is joinable, then R is confluent.

Here, a critical peak t1 p←s →λ t2 of R is prime if it is not composite. And it is compos-
ite if the inner redex s/p has a proper reducible subterm. Indeed, it is straightforward
to verify that CPC ignores only composite critical peaks, and the ones considered are
clearly joinable according to CPC. Hence, applying this result we get confluence of R
for free.

Remark 3.4.20 In fact, the following stronger local version of Theorem 3.4.19 also
holds: Any innermost terminating term TRS satisfying the critical pair condition CPC
is complete. However, this is not a direct consequence of Theorems 3.4.19 and 3.4.16(via
Lemma 2.2.17) since local confluence (below the considered term) is not guaranteed
anymore. Yet, a direct proof analogous to the one in [KMN88] is possible.

Remark 3.4.21 Interestingly, it seems difficult to prove the implication (CPC ∧
SIN =⇒ CR) directly, without making use of SN (which is allowed according to
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Theorem 3.4.16). Any such direct proof probably would have to rely on some well-
founded ordering induced by

i
−→+. At least, all our natural attempts in this direction

failed. This observation also pertains to direct proof attempts for the implication
(JCP ∧ OS ∧ SIN =⇒ CR) without using SN, cf. Theorem 3.3.12.

Example 3.4.18 above showed that, given CPC, we cannot simply drop SIN when trying
to infer CR or SN or both of them. In view of (the proof of) Theorem 3.4.19 one might
be tempted to conjecture that the combination of SIN and the critical pair criterion
of [KMN88], i.e., joinability of all prime critical peaks (KMN for short), suffices for
guaranteeing CR and SN or at least one of them. However, this is also not the case.

Example 3.4.22 (SIN ∧ KMN ; CR,SN)
Consider the TRS

R =





f(b) → f(c)
f(c) → f(b)

b → a
c → d

This system is clearly innermost terminating and locally confluent, but non-terminating
and non-confluent, and both critical peaks to be considered are obviously prime.

Let us mention that Theorem 3.4.17(1)–(2) captures only some special cases of The-
orem 3.4.16. According to the latter result, for inferring termination from innermost
termination it suffices to show that every innermost critical overlay is trivial, and every
inside critical pair where the inside step is innermost is left-to-right joinable. In par-
ticular, non-trivial critical overlays may exist provided they comprise a non-innermost
divergence.

Example 3.4.23 (CPC permits non-trivial critical overlays provided they
are non-innermost)
Consider the TRS

R =





f(a) → b
f(a) → f(c)

a → d
f(d) → b
f(c) → b

d → c

Here, it is easily verified that R is innermost terminating and satisfies CPC, hence must
be complete by Theorem 3.4.16. But note that there exists a non-trivial critical overlay
(between the first two rules) which is ignored by CPC since it is not a divergence by
innermost reduction.

Before we shall finally investigate which other results of Section 3.2 for non-overlapping
TRSs can be extended, too, to more general classes of systems, we should mention
one interesting problem related to the above results which we have not been able to
solve. As exhibited above, under uniqueness of innermost reduction (cf. Definition
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3.4.4) the notion of left-to-right joinable critical pairs has turned out to be crucial
for the implication (SIN =⇒ SN) to hold. Hence, in view of the fact that overlay
joinability of all critical pairs (i.e., OS ∧ JCP, or equivalently OJCP) also suffices for
SIN =⇒ SN (cf. Theorem 3.3.12), it is quite natural to ask whether these two criteria
can be combined. In other words, we have the following

Open Problem 1 Does termination follow from innermost termination if all critical
overlays are joinable and all inside critical peaks are even left-to-right joinable (or,
more concisely: WLRJCP ∧ SIN =⇒ SN?)?

Unfortunately, we have neither been able to prove this criterion nor to find a coun-
terexample. The careful reader may recognize that the problem lies with allowing both
non-trivial innermost critical overlays and inside critical peaks. In fact, even for the
special case that we require any inside critical peaks to be trivial, i.e., for the conjec-
ture (WOJCP ∧ SIN =⇒ SN), we could not provide a solution. Intuitively, the
reason for our failure is due to the problem, that the two different proof techniques we
applied somehow seem to be incompatible. More precisely, the latter proof technique
in this section crucially relies on uniqueness of innermost reduction, which is destroyed
by allowing non-trivial innermost critical overlays. And the other proof technique of
Section 3.3 makes essential use of the (pure) overlay property which conflicts with
allowing inside critical peaks.

Requiring less than left-to-right joinability for the inside critical peaks seems to be
hopeless regarding the implication (SIN =⇒ SN), as witnessed by the very simple TRS

R =

{
f(a) → f(a)

a → b

of Example 3.3.14.

Up to now we have investigated how to obtain generalized sufficient criteria for the
implication (SIN =⇒ SN). Next we shall study which other results of Theorem
3.2.11 for non-overlapping TRSs can be generalized, and how. A first easy result is the
following.

Lemma 3.4.24 (UIR =⇒ WCR1(
i

−→) =⇒ CR(
i

−→))
Uniqueness of innermost reduction implies uniform confluence (hence also confluence)
of innermost reduction, i.e., UIR =⇒ WCR1(

i
−→) =⇒ CR(

i
−→).

Proof: Straightforward by definition of UIR.

Furthermore, UIR also suffices for the equivalence of weak and strong innermost ter-
mination.

Lemma 3.4.25 (WIN and SIN coincide under UIR)
Let R be a TRS satisfying UIR. Then we have:
∀t : [ WIN(t) ⇐⇒ SIN(t) ] .

Proof: By applying Lemmas 3.4.24 and 2.1.27, analogous to the the proof of Lemma
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3.2.3.

Combining this Lemma with Theorem 3.4.11 we get the following.

Corollary 3.4.26 (WIN, SIN and SN coincide under UIR plus AICR)
Let R be a TRS satisfying both UIR and AICR. Then we have: ∀t : [ WIN(t) ⇐⇒
SIN(t) ⇐⇒ SN(t) ] .

Lemma 3.4.27 (critical steps cannot be innermost under UIR plus AICR)
Let R be a TRS satisfying both UIR and AICR. Then we have: If s

i
−→t and SN(t)

then SN(s).

Proof: This is an immediate consequence of Corollary 3.4.26.

Hence, in a TRS satisfying(UIR ∧ AICR) an innermost reduction step s
i

−→t cannot
be critical in the sense, that it destroys the possibility of infinite reductions, i.e., with
SN(t) but ¬SN(s). For non-overlapping systems we have seen that such critical steps
must be erasing non-innermost, cf. Lemma 3.2.8. Interestingly, if we only require
(UIR∧AICR) instead of the stronger NO then this property does not hold any more.

Example 3.4.28 (critical steps need not be erasing under UIR plus AICR)
The TRS

R =





f(b) → a
f(c) → d

b → c
c → b

obviously satisfies UIR ∧ AICR (and also CPC), but, for instance, the step f(b) → a
is critical and non-erasing (note that the non-terminating proper subterm b of f(b) is
not matched by a variable of the applied rule).

This means that the equivalence WN(t) ⇐⇒ SN(t) does not hold in general for
non-erasing TRSs satisfying (UIR ∧ AICR). That is in contrast to the case of non-
overlapping systems (cf. Corollary 3.2.9). The equivalence doesn’t hold either for the
more special class of TRSs with strongly left-to-right joinable critical pairs (SLRJCP),
since the above counterexample clearly has the property SLRJCP. However, we get
positive results for weakly non-overlapping (WNO) systems, i.e., we may allow trivial
critical pairs, and also for a slightly more general class of TRSs.

Definition 3.4.29 (the critical peak condition CPC’)
Let R be a TRS. We define the critical pair condition CPC’ by slightly strengthening
CPC into: For every every critical peak t1 p←s →λ t2 of R we have:17

(1) if p = λ and both steps are innermost (i.e., s is an innermost redex), then t1 = t2,
and

17In other words, every inside critical peak where the inside step is innermost must not only be
left-to-right joinable, but even trivial.
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(2) if p > λ and the inside step is innermost (i.e., s
i

−→pt1), then t1 = t2.

We observe that the class of TRSs satisfying CPC’ (properly) includes all TRSs satisfy-
ing CPC and in particular all weakly non-overlapping (WNO) systems (i.e., WNO =⇒
CPC’ =⇒ CPC).

Lemma 3.4.30 (critical steps must be erasing non-innermost under CPC’)
Let R be a TRS satisfying CPC’. If s →p,σ,l→r t such that SN(t) and ¬SN(s) then s/p
contains a proper subterm s′ = σ(x), for some x ∈ V ar(l) \ V ar(r), with ¬SN(s′).

Proof: Let s = C[σl]p →p,σ,l→r C[σr]p = t and SN(t), ¬SN(s). By Lemma 3.4.27 the
step s →p,σ,l→r t must be non-innermost.

We claim that all innermost redexes of s/p are below variable positions of l. Otherwise,
a proper subterm of σl at some non-variable position of l would be an innermost redex
τ l′, for some other rule l′ → r′ ∈ R. However, this would mean that there exists a
corresponding inside critical peak between l′ → r′ and l → r. According to CPC’ this
critical peak would have to be trivial. Hence we would get

s = C[σl] = C[C ′[τ l′]]
i

−→C[C ′[τr′]] = C[σr] .

But this means that s reduces by an innermost step to t which, by Lemma 3.4.27 and
the assumptions SN(t), ¬SN(s), is impossible. This finishes the proof of the claim.

Hence, all innermost redexes in s below p (there exists at least one!) are inside sub-
terms which are matched by variables of l. Now, SN(t) implies in particular SN(σx) for
all x ∈ V (r). Now suppose that the rule l → r is non-erasing, i.e., V ar(l) = V ar(r).
This implies SN(σx) for all x ∈ V (l). By innermost normalizing18 σ we thus obtain
s = C[σl]p i

−→+C[σ′l]p → C[σ′r]p and t = C[σr]p i
−→∗C[σ′r]p with σ irreducible, i.e.,

σ′x a normal form, for all x ∈ V (l) = V (r). Now we would like to conclude that the
step C[σ′l]p →p,σ′,l→r C[σ′r] is innermost. However, σ′l need not be an innermost redex
in C[σ′l]p. But we can reason as follows. If a proper subterm of σ′l is reducible, then
we consider such an innermost one. Again, the existence of such an innermost redex in
σ′l (and hence in C[σ′l]p) corresponds to the existence of an inside critical pair (where
the inner step is innermost) which, by the assumption CPC’, must be trivial. Hence,
we may argue, that in any case the step from C[σ′l]p to C[σ′r] can be considered to
be innermost. Summarizing, we have s

i
−→∗C[σ′r]p, t

i
−→∗C[σ′r]p and SN(t). Thus we

obtain WIN(s) which, by Corollary 3.4.26, yields SN(s). But this is a contradiction
to ¬SN(s). Therefore, the rule l → r must be erasing, and there must exist some
x ∈ V ar(l) \ V ar(r) with ¬(SN(σx)). This accomplishes the proof.

As direct consequence of this result we obtain the following generalization of Corollary
3.2.9.

18Due to CPC’ =⇒ CPC , SN(σx) and Theorem 3.4.19 we know that σx is complete. Thus, by an
arbitrary reduction strategy we obtain a unique normal form σ′x.
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Corollary 3.4.31 (critical steps are impossible for non-erasing TRSs satisfy-
ing CPC’)
Let R be a non-erasing TRS satisfying CPC’. If s → t and SN(t) then SN(s).

Moreover, this entails also the corresponding generalization of Lemma 3.2.10.

Lemma 3.4.32 (all termination properties coincide for non-erasing TRSs
with CPC’)
Let R be a non-erasing TRS satisfying CPC’. Then we have:
∀t : [ WN(t) ⇐⇒ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] .

Proof: Analogous to the proof of Lemma 3.2.10, but using Corollary 3.4.31 instead
of Corollary 3.2.9.

Finally let us summarize these additional results obtained which generalize those of
Theorem 3.2.11 (for non-overlapping TRSs).

Theorem 3.4.33 (termination and confluence properties of TRSs with unique
innermost reduction)
Consider the following properties of a TRS R:

(1a) ∀t : [ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] .

(1b) WIN(R) ⇐⇒ SIN(R) ⇐⇒ SN(R) .

(2a) If s →p,σ,l→r t such that SN(t) and ¬SN(s) then s/p contains a proper subterm
s′ = σ(x), for some x ∈ V ar(l) \ V ar(r), with ¬SN(s′).19

(2b) If s
i

−→t and SN(t) then SN(s).

(3a) NE(R) =⇒ [∀t : [ WN(t) ⇐⇒ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] ] .

(3b) NE(R) =⇒ [ WN(R) ⇐⇒ WIN(R) ⇐⇒ SIN(R) ⇐⇒ SN(R) ] .

(4a) ∀t : [ WIN(t) =⇒ CR(t) ] .

(4b) WIN(R) =⇒ CR(R) .

(5a) NE(R) =⇒ [∀t : [ WN(t) =⇒ CR(t) ] ] .

(5b) NE(R) ∧ WN(R) =⇒ CR(R) .

Now, if R enjoys the critical pair condition CPC’, then it satisfies all the above ter-
mination and confluence properties (1a,b)-(5a,b). In particular, this is the case if R is
weakly non-overlapping (WNO).
If CPC holds for R, then R still satisfies the properties (1a,b), (2b) and (4a,b), whereas
(2a), (3a,b) and (5a,b) do not hold any more.

19This means that the non-terminating proper subterm s′ = σ(x) of s/p is erased in the step
s →p,σ,l→r t, and implies that l → r is an erasing rule.
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Proof: Let R satisfy CPC. Then (1a,b) is established by Lemma 3.4.26, (2b) is
Lemma 3.4.27, and (4a,b) follows from (1) combined with Theorem 3.4.19. (2a), (3a,b)
and (5a,b) are all refuted by Example 3.4.18 as is easily verified.20

If R even satisfies CPC’, then the missing (2a), (3a,b) correspond to Lemmas 3.4.30,
3.4.32, and (5a,b) follows from (3a,b) and Theorem 3.4.19.

3.5 Confluence of Innermost Reduction

Next we shall be concerned with criteria for innermost confluence and its relation to
general confluence.

We observe that innermost confluence, i.e., CR(
i

−→), follows from uniform confluence
(WCR1), subcommutativity (WCR≤1) or strong confluence (SCR) of

i
−→, according to

the general confluence criteria of Theorem 2.1.9. The following critical pair conditions
will turn out to be sufficient for the properties WCR1(

i
−→ ) and WCR≤1(

i
−→ ),

respectively.

Definition 3.5.1 (critical pair conditions for strong confluence properties of
innermost reduction)
Let R be a TRS. Now consider the following properties of critical peaks

t1 = (σl1)[p ← σr2] p,σ,l2→r2
←(σl1)[p ← σl2] = s = σl1 →λ,σ,l1→r1

σr1 = t2

(1) If p = λ and both steps are innermost, then we have

(a) t1 = t2, or

(b) t1 = σr2 i
−→q,τ,l→r t3 q′,τ ′,l′→r′ i

←−σr1 = t2 for some q, τ , l → r, q′, τ ′, l′ → r′,
t3, such that

(b1) no proper non-variable subterm of σr2/q unifies with a left-hand-side
of R, and

(b2) no proper non-variable subterm of σr1/q
′ unifies with a left-hand-side

of R.

(2) If p = λ and both steps are innermost, then we have

(a) t1 = t2, or

(b) t1 = σr2 i
−→q,τ,l→r t3 q′,τ ′,l′→r′ i

←−σr1 = t2 for some q, τ , l → r, q′, τ ′, l′ → r′,
t3, such that

(b1) no proper non-variable subterm of σr2/q unifies with a left-hand-side
of R, and

20There, R is non-erasing, weakly normalizing, satisfies CPC, but is not strongly normalizing and
also not (locally) confluent. Furthermore, we have f(a) → b with SN(b) and ¬SN(f(a)) using the
second rule.
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(b2) no proper non-variable subterm of σr1/q
′ unifies with a left-hand-side

of R, or

(c) t1 = σr2 i
−→q,τ,l→rt2 for some q, τ , l → r, such that

(c1) no proper non-variable subterm of σr2/q unifies with a left-hand-side
of R, or

(d) t1 q′,τ ′,l′→r′ i
←−σr1 = t2 for some q′, τ ′, l′ → r′, such that

(d1) no proper non-variable subterm of σr1/q
′ unifies with a left-hand-side

of R.

We say that R satisfies CPCIk, 1 ≤ k ≤ 2 (denoted by CPCIk(R)), if (k) holds for
every every critical peak of R.

Theorem 3.5.2 (strong confluence criteria for innermost reduction)
Let R be a TRS. Then we have:

(1) CPCI1(R) =⇒ WCR1(
i

−→).

(2) CPCI2(R) =⇒ WCR≤1(
i

−→).

Proof: We have to analyse local divergences of the form

v1 p2,l2→r2 i
←−u

i
−→p1,l1→r1

v2 .

Since the steps are innermost, there are only two cases, namely, innermost reduction
at the same position or at parallel positions. Now, the latter case is obviously trivial
(for both implications (1) and (2)). Obviously, in the former case, i.e., for p1 = p2,
it suffices to focus on the contracted subterm s′ := u/p1 of u, i.e., to consider the
divergence

t′1 = v1/p1 λ,l2→r2 i
←−s′

i
−→λ,l1→r1

v2/p1 = t′2 .

Now, if t′1 = t′2, we are done (for both (1) and (2)). Hence, assume t′1 6= t′2. This implies
that the above innermost divergence is an instance of a critical overlay (between l1 → r1

and l2 → r2)

t1 = σr2 λ,l2→r2 i
←−σl2 = s = σl1 i

−→λ,l1→r2
σr1 = t2 ,

which must be innermost, too. Hence we have s′ = ψs, t′1 = ψt1, t′2 = ψt2 for some
substitution ψ. Moreover, σ, ψ and ψσ are irreducible.21 In case (1) of the theorem
we have by CPCI1(R):

t1 = σr2 i
−→q,τ,l→r t3 q′,τ ′,l′→r′ i

←−σr1 = t2

for some q, τ , l → r, q′, τ ′, l′ → r′, t3. By instantiation we get

t′1 = ψt1 = ψσr2 →q,ψτ,l→r ψt3 q′,ψτ ′,l′→r′←ψσr1 = ψt2 = t′2 .

If we can show that both steps here are innermost, then we are done (for case (1)).

Now, the step ψσr2 →q,ψτ,l→r t3 can only be non-innermost if some proper subterm of
ψσr2/q is reducible, let’s say (ψσr2)/qq̂ = πl3, q̂ > λ. Then, from σr2 i

−→q,τ,l→rt3 and

21The latter holds because otherwise the step s′ = ψs = ψσl2 i
−→λ,ψσ,l2→r2

ψσr2 = t′1 could not
have been innermost.
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irreducibility of σ we know q ∈ FPos(r2). Irreducibility of ψσ and (ψσr2) →qq̂,π,l3→r3

(ψσr2)[qq̂ ← πr3] yields qq̂ ∈ FPos(r2). This implies

(ψσr2)/qq̂ = ψ(σr2/qq̂) = (ψσ)(r2/qq̂) = πl3 ,

hence the proper non-variable subterm σr2/qq̂ of σr2/q (as well as the proper non-
variable subterm r2/qq̂ of r2/q) is unifiable with a left-hand side of R.22 But this
contradicts the assumption (b1).

Analogously (using (b2)), one shows that the step ψt3 q′,ψτ ′,l′→r′←ψσr1 = ψt2 is inner-
most, too. This finishes the proof of (1).

The remaining cases for (2) are completely analogous, using the corresponding assump-
tions (b1) and (b2), (c1), (d1) for the cases (b), (c) and (d), respectively.

Remark 3.5.3 We note that for strong confluence of innermost reduction (SCR(
i

−→))
one can also define an analogous critical pair condition (which is finitary for finite
TRSs). However, technically this is more complex. The crucial property to be guaran-
teed is the following. Any innermost critical overlay

t1 = σr2 λ,l2→r2 i
←−σl2 = s = σl1 i

−→λ,l1→r1
σr1 = t2

(with σ necessarily irreducible) must be strongly innermost joinable, i.e.,

t1 i
−→∗t3

=
i

←−t2 and t1 i
−→=t4

∗
i

←−t2

(for some terms t3, t4) and moreover, after instantiation with some irreducible substi-
tution ψ (such that ψσ is irreducible, too), this strong innermost joinability should be
preserved in the sense that the instantiated reduction steps are still innermost.

A careful inspection of Theorem 3.5.2 (and its proof) shows that the following result
is an easy consequence.

Corollary 3.5.4 (strong confluence criteria for innermost reduction, weak
version)
Let R be a TRS. Furthermore assume that no non-variable irreducible proper subterm
of a right-hand side r (of R) unifies with a left-hand side l (of R), where w.l.o.g. l and
r do not have common variables. Then we have:

(1) If for every non-trivial innermost critical overlay t1 λ i
←−s

i
−→λt2 we have t1 i

−→
◦

i
←−t2, then innermost reduction is uniformly confluent (WCR1(

i
−→)).

(2) If for every innermost critical overlay t1 λ i
←−s

i
−→λt2 we have t1 i

−→= ◦ =
i

←−t2,
then innermost reduction is uniformly confluent (WCR≤1(

i
−→)).

An obvious consequence of Theorem 3.5.2 is the following.

Corollary 3.5.5 (innermost confluence via strong innermost confluence)
Any TRS satisfying one of the critical pair conditions CPCIk (1 ≤ k ≤ 2) is innermost
confluent.

22Note that w.l.o.g. we may assume here that σr2/qq̂ and l3 (as well as r2/qq̂ and l3) do not share
any variable.
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Since the critical pair criteria CPCIk (1 ≤ k ≤ 2) can be effectively tested (for finite
TRSs), this yields decidable sufficient criteria for innermost confluence of (finite) TRSs.
In particular, we obtain the following result.

Theorem 3.5.6 (specialized criteria for innermost confluence)
If a TRS R has no non-trivial innermost critical overlays, then it is uniformly innermost
confluent, hence innermost confluent.23

Proof: It is straightforward to verify that condition CPCI1(R) is satisfied for such
TRSs, hence innermost reduction is uniformly confluent (WCR1(

i
−→)) by Theorem

3.5.2(1).

Theorem 3.5.6 implies in particular that any weakly non-overlapping TRS is innermost
confluent. However, overlay systems need not be innermost confluent, even if (they are
confluent and) all innermost critical overlays are strongly innermost joinable.

Example 3.5.7
The TRS

R =





f(x) → g(k(x))
f(x) → a
g(x) → a
k(a) → k(k(a))

evidently is an overlay system, and the two innermost critical overlays,

g(k(x)) λ i
←−f(x)

i
−→λa

and its mirrored version, are strongly innermost joinable via

g(k(x))
i

−→a .

However, the innermost divergence

g(k(a)) λ i
←−f(a)

i
−→λa

which is an instance of the above critical overlay (via the irreducible substitution ψ =
{x 7→ a}), is not innermost joinable any more. Indeed, the instantiated step g(k(a)) →
a is not innermost any more, and the only innermost reductions from g(k(a)) are

g(k(a))
i

−→g(k(k(a)))
i

−→g(k(k(k(a))))
i

−→ . . . .

The point is (cf. CPCI1) that the non-variable irreducible proper subterm k(x) of the
right-hand side g(k(x)) (instantiated with the irreducible identity substitution ǫ) is
unifiable with a left-hand side, namely k(a).

All the above criteria for innermost confluence (which are based on guaranteeing strong
confluence of innermost reduction) do not need a termination assumption. Using New-
man’s Lemma (Theorem 2.1.20) one also easily gets the following.

23This generalizes the corresponding result of [Pla94] where all critical overlays are forbidden.
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Theorem 3.5.8 (characterizing innermost confluence under innermost ter-
mination)
Let R be innermost terminating (SIN(R)). Then R is innermost confluent if and only
if, for any innermost critical overlay

t1 = σr2 λ,σ,l2→r2 i
←−σl2 = s = σl1 →λ,σ,l1 i

−→r1
σr1 = t2

(with σ necessarily irreducible) and for any substitution ψ with Dom(ψ) ⊆ V ar(s),
such that

ψt1 = ψσr2 λ,ψσ,l2→r2 i
←−ψσl2 = ψs = ψσl1 →λ,ψσ,l1 i

−→r1
ψσr1 = ψt2

(i.e., the instantiated divergence is still innermost which implies in particular that
ψ must be irreducible), we have that ψt1 = ψσr2 and ψt2 = ψσr1 are joinable by
innermost reduction.24

Proof: It is straightforward to verify that the condition stated above is equiva-
lent to local confluence of innermost reduction (WCR(

i
−→)), hence, due to SIN(R)

( ⇐⇒ SN(
i

−→)), also to innermost confluence by Newman’s Lemma.

However, this latter result has a serious drawback. Namely, (assuming innermost ter-
mination) its precondition cannot be effectively tested, since it is inherently infinitary.

Finally, let us briefly investigate the relation between confluence and innermost con-
fluence.

In general, if for some abstract reduction relations →1, →2, we have →1⊆→2 (or,
→1⊆→∗

2), then the respective confluence properties need not be related, i.e., neither
CR(→1) =⇒ CR(→2) nor CR(→2) =⇒ CR(→1) need to hold. This is also the case
here, for

i
−→ and → (in TRSs), as observed e.g. in [Pla94]. For terminating TRSs, con-

fluence clearly implies innermost (and outermost) confluence. Non-terminating systems
can be confluent, but not innermost (outermost) confluent, as observed by Middeldorp
(cf. [Pla94]). And, of course, a TRS may be innermost (outermost) confluent without
being confluent. For instance, any non-confluent, non-overlapping TRS25 is a coun-
terexample to the implication CR(

i
−→) =⇒ CR(→), because non-overlapping systems

are innermost confluent (cf. Corollary 3.2.2).

First, we consider sufficient conditions for the implication CR(→) =⇒ CR(
i
−→), or,

more generally, for the implication CR(→) =⇒ CR(→s), where – intuitively – Rs may
be viewed as rewriting under some arbitrary strategy. To this end, the next general
result about abstract reduction systems (ARSs) is useful.

Theorem 3.5.9 (criterion for confluence of restricted rewriting)
Let →, →s be abstract reduction relations (on the same set A) satisfying (i) WN(→s),
(ii) →s⊆→∗ and (iii) NF(→s) = NF(→).26 Then we have: CR(→) =⇒ CR(→s).

24This slightly generalizes the following result of [Kri94a] (which in turn slightly generalizes the
corresponding result in [Pla94] where termination instead of innermost termination is required): An
innermost terminating TRS is innermost confluent if, for every critical pair 〈s, t〉 corresponding to a
critical overlay and for every irreducible substitution ψ, ψs and ψt are joinable by innermost rewriting.

25Hence, by Theorem 2.2.27 it cannot be left-linear.
26Actually, if →s⊆→∗ holds, then NF(→s) = NF(→) is equivalent to NF(→s) ⊆ NF(→).
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Proof: Let →, →s be as above such that → is confluent. Consider u, v1, v2 such
that v1

∗
s←u →∗

s v2. We have to show that there exists w such that v1 →
∗
s w ∗

s←v2. By
CR(→) and (ii) we know that there exists some v3 with v1 →

∗ v3
∗← v2. Furthermore,

(i) yields v1 →∗
s v4, v2 →∗

s v5, with v4, v5 normal forms w.r.t. →s and, by (iii), w.r.t.
→. Now, (ii), CR(→) and v4 ∈ NF(→) imply v3 →

∗ v4. Then, CR(→) combined with
v2 →∗ v3 →∗ v4, v2 →∗ v5 (by (ii)) and v5 ∈ NF(→) yield v4 = v5, hence choosing
w = v4 = v5 we are done.

For TRSs, if →s is rewriting under some arbitrary well-defined27 (e.g., redex selec-
tion/exclusion) strategy, then the set of →- and of →s-normal forms coincide. Hence
Theorem 3.5.9 is applicable. In particular, for innermost rewriting we obtain the fol-
lowing.

Corollary 3.5.10 (confluence implies innermost confluence under weak in-
nermost termination, [Kri94a])
A weakly innermost terminating TRS is innermost confluent if it is confluent, i.e.,
WN(

i
−→) ∧ CR(→) =⇒ CR(

i
−→).

For the converse implication in Theorem 3.5.9, we have the following abstract result.

Theorem 3.5.11 (equivalence condition for confluence of arbitrary and of
restricted rewriting)
Let →, →s be ARSs (on the same set A) satisfying (i) WN(→s), (ii) →s⊆→∗ and (iii)
NF(→s) = NF(→).Then,

(∗) → ⊆ →∗
s ◦

∗
s← .

implies that confluence of → and of →s are equivalent (i.e., CR(→) ⇐⇒ CR(→s)).

Proof: Under the stated assumptions, the implication CR(→) =⇒ CR(→s) holds by
Theorem 3.5.9 (even without (∗)). Conversely, assume (∗) and CR(→s). Then we get
→∗ ⊆↔∗

s from (∗), hence also ∗← ◦ →∗ ⊆↔∗
s. Confluence of →s and (ii), →s ⊆→∗,

yield ↔∗
s ⊆→∗

s ◦
∗
s← ⊆→∗ ◦ ∗←. Hence we obtain ∗← ◦ →∗ ⊆→∗ ◦ ∗← as desired.28

For applying Theorem 3.5.11 under the stated preconditions via (∗), one only has to
consider an arbitrary →-step which is not an →s-step (due to →s⊆→∗).

Now let us consider the special case that — as in [Kri94a] — → and →s are general
and innermost reduction, respectively, in TRSs.

27Here, well-definedness is to include in particular that if a term t is →-reducible then it is also
→s-reducible.

28It should be mentioned that this result and the proof we give is essentially an abstracted version
of the corresponding statements and reasoning in [Kri94a] for a special case. Namely, → and →s in
[Kri94a] are general and innermost reduction in TRSs and the proof there uses compatible refinements
(cf. Lemma 2.1.11 and Theorem 2.1.12).
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Lemma 3.5.12 (a sufficient condition for expressing non-innermost steps by
innermost conversions)
Let R be a weakly innermost terminating TRS (WIN(R)) such that every inside crit-
ical peak of R, where the inside step is innermost, is trivial.29 Then R satisfies the
instantiated version of (∗), namely:

∀s, t : s → t =⇒ [∃u : s
i

−→∗u ∧ t
i

−→∗u ] .

Proof: Let s → t. If s = t or s
i
−→t we are obviously done. Otherwise, we have

s = C[σl]p →p,σ,l→r C[σr] = t (for some C[]p, σ and l → r ∈ R) such that some
proper subterm of s/p = σl is reducible. By WIN(R) we obtain σ

i
−→∗σ′ by innermost

normalizing σx into σ′x, for all x ∈ Dom(σ) = V ar(l). This yields

s = C[σl]p i
−→∗C[σ′l]p →p,σ′,l→r C[σ′r]p =: t′

and

t = C[σr]p i
−→∗C[σ′r]p = t′ .

Now it suffices to show

s′ := C[σ′l]p i
−→C[σ′r]p = t′ .

If σ′l is an innermost redex of s, we are done. Otherwise, we know by irreducibility of
σ′ that a proper subterm of σ′l at some position q ∈ FPos(l) is an innermost redex,
let’s say σ′l/q = τ l′, for some rule l′ → r′ ∈ R and some irreducible substitution τ .
Hence, the divergence

(σ′l)[q ← τr′] q,τ,l′→r′ i
←−σ′l →λ,σ′,l→r σ′r

is an instance of an inside critical peak of R (determined by overlapping l′ → r′ into
l → r at position q) with innermost inside step. By assumption, the resulting critical
pair is trivial which implies

(σ′l)[q ← τr′] = σ′r ,

hence also

s′ = C[σ′l]p i
−→C[σ′r]p = t′

as desired.

Combining this result with Theorem 3.5.11 we get the following.

Theorem 3.5.13 (equivalence condition for confluence and innermost con-
fluence)
Let R be a weakly innermost terminating TRS (WIN(R)) such that every inside crit-
ical peak of R, where the inside step is innermost, is trivial. Then, confluence and
innermost confluence (of R) are equivalent.

As a special case, we obtain that confluence and innermost confluence are equivalent

29The critical pair condition we require here is only one sufficient condition for inferring (*). It
might be possible to still generalize or modify it appropriately. However, this seems to be non-trivial
and needs a more refined investigation.
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for weakly innermost terminating, weak overlay systems and, slightly more special, for
weakly innermost terminating overlay systems. Actually, the latter result has already
been shown in [Kri94a].30

3.6 Conditional Rewrite Systems

In the following we shall show that our results (in Sections 3.2 and 3.3) on restricted
termination and confluence properties of unconditional TRSs can be generalized to
the conditional case.31 This generalization has to take into account the additional
complications arising with CTRSs. In particular, we need a kind of local completeness
property implying that variable overlaps are not critical under certain conditions. More
precisely, we have the following result which is a generalized local version of Lemma 2
in (Dershowitz et al. [DOS88b])32 which in turn is the main technical result for deriving
Theorem 2.3.21, i.e., for inferring confluence of terminating CTRSs with overlay join-
able critical peaks (cf. Theorem 4 in (Dershowitz et al. [DOS88b]), cf. also Theorem
6.2 in (Wirth & Gramlich [WG94]) which handles the more general case of positive
/ negative conditional rewrite systems). Note that extra variables (in conditions) are
allowed here.

Theorem 3.6.1 (a localized structural confluence property for CTRSs with
overlay joinable critical peaks)
Let R be a CTRS with OS(R) and JCP(R). Let s, t, u, v be terms with SN(s) and let
Π be some set of mutually disjoint positions. Then we have the following implication:33

u = C[s]Π →∗ v ∧ s →∗ t =⇒ C[t]Π ↓ v .

Proof: A detailed proof (which is quite involved) is given in Appendix A.

Note that Theorem 3.6.1 is interesting by itself because it describes a non-trivial struc-
tural confluence property for (conditional) overlay systems with joinable critical pairs
without a full termination assumption (it is applicable even in situations where the
whole system need not terminate and it may have other potential applications than
the ones mentioned below).

Lemma 3.6.2
Let R be a CTRS with OS(R) and JCP(R) and let u, v, w be terms with v ∗←

30In [Kri94a] also outermost confluence (i.e., confluence of outermost reduction) and the relation
between confluence and outermost confluence are investigated.

31Again, we shall tacitly assume that all CTRSs considered are join CTRSs (which is the most
important case in practice), except for cases where another kind of CTRSs is explicitly mentioned.

32In Lemma 2 of (Dershowitz et al. [DOS88b]) the proof (i.e. the induction ordering) makes use of
the general termination assumption SN(R) for the considered CTRS R. Our proof of Theorem 3.6.1
has a similar structure but is based on a slightly different notion of depth and – more importantly –
the induction ordering only needs the local termination assumption SN(s).

33Recall that the notation u = C[s]Π means that Π is some set of parallel positions in u such that
all subterms of u at these positions are equal to s.
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u →∗ w. Then v ↓ w holds provided that v is obtained from u by performing only
reductions in strongly normalizing (parallel) subterms of u, formally: u = C[s1, . . . , sn],
v = C[t1, . . . , tn] for some context C[, . . . , ], and SN(si), si →

∗ ti for i = 1, . . . , n.

Proof: Straightforward by repeated application of Theorem 3.6.1.

One may ask now whether the assumption in the above results, that all critical peaks are
joinable overlays, can be weakened to requiring only joinability. This is not the case,
clearly, for CTRSs, since there exist terminating CTRSs with joinable critical pairs
that are non-confluent, hence necessarily not even locally confluent (cf. e.g. Example
2.3.18). For unconditional TRSs such a counterexample involving a terminating TRS
with joinable critical pairs cannot exist since for TRSs – in contrast to CTRSs – the
Critical Pair Lemma 2.2.17 holds, i.e., the property WCR(R) is equivalent to JCP(R).
By Newman’s Lemma (Theorem 2.1.20) any such TRS must then be confluent. Hence,
in the unconditional case the above question may be rephrased as follows: Does there
exist a locally confluent (non-terminating) TRS which is not an overlay system violating
the confluence property in Lemma 3.6.2 (and Theorem 3.6.1) above? This is indeed
the case as shown by the following simple example.

Example 3.6.3 (Example 3.4.22 continued)
Consider the TRS

R =





f(b) → f(c)
f(c) → f(b)

b → a
c → d

This system which is not an overlay system is clearly locally confluent, but non-
confluent (and hence necessarily non-terminating). We have for instance f(a) ←
f(b) →∗ f(d) with both f(a) and f(d) irreducible, and moreover, in the step f(b) →
f(a) the proper subterm b of f(b) which is contracted is clearly terminating, i.e., sat-
isfies SN(b).

Thus, even for unconditional TRSs, Theorem 3.6.1 and Lemma 3.6.2 capture indeed a
non-trivial structural confluence property of overlay systems!

But let us return now to the conditional case. Similar to Lemma 3.6.2 above we obtain
from Theorem 3.6.1 in particular the following sufficient criterion for a variable overlap
in CTRSs to be non-critical.

Lemma 3.6.4 (a sufficient condition for variable overlaps to be non-critical)
Let R be a CTRS with OS(R) and JCP(R), and let s, t be terms with
s = C[σl]p →p,σ,l→r⇐=P C[σr] = t. Furthermore assume SN(σ), i.e., SN(σx) for all
x ∈ Dom(σ), and let σ′ be given with σ →∗ σ′, i.e., σx →∗ σ′x for all x ∈ Dom(σ).
Then we have: s = C[σl]p →∗ C[σ′l]p →p,σ′,l→r⇐=P C[σ′r]p (due to (σ′P ) ↓), and
t = C[σr]p →

∗ C[σ′r]p.
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Proof: Straightforward by verifying (σ′P ) ↓ using the encoding of s ↓R t into
eq(s, t) →∗

R′ true34 and applying Lemma 3.6.2 together with the fact that true is
irreducible.

Choosing C[]Π to be the empty context (and accordingly Π = {λ}) in Theorem 3.6.1
we obtain as corollary the following local version of a confluence criterion.

Theorem 3.6.5 (local completeness criterion for conditional overlay systems)
Let R be a CTRS with OS(R) and JCP(R), and let s be a term with SN(s). Then
we have CR(s). In other words, for a conditional overlay system with joinable critical
pairs, a term is terminating if and only if it is complete.

The termination assumption concerning s in this result is crucial as demonstrated by
the following example.

Example 3.6.6 (Example 2.3.13 continued) Here

R =

{
f(x) → a ⇐= f(x) ↓ x

b → f(b)

clearly is an overlay system with joinable critical pairs (it is even orthogonal). Moreover
we have f(a) ← f(f(b)) → a but not a ↓ f(a). Obviously, for the inner contracted
redex f(b) of f(f(b)), SN(f(b)) does not hold due to the presence of the rule b → f(b)
in R (note that SIN(f(b)) doesn’t hold either).

Remark 3.6.7 (local completeness is not a consequence of the global result
of [DOS88b], Theorem 2.3.21)
Note that the local completeness property of Theorem 3.6.5 obviously implies the global
one of Theorem 2.3.21. Hence, Theorem 2.3.21 is a direct consequence of Theorem
3.6.5. However, vice versa, for deriving Theorem 3.6.5 from Theorem 2.3.21 we cannot
simply apply Newman’s Lemma 2.1.20 since local confluence (below the terminating
term considered) is not available as assumption, but only joinability of all critical pairs.

3.6.1 Non-Overlapping Conditional Systems

Now let us consider non-overlapping CTRSs. We shall show that all normalization
properties of Theorem 3.1.1 also hold for non-overlapping CTRSs. The proofs of the
corresponding results are very similar to those of the corresponding results for un-
conditional non-overlapping TRSs in Section 3.2. However, some additional problems
arising with CTRSs have to be taken into account.

Throughout this subsection we assume that R is a non-overlapping CTRS, i.e. NO(R)
holds.

Let us start with an easy result about innermost reduction.

34cf. Remark 2.3.6
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Lemma 3.6.8 Innermost reduction in R is WCR1, i.e. WCR1(
i

−→) holds.

Proof: As for Lemma 3.2.1.

Corollary 3.6.9 Innermost reduction in R is confluent, i.e. CR(
i

−→) holds.

The following result shows that for non-overlapping systems the existence of a ter-
minating innermost derivation for some term t implies that any innermost derivation
initiated by t is finite.

Lemma 3.6.10 ∀t : [ WIN(t) ⇐⇒ SIN(t) ] .

Proof: As for Lemma 3.2.3.

Furthermore, innermost termination is equivalent to termination.

Theorem 3.6.11 ∀t : [ SIN(t) ⇐⇒ SN(t) ] .

Proof: For a proof we refer to the more general Theorem 3.6.19.

Combined with Lemma 3.6.10 this yields the following

Corollary 3.6.12 ∀t : [ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] .

The next result says that innermost reduction steps in non-overlapping CTRSs cannot
be critical in the sense that they may destroy the possibility of infinite derivations.

Lemma 3.6.13 If s
i

−→t and SN(t) then SN(s).

Proof: This is an immediate consequence of Corollary 3.6.12.

Furthermore, as in the unconditional case, the non-erasing property is crucial for the
equivalence of weak and strong termination of non-overlapping CTRSs.

Lemma 3.6.14 (critical steps must be erasing non-innermost)
If s →p,σ,l→r⇐=P t such that SN(t) and ¬SN(s), then s/p contains a proper subterm
s′ = σ(x), for some x ∈ V ar(l), with ¬SN(s′), and moreover l → r is an erasing rule,
more precisely: x ∈ V ar(l) \ V ar(r).

Proof: Let s = C[σl]p →p,σ,l→r C[σr]p = t and SN(t), ¬SN(s). By Lemma 3.6.13
the step s →p,σ,l→r t must be non-innermost. NO(R) implies that σx is reducible
for some x ∈ V (l). And SN(t) implies in particular SN(σx) for all x ∈ V (r). Now
suppose that the rule l → r is non-erasing, i.e., V ar(l) = V ar(r). Due to SN(t)
this implies SN(σx) for all x ∈ V (l). By innermost normalizing σ we thus obtain
s = C[σl]p i

−→ +C[σ′l]p →p,σ′,l→r⇐=P C[σ′r]p and t = C[σr]p i
−→ ∗C[σ′r]p with

σ′x a normal form, for all x ∈ V (l) = V (r). Note in particular, that the step
C[σ′l]p →p,σ′,l→r⇐=P C[σ′r]p is possible by Lemma 3.6.4 and innermost because of
NO(R). Hence, from s

i
−→∗C[σ′r]p, t

i
−→∗C[σ′r]p and SN(t) we obtain WIN(s) which,
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by Corollary 3.6.12, yields SN(s). But this is a contradiction to ¬SN(s). Hence, the
rule l → r must be erasing, and there must exist some x ∈ V ar(l) \ V ar(r) with
¬(SN(σx)). This concludes the proof.

As direct consequence of this result we obtain the following.

Corollary 3.6.15 (critical steps are impossible for non-erasing CTRSs)
Suppose NE(R). If s → t and SN(t) then SN(s).

Lemma 3.6.16
If NE(R) then : ∀t : [ WN(t) ⇐⇒ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] .

Proof: As for Lemma 3.2.10 using Lemma 3.6.15 instead of Lemma 3.2.9.

Finally let us summarize the results obtained for non-overlapping, but not necessarily
left-linear CTRSs.

Theorem 3.6.17 Any non-overlapping CTRS R satisfies the following properties:

(1a) ∀t : [ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] .

(1b) WIN(R) ⇐⇒ SIN(R) ⇐⇒ SN(R) .

(2a) If s →p,σ,l→r⇐=P t such that SN(t) and ¬SN(s) then s/p contains a proper subterm
s′ = σ(x), for some x ∈ V ar(l) \ V ar(r), with ¬SN(s′).35

(2b) If s
i

−→t and SN(t) then SN(s).

(3a) NE(R) =⇒ [∀t : [ WN(t) ⇐⇒ WIN(t) ⇐⇒ SIN(t) ⇐⇒ SN(t) ] ] .

(3b) NE(R) =⇒ [ WN(R) ⇐⇒ WIN(R) ⇐⇒ SIN(R) ⇐⇒ SN(R) ] .

(4a) ∀t : [ WIN(t) =⇒ CR(t) ] .

(4b) WIN(R) =⇒ CR(R) .

(5a) NE(R) =⇒ [∀t : [ WN(t) =⇒ CR(t) ] ] .

(5b) NE(R) ∧ WN(R) =⇒ CR(R) .

Proof: (1)-(3) have been shown above.36 To verify the confluence criteria (4) and (5)
one has to combine (1) and (3), respectively, with Theorem 3.6.19 (below), observing
that a non-overlapping CTRS is in particular an overlay system with joinable critical
pairs.

35This means that the non-terminating proper subterm s′ = σ(x) of s/p is erased in the step
s →p,σ,l→r t, and implies that l → r is an erasing rule.

36Actually, the proofs thereof crucially rely on Theorem 3.6.19, which is independently proved below.
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3.6.2 Conditional Overlay Systems with Joinable Critical Pairs

Now we show that Theorem 3.3.12 can be generalized from TRSs to CTRSs, i.e., we
prove that any innermost terminating (term in a) conditional overlay system with
joinable critical pairs is terminating, hence complete by Theorem 3.6.5. The proof is
mainly analogous to the unconditional case, but again with some additional complica-
tions (arising from the problem that variable overlaps for CTRSs may be critical unlike
the situation with TRSs). In order to ensure that variable overlaps are not critical in
the proof construction, one needs in particular a stronger minimality property of an
assumed infinite derivation which guarantees that whenever a non-terminating redex
is contracted then all its proper subterms are terminating (cf. Remark 3.3.7).

Lemma 3.6.18 (properties of the transformation Φ)
Let R be a conditional overlay system with joinable critical pairs. Then the transfor-
mation Φ from Definition 3.3.4 is well-defined and the following properties hold:

(1) If s = C[σl]p →p,σ,l→r⇐=P C[σr]p = t such that ¬SN(s/p) and SN(s/pq) for all
q ∈ Pos(s/p), q > λ, then Φ(s) = Φ(s)[p ← (Φ ◦ σ)(l)]

i
−→p,Φ◦σ,l→r⇐=P Φ(s)[p ←

(Φ ◦ σ)(r)]
i

−→∗Φ(t).

(2a) If s →p t with SN(s/p) then Φ(s)
i

−→∗Φ(t).

(2b) If s →>p t with ¬SN(s/p), ¬SN(t/p) and SN(s/pq) for all q ∈ Pos(s/p), q > λ,
then Φ(s) = Φ(t).

Proof: Under the assumptions of the Lemma we know by Theorem 3.6.5 that a term
is terminating if and only if it complete. Hence the transformation Φ from Definition
3.3.4 is well-defined here. The proof of (1) is analogous to the proof of Lemma 3.3.10
exploiting in particular the property OS(R) and additionally Lemma 3.6.4 (as well
as Theorem 3.6.5). (2a) is analogous to Lemma 3.3.8 and the refined version (2b) is
straightforward by definition of Φ (and Theorem 3.6.5).37

Theorem 3.6.19 (innermost termination implies termination and complete-
ness for conditional overlay systems with joinable critical pairs)
For any CTRS R we have:

(a) OS(R) ∧ JCP(R) ∧ SIN(R) =⇒ SN(R) ∧ CR(R) , and

(b) OS(R) ∧ JCP(R) =⇒ [∀s : [SIN(s) =⇒ SN(s) ∧ CR(s)] ] .

Proof: We prove the local version (b) which implies the global (a). Let R be a
conditional overlay system with joinable critical pairs. Now assume s is innermost

37That the resulting derivations are innermost (or, more precisely, can be chosen to be innermost) is
based on OS(R) and the fact that normalizing a complete term can be done by an arbitrary strategy,
hence also by innermost reduction.
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terminating but not terminating. Then according to Remark 3.3.7 there exists an
infinite (constricting) derivation D issuing from s of the form

D : s = s1 →
∗
>q1

s′2 →q1
s2 →

∗
>q2

s′3 →q2
. . . sn →∗

>qn
s′n+1 →qn

sn+1 . . .

with qi ≤ qi+1 for all i such that in si →
∗
>qi

s′i+1 only terminating redexes are contracted,
and in s′i+1 →qi

si+1 the contracted redex s′i+1/qi (as well as its contractum si+1/qi)
is non-terminating, and moreover, all proper subterms of s′i+1/qi are terminating and
contracting any of these in s′i+1/qi would result in a terminating term. We observe
in particular that there are infinitely many steps s′i+1 →qi

si+1 in D where a non-
terminating redex, all of whose proper subterms are terminating, is contracted. Now,
applying the transformation Φ to this derivation D, we know by Lemma 3.6.18 that
ΦD has the form

ΦD : Φs = Φs1 = Φs′2 i
−→+Φs2 = Φs′3 i

−→+ . . . Φsn = Φs′n+1 i
−→+Φsn+1 . . . ,

hence is an infinite innermost derivation. Since we also have s
i
−→∗Φs this yields a

contradiction to the assumption that s is innermost terminating. Thus we are done.

Finally, let us mention that most of the results developed for unconditional TRSs
in Section 3.4 can also be extended to the conditional case. We shall not describe
this in detail (here) but only sketch the crucial ideas which are necessary for this
extension. First of all, Definitions 3.4.1 (UIR, uniqueness of innermost reduction), 3.4.2
(innermost-uncritical, innermost-critical steps), 3.4.4 (AICR, avoidance of innermost-
critical reduction steps) and 3.4.7 (transformation by parallel one-step reduction of all
terminating innermost redexes) are extended to CTRSs in the obvious way. Then the
adapted versions of Lemmas 3.4.5 and 3.4.6 still hold. However, for the adapted version
of the crucial Lemma 3.4.9, on which the subsequent results in Section 3.4 are based,
we need an additional property, namely the following parallel stability property for the
CTRSs considered:

If σl →λ,σ,l→r⇐=P σr, σ → σ′ and SN(σ), then also σ′l →λ,σ′,l→r⇐=P σ′r
(and σr −−‖−→ σ′r).

The following interesting counterexample shows that left-to-right joinability of all crit-
ical peaks does not suffice for this property.

Example 3.6.20 The CTRS

R =





f(a, a) → b
a → b

f(b, x) → b ⇐= f(x, x) ↓ b
f(x, b) → b ⇐= f(x, x) ↓ b

is terminating (but not decreasing). It has two (symmetric) outside critical peaks
(between the last two rules) without feasible instances, and the two inside critical
peaks

f(b, a) ← f(a, a) → b
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and

f(a, b) ← f(a, a) → b

both of which are left-to-right joinable (f(a, b) → b, f(b, a) → b). However, it is not
(locally) confluent. For instance, we have

σ′l = f(b, b) ← f(b, a) = σl → σr = b ,

where the rule l → r ⇐= P applied in the right step is f(b, x) → b ⇐= f(x, x) ↓ b,
with matching substitution σ = {x 7→ a}, and where σ′ = {x 7→ b}, hence σ → σ′. But
the two reducts f(b, b) and b are both irreducible. In particular, σ′l →λ,σ′,l→r⇐=P σ′r
does not hold any more. Intuitively, the reason for that is that recursively checking
the condition (σ′P )↓ leads to the parallel critical peak

f(b, b) >λ←‖−− f(a, a) →λ b

which is not (left-to-right) joinable any more.

Fortunately, the above mentioned parallel stability property is satisfied for some inter-
esting classes of CTRSs, namely for CTRSs with left-to-right joinable shared parallel
critical peaks as well as for the even more general case of CTRSs with quasi-overlay
joinable critical peaks (cf. [GW96]). These classes of CTRSs are a proper general-
ization of conditional overlay systems with joinable critical peaks (i.e., CTRSs with
overlay joinable critical peaks). In [GW96] local and global completeness results for
these classes of CTRSs are presented. With the help of these latter results it seems
quite plausible that the main results of Section 3.4 can be extended (in adapted form)
to CTRSs. But the details still have to be worked out.





Chapter 4

Modularity of Confluence
Properties

In this chapter the modularity of confluence and related properties is dealt with. We
provide an overview of known results and sketch the basic problems, ideas and proof
techniques. The systematic and unifying presentation entails some slight improvements
/ simplifications of already known modularity results and proofs, respectively. Further-
more, we show by counterexamples that the properties local confluence and joinability
of all critical pairs, which are well-known to be non-equivalent for conditional systems,
are not even preserved under signature extensions. The presentation is structured as
follows. First we consider confluence and local confluence in Section 4.1. Then related
unique normal form properties are treated in Section 4.2. The case of non-disjoint
unions is covered in Section 4.3, and corresponding modularity results for conditional
rewrite systems are surveyed in Section 4.4

4.1 Confluence and Local Confluence

In this section we shall tacitly assume that RF1

1 , RF2

2 are disjoint TRSs with RF

denoting their disjoint union RF1

1 ⊕RF2

2 .

The first property we consider is local confluence (WCR). Obviously, the sets of critical
pairs in the disjoint union R and in the component systems R1, R2 are related as
follows: CP(R) = CP(R1) ∪ CP(R2). Hence, by the Critical Pair Lemma 2.2.17 one
easily obtains the following (almost trivial) well-known result.

Theorem 4.1.1 Local confluence is modular for disjoint unions of TRSs.

Much less obvious is the famous modularity result for confluence due to Toyama.

Theorem 4.1.2 (confluence is modular, [Toy87b])
Confluence is modular for disjoint unions of TRSs.
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The original proof in [Toy87b] is quite involved. Simple proofs of the special cases
that confluence is preserved under signature extensions and under the disjoint union
of left-linear TRSs are given in [Mid90]. In the general case, the main problem is
that destructive reduction steps (by applying collapsing rules) essentially modify the
layer structure of mixed terms. An elegant and considerably simplified proof of this
important result has later been given in [KMTV94].

Remark 4.1.3 (main ideas and proof structure of [KMTV94])
We sketch here the main ideas of the latter proof (for the non-trivial direction CR(RF1

1 )∧
CR(RF2

2 ) =⇒ CR(RF)) and its structure because it is the basis for various generaliza-
tions of Theorem 4.1.2.

(a) A first general idea (which is easily formulated in terms of abstract reduction
relations, too) is to define and use representatives of sets of pairwise confluent terms:
A set Ŝ of terms is said to represent a given set S of confluent terms, if (i) every term
s ∈ S has a unique reduct in Ŝ, the representative of s, and (ii) joinable terms in S
have the same representative in Ŝ. If S is a set of confluent terms, joinability is an
equivalence relation on S. If these equivalence classes are finite, for each of them a
common (unique) reduct can be defined (its representative). Hence, every finite set of
confluent terms can be represented.

(b) A second idea (which is specific for the combination setting) is to introduce the
notion of witnesses which simplifies the main step of the proof. Intuitively, a witness of
a term s is obtained by a synchronous reduction of all its principal aliens to preserved
reducts. Formally, for s = C 〈〈 s1, . . . , sn〉〉 a witness of s is an inner preserved term
t = C 〈〈 t1, . . . , tn〉〉 (i.e., with t1, . . . , tn preserved) such that si →

∗ ti (for 1 ≤ i ≤ n)
and 〈s1, . . . , sn〉 ∝ 〈t1, . . . , tn〉. This definition implies in particular that every term
of rank 1 is a (more precisely, the only) witness of itself. Note that the existence of
witnesses depends on the existence of preserved reducts (for the principal aliens).

Now the proof structure is as follows:

(1) Every term (in T (F ,V)) has a preserved reduct, hence every term has a witness
(this is verified in [KMTV94] by showing weak (and even strong) termination of
the collapsing reduction relation →c).

(2) The outer reduction relations
o
→R1

and
o
→R2

are confluent (on T (F ,V)) (this is
straightforward by injective abstraction of all principal aliens).

(3) Preserved terms are confluent (by induction on the rank, using (2) and (a)).

(4) Inner preserved terms are confluent (by case analysis using (3) and (a)).1

(5) If s → t and all principal subterms of s are confluent, then ṡ ↓ ṫ, for arbitrary
witnesses ṡ and ṫ of s and t, respectively (by case analysis).

(6) The disjoint union RF is confluent. (By induction on rank(t) on shows con-
fluence of t. In the induction step, for an arbitrary conversion of the form
t1

∗← t →∗ t2, one first reduces every term in this conversion to a witness. Since

1Actually, in [KMTV94], (4) (which is stronger than (3)) is directly proved by induction on the
rank using case analysis, (2) and (a).
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all principal subterms occurring in this conversion have rank less than rank(t),
they are confluent by induction hypothesis. Repeated application of (5) yields a
conversion between the witnesses in which all terms are inner preserved. Then
repeated application of (4) yields a common reduct of t1 and t2.)

Essentially, there are two main prerequisites for this proof (structure) to go through,
namely, that reduction in the (disjoint) union is rank decreasing (which enables in-
duction over the rank of terms), and that every term has a preserved reduct (which
enables the projection of terms to witnesses, i.e., inner preserved reducts, hence makes
the induction step go through by reducing it to confluence of inner preserved terms).
In particular, the latter observation turns out to be crucial for generalizing the result
to constructor sharing and to composable TRSs.

4.2 Unique Normal Form Properties

Next we summarize known modularity results (w.r.t. disjoint unions) for various normal
form properties (cf. Definition 2.1.17) which are weakened versions of confluence.

Theorem 4.2.1 (UN is modular, [Mid90])
The property of having unique normal forms (UN) is modular for disjoint unions of
TRSs.

Proof (idea): The central step in the proof (of the non-trivial direction UN(RF1

1 ) ∧
UN(RF2

2 ) =⇒ UN(RF)) of [Mid90] is a construction which shows that every TRS can
be conservatively extended to a confluent TRS with the same set of normal forms.
More precisely, the following is shown:

Every TRS R′F
′

with unique normal forms (UN(R′F
′

)) can be extended to a TRS

R′′F
′′

(i.e., F ′ ⊆ F ′′, R′ ⊆ R′′) such that:

(1) R′′F
′′

is confluent,

(2) ∀s, t ∈ T (F ′′,V). s ↔∗
R′ t ⇐⇒ s ↔∗

R′′ t, and

(3) NF(R′F
′

) = NF(R′′F
′′

).

Using this interesting (construction and) fact it is not difficult to reduce the above im-
plication UN(RF1

1 ) ∧ UN(RF2

2 ) =⇒ UN(RF) to (the non-trivial direction of) Theorem
4.1.2.

Due to the implications CR =⇒ NF =⇒ UN (cf. Lemma 2.1.19) one might conjecture
that the normal form property NF is modular, too. However, this is not the case.
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Example 4.2.2 (counterexample to modularity of NF, [Mid90])
The disjoint TRSs R1 = {f(x, x) → a} and

R2 =





A → B
A → C
B → B
C → C

both have the property NF. However, in R1 ⊕R2 we have

f(B,C) ← f(A,C) ← f(A,A) → a ,

where a is a normal form and, obviously, f(B,C) does not reduce to a. Hence, R1⊕R2

does not have property NF.

The non-left-linearity of one of the systems in the above counterexample is essential as
is obvious from the next positive result due to Middeldorp.

Theorem 4.2.3 (NF is modular for left-linear TRSs, [Mid90])
The normal from property (NF) is modular for disjoint unions of left-linear TRSs.

In a way similar to Example 4.2.2 above, one can also construct a counterexample to
the modularity of UN→, the uniqueness of normal forms w.r.t. reduction.

Example 4.2.4 (UN→ is not modular, [Mid90])
The disjoint TRSs R1 = {f(x, x) → a} and

R2 =





A → B
A → C
C → C
D → C
D → E

both have the property UN→. However, in R1 ⊕R2 the term f(A,D) reduces to two
different normal forms:

f(B,E) ← f(B,D) ← f(A,D) → f(C,D) → f(C,C) → a .

Therefore, R1 ⊕R2 does not have the property UN→.

Again, non-left-linearity in this example is essential. Actually, Middeldorp showed
that UN→ is modular for disjoint unions of left-linear TRSs without collapsing rules,
and conjectured that the non-collapsing requirement can be omitted ([Mid90]). This
conjecture was recently settled in the affirmative by Marchiori.

Theorem 4.2.5 (UN→ is modular for left-linear TRSs, [Mar94])
Uniqueness of normal forms w.r.t. reduction (UN→) is modular for disjoint unions of
left-linear TRSs.

The proof technique employed here (as well as in the closely related papers [SSP94],
[SMP95]) which is based on a very subtle interaction between properties of left-linear
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systems and of certain collapsing reduction (sequences) therein is interesting by itself
and will be discussed in more detail later on (in Section 5.3.3).

Finally let us introduce two more important properties of TRSs which are weak versions
of UN and UN→, respectively, in the sense that instead of all terms in normal form
only variables are considered.

Definition 4.2.6 (consistency properties)
A TRS RF is consistent (CON) if distinct variables are not convertible, i.e., if ∀x, y ∈
V . x ↔∗

RF y =⇒ x = y).2 RF is consistent with respect to reduction (CON→) if no
term reduces to two distinct variables i.e., if ∀s ∈ T (F ,V)∀x, y ∈ V. x ∗← s →∗ y =⇒
x = y).3

The modularity behaviour of CON and CON→ turns out to be analogous to that of
UN and UN→, respectively (cf. Theorems 4.2.1, 4.2.5 and Example 4.2.4 above).

Theorem 4.2.7 (CON is modular, [Sch89])
Consistency (CON) is modular for disjoint unions of TRSs (and of equation systems).4

Example 4.2.8 (CON→ is not modular, [Mar94])
The disjoint TRSs

R1 =

{
f(x, x, y) → y
f(x, y, y) → x

and

R2 =

{
G(x) → x
G(x) → A

both have the property CON→. However, in R = R1 ⊕R2 we have

x ← f(x,A,A) +←f(G(x), G(y), G(z)) →+ f(A,A, z) → z ,

hence the disjoint union RF is not CON→.

We observe that one of the systems in this example is not left-linear. This is indeed
essential due to the following result.

Theorem 4.2.9 (CON→ is modular for left-linear TRSs, [SMP95], [Mar94])
Consistency with respect to reduction (CON→) is modular for disjoint unions of left-
linear TRSs.

The relations between the various confluence (and normal form) properties considered
as well as their modularity behaviour (for disjoint unions) are depicted graphically

2Actually, the property CON as defined here makes also sense in an equational setting where no
restrictions concerning (the occurrences of) variables in equations / rewrite rules are imposed as it is
common e.g. in unification theory ([Sch89], [BS94]). The same holds for UN.

3Consistency with respect to reduction (CON→) is called r-consistency in [SMP95].
4In fact, the corresponding result in [Sch89] is more general since the construction there yields a

conservative extension of two given disjoint equational theories.
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NF ===⇒ UN ===⇒ UN→
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Figure 4.1: confluence properties and their modularity behaviour

in Figure 4.1 (where missing implications do not hold, and modular properties are
enclosed in rectangles).

4.3 Non-Disjoint Unions

A first easy observation is that local confluence (WCR) or, equivalently, joinability
of all critical pairs (JCP), is modular for composable TRSs,5 due to the Critical Pair
Lemma 2.2.17. This also holds for a couple of other properties related to (the form of
joinability of) critical peaks / pairs.

Lemma 4.3.1 (modularity of critical peak properties for composable TRSs)
The following ‘critical peak properties’ are modular for composable TRSs:

(1) WCR(local confluence, or, equivalently, JCP, joinability of all critical pairs)

(2) OS (overlaying)

(3) NO (non-overlapping)

(4) WNO (weakly non-overlapping)

(5) UIR (uniqueness of innermost reduction)

(6) AICR (avoidance of innermost-critical steps)

(7) CPC (critical peak condition)

(8) SLRJCP (strongly left-to-right joinable critical peaks)

(9) LRJCP (left-to-right joinable critical peaks)

Proof: Straightforward by the respective definitions and the definition of composable
TRSs.

As observed by Kurihara & Ohuchi ([KO92]), the modularity of confluence (CR) is lost
for constructor sharing (and hence also for composable) TRSs.

5as remarked e.g. in [Ohl94a]
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Example 4.3.2 (confluence is not modular for constructor sharing TRSs)
Consider the following partition of (a renamed version of) the TRS in Example 2.2.19
into

R1 =

{
f(x, x) → a

f(x, c(x)) → b

and

R2 =
{

d → c(d)
}

.

which are constructor-sharing (c is a shared constructor). Both R1 and R2 are obvi-
ously confluent, but their union RF = (R1 ⊎R2)

F1∪F2 is non-confluent. Indeed, in RF

we have the divergence

a R1
←f(d, d) →R2

f(d, c(d)) →R1
b

issuing from the term f(d, d) of rank 2, with a, b in normal form. Intuitively, the reason
for the non-confluence here is due to the fact that the topmost black layer of f(d, d)
(recall that symbols of R1 (R2) not occurring in R2 (R1) are considered to be black
(white); hence f is black and d white) is essentially modified by the constructor lifting
rule d → c(d) of R2 thus enabling the subsequent R1-step f(d, c(d)) →R1

b which was
not possible before. In other words, the term f(d, d) is not preserved and also not
inner preserved, and even worse, the (two equal) principal top white aliens d do not
have a preserved reduct at all, i.e., a reduct with a stable layer structure (cf. Definition
2.4.12). Indeed, the only reductions possible from d are of the form

d →R2
c(d) →R2

c(d) →R2
c(c(d)) . . .

where every step is layer coalescing (namely, destructive at level 1).

If the existence of preserved reducts in the union is guaranteed then — analogous to the
situation for disjoint unions where this property is always guaranteed (cf. Section 4.1,
Remark 4.1.3) — such a phenomenon (i.e., non-confluence of the union of two confluent
constructor-sharing or composable TRS) cannot occur. Ohlebusch ([Ohl94b]) was the
first to recognize this for constructor sharing TRSs and to succeed in adapting the proof
structure of [KMTV94] to this case. The resulting generalization of Theorem 4.1.2 to
constructor-sharing TRSs which in essence is due to [Ohl94b]6 reads as follows.

Theorem 4.3.3 (confluence of unions of constructor sharing TRSs)
Let RF1

1 , RF2

2 be two confluent constructor sharing TRSs. Their union RF = (R1 ⊎
R2)

F1∪F2 is confluent provided every term (in T (F ,V)) has a preserved reduct).

6The corresponding result in [Ohl94b] is formulated more operationally in the sense that instead of
the existence of preserved reducts in the union the layer coalescing (or collapsing) reduction relation
→c is required to be weakly terminating. For confluent component TRSs R1, R2 these two conditions
are equivalent as is not too difficult to verify. However, in general a term (in the union) may have a
preserved reduct even if the layer coalescing reduction →c is not weakly terminating. To wit, consider
R1 = {f(x, x) → a, f(x, c(x)) → b} as in Example 4.3.2 above and R2 = {d(e(a)) → c(d(e(a))), e(a) →
a}. Then a and c are shared constructors. In the union every term has a preserved reduct (in fact,
even a normal form), however we have e.g. ¬WN(d(e(a)),→c) since the only →c-reductions issuing
from d(e(a)) are: d(e(a)) →c c(d(e(a))) →c c(c(d(e(a)))) →c . . .. But note that R2 here is clearly
non-confluent!
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Proof: The proof is essentially the same as in [Ohl94b], following the proof structure
of [KMTV94] as outlined in Remark 4.1.3 above. However, the assumption of weak
termination of →c is replaced by the requirement that every term (in the union) has
a preserved reduct. (cf. also Theorem 4.3.4 below where the necessary adaptations for
the composable case are sketched).

This preservation result for confluence also extends in a natural manner to composable
TRSs as shown in [Ohl94a]. Our formulation is again slightly different from the one in
[Ohl94a].7

Theorem 4.3.4 (confluence of unions of composable TRSs)
Let RF1

1 , RF2

2 be two confluent composable TRSs. Their union RF = (R1 ∪R2)
F1∪F2

is confluent provided every term (in T (F ,V)) has a preserved reduct).

Proof (sketch): The proof is essentially the same as in [Ohl94a], with some slight
modifications, and follows the proof structure of [KMTV94] as outlined in Remark
4.1.3 above. More precisely, the structure is as follows.

First the notions of preservation and witness are adapted (cf. Section 2.4.2). A term
(in T (F ,V)) is preserved if no (RF -)derivation issuing from it contains a step which
is destructive at level m ≥ 1 (this implies in particular that all transparent terms,
i.e., those from T (F s,V), are preserved).8 A term is white (black) preserved if all
its white (black) principal aliens are preserved (black / white preservation replaces
inner preservation of [KMTV94]). For s = Cb 〈〈 s1, . . . , sn〉〉 , a white witness of s is
a white preserved term t = Cb 〈〈 t1, . . . , tn〉〉 such that si →∗ ti (for 1 ≤ i ≤ n) and
〈s1, . . . , sn〉 ∝ 〈t1, . . . , tn〉. The definition of black witnesses is symmetric. Note that
this implies in particular that any transparent term is a (more precisely, the only
witness) of itself.

Now the adapted proof structure reads as follows:

(1) By assumption we know that every term (in T (F ,V)) has a preserved reduct,
hence every term has a black (white) witness.

(2) The reduction relations
t
→,

t,o
→b and

t,o
→w are confluent (on T (F ,V)).

(3) Preserved terms are confluent.

(4) White (black) preserved terms are confluent.

7Actually, we only require the existence of preserved reducts instead of the more operational condi-
tion in [Ohl94a] that the layer coalescing reduction relation →c is be weakly terminating. Furthermore,
we note that our definition of →c (cf. Definition 2.4.12) slightly differs from the one of [Ohl94a] in the
sense that we do not consider a reduction step which is destructive at level 0, i.e., which reduces a top
transparent term to a top black or top white one, as a layer coalescing step, i.e., as →c-step (since it
does not lead to the problematic case of a coalescence of two originally distinct layers). Clearly, weak
termination of →c implies the existence of preserved reducts (for all terms in the union). Vice versa,
it seems quite plausible that — for confluent composable TRSs — the existence of preserved reducts
also implies weak termination of →c. However, we have not investigated this in detail.

8This slightly differs from [Ohl94a].
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(5) If s → t and all white (black) principal subterms of s are confluent, then ṡ ↓ ṫ,
for arbitrary white (black) witnesses ṡ and ṫ of s and t, respectively.

(6) The union RF is confluent.

The existence of preserved reducts is obtained for free if destructive steps at level
m ≥ 1 are impossible. This is obviously the case if the composable TRSs RF1

1 , RF2

2 are
layer preserving (cf. Definition 2.4.17), i.e., if all rules in the union R1 ∪R2 with a top
transparent right hand side (i.e., its root is a shared (function) symbol or a variable)
also have top transparent left hand sides (i.e., left hand sides with a shared function
symbol at the root). Hence, one obtains the following direct consequence of Theorem
4.3.4.

Theorem 4.3.5 (modularity of confluence under layer preservation,
[Ohl94a]9 )
Confluence is modular for unions of composable, layer preserving TRSs.

Further modularity results for confluence which additionally rely on termination prop-
erties will be discussed later on in Chapter 5.

Let us now turn to the other confluence properties mentioned above, namely WCR,
NF, UN, UN→, CON, CON→. Obviously, local confluence (WCR) is still modular for
constructor sharing as well as composable TRSs (since we still have CP(R1 ∪ R2) =
CP(R1) ∪ CP(R2)). However, all other positive results from above do not extend,
at least not directly. For instance, Example 4.3.2 shows this for NF and UN→. As
observed in [Ohl94a], left-linearity is no longer sufficient for the modularity of NF and
UN→. A simple counterexample to the modularity of CON and CON→ for constructor
sharing (and composable) TRSs is the following.

Example 4.3.6 (CON and CON→ are not modular for (left-linear) construc-
tor sharing TRSs)
The TRSs

R1 =

{
f(a, x, y) → x
f(b, x, y) → y

and

R2 =

{
c → a
c → b

}
.

are constructor sharing, left-linear and satisfy CON, hence also CON→. However, their
union is not even CON→ as witnessed by

x ← f(a, x, y) ← f(c, x, y) → f(b, x, y) → y .

Indeed, we expect that any serious attempt to extend positive modularity results for
these confluence and normal form properties from the disjoint union case to constructor

9In [Ohl94a] an extra proof is necessary here for showing weak termination of →c.
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sharing or composable systems must carefully take into account the additional disturb-
ing effect caused by rules which are shared symbol lifting. In particular, this means
that besides collapsing rules (i.e., rules with a variable as right hand side) also shared
function symbol lifting rules have to receive special attention.

4.4 Conditional Rewrite Systems

First we summarize the known results on modularity of properties of CTRSs which are
related to confluence and normal forms for the disjoint union case.

The most important positive result to be mentioned here certainly is Middeldorp’s
extension of Toyama’s Theorem 4.1.2 to CTRSs ([Mid90]).

Theorem 4.4.1 (confluence is modular for disjoint unions of (join / semi-
equational) CTRSs, [Mid90])
Confluence is modular for disjoint unions of join CTRSs and of semi-equational CTRSs.

Proof (idea): We only sketch the basic idea and structure of the proof (of the
difficult direction CR(RF1

1 )∧ CR(RF2

2 ) =⇒ CR(RF), for RF = RF1

1 ⊕R2) in [Mid90]

for join CTRSs. Essentially, the whole proof is a rather non-trivial reduction to the
unconditional case, i.e., to Toyama’s Theorem 4.1.2.

First, over T (F ,V) the relations →i (i = 1, 2) induced by Ri are defined (according
to Definition 2.4.16). Then the following assertions are proved (with the notational
convention →=→RF ).

(1) →1,2 ⊆→.

(2) →1,2 is confluent.

(3) →⊆↓1,2.

(4) ↔∗ ⊆↓1,2.

From (1) and (4) one then obtains confluence of → as desired.

Now, (1) is obvious by definition of →1,2.

For proving (2) one defines the disjoint unconditional TRSs S1, S2 by

Si = {s → t | s, t ∈ T (Fi,V), s →i t}

for i = 1, 2. Then one shows that the restrictions of →Si
, →i and →Ri

coincide on
T (Fi,V) × T (Fi,V), i.e.:

→Si
|T (Fi,V)×T (Fi,V) =→i |T (Fi,V)×T (Fi,V) =→Ri

|T (Fi,V)×T (Fi,V) ,

and that →Si
and →i also coincide on T (F ,V) × T (F ,V), i.e.:

→Si
=→i .

This yields

→S1⊕S2
=→S1

∪ →S2
=→1 ∪ →2 =→1,2

(on T (F ,V) × T (F ,V)), from which, by Theorem 4.1.2, confluence of →1,2 follows.
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The proof of (3) →⊆↓1,2 is also non-trivial and technically involved. The crucial point
here is — again in analogy to the unconditional case — that every term has a preserved
reduct (w.r.t. →1,2, however).

Finally, (4) ↔∗⊆↓1,2 is an easy consequence of (2) and (3).

Concerning confluence properties related to normal forms, not very much is known for
CTRSs. As to uniqueness of normal forms (UN), Middeldorp succeeded in extending
his positive modularity result for disjoint unions of TRSs to the case of semi-equational
CTRSs.

Theorem 4.4.2 (UN is modular for disjoint unions of semi-equational CTRSs,
[Mid90])
Uniqueness of normal forms (UN) is modular for disjoint unions of semi-equational
CTRSs.

Whether this holds also for join CTRSs is still an open problem.

Finally let us consider here the properties local confluence (WCR) and joinability of
(all) critical pairs (JCP). Simple examples of [Mid90] show that both properties —
which are in general not equivalent for join CTRSs as we recall — are not modular
for CTRSs, both for join system and semi-equational ones. Actually, we shall show
now that for join CTRSs both WCR and JCP are not even preserved under signature
extensions (and even for the case of no extra variables), which at first glance may seem
to be very surprising.

Example 4.4.3 (WCR and JCP are not preserved under signature exten-
sions)
Consider the join CTRS RF with

R =





f(x, y, z) → g(x) ⇐= x ↓ y, y ↓ z
f(x, y, z) → g(z) ⇐= x ↓ y, y ↓ z

b → a
b → c
c → b
c → d

g(a) → g(d)
f(a, x, y) → f(d, x, y)
f(x, a, y) → f(x, d, y)
f(x, y, a) → f(x, y, d)

and F = {a, b, c, d, f, g}. It is not difficult to show that RF has joinable critical
pairs and is even locally confluent (but not confluent). More generally, the following
properties hold (w.r.t. the signature F):

(1) Terms from T (F ,V) which are equivalent to each other (w.r.t. ↔∗
RF ) have the

same depth (by induction on depth(s) and case analysis according to the applied
rule it is straightforward to verify that s → t implies depth(s) = depth(t)).
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(2) If depth(s) = 1 and s ↔∗ t then g(s) ↓ g(t) and, moreover, s = t ∈ V or
s, t ∈ {a, b, c, d} (proof by an easy case analysis).

(3) If depth(s) > 1 and s ↔∗ t then s ↓ t (proof by induction on depth(s) using (1),
(2) and a straightforward case analysis concerning the possible shapes of s and
t).

This means that RF is not only locally confluent but even confluent on all equivalence
classes of terms from T (F) (w.r.t. ↔∗) except for the equivalence class [a, b, c, d].

Now we add a fresh unary function symbol G, i.e., we consider RF ′

with F ′ = F⊎{G}.
Then joinability of critical pairs and hence local confluence is lost. To wit, consider for
instance the term f(G(a), G(b), G(d)) which reduces to two distinct normal forms by
one RF ′

-step, respectively :

g(G(a)) ← f(G(a), G(b), G(d)) → g(G(d))

Clearly both g(G(a)) and g(G(d)) are irreducible. This divergence corresponds to an
instance of the critical pair between the first two rules, namely

〈g(x) = g(z)〉 ⇐= x ↓ y, y ↓ z .

Over the old signature F every substitution σ which is feasible for this critical pair
satisfies σ(g(x)) ↓ σ(g(z)) whereas this is not the case for the mixed substitution
τ = {x 7→ G(a), y 7→ G(b), z 7→ G(d)}. Hence the critical pair above is not joinable
any more over the extended signature F ′.

Note that in the above example RF is obviously non-terminating. This is not essential
in the following sense. We may replace the ‘non-terminating part’ of RF





b → a
b → c
c → b
c → d

which has joinable critical pairs, hence is locally confluent (it is an unconditional TRS!),
by a terminating CTRS with joinable critical pairs which is not confluent, hence nec-
essarily not locally confluent. To this end, we can take for instance the system





h(x) → k(b) ⇐= k(x) ↓ h(b)
k(a) → h(a)

a → b

which has the desired properties (in particular, it is not locally confluent: h(b) ←
h(a) → k(b) but h(b) and k(b) are irreducible). Then the remaining construction of
RF is adapted accordingly.
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Example 4.4.4 (JCP is not even preserved for terminating join CTRSs un-
der signature extensions)
Consider the CTRS RF with

R =





f(x, y, z) → g(x) ⇐= x ↓ y, y ↓ z
f(x, y, z) → g(z) ⇐= x ↓ y, y ↓ z

h(x) → k(b) ⇐= k(x) ↓ h(b)
k(a) → h(a)

a → b
g(h(b)) → g(k(b))
h(h(b)) → h(k(b))
k(h(b)) → k(k(b))

f(h(b), x, y) → f(k(b), x, y)
f(x, h(b), y) → f(x, k(b), y)
f(x, y, h(b)) → f(x, y, k(b))

and F = {a, b, f, g, h, k}. It is easy to verify that RF is terminating. With some effort
one can show (by similar arguments as above) that RF has joinable critical pairs. More
precisely, the following properties hold:

(1) ∀s, t ∈ T (F ,V). s ↔∗ t =⇒ depth(s) = depth(t) (by induction over the structure
of terms and case analysis10 ).

(2) ∀s, t ∈ T (F ,V), depth(s) = 1. s ↔∗ t =⇒ s ↓ t (by case analysis using (1)).

(3) ∀s, t ∈ T (F ,V), depth(s) = 2. s ↔∗ t =⇒ g(s) ↓ g(t) (by case analysis using
(1),(2)).

(4) ∀s, t ∈ T (F ,V), depth(s) > 2. s ↔∗ t =⇒ s ↓ t (by structural induction and case
analysis using (1)-(3)).

In particular, we note that due to (4) above RF is even confluent on all equivalence
classes of terms from T (F ,V) (w.r.t. ↔∗) which have depth > 2. But RF is not (locally)
confluent since we have h(b) ← h(a) → k(b) with both h(b) and k(b) irreducible.

Now we add a fresh unary function symbol G, i.e., we consider RF ′

with F ′ = F⊎{G}.
the new system RF ′

is still terminating (cf. Theorem 5.5.9). But joinability of critical
pairs is lost. Consider the critical pair between the first two rules of RF ′

,

〈g(x) = g(z)〉 ⇐= x ↓ y, y ↓ z ,

and the F ′-substitution τ = {x 7→ G(h(b)), y 7→ G(h(a)), z 7→ G(k(b))}. The corre-
sponding instance of the critical peak is

g(G(h(b))) ← f(G(h(b)), G(h(a)), G(k(b))) → g(G(k(b))) ,

due to G(h(b)) ↓ G(h(a)) ↓ G(k(b)), but g(G(h(b))) and g(G(k(b))) are not joinable
since they are both irreducible (in RF ′

).

For the non-disjoint case, i.e., for unions of constructor sharing or composable CTRSs,
no positive result corresponding to the ones mentioned above for confluence and normal
form properties (without weak or strong termination assumptions) is currently known.

10In particular, one can verify ∀s ∈ T (F ,V). h(s) → k(b) ⇐⇒ s = a.



112 CHAPTER 4. MODULARITY OF CONFLUENCE PROPERTIES

Further results which require weak or strong termination, in particular concerning
semi-completeness (WN ∧ CR), will be discussed in the next chapter.



Chapter 5

Modularity of Termination
Properties

This chapter constitutes the essence of the second major part of the thesis. Modular
aspects of termination properties are comprehensively treated here. An overview is pro-
vided in Section 5.1. First we give a brief historic account of the crucial papers, ideas,
approaches and results that have been obtained up to date. Furthermore basic coun-
terexamples to the modularity of termination in the disjoint union case are collected in
a systematic manner. We point out their characteristic features and develop a rough
classification of corresponding successful approaches for obtaining positive modularity
results for termination. Then, in Section 5.2, the known modularity results for weak
termination, weak and strong innermost termination are recapitulated as well as their
consequences, for instance concerning semi-completeness. Section 5.3 comprehensively
deals with the modularity of various versions of general termination. First we show
how, via an abstract structure theorem characterizing minimal counterexamples, many
previous results can be generalized and presented in a unifying framework. This power-
ful abstract structure theorem entails a lot of derived results and criteria for modularity
of termination. Then we show how, via a modular approach exploiting the modularity
of innermost termination and the main results of Chapter 3, further interesting criteria
for the preservation of termination and completeness can be obtained relatively easily.
And finally, a third basic approach for ensuring modularity of termination is reviewed.
In essence, it relies on commutation properties guaranteed by left-linearity and certain
uniqueness properties of collapsing reduction. For all three approaches both symmetric
and asymmetric criteria for the preservation of termination under disjoint unions are
presented. In Section 5.4 it is shown how to extend many previously presented results
to combinations of constructor sharing or even of composable systems. Special empha-
sis is put on the crucial differences of the latter more general combination mechanisms
as compared to disjoint unions. And in fact, in most cases the basic ideas and proof
techniques for the disjoint union case are also applicable in this more general setting,
taking adequately into account the additional sources of complications. Section 5.5
summarizes what corresponding results are known for the conditional rewrite systems.
Here we demonstrate in particular that some intuitively appealing assertions are falla-
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cious. Namely, we give counterexamples showing that weak termination as well as weak
and strong innermost termination are not even preserved under signature extensions.

5.1 History and Overview

5.1.1 Some History

We begin with some historical remarks.1 A more detailed discussion of the basic ideas,
results and milestones as well as pointers to the relevant literature will follow in the
presentation later on.

In his pioneering paper [Toy87b], Toyama did not only establish the modularity of con-
fluence (for disjoint unions), but also demonstrated the non-modularity of termination
(see Example 5.1.1 below). This was the starting point of much intensive research
devoted to the study of understanding the crucial phenomena responsible for this
non-modular behaviour of the termination property as well as of finding interesting
sufficient criteria ensuring modularity of termination. In [Toy87a] Toyama collected
a couple of further counterexamples and conjectures which gave some orientation of
what seemed to be possible and what definitely not. For instance, contrary to a conjec-
ture in [Toy87b], even for confluent TRSs termination (and hence also completeness)
turned out not to be modular as shown by a counterexample of Klop & Barendregt in
[Toy87a]. Independently, Drosten ([Dro89]) gave a simpler counterexample to the non-
modularity of completeness (Example 5.1.2 below is a slightly modified version of the
latter). Even for irreducible TRSs (note that the first system in Example 5.1.2 below
is not irreducible), completeness is not modular as shown in [Toy87a] by a variation
of Klop & Barendregt’s counterexample. The same technique can also be applied to
Example 5.1.2 below as demonstrated by Middeldorp ([Mid90]).

The first positive results (for weak termination, termination and completeness in the
disjoint union case) were obtained by Rusinowitch ([Rus87]), Ganzinger & Giegerich
([GG87]), Middeldorp ([Mid89], [Mid90]), Bergstra, Klop & Middeldorp ([BKM89]),
Drosten ([Dro89]), Kurihara & Kaji ([KK90]), and Toyama, Klop & Barendregt
([TKB89]). Modularity of simple termination (for finite systems) was established
by Kurihara & Ohuchi ([KO90a]). Results of [Rus87], [Mid89] and [KO90a] were
generalized in a unifying manner by the present author in [Gra92a; Gra94a] for the
case of finitely branching systems. The latter restriction could be lifted by Ohle-
busch ([Ohl94c]). The modularity of completeness for constructor systems was ob-
tained in [MT91; MT93]. This was generalized to overlay systems in [Gra92b; Gra95a]

via modularity of innermost termination and sufficient conditions for the equivalence
of innermost and general termination. The deep result of [TKB89; TKB95] stating
modularity of completeness for left-linear TRSs was further extended and its proof
considerably simplified, independently by Marchiori ([Mar95]) and Schmidt-Schauss &
Panitz ([SSP94], [SMP95]).

1Actually, we don’t claim here to give a complete historical survey. This has become non-trivial in
the meanwhile since many interesting new papers have been published within the last years.
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Non-disjoint unions of (terminating) constructor sharing and, more generally, com-
posable systems were first investigated in [KO92], [MT91; MT93], [Gra92b; Gra92a],
[Ohl94a; Ohl94c], and recently also in [KO95a; KO95b], [Ohl95a], [MZ95].

Modularity of termination properties of CTRSs has been studied in [Mid90; Mid93b;
Mid93a; Mid94], [Gra93b; Gra95d; Gra94b; Gra96b], [Ohl93; Ohl94a; Ohl95b; Ohl95a].

The preservation behaviour of termination and completeness for hierarchical com-
binations of (mainly unconditional) TRSs is dealt with in [Kri93; Kri95b], [Der92;
Der95], [Gra93a], [Kri94b], [FJ95].

Other preservation results for termination of combined systems can be found e.g. in
[BD86], [BL90], [Ges90], [Zan94], [Der95], [FJ95].

5.1.2 Basic Counterexamples

The following counterexamples to modularity of termination that we are going to
present now are characteristic in a sense which will be made precise later on.

Example 5.1.1 (termination (SN) is not modular, [Toy87b])
The disjoint TRSs

R1 =
{

f(a, b, x) → f(x, x, x)

and

R2 =

{
G(x, y) → x
G(x, y) → y

are terminating,2 but R = R1⊕R2 is not, due to the cyclic (hence in particular infinite)
derivation

f(a, b,G(a, b)) →R1
f(G(a, b), G(a, b), G(a, b))

→R2
f(a,G(a, b), G(a, b))

→R2
f(a, b,G(a, b))

→R1
. . .

Example 5.1.2 (completeness (SN ∧ CR) is not modular, [Dro89])
The disjoint TRSs

R1 =





f(a, b, x) → f(x, x, x)
a → c
b → c

f(x, y, z) → c

and

R2 =

{
K(x, y, y) → x
K(y, y, x) → x

2For R1 termination is intuitively obvious, however, a formal proof is not completely trivial (cf.
e.g. [Zan94]).
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are terminating and confluent hence complete, but again their disjoint union R =
R1 ⊕R2 allows cycle:

f(a, b,K(a, c, b)) →R1
f(K(a, c, b), K(a, c, b), K(a, c, b))

→+
R1

f(K(a, c, c), K(c, c, b), K(a, c, b))
→+

R2
f(a, b,K(a, c, b))

→R1
. . .

Example 5.1.3 (SN ∧ CON→ is not modular, [Gra94a])
The disjoint TRSs

R1 =
{

f(x, g(x), y) → f(y, y, y)

and

R2 =

{
G(x) → x
G(x) → A

are terminating. However, in R = R1 ⊕R2 we have the cycle

f(G(g(A)), G(g(A)), G(g(A))) →R2
f(A,G(g(A)), G(g(A)))

→R2
f(A, g(A), G(g(A)))

→R1
f(G(g(A)), G(g(A)), G(g(A)))

→R2
. . .

We observe that these counterexamples to modularity of termination satisfy the fol-
lowing (easily verifiable) properties:

• In all examples one of the systems is duplicating (DUP), i.e., contains a duplicat-
ing rule, and not simply terminating, and the other system is collapsing (COL),
i.e., contains a collapsing rule, and not non-erasing (NE).

• In Example 5.1.2 both systems are complete, i.e., terminating and confluent
(SN ∧ CR), but the first one is not a constructor system and also not an overlay
system (OS), and the second one not left-linear (LL).

• In Example 5.1.1 both systems are left-linear (LL), but the second one is not
confluent (CR) and also neither consistent (CON) nor consistent with respect to
reduction (CON→).

• In Example 5.1.3 both systems are consistent with respect to reduction (CON→)
— the first system is even confluent (CR) — however, the first system is not
left-linear (LL), and the second one not consistent (CON).

The careful reader may have observed that the counterexample to modularity of com-
pleteness, Example 5.1.2 above, involves one system which is not irreducible (namely,
R1). However, this is not essential as shown by Middeldorp [Mid90] (using the same
technique as in [Toy87a] for the more complicated counterexample of Klop & Baren-
dregt).
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Example 5.1.4 (completeness is not modular for irreducible TRSs, [Toy87a],
[Mid90])
The resulting disjoint, irreducible and complete systems are

R1 =





f(g(x), h(x), y, x) → f(y, y, y, x)
g(a) → c
h(a) → c

f(x, y, z, a) → c

and

R2 =

{
K(x, y, y) → x
K(y, y, x) → x

where, for t = K(g(a), h(a), h(a)), the union has a cyclic derivation of the form
f(t, t, t, a) →+ f(t, t, t, a).

Almost all counterexamples to modularity of termination in the literature (including
Examples 5.1.1, 5.1.2, 5.1.4 above) have the property that the minimal rank of infinite
derivations in the disjoint union is 3.3 However, we observe that in Example 5.1.3
the given counterexample has rank 4. In fact, by analyzing there for which mixed
terms s, t it is possible that s →R t and s →R g(t) one can show that the minimal
rank of a non-terminating R-derivation is exactly 4. Moreover, Example 5.1.3 can be
easily generalized in order to show that the minimal rank of counterexamples may be
arbitrarily high.

Example 5.1.5 (minimal counterexamples may have arbitrarily high rank)
Consider the disjoint TRSs

R1 =
{

f(x, g(x), . . . , gn(x), y) → f(y, . . . , y)

for some n ≥ 1 (f has arity n + 2 and gn(x) stands for the n-fold application of g to
x), and

R2 =

{
G(x) → x
G(x) → A

Both R1 and R2 are clearly terminating, but R1⊕R2 is non-terminating. For instance,
we have the following infinite (R1 ⊕R2)-derivation4

f((Gg)nA, (Gg)nA, . . . (Gg)nA) →R2
f(A, (Gg)nA, . . . , (Gg)nA)

→R2
f(A, g(Gg)n−1A, . . . , (Gg)nA)

→R2
f(A, gA, . . . , (Gg)nA)

...
→R2

f(A, gA, g2A, . . . , gnA, (Gg)nA)
→R1

f((Gg)nA, (Gg)nA, . . . , (Gg)nA)
→R2

. . .

3Counterexamples of rank 1 or 2 are impossible as will be seen later on.
4The notation used here should be self-explanatory. For example, (Gg)2(A) stands for

G(g(G(g(A)))).
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of rank 2n+2. Again a careful analysis of possible reductions shows that for this exam-
ple 2n+2 is the minimal rank of any conceivable non-terminating (R1⊕R2)-derivation.
Moreover, it is straightforward to modify the examples in such a way that only finite
signatures with function symbols of (uniformly) bounded arities are involved. For in-
stance, one may use a binary f ′ and the encoding f ′(x1, f

′(x2, . . . , f
′(xn−1, xn) . . .)) for

f(x1, . . . , xn).

This example shows that, when analyzing the reasons for non-modularity of termination
in general, there is no hope of being able to restrict attention to terms of rank 3 or any
fixed n ∈ IN.

5.1.3 Classification of Approaches

Before going into details now let us give a rough idea of the approaches that have been
developed for analyzing the non-modularity of termination and for proving correspond-
ing positive results. Actually, all analyses implicitly or explicitly rely on characteristic
properties of minimal counterexamples. Such properties essentially are of the following
form:5

If the union of two disjoint terminating systems R1 and R2 (having some
properties) is non-terminating, then a minimal counterexample in the dis-
joint union R1 ⊕ R2 must enjoy certain properties, and consequently R1

and R2 must satisfy certain corresponding properties.

Usually, from such characteristic properties one may directly infer corresponding sym-
metric and asymmetric positive criteria, i.e., statements of the form

If R1 and R2 are both terminating and both satisfy certain properties, then
their disjoint union is terminating, too (and satisfies certain properties)

and

If R1 and R2 are both terminating, one of the systems satisfies some prop-
erties and the other one satisfies some other properties, then their disjoint
union is terminating, too (and satisfies certain properties)

respectively. As to the current state of the art in the field, we think there are basically
three different approaches in which the types of results have respective counterparts
concerning the essential proof structures and ideas:

• the general approach via an abstract structure theorem where the basic
idea is to reduce non-termination in the union to non-termination of a slightly
modified generic version of one of the systems,

5The formulation here accounts only for the disjoint union case, however, in most cases generaliza-
tions to at least constructor sharing and composable systems are possible and natural.
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• the modular approach via modularity of innermost termination where
sufficient criteria for the equivalence of innermost termination (SIN) and general
termination (SN) are combined with the (not so difficult to establish) modularity
of SIN, and

• the syntactic approach via left-linearity which in essence is based on com-
mutation and uniqueness properties for rewriting in left-linear systems.

5.2 Restricted Termination Properties

5.2.1 Weak Termination and Weak Innermost Termination

A first easy result is the following preservation property for normal forms which is a
direct consequence of the equality →R1⊕R2

=→R1
∪ →R2

.

Lemma 5.2.1 (preservation of normal forms, [Mid90])
If RF1

1 and RF2

2 are disjoint TRSs (with RF = RF1

1 ⊕RF2

2 ) then NF(RF) = NF(R1
F)∩

NF(R2
F).

Theorem 5.2.2 (weak termination (WN) is modular, [BKM89], [Dro89],
[KK90])
Weak termination is modular for disjoint unions of TRSs.

Proof: The implication WN(RF) =⇒ WN(RF1

1 ) ∧ WN(RF2

2 ) is straightforward.
Conversely, following the presentation in [Mid90] we show by induction on rank(t)
that every term t ∈ T (F ,V) has a normal form w.r.t. R = R1 ⊕R2.

6 If rank(t) = 1
then WN(t,→) follows from the assumptions WN(R1), WN(R2) (and the fact that
R1-rules do not introduce F2-symbols and vice versa).

If rank(t) > 1 then we may assume t = C [[ t1, . . . , tn]] such that w.l.o.g. t is top black
(i.e., root(t) ∈ F1). By induction hypothesis, every ti (1 ≤ i ≤ n) has a normal form
t′i (w.r.t. R). Hence we get

t = C [[ t1, . . . , tn]] →∗
R C[t′1, . . . , t

′
n] = C ′ {{ s1, . . . , sm}}

for some black context C ′ {{ , . . . , }} and top white normal forms s1, . . . , sm (w.r.t. R).
Choose fresh variables x1, . . . , xm with 〈s1, . . . , sm〉∞〈x1, . . . , xm〉. Because
rank(C ′ {{x1, . . . , xm}} = 1, the term C ′ {{x1, . . . , xm}} has a normal form, say

C ′ {{x1, . . . , xm}} →∗
R1

C ′′〈xi1 , . . . , xip〉 .

Hence we have the following derivation:

t →∗
R C ′ {{ s1, . . . , sm}}

o
→

∗

R1
C ′′ 〈〈 si1 , . . . , sip〉〉 =: t′ .

Clearly, t′ ∈ NF(RF
2 ). By construction we have t′ ∈ NF(

o
→R1

), and since si1 , . . . , sip ∈
NF(RF) we also have t′ ∈ NF(RF

1 ). The normal form property of Lemma 5.2.1 yields

6We remark that a very similar proof by induction over the term structure is possible here, too.
Indeed, in some sense structural induction is a refinement of induction over the rank.
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t′ ∈ NF(RF). We conclude that every term in T (F ,V) has a normal from w.r.t. RF .

Combining Theorem 5.2.2 with Toyama’s Theorem 4.1.2 immediately yields the fol-
lowing.

Theorem 5.2.3 (semi-completeness (CR ∧ WN) is modular)
Semi-completeness is modular for disjoint unions of TRSs.

Theorem 5.2.4 (weak innermost termination (WIN) is modular)
Weak innermost termination is modular for disjoint unions of TRSs.

Proof: The proof is analogous to the one for Theorem 5.2.2. The only additional
argument needed (in the induction step of the non-trivial direction) is that7

C ′ {{x1, . . . , xm}} i
−→∗

R1
C ′′〈xi1 , . . . , xip〉

implies

C ′ {{ s1, . . . , sm}} i
−→R1

C ′′ 〈〈 si1 , . . . , sip〉〉 ,

too (i.e., the instantiated steps are still innermost), for top white normal forms s1, . . . , sm

(w.r.t. R).

We remark that modularity of weak termination (Theorem refweak-termination-is-
modular) can also be proved via the interesting notion modular reduction.

Definition 5.2.5 (modular reduction, [KK90])
Let RF1

1 , . . . ,RFn
n be pairwise disjoint TRSs with RF denoting their disjoint union (i.e.,

R =
⊎n

i=1 Ri, F =
⊎n

i=1 Fi). For s, t ∈ T (F ,V) we define

• s ÃRi
t if s →+

Ri
t and t is a normal form w.r.t. Ri.

• s Ã t if s ÃRi
t for some i, 1 ≤ i ≤ n (the relation Ã is called modular reduction

in [KK90]).

For any set X ⊆ {1, . . . , n} the relation
⋃

i∈X ÃRi
is also denoted by ÃX .

Theorem 5.2.6 (modular reduction is terminating, [KK90], [Mid90])
Let RF1

1 , . . . ,RFn
n be pairwise disjoint TRSs. The relation ÃX is terminating for all

X ⊆ {1, . . . , n}.

Proof: By induction on n, cf. [KK90], [Mid90].

Note that the modularity of weak termination, Theorem 5.2.2, is an easy consequence
of Theorem 5.2.6 above (due to the fact that for pairwise disjoint weakly terminating
TRSs RF1

1 , . . . ,RFn
n , with RF =

⊕n
i=1 R

Fi

i , the sets of normal forms of ordinary and of
modular reduction coincide on T (F ,V) ([Mid90]): NF(R) = NF(Ã)).

7Note that notions for innermost reduction (in the disjoint union) like
i
−→R1

are always to be
interpreted in the sense that the indicated steps are innermost w.r.t. the union (which in general is
different from being innermost w.r.t. one of the component systems!).
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5.2.2 Strong Innermost Termination

Interestingly, (strong) innermost termination is modular, too, as shown in [Gra93a;
Gra95a].

Theorem 5.2.7 (innermost termination (SIN) is modular)
Innermost termination is modular for disjoint unions of TRSs.

Proof: The implication SIN(RF) =⇒ SIN(RF1

1 )∧SIN(RF2

2 ) is straightforward. Con-
versely, assume that there exists a term in T (F ,V) which is not innermost terminating
(w.r.t. RF). Consider a minimal such counterexample, i.e., a term t which is not
SIN, but all its proper subterms are SIN. Since t cannot be a variable, it is of the
form t = f(t1, . . . , tn), let’s say top black (i.e., with f ∈ F1), and allows an infinite
innermost derivation

t = f(t1, . . . , tn)
i

−→∗f(t′1, . . . , t
′
n)

i
−→λ . . . ,

where t′1, . . . , t
′
n are all irreducible. Since all top white principal aliens in t′ :=

f(t′1, . . . , t
′
n) are irreducible, this derivation is an infinite innermost R1-derivation.

Now injective abstraction of all principal top white aliens in t′ — i.e., replacing, for
t′ = Cb {{ t1, . . . , tm}} , the principal top white aliens tj by fresh variables xj with
〈t1, . . . , tm〉∞〈x1, . . . , xm〉 — yields an infinite innermost R1-derivation on pure black
terms contradicting innermost termination of RF1

1 .8

5.3 Termination

5.3.1 The General Approach via an Abstract Structure The-
orem

A Structural Analysis of Minimal Counterexamples

The crucial point of our approach to be developed is that from a minimal counterex-
ample with all terms let’s say top black we can construct an ‘almost pure black’ coun-
terexample, in a slightly extended version of the black system.

Before formally stating and proving the corresponding abstract structure theorem we

8Note that identifying abstraction, i.e., taking the same fresh variable for all principal aliens, instead
of injective abstraction as here, does not preserve innermost redexes in general! For instance, take
R1 = {f(x, x) → a, g(f(x, y)) → g(f(x, y))} over F1 = {a, f, g} and R2 = ∅ over F2 = {A,B}. Then
the mixed term g(f(A,B)) of rank 2 is only reducible at the root (and hence the corresponding step
g(f(A,B)) →λ,R1

g(f(A,B)) is innermost). However, identifying abstraction yields (the pure term)
g(f(x, x)) such that all innermost derivations issuing from it have the form g(f(x, x))

i
−→1,R1

g(a).
Hence, g(f(x, x)) is innermost terminating despite the fact that R1 is not (for instance, g(f(x, y)) is
not even weakly innermost terminating). The general problem is that by identifying abstraction a
proper irreducible subterm of the original innermost redex may become reducible thus preventing the
same rule application as before from being innermost.
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shall now illustrate the essential ideas and construction steps via Example 5.1.2 above.
In the union of the disjoint terminating TRSs

R1 =





f(a, b, x) → f(x, x, x)
a → c
b → c

f(x, y, z) → c

and

R2 =

{
K(x, y, y) → x
K(y, y, x) → x

we consider the following infinite derivation (recall that inner reduction steps take place
within principal aliens, and outer ones in the top layers):

D : f(a, b,K(a, b, b))
o
→R1

f(K(a, b, b), K(a, b, b), K(a, b, b)) (1)
i
→R2

f(a,K(a, b, b), K(a, b, b)) (2)
i
→R1

f(a,K(c, b, b), K(a, b, b)) (3)
i
→R1

f(a,K(c, c, b), K(a, b, b)) (4)
i
→R2

f(a, b,K(a, b, b)) (5)
o
→R1

. . . .

Obviously, the crucial steps which enable this derivation to be infinite (and even cyclic)
are the inner reductions (2)-(5), in particular the steps (2) and (5) which are destructive
at level 2. They modify substantially the topmost homogeneous black layer thereby
enabling an outer black (i.e., R1-) reduction step previously not possible. The idea now
is to abstract from the concrete form of these inner steps but retain the essential (black)
information which permits subsequent outer steps. For that purpose it is sufficient to
consider the principal top white, i.e. F2-rooted, aliens and collect those top black,
i.e., F1-rooted, terms to which the former may reduce. In other words, colour changing
derivations issued by principal aliens are essential. The coding of the collected top black
successors of some principal top white alien will be achieved by some new function
symbol(s) which in a sense serve(s) for abstracting from the concrete form of white
layers while keeping only the ‘layer separating’ information. Since in general also top
black aliens hidden in deeper layers may eventually pop up (in possibly modified form),
the whole process has to be performed in a recursive fashion in general (which is not
necessary in the example). After this abstracting transformation process sequences of
inner reduction steps like (2)-(5) above in the original derivation may be simulated by
(‘deletion’ and) ‘subterm’9 steps in the transformed derivation. In order to explain this
in more detail let us choose H as a new (varyadic) layer separating function symbol.

9or ‘projection (embedding)’
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Then we get the transformed derivation

D′ : f(a, b,H(a, b, c))
o
→R1

f(H(a, b, c), H(a, b, c), H(a, b, c)) (1′)
i
→R′

2
f(a,H(a, b, c), H(a, b, c)) (2′)

i
→R′

2
f(a,H(b, c), H(a, b, c)) (3′)

= f(a,H(b, c), H(a, b, c)) (4′)
i
→R′

2
f(a, b,H(a, b, c)) (5′)

o
→R1

. . .

where R1 is as above and R′
2 = RH

sub ∪RH
del with10

RH
sub = {H(x1, . . . , xj, . . . , xn) → xj|1 ≤ j ≤ n} ,

RH
del = {H(x1, . . . , xj, . . . , xn) → H(x1, . . . , xj−1, xj+1, . . . , xn)|1 ≤ j ≤ n}.

The top white principal alien t = K(a, b, b) of the top black starting term s =
f(a, b,K(a, b, b)) of D can be reduced (in finitely many steps) to the top black succes-
sors a, b and c. Hence, the abstracting transformation of t yields H(a, b, c) and the
whole starting term s is transformed into f(a, b,H(a, b, c)). Furthermore, any outer
step in D corresponds to an outer step in D′ using the same rule. Any inner step in
D which is not destructive at level 2, e.g. (3) and (4), corresponds in D′ to a (pos-
sibly empty) sequence of inner R′

2-steps not destructive at level 2 (here (3’) and (4’),
respectively). Any inner step in D which is destructive at level 2 (hence collapsing),
e.g., (2) and (5), corresponds in D′ to an RH

sub-step (here (2’) and (5’), respectively).

Observe that the sketched encoding of all top black successors of a top white prin-
cipal (terminating) alien presupposes that the latter successor set is finite. This is
guaranteed if the involved TRSs are finite, or, more generally, finitely branching. In
that case one may simply apply Kőnigs Lemma 2.1.16. The following result provides
a characterization of the property of TRSs to be finitely branching.

Lemma 5.3.1 (characterization of finitely branching TRSs)
A (possibly infinite) TRS RF is finitely branching if and only if for every rule l → r ∈
RF there are only finitely many different rules in RF with the same left hand side l. 11

Proof: Consider an arbitrary term s ∈ T (F ,V) and possible RF -reductions. Clearly,
there are only finitely many different left hand sides of rules in RF which can match
some subterm of s. Hence, the set of one-step-successors of s can be infinite only in
the case that there are infinitely many different rules in RF with the same left hand
side. The only-if-direction of the lemma is trivial.

10Note that RH
sub = Emb({H}) (cf. Definition 2.2.31). For the sake of readability we prefer here the

notations RH
sub, R

H
del.

11Note that rules which can be obtained from one another by renaming variables are considered to
be equal!
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Corollary 5.3.2 (finitely branching is modular)
The property of being finitely branching is modular for arbitrary finite unions of arbi-
trary TRSs.12

Let us continue now with our example above. In order to stay within the usual setting
of fixed-arity function symbols we modify the described transformation by taking a
new binary function symbol G and a new constant A instead of the varyadic symbol
H. With the correspondence

H(t1, . . . , tn) =

{
A if n = 0
G(t1, G(t2, . . . G(tn−1, G(tn, A)) . . .)) if n > 0

the above construction easily carries over and we obtain the derivation D′′:

f(a, b,G(a,G(b,G(c, A))))
o
→R1

f(G(a,G(b,G(c, A))), G(a,G(b,G(c, A))), G(a,G(b,G(c, A))))
i
→R′′

2
f(a,G(a,G(b,G(c, A))), G(a,G(b,G(c, A))))

i
→R′′

2
f(a,G(b,G(c, A)), G(a,G(b,G(c, A))))

= f(a,G(b,G(c, A)), G(a,G(b,G(c, A))))
i
→R′′

2
f(a, b,G(a,G(b,G(c, A))))

o
→R1

. . . .

Here, R′′
2 is to be interpreted as R′′

2 = RG
sub with

RG
sub = {G(x, y) → x, G(x, y) → y},

i.e., deletion rules are not necessary any more. In the following formal presentation we
shall use this latter transformation. First we prove some easy structural properties of
minimal counterexamples.

Lemma 5.3.3 (structural properties of minimal counterexamples)
Let RF1

1 , RF2

2 be two terminating disjoint TRSs such that

D : s1 → s2 → s3 → . . .

is an infinite derivation in R1 ⊕ R2 of minimal rank involving only ground13 terms.
Suppose that s1 is top black, i.e., F1-rooted. Then all si, 1 ≤ i, are top black, and we
have:

(a) rank(D) ≥ 3.

(b) Infinitely many steps in D are outer R1-steps.

12More precisely, this means: If RF = RF1

1 ∪ . . . ∪ RFn
n , then RF is finitely branching if and only

if every RFi

i (1 ≤ i ≤ n) is finitely branching. Clearly, infinite unions need not preserve the property
of being finitely branching.

13This may be assumed w.l.o.g. since all variables in a minimal counterexample may be replaced
by a constant from Fi (where i is determined by the ‘colour’ i of the deepest layer in s1) yielding a
counterexample of the same minimal rank. If Fi does not contain a constant one may simply add a
fresh one. This does not affect the termination behaviour of Ri and of R1 ⊕R2 as is easily seen.
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(c) Infinitely many steps in D are inner R2-reductions which are destructive at level
2.

Proof: That all si are top black is an obvious consequence of the minimality assump-
tion concerning rank(D).

(a) Follows from (c) since whenever si
i
→ si+1 is destructive at level 2 then rank(si) ≥

3 (because the si’s are ground terms).

(b) First we observe that all outer steps in D must be
o
→R1

-steps. Assume for a
proof by contradiction that only finitely many steps in D are outer ones. We
may further assume w.l.o.g. that no step in D is an outer one. Hence, for s1 =
Cb [[ t1, . . . , tn]] all reductions in D are inner ones and take place below one of
the positions of the ti’s. Since D is infinite we conclude by the pigeon hole
principle that at least one of the ti’s initiates an infinite derivation whose rank is
smaller than rank(D). But this is a contradiction to the minimality assumption
concerning rank(D).

(c) For a proof by contradiction assume that there are only finitely many steps in D
which are destructive at level 2. We may further assume w.l.o.g. that no inner
step in D is destructive at level 2. Then, by identifying abstraction, i.e., defining
s̃i = top(si), any outer step si

o
→R1

si+1 in D yields s̃i → s̃i+1 using the same rule

from R1 and for every inner step si
i
→ si+1 we have s̃i = s̃i+1. Since all the si’s

are top black, i.e. F1-rooted, we can conclude that R1 is non-terminating which
yields a contradiction.

Next we formalize the transformation process illustrated above.

Definition 5.3.4 (abstracting transformation)
Let RF1

1 , RF2

2 be two finitely branching terminating disjoint TRSs, RF = RF1

1 ⊕RF2

2

and n ∈ IN such that for every s ∈ T (F) with rank(s) ≤ n there is no infinite R-
derivation starting with s. Moreover, let <T (F1⊎{A,G}) be some arbitrary, but fixed total
ordering on T (F1 ⊎ {A,G}). Then the F2- (or white) abstraction is defined to be the
mapping

Φ : T (F)≤n ⊎ {t ∈ T (F)n+1|root(t) ∈ F1} −→ T (F1 ⊎ {A,G})

given by

Φ(t) :=





t if t ∈ T (F1)
A if t ∈ T (F2)

Cb [[ Φ(t1), . . . , Φ(tm)]] if t = Cb [[ t1, . . . , tm]]
CONS(SORT (Φ∗(SUCCF1(t)))) if t = Cw [[ t1, . . . , tm]]
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with14

SUCCF1(t) := {t′ ∈ T (F1 ⊎ F2)|t →
∗
R t′ , root(t′) ∈ F1} ,

Φ∗(M) := {Φ(t)|t ∈ M} for M ⊆ dom(Φ) ,
CONS(〈〉) := A ,

CONS(〈s1, . . . , sk+1〉) := G(s1, CONS(〈s2, . . . , sk+1〉)) and
SORT ({s1, . . . , sk}) := 〈sπ(1), . . . , sπ(k)〉 ,

such that sπ(j) ≤T (F1⊎{A,G}) sπ(j+1) for 1 ≤ j < k.

Intuitively, for computing Φ(t) one proceeds top-down in a recursive fashion. Top black
layers are left invariant whereas (for the case of top black t) the principal top white
subterms are transformed by computing for every such top white subterm the set of
possible top black successors, abstracting the resulting terms recursively, sorting the
resulting set of abstracted terms and finally constructing again an ordinary term by
means of using the new constant symbol A (for empty arguments sets) and the new
binary function symbol G (for non-empty argument sets). The sorting process and
the total ordering involved here are due to some proof-technical subtleties which will
become clear later on. For illustration let us consider again our example from above.
Here the white abstraction of the si’s in the original derivation D yields e.g. (using
alphabetical sorting)

Φ(s1) = Φ(f(a, b,K(a, b, b))) = f(a, b, Φ(K(a, b, b)))
= f(a, b, CONS(SORT (Φ∗(SUCCF1(K(a, b, b))))))
= f(a, b, CONS(SORT (Φ∗({a, b, c}))))
= f(a, b, CONS(SORT ({a, b, c})))
= f(a, b, CONS(〈a, b, c〉)) = f(a, b,G(a,G(b,G(c, A)))) ,

Φ(s3) = Φ(f(a,K(a, b, b), K(a, b, b))) = f(a, Φ(K(a, b, b), Φ(K(a, b, b))))
= f(a, CONS(SORT (Φ∗({a, b, c})))2)
= f(a, CONS(SORT ({a, b, c})), CONS(SORT ({a, b, c})))
= f(a, CONS(〈a, b, c〉), CONS(〈a, b, c〉))
= f(a,G(a,G(b,G(c, A))), G(a,G(b,G(c, A)))) and

Φ(s4) = Φ(f(a,K(c, b, b), K(a, b, b))) = f(a, Φ(K(c, b, b), Φ(K(a, b, b))))
= f(a, CONS(SORT (Φ∗({b, c}))), CONS(SORT (Φ∗({a, b, c}))))
= f(a, CONS(SORT ({b, c})), CONS(SORT ({a, b, c})))
= f(a, CONS(〈b, c〉), CONS(〈a, b, c〉))
= f(a,G(b,G(c, A)), G(a,G(b,G(c, A)))).

Note that the subterm rewrite step Φ(s3) → Φ(s4) reducing G(a,G(b,G(c, A))) to
G(b,G(c, A)) would not have been possible if we had sorted {b, c} as 〈b, c〉 and {a, b, c}
as 〈c, b, a〉.

In the following we shall implicitly use the convention that notions like rank or inner
and outer reduction steps have to be interpreted w.r.t. some specific disjoint union
which is clear from the context.

14Note that the sorting process here is necessary for well-definedness of Φ. It uniquely determines
the encoding of sets of terms.
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The next lemmas capture the important properties of the above defined abstracting
transformation.

Lemma 5.3.5 (Φ is rank decreasing)
Let R1, R2 and Φ be given as in Definition 5.3.4. Then, Φ is rank decreasing, i.e. for
any s ∈ dom(Φ) we have rank(Φ(s)) ≤ rank(s).

Proof: By an easy induction on rank(s) using the definition of Φ.

Reduction steps in (R1 ⊕R2) can be translated in corresponding (sequences of) reduc-
tion steps in R1 ⊕ {G(x, y) → x,G(x, y) → y} as follows.

Lemma 5.3.6 (properties of the abstracting transformation)
Let RF1

1 , RF2

2 , RF = RF1

1 ⊕RF2

2 , R′
2 = RG

sub = {G(x, y) → x, G(x, y) → y}, n and the
(white) F2-abstraction Φ be given as in Definition 5.3.4. Then, for any s, t ∈ T (F1⊎F2)
with rank(s) ≤ n + 1, root(s) ∈ F1 and s →R t we have:

(a) If s
o
→R1

t is not destructive at level 1 then Φ(s)
o
→R1

Φ(t) using the same R1-rule,
and moreover this step is also not destructive at level 1.

(b) If s
o
→R1

t is destructive at level 1 then Φ(s)
o
→R1

Φ(t) using the same R1-rule, and
moreover this step is also destructive at level 1.

(c) If s
i
→R t is not destructive at level 2 then Φ(s)

i
→

∗

R′

2

Φ(t) with all steps not
destructive at level 2.

(d) If s
i
→R t is destructive at level 2 then Φ(s)

i
→

+

R′

2

Φ(t) such that exactly one of
these steps is destructive at level 2.

Proof: Under the assumptions of the lemma assume that s, t ∈ T (F1 ⊎F2) are given
with rank(s) ≤ n + 1, root(s) ∈ F1 and s →R t.

(a) If s
o
→R1

t is not destructive at level 1 then we have s = C {{ s1, . . . , sm}} , t =
C ′ {{ si1 , . . . , sik}} , 1 ≤ ij ≤ m, 1 ≤ j ≤ k for some contexts C {{ , . . . , }} ,
C ′ {{ , . . . , }} . By definition of Φ this implies Φ(s) = C {{Φ(s1), . . . , Φ(sm)}}
and Φ(t) = C ′ {{Φ(si1), . . . , Φ(sik)}} , hence also Φ(s)

o
→R1

Φ(t) using the same
R1-rule because of 〈s1, . . . , sm〉 ∝ 〈Φ(s1), . . . , Φ(sm)〉. Clearly, Φ(s)

o
→R1

Φ(t) is
not destructive at level 1, too.

(b) If s
o
→R1

t is destructive at level 1 then we have s = C [[ s1, . . . , sm]] , t = sj for
some j with 1 ≤ j ≤ m and some context C[, . . . , ]. By definition of Φ this
implies Φ(s) = C [[ Φ(s1), . . . , Φ(sm)]] and Φ(t) = Φ(sj), hence also Φ(s)

o
→R1

Φ(t)
using the same R1-rule because of 〈s1, . . . , sm〉 ∝ 〈Φ(s1), . . . , Φ(sm)〉. Clearly,
Φ(s)

o
→R1

Φ(t) is destructive at level 1, too.

(c) If s
i
→R t is not destructive at level 2 then we have s = C [[ s1, . . . , sj, . . . , sm]] ,

t = C [[ s1, . . . , s
′
j, . . . , sm]] , sj →R s′j for some j with 1 ≤ j ≤ m and some context

C[, . . . , ]. By definition of Φ this implies Φ(s) = C [[ Φ(s1), . . . , Φ(sj), . . . , Φ(sm)]]
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and Φ(t) = C [[ Φ(s1), . . . , Φ(s′j), . . . , Φ(sm)]] . Since sj, s
′
j are top white, i.e. F2-

rooted, we get Φ(sj) = A = Φ(s′j) for the case sj ∈ T (F2) and Φ(sj) =
CONS(SORT (Φ∗(SUCCF1(sj)))), Φ(s′j) = CONS(SORT (Φ∗(SUCCF1(s′j)))),
otherwise. Since sj →R s′j this implies SUCCF1(sj) ⊇ SUCCF1(s′j) and
SORT (Φ∗(SUCCF1(sj))) ⊇ SORT (Φ∗(SUCCF1(s′j))), hence Φ(sj) →∗

R′

2

Φ(s′j)

(by Definition of Φ) and also Φ(s)
i
→

∗

R′

2

Φ(t) with no step destructive at level 2.

(d) If s
i
→R t is destructive at level 2 then we have s = C [[ s1, . . . , sj, . . . , sm]] ,

t = C[s1, . . . , s
′
j, . . . , sm] with sj →R s′j colour changing for some j with 1 ≤

j ≤ m and some context C[, . . . , ]. By definition of Φ this implies Φ(s) =
C [[ Φ(s1), . . . , Φ(sj), . . . , Φ(sm)]] and Φ(t) = C[Φ(s1), . . . , Φ(s′j), . . . , Φ(sm)]. More-

over, s′j ∈ SUCCF1(sj), hence Φ(s)
i
→

+

R′

2

Φ(t) (by Definition of Φ). In this deriva-

tion there is exactly one (inner) step which is destructive at level 2, namely the
last one.

Now we are prepared to state and prove the main result of this section. Part (b) of it,
i.e., that the finitely branching requirement can be dropped in (a), is due to Ohlebusch
([Ohl94c]).

Definition 5.3.7 (termination preservation under non-deterministic collapses
(TPNDC))
A TRS R is said to be termination preserving under non-deterministic collapses
(TPNDC for short), if termination of R implies termination of R ⊕ {G(x, y) →
x,G(x, y) → y}.

Theorem 5.3.8 (a general structure theorem for non-modularity of termi-
nation)

(a) Let R1,R2 be two disjoint finitely branching TRSs which are both terminating
such that their disjoint union R = R1 ⊕ R2 is non-terminating. Then one of
the systems, let’s say R1, is not termination preserving under non-deterministic
collapses, i.e., R1⊕{G(x, y) → x,G(x, y) → y} is non-terminating, and the other
system R2 is collapsing, or vice versa.

(b) (a) also holds without the requirement that R1 and R2 are finitely branching.

Proof: (a) We consider a minimal counterexample, i.e., an infinite R-derivation

D : s1 → s2 → s3 → . . .

of minimal rank, let’s say n + 1. We may assume w.l.o.g. that all the si’s are top black
ground terms having rank n+1. Since the preconditions of definition 5.3.4 are satisfied
we may apply the white abstraction function Φ to the si’s. By Lemma 5.3.6 this yields
an R′-derivation

D′ : Φ(s1) →
∗ Φ(s2) →

∗ Φ(s3) →
∗ . . .
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with R′ = R1 ⊕ R2
′, R2

′ = RG
sub = {G(x, y) → x, G(x, y) → y} (over the disjoint

signature {A,G}), where for any i ≥ 1 we have

sj
o
→R1

sj+1 =⇒ Φ(sj)
o
→R1

Φ(sj+1) , and

sj
i
→R sj+1 =⇒ Φ(sj)

i
→

∗

R′

2

Φ(sj+1) .

Since according to Lemma 5.3.3 (b) infinitely many steps in D are outer ones, the
derivation D′ is infinite, too. But this means that R1 is not termination preserv-
ing under non-deterministic collapses. Moreover, Lemma 5.3.3 (c) implies that R2 is
collapsing.15

(b) For the case that one of the systems is not finitely branching (or both of them)
our encoding construction above does not work any more.16 However, the basic idea
of encoding the relevant black information in the top white principal aliens by means
of the fresh layer separating binary symbol G (and the additional fresh constant A)
such that ‘needed’ black information can be extracted with the help of the projection
rules of RG

sub is still applicable. This was shown by Ohlebusch ([Ohl94c]). The quite
involved, non-trivial construction there proceeds — roughly speaking — lazily (in order
to circumvent the mentioned infinity problem) and collects the relevant black informa-
tion bottom-up layer-to-layer and relative to some fixed initial term. For a detailed
presentation the reader is referred to [Ohl94c].

We note that for case (a) above Lemma 5.3.5 shows that the constructed infinite R′-
derivation D′ has a rank which is less than or equal to the rank of the original minimal
counterexample D.

Derived Symmetric and Asymmetric Preservation Criteria for Termination

As immediate consequences of Theorem 5.3.8 we obtain the following symmetric and
asymmetric results.

Corollary 5.3.9 (TPNDC suffices for preserving termination)
Let R1 and R2 be two disjoint terminating TRSs. If R1 and R2 are termination
preserving under non-deterministic collapses (TPNDC) then their disjoint union is
also terminating.

Corollary 5.3.10 (termination is modular for non-collapsing TRSs, [Rus87])
Termination is modular for disjoint unions of non-collapsing TRSs.17

15This can also be inferred more directly by observing that for non-collapsing R2 the white abstrac-
tion of the (top white) principal subterms of the minimal counterexample always yields the constant
A which implies that the transformed infinite derivation is an R1-derivation contradicting termination
of R1.

16An example for such a case is given in [Gra92a; Gra94a].
17We observe that this follows already from (the proof) of Theorem 5.3.8(a), i.e., without using (b).
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Corollary 5.3.11 (asymmetric version: TPNDC plus NCOL of one system
suffices for preserving termination)
The disjoint union of two terminating TRSs is again terminating whenever one of the
systems is non-collapsing and termination preserving under non-deterministic collapses.

The next result shows that the class of TRSs which are termination preserving under
non-deterministic collapses comprises all non-duplicating TRSs.

Lemma 5.3.12 (NDUP =⇒ TPNDC)
Whenever a TRS is non-duplicating then it is termination preserving under non-
deterministic collapses.

Proof: Let R1 be a non-duplicating and terminating. Consider R := R1 ⊕R2 with
R2 = RG

sub = {G(x, y) → x,G(x, y) → y}. We define an ordering > on T (F1 ⊎ F2,V)
by lexicographically combining →+

R1
and the quasi-ordering &G, which is given as fol-

lows: s &G t : ⇐⇒ |s|G ≥nat |t|G (note that the associated strict ordering and
equivalence >G and ∼G, respectively, satisfy: s >G t : ⇐⇒ |s|G >nat |t|G and
s ∼G t : ⇐⇒ |s|G = |t|G).18 Now let > be defined by: s > t if either s >G t
or else s ∼G t and s →+

R1
t.19 Since both &G and →+

R1
are well-founded,20 > is

well-founded, too. Hence, it suffices to show that →R ⊆>. From the form of R2 we
obtain: s →R2

t =⇒ s >G t. And the assumption that R1 is non-duplicating implies:
s →R1

t =⇒ s &G t ∧ s →+
R1

t. Since →R =→R1
∪ →R2

this yields →R1⊕R2
⊆> as

desired. We conclude that →R is terminating, and R1 termination preserving under
non-deterministic collapses.

Since the non-duplication property (NDUP) is obviously modular, we immediately
obtain the following consequence of Lemma 5.3.12 and Corollary 5.3.11.

Corollary 5.3.13 (SN ∧ NDUP is modular, [Rus87])
Termination is modular for disjoint unions of non-duplicating TRSs.

Combining Lemma 5.3.12 with Corollary 5.3.11 yields

Corollary 5.3.14 (asymmetric version: NDUP plus NCOL of one system
suffices for preserving termination, [Mid89])
The disjoint union of two terminating TRSs is again terminating whenever one of the
systems is non-collapsing and non-duplicating.

We remark that the powerful Theorem 5.3.8 corresponds nicely to the intuition that
the existence of counterexamples to modularity of termination crucially depends on
‘non-deterministic collapsing’ reduction steps. Hence, Toyama’s Example 5.1.1 above
is in a sense the simplest conceivable counterexample.

18Here, >nat and ≥nat denote the usual orderings on natural numbers.
19Observe that > is closed under contexts but not under substitutions (because >G does not have

the latter property).
20Note that a quasi-ordering is said to be well-founded if its strict part is well-founded.
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Now we shall investigate further sufficient conditions — besides non-duplication — for
the property TPNDC.

Given an arbitrary TRS R it would be desirable to have a method for testing whether
R is TPNDC. But it turns out that this is an undecidable property in general.

Theorem 5.3.15 (TPNDC is undecidable)
The property of TRSs to be termination preserving under non-deterministic collapses
is undecidable.

Proof (sketch): This result is an implicit consequence of the proof of the fact that
termination is an undecidable property of disjoint unions of terminating TRSs as shown
by Middeldorp and Dershowitz (cf. [Mid90]).21 Roughly speaking the construction pro-
ceeds as follows: Given an arbitrary TRS R, another TRS R1 is constructed by appro-
priately combining R with the system R2 := {f(a, b, x) → f(x, x, x)} of the basic coun-
terexample 5.1.1 in such a way that R1 is terminating notwithstanding the fact that
R may be non-terminating. Moreover, choosing R2 := {G(x, y) → x, G(x, y) → y}, it
can be shown that the disjoint union R1 ⊕R2 is terminating if and only if R is termi-
nating. Since for arbitrary TRSs termination is undecidable ([HL78]), it follows that
the property of TRSs to be termination preserving under non-deterministic collapses
is undecidable, too.

In order to obtain verifiable sufficient conditions for the property of being termination
preserving under non-deterministic collapses we shall now specialize the increasing
interpretation (or monotone algebra) method described in Section 2.2.2 and adapt it
to the scenario of (disjoint or non-disjoint) unions of TRSs as follows.

For proving termination of RF = RF1

1 ∪RF2

2 = (R1∪R2)
F1∪F2 we apply the increasing

interpretation method as follows: Choose D to be T (F1) considered as F -algebra D,
where F1-operations are interpreted as in the term algebra T (F1) and every operation
from F2\F1 is interpreted in some fixed way in terms of F1-operations, i.e.,

fD := λx1, . . . , xn .f(x1, . . . , xn) for f ∈ F1

and

fD := λx1, . . . , xn .tf , tf ∈ T (F1, {x1, . . . , xn}) for f ∈ F2\F1 .

Hence, the unique homomorphism ϕ : T (F) → D is given by ϕ(f) = fD. Now define
the partial ordering >D on the domain D = T (F1) of D by >D := →+

R1
. Clearly, >D

is well-founded, hence also > (on T (F)) defined by s > t if ϕ(s) >D ϕ(t). For showing
termination of RF via →RF ⊆> it suffices that > is closed under contexts and that all
(ground) instances of rules are orientable with >, i.e.:

(a) ∀s, t ∈ T (F1) ∀f ∈ F2\F1 : s →+
R1

t =⇒ (ϕf)(. . . , s, . . .) →+
R1

(ϕf)(. . . , t, . . .),
and

(b) ∀l → r ∈ R2 ∀σ, σ T (F1)−ground substitution : ϕ(σl) →+
R1

ϕ(σr) , respec-
tively.

21Middeldorp states in [Mid90] that this result has been independently obtained by Dershowitz.
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Now, it is easily verified that (a) is satisfied whenever ϕ is a strict interpretation for
F2, i.e., for any f ∈ F2 we have V (f(x1, . . . , xn)) ⊆ V (ϕ(f(x1, . . . , xn))). Verifying (b)
means to show that R2-rules can be ‘strictly simulated’ by R1-rules. Hence we have
the following result.

Lemma 5.3.16 (termination by strict simulation)
Let RF1

1 ,RF2

2 be TRSs such that R1 is terminating. Moreover, let ϕ be an interpretation
of (F1∪F2)-operations in terms of F1-operations which is the identity on F1 and which
is strict on F2. Then the union (R1 ∪R2)

F1∪F2 is terminating, too, provided that for
every rule l → r ∈ R2 we have ϕ(l) →+

R1
ϕ(r).22

An easy consequence of this result is the following ‘folklore’ fact.

Corollary 5.3.17 (termination is preserved under signature extension)
Whenever a TRS RF is terminating then RF ′

is terminating, too, for any enriched
signature F ′ ⊇ F .

Note that if F does not contain symbols of arity > 1 and F ′ contains a symbol of arity
> 1 then this result is not a straightforward consequence of Lemma 5.3.16 (since then
the required strict interpretations do not exist) but can be easily proved directly.

Of course, the method for proving termination according to the above lemma is rather
restricted, because it requires in a sense that R1 ∪ R2 terminates for the same reason
as R1 alone. But in particular for disjoint unions it is well-suited as we shall see now.

Concrete sufficient criteria for modularity of termination are easily obtained by com-
bining the previous considerations with Corollary 5.3.9.

Definition 5.3.18 (non-deterministically collapsing, NDC)
A TRS RF is said to be non-deterministically collapsing if there exists a term C[x, y] ∈
T (F ,V) with x, y ∈ V such that C[x, y] →+ x and C[x, y] →+ y, i.e., if some term can
be reduced to two distinct variables.23

Lemma 5.3.19 (NDC =⇒ TPNDC)
If a TRS is non-deterministically collapsing then it is also termination preserving under
non-deterministic collapses.

Proof: Let RF1

1 be terminating and non-deterministically collapsing. We have to show
that the disjoint union R1⊕R2 with R2 = {G(x, y) → x, G(x, y) → y} is terminating.
Since RF1

1 is non-deterministically collapsing there exists some term C[x, y] ∈ T (F1,V)
with x, y ∈ V such that C[x, y] →+

R1
x and C[x, y] →+

R1
y. We may further assume

w.l.o.g. that x, y are the only variables appearing in C[x, y]. Now we interpret the
function symbol G strictly by ϕf = λx, y . C[x, y] and simply apply Lemma 5.3.16
the preconditions of which are satisfied.

22Here, ϕ denotes the extension of ϕ to terms with variables defined in the obvious way.
23It is interesting to note that the properties NDC and CON→ (cf. Definition 4.2.6) are comple-

mentary to each other, in the following sense: NDC ⇐⇒ ¬CON→.
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According to Corollary 5.3.9 the union of two disjoint terminating TRSs R1 and R2

satisfying TPNDC is terminating: SN(R1 ⊕ R2). But then TPNDC(R2) implies
SN(R1 ⊕ (R2 ⊕ {G(x, y) → x,G(x, y) → y}) because of Lemma 5.3.19 and Corol-
lary 5.3.9. Hence we can extend Corollary 5.3.9 as follows.

Theorem 5.3.20 (SN ∧ TPNDC is modular)
Termination is modular for disjoint unions of TRSs which are termination preserving
under non-deterministic collapses.

As another consequence of combining Corollary 5.3.9 and Lemma 5.3.19 we also get

Corollary 5.3.21 (NDC suffices for preserving termination)
Let R1 and R2 be two disjoint terminating TRSs. If R1 and R2 are non-deterministically
collapsing (NDC) then their disjoint union is terminating, too.

We remark that the property of being non-deterministically collapsing (NDC) is not
modular for disjoint unions of TRSs (however, it is of course preserved under the
combination of two – even arbitrary – TRSs satisfying NDC). This can be seen from
Example 4.2.8.

Further implied asymmetric preservation results (which we refrain to state explicitly)
using NDC and NCOL are evident from Theorem 5.3.8 and Lemma 5.3.19.

Next we consider cases where a terminating TRS R does not necessarily contain col-
lapsing rules but remains terminating when such rules are added.

Definition 5.3.22 (subterm compatible termination refined)
Let RF be a TRS and f ∈ F , F ′ ⊆ F . Then, RF is said to be f -subterm compatibly
terminating24 if RF ∪Rf

sub is terminating.25 RF is F ′-subterm compatibly terminating
if RF ∪RF ′

sub (with RF ′

sub =
⋃

f∈F ′

Rf
sub) is terminating. RF is subterm compatibly termi-

nating if RF is F -subterm compatibly terminating, i.e., if RF ∪RF
sub is terminating.26

As a straightforward consequence of Lemma 5.3.19 we get

Corollary 5.3.23 (f-subterm compatible termination — for arity(f) ≥ 2 —
implies SN ∧ TPNDC)
If RF is f -subterm compatibly terminating for some f ∈ F with arity(f) ≥ 2 then
RF ∪ Rf

sub is (terminating and) termination preserving under non-deterministic col-
lapses.

Combining this result with corollary 5.3.9 we obtain the following.

24In [Gra94a] this was called f-simple termination.
25Recall that Rf

sub = {f(x1, . . . , xj , . . . , xn) → xj | 1 ≤ j ≤ n}.
26Note that the latter (alternative) definition of subterm compatible termination (cf. Definition

2.2.34) is justified by Lemma 2.2.44((2) ⇐⇒ (3)).
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Corollary 5.3.24 Let RF1

1 , RF2

2 be two (finite) disjoint TRSs with f1 ∈ F1, f2 ∈ F2

of arity greater than 1 such that Ri is fi-subterm compatibly terminating for i = 1, 2.
Then the disjoint union R1 ⊕R2 is (f1- and f2-subterm compatibly) terminating, too.

If RF is a TRS with arity(f) ≤ 1 for all f ∈ F then RF is obviously non-duplicating,
hence termination preserving under non-deterministic collapses according to Lemma
5.3.12. Thus we obtain the following consequences.

Corollary 5.3.25 (subterm compatible termination implies TPNDC)
If RF is subterm compatibly terminating then RF ∪ Rf

sub is (terminating and) termi-
nation preserving under non-deterministic collapses.

Theorem 5.3.26 (subterm compatible termination is modular)
Subterm compatible termination is modular for disjoint unions of TRSs.

We note that according to Lemma 2.2.44 and Remark 2.2.47 the following properties
of a TRS RF with F finite or R finite27 are equivalent: subterm compatible termi-
nation, termination of RF ∪ Rf

sub, subterm compatibility plus termination, subterm
compatibility, irreflexivity of →+

R∪Rf

sub

.

Thus, by Theorem 5.3.26 all these properties are modular for disjoint unions of such
TRSs, in particular this entails the following (cf. Definitions 2.2.34, 2.2.41):

Theorem 5.3.27 (simple termination is modular for the case of finite signa-
tures)
Simple termination is modular for disjoint unions of TRSs over finite signatures.

This result (together with Lemma 2.2.36) generalizes (for the case of finite signatures)
the well-known observation that common classes of precedence based simplification
orderings like recursive path orderings or recursive decomposition orderings exhibit a
modular behaviour simply by combining the corresponding disjoint precedences.

Another earlier, related result (which also implies Theorem 5.3.27 above) is due to
Kurihara & Ohuchi:28

Theorem 5.3.28 (subterm compatibility (simplifyingness) is modular,
[KO90a])
Subterm compatibility (simplifyingness) or, equivalently, irreflexivity of →+

R∪Rf

sub

, is

modular for disjoint unions of (arbitrary) TRSs.

Remark 5.3.29 (Kurihara & Ohuchi’s proof technique)
The proof technique used in [KO90a] for Theorem 5.3.28 has some similarity with
our abstracting transformation approach for proving Theorem 5.3.8(a). Instead of
our white (and black) abstraction function Kurihara & Ohuchi define a mapping called

27or such that RF introduces only finitely many function symbols
28In [KO90a] the notion of simple termination means subterm compatibility in our terminology.
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‘alien-replacement’29 which is tailored to some specific finite reduction sequence. More-
over their construction is in a sense incremental, but not rank-decreasing in general.
To be more precise, consider some finite derivation

D : s0 → s1 → s2 → . . . → sm

in RF = (RF1

1 ∪ RF1

sub ∪ RF1

del) ⊕ (RF2

2 ∪ RF2

sub ∪ RF2

del) with all si’s top black and such
that every R-derivation starting from any (top white) principal alien of s0 is finite.
Then their ‘alien replacement’ construction for D essentially consists in (recursively)
collecting, for any principal alien occurring in D, all direct descendants occurring in D
and abstracting them via a new varyadic function symbol. Using this transformation
the RF -derivation D can be translated in a one-to-one manner into a corresponding
(RF1

1 ∪RF1

sub ∪RF1

del)-derivation. Now, consider a counterexample (of minimal rank) to
irreflexivity of →+

R∪Rf

sub
∪Rf

del

, i.e., a cyclic (R∪Rf
sub ∪Rf

del)-derivation

s → . . . → s ,

where w.l.o.g. all terms are top black. Then this cyclic derivation can be translated
via the mentioned ‘alien replacement’ ρ into a cyclic (RF1

1 ∪RF1

sub ∪RF1

del)-derivation

ρ(s) → . . . → ρ(s)

thus contradicting irreflexivity of →+

R1∪R
F1

sub
∪R

F1

del

. Note how the finiteness of the con-

sidered cyclic derivation avoids any problem due to the possible infinity of the set of
successors of some term.

Non-Self-Embedding Systems

In this paragraph we shall consider only finite TRSs RF in order to simplify the dis-
cussion. We have seen that – as a consequence of Theorem 5.3.8 as well as of Theorem
5.3.28 – simple termination is modular (Theorem 5.3.27). In other words, termination
of a disjoint union R1⊕R2 can be shown by a simplification ordering if and only if this
holds already for R1 and R2. According to Kruskal’s Tree Theorem 2.2.33 the property
of being non-self-embedding implies termination. Furthermore, simple termination is
sufficient for being non-self-embedding. Hence, a natural question is to ask whether
termination is also modular for non-self-embedding systems, or in slightly modified
form: Is the property of being non-self-embedding a modular one? Having again a
closer look on Example 5.1.1 it is clear that R1 = {f(a, b, x) → f(x, x, x)} is terminat-
ing, but cannot be simply terminating, because it is self-embedding as witnessed e.g.
by the one-step self-embedding derivation

f(a, b, f(a, b, b)) →R1
f(f(a, b, b), f(a, b, b), f(a, b, b)) .

Now consider the following modified version of Example5.1.1:

29cf. [KO90a], [KO90b] for details; in fact, compared to [KO90a], [KO90b] contains a simplified and
clarified version of ‘alien replacement’.
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Example 5.3.30 (being non-self-embedding is not modular)
Let the disjoint TRSs R1 and R2 be given by

R1 =

{
f(a, b, x) → h(x, x, x)
h(a, b, x) → f(x, x, x)

and

R2 =

{
G(x, y) → x
G(x, y) → y

Both R1 and R2 are terminating and even non-self-embedding as can be easily shown,
but R1 ⊕ R2 admits for instance the following infinite (and hence self-embedding)
derivation:

f(a, b,G(a, b)) →R1
h(G(a, b), G(a, b), G(a, b))

→R2
h(a,G(a, b), G(a, b))

→R2
h(a, b,G(a, b))

→R1
f(G(a, b), G(a, b), G(a, b))

→R2
f(a,G(a, b), G(a, b))

→R2
f(a, b,G(a, b))

→R1
. . . .

Moreover, the non-self-embedding system R1 is not simply terminating. To wit, con-
sider the cyclic R1 ∪Rf

sub-derivation

f(a, b, f(a, b, b)) → h(f(a, b, b), f(a, b, b), f(a, b, b))
→+ h(a, b, f(a, b, b))
→ f(f(a, b, b), f(a, b, b), f(a, b, b))
→+ f(a, b, f(a, b, b))
→ . . . .

Thus, we may conclude that termination is not preserved in general under disjoint
unions of non-self-embedding TRSs and that the property of being non-self-embedding
is not a modular one. Note, that this reveals a gap between simply terminating and
non-self-embedding systems. Hence, both implications

R simply terminating =⇒ R non-self-embedding =⇒ R terminating

cannot be reversed. This is well-known for the latter one (cf. e.g. Dershowitz [Der87])
which seems to be not the case for the first one. Moreover, the gap between non-
self-embedding and simply terminating TRSs exists even for TRSs which contain only
unary function symbols, hence for string rewriting systems. To this end consider the
system

R =

{
g(g(x)) → h(f(h(x)))
h(h(x)) → g(f(g(x)))

over F = {f, g, h}. Here, R is easily shown to be non-self-embedding but it is not
simply terminating because we have for instance the following infinite (cyclic), hence
self-embedding derivation in R∪Rf

sub:

g(g(x)) → h(f(h(x))) → h(h(x)) → g(f(g(x))) → g(g(x)) → . . . .
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5.3.2 The Modular Approach via Innermost Termination

Symmetric Preservation Criteria for Termination

Combining Theorem 5.2.7 with Theorem 3.3.12 we obtain

Theorem 5.3.31 (SN ∧ WCR ∧ OS is modular)
Termination is modular for disjoint unions of locally confluent overlay TRSs.

Proof: For the non-trivial implication to be proved assume that R1, R2 are disjoint,
locally confluent and terminating overlay systems. For their disjoint union R = R1⊕R2

we obtain (WCR ∧ OS)(R) since both local confluence and the property of being an
overlay system are modular. Furthermore, since both R1 and R2 are terminating, in
particular innermost terminating, R is innermost terminating, too, by Theorem 5.2.7.
Finally, Theorem 3.3.12 yields termination of R as desired.

Corollary 5.3.32 (SN ∧ CR is modular for overlay systems)
Completeness is modular for disjoint unions of overlay TRSs.

Similarly, we obtain the following modularity result for non-overlapping TRSs.

Theorem 5.3.33 (SN ∧ NO is modular)
Termination is modular for disjoint unions of non-overlapping TRSs.

Proof: Analogous to the proof of Theorem 5.3.31, using the facts that NO is modular
and that any non-overlapping TRS is in particular a locally confluent overlay system.

Corollary 5.3.34 (SN ∧ CR is modular for non-overlapping systems)
Completeness is modular for disjoint unions of non-overlapping TRSs.

Combined with the modularity of innermost termination (Theorem 5.2.7), the refined
equivalence results for innermost and general termination obtained in Section 3.4 now
easily yield a couple of further modularity results some of which are presented now
(more sophisticated versions are possible, too). First we recall some simple modularity
facts (which are consequences of the corresponding more general statements of Lemma
4.3.1).

Lemma 5.3.35 (modularity of critical peak properties)
The following critical peak properties are modular for disjoint unions of TRSs:30

(1) UIR (uniqueness of innermost reduction, Definition 3.4.1)

(2) AICR (avoidance of innermost-critical steps, Definition 3.4.4)

(3) CPC (critical peak condition, Definition 3.4.13)

30As already mentioned, OS and NO are modular, too. Furthermore other critical peak properties
like ORTH, WOJCP, WLRJCP etc. are easily seen to be modular, too.
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(4) WNO (weakly non-overlapping, Definition 3.4.12)

(5) SLRJCP (strongly left-to-right joinable critical peaks, Definition 3.4.12)

(6) LRJCP (left-to-right joinable critical peaks, Definition 3.4.12)

Now we can generalize Theorem 5.3.33 above as follows.

Theorem 5.3.36 (SN ∧ UIR ∧ AICR is modular)
Termination is modular for disjoint unions of TRSs satisfying UIR and AICR.

Proof: Straightforward by combining Theorems 3.4.11 and 5.2.7 with Lemma 5.3.35.

Theorem 5.3.37 (SN ∧ CPC is modular)
Termination is modular for disjoint unions of TRSs satisfying CPC.

Proof: Straightforward by combining Theorems 3.4.11 and 5.2.7 with Lemmas 3.4.14
and 5.3.35.

Theorem 5.3.38 (SN ∧ CR is modular for TRSs satisfying CPC))
Completeness is modular for disjoint unions of TRSs satisfying CPC, in particular for
weakly non-overlapping (WNO) TRSs and for TRSs with strongly left-to-right-joinable
critical peaks (SLRJCP).

Proof: Analogous to the proof of Theorem 5.3.37, exploiting additionally Theorem
3.4.19 (or, alternatively, Theorem 4.1.2) and the implications WNO =⇒ SLRJCP =⇒
CPC (cf. Theorem 3.4.17).

Let us give an example for illustrating the applicability of Theorem 5.3.38.

Example 5.3.39 (applying Theorem 5.3.38)
Consider the modified version of Example 5.1.2 where

R1 =





f(a, b, x) → f(x, x, x)
a → c

f(c, b, x) → f(x, x, x)

and

R2 =

{
K(x, y, y) → x
K(y, y, x) → x

Both systems are terminating and confluent, and moreover have strongly left-to-right
joinable critical peaks (SLRJCP) as is easily verified. Hence, Theorem 5.3.38 yields
completeness of their disjoint union. We note that none of the previous modular-
ity results is applicable here, since R1 is neither termination preserving under non-
deterministic collapses (TPNDC) nor an overlay system (OS). Furthermore, R2 is not
left-linear, hence also Theorem 5.3.45 (see below) is not applicable.
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Asymmetric Preservation Criteria for Termination

A thorough analysis of the essential steps in the proof the modularity of termination
for locally confluent overlay systems (Theorem 5.3.31) reveals that if one of the systems
is non-collapsing then the overlay requirement for the other system can be dropped.
This will be shown next. First we need slightly extended versions of Lemmas 3.3.9 and
3.3.10.

Lemma 5.3.40 (extended version of Lemma 3.3.9)
Suppose R is a locally confluent TRS. Let l → r be a rule of R such that there exists
no inside critical peak by overlapping some other (or the same) rule of R into l → r
properly below the root. Let σ be a substitution such that σl is not complete. Then
Φ(σl) = (Φ◦σ)l.31 In particular, if additionally σx is complete for all x ∈ V ar(l), then
Φ(σl) = (Φ ◦ σ)l = (σ ↓)l and all proper subterms of Φ(σl) are irreducible.

Proof: Essentially the same as for Lemma 3.3.9. In fact, the assumption that l → r
allows no inside critical peak by overlapping into it properly below the root captures
exactly what is needed for the crucial property, namely that, for any p ∈ FPos(l) with
(σl)/p = σ(l/p) complete we have Φ(σ(l/p)) = σ(l/p) ↓= σ′(l/p) ↓= σ′(l/p) where
σ′ = {x 7→ (σ ↓)x |x ∈ V ar(l/p)}, i.e., σ′(l/p) is irreducible.

Lemma 5.3.41 (non-empty projection of →nc-steps)
Suppose R is a locally confluent TRS. Let l → r be a rule of R such that there exists
no inside critical peak by overlapping some other (or the same) rule of R into l → r
properly below the root. Let σ be a substitution such that σl is not complete. If
s = C[σl] →p,σ,l→r C[σr] = t then Φ(s) →+ Φ(t).

Proof: Analogous to the proof of Lemma 3.3.10, using Lemma 5.3.40 instead of
Lemma 3.3.9.

Theorem 5.3.42 (asymmetric preservation criterion for termination and com-
pleteness based on modularity of innermost termination)
Let RF1

1 , RF2

2 be disjoint complete TRSs such that R1 is additionally a non-collapsing
overlay system. Then the disjoint union R = R1 ⊕R2 is complete, too.

Proof: Suppose for a proof by contradiction that the disjoint union is R = R1 ⊕R2

is non-terminating. Consider an infinite (R-) derivation

D : s1 → s2 → s3 → . . .

with the additional minimality property that all proper subterms of s1 are terminating
and hence complete. Then D must have the form

D : s1 → . . . → sn →λ sn+1 → . . . ,

31Recall that Φ ◦ σ denotes the composition of the substitution σ with the parallel normalization
mapping for all maximal (parallel) complete subterms Φ from Definition 3.3.4, i.e., the substitution
defined by (Φ ◦ σ)x = Φ(σx).
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i.e., eventually some step sn →λ sn+1 is a (first) root reduction step. Clearly, this step
is an →nc-step, and all proper subterms of sn are complete.

Now consider the case that sn is top white, i.e., F2-rooted. All principal top black
aliens of sn are complete and any derivation issuing from them consists of (complete)
top black reducts, since R1 is non-collapsing. Together with the infinity of D this
implies that all sk, k ≥ n, are top white and that D contains infinitely many outer
R2-steps. But then, by identifying abstraction of all principal top black aliens, we
obtain an infinite (pure) R2-derivation which contradicts termination of R2.

The other case is that sn is top black, i.e., F1-rooted. Since all top white principal
aliens of sn are complete, all →nc-steps in D after sn (including sn

o
→ sn+1) must be

outer R1-steps, and there must be infinitely many of these. By definition of Φ we know
that all top white principal aliens in Φ(sn) are irreducible. Hence, applying Φ to D
and using Lemma 5.3.41 (which is applicable, because R1 is a locally confluent overlay
system) and Lemma 3.3.8 we obtain the infinite R-derivation

Φ(sn) →∗ Φ(sn+1) →
∗ Φ(sn+2) →

∗ . . .

where all reduction steps are outer R1-steps. As above, identifying abstraction yields
an infinite pure R1-derivation contradicting termination of R1.

Thus we may conclude that R = R1 ⊕R2 must be terminating.

Let us give an example for illustrating the applicability of Theorem 5.3.42.

Example 5.3.43 (applying Theorem 5.3.42)
Consider the modified version of Example 5.1.1 where

R1 =
{

f(a, b, x) → f(x, x, x)

and

R2 =





G(x, x) → x
G(A,B) → A

A → B

Both systems are terminating and confluent, and moreover R1 is a non-collapsing
overlay system. Hence, Theorem 5.3.42 yields completeness of the disjoint union R1 ⊕
R2. We note that none of the previous modularity results is applicable here, since R1

is (non-collapsing but) not termination preserving under non-deterministic collapses
(TPNDC), and R2 neither is an overlay system (OS) nor does it satisfy the critical
pair condition CPC or the non-collapsing property (NCOL). Furthermore, R2 is not
left-linear, hence also Theorem 5.3.45 (see below) is not applicable.

In view of the asymmetric preservation result for termination of Theorem 5.3.42 which
relies on the modularity of innermost termination and sufficient conditions for the
equivalence of innermost and general termination, one may ask whether analogous
asymmetric versions of Theorems 5.3.36, 5.3.37 are possible, too. There, the implication
SIN =⇒ SN was guaranteed (cf. Section 3.4) by the properties UIR and AICR. Both
properties seem to be crucial for the main constructions and results of Section 3.4). For
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instance, requiring only UIR does not suffice for preserving termination under disjoint
unions as shown by Example 5.1.2 above where it is easy to verify that both systems
satisfy UIR. Another, more refined and natural question, analogous to Theorem 5.3.42
above, reads as follows.

Let RF1

1 , RF2

2 be disjoint terminating TRSs with unique innermost reduc-
tion. Is their disjoint union R = R1 ⊕R2 terminating provided that R1 is
additionally non-collapsing and AICR? (or, more concisely: (SN ∧ UIR ∧
NCOL ∧ AICR)(R1) ∧ (SN ∧ UIR)(R2) =⇒ SN(R1 ⊕R2) ?)

In fact, this does not hold either as demonstrated by the next example.

Example 5.3.44 (AICR seems to be essential, too)
Consider the modified version of Example 5.1.3 where

R1 =
{

f(x, g(x), y) → f(y, y, y)

and

R2 =





G(H(x)) → x
G(H(x)) → A

H(x) → K(x)

Both systems are terminating and satisfy UIR as is easily verified. Moreover, R1 is
non-collapsing and satisfies AICR (it is even non-overlapping). However, their disjoint
union is non-terminating as witnessed by the cycle

f(A, g(A), G(H(g(A)))) → f(G(H(g(A)))3) →+ f(A, g(A), G(H(g(A)))) .

According to Theorem 5.3.42 (note that R1 is a complete non-collapsing overlay sys-
tem) R2 cannot be confluent. Indeed, it is neither confluent nor does it satisfy AICR.

It remains open whether other asymmetric preservation results for termination in the
spirit of Theorem 5.3.42 but relying on CPC (or, more generally, on UIR, AICR) are
possible.

5.3.3 The Syntactic Approach via Left-Linearity

Symmetric Preservation Results for Termination of Left-Linear TRSs

We have already mentioned that completeness is not modular as demonstrated by
Example 5.1.2. In this counterexample the disjoint union of the two complete TRSs

R1 =





f(a, b, x) → f(x, x, x)
a → c
b → c

f(x, y, z) → c

and

R2 =

{
K(x, y, y) → x
K(y, y, x) → x
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is (confluent but) not terminating, since there is the cycle

D : f(a, b,K(a, c, b)) → f(K(a, c, b)3) →+ f(a, b,K(a, c, b)) .

A careful inspection of rewriting in the disjoint union, in particular in the cyclic deriva-
tion D above, leads to the conjecture that non-left-linearity of R2 might be essential
for the counterexample.32 More precisely, the problem in the cyclic derivation above
is due to the fact, that colour changing reductions are not uniquely factorizable. We
recall that a reduction sequence s →∗ t with s, t ground terms (in the disjoint union)
is colour changing (cf. Definition 2.4.12) if s is top black and t top white or vice versa.
Furthermore note that in a colour changing derivation at least one step must be de-
structive at level 1 using a collapsing rule). Indeed, in the derivation D the following
two colour changing reductions issuing from K(a, c, b) are crucial:

K(a, c, b) →R1
K(a, c, c) →R2

a

and

K(a, c, b) →R1
K(c, c, b) →R2

b .

And a (unique) factorization is not possible, i.e., there is no (top black) term t such
that both

K(a, c, b) →∗ t →∗ a

and

K(a, c, b) →∗ t →∗ b

hold. This cannot happen in the disjoint union of left-linear TRSs as shown by Toyama,
Klop & Barendregt.

Theorem 5.3.45 (completeness is modular for left-linear TRSs, [TKB89;
TKB95])
Completeness is modular for disjoint unions of left-linear TRSs.

The proof of this deep result in [TKB89; TKB95] relies on a very intricate analysis of
colour changing derivations. The technical main result33 needed roughly states that
if a terminating top black (top white) term s in the disjoint union of two left-linear
and complete systems has colour change, i.e., the unique normal form s ↓ of s is top
white (top black), then there exists a unique top white (top black) special subterm of
s through which all colour changing reductions issuing from s can be factored (in the
terminology of [TKB89; TKB95]: s has exactly one essential subterm).

Recently, Marchiori ([Mar95]) and Schmidt-Schauss & Panitz ([SSP94]) independently
succeeded in giving a considerably simplified proof of Theorem 5.3.45, using very similar
ideas and constructions. In fact, their approach even yields the following extension.

32Or, put in a positive manner, that completeness might be modular for (disjoint unions of) left-
linear TRSs. This was first conjectured by Klop & Barendregt (1986) as mentioned in a preliminary
version of [TKB89].

33Yet, the rest of the proof in [TKB89; TKB95] is also non-trivial, since a simple projection technique
does not work.
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Theorem 5.3.46 (SN ∧ CON→ is modular for left-linear TRSs, [SMP95])
Termination plus consistency with respect to reduction (SN ∧ CON→) is modular for
disjoint unions of left-linear TRSs.

Proof (idea): Actually, modularity of CON→ for left-linear systems — which relies
on the same proof techniques — has already been mentioned (Theorem 4.2.9). We only
sketch the basic ideas and structure of the proof for termination of the disjoint union
(cf. [SMP95] for more details). Essentially there are two main properties of left-linear
and CON→ TRSs which are extensively exploited.

(1) If s = C[x, . . . , x], where x is the only variable occurring in s and all occurrences
of x are displayed, and s →∗ x, then the ancestor of the final result x in s is
unique.34 This follows from the fact that, by left-linearity, s = C[x, . . . , x] →∗ x
implies s = C[x1, . . . , xn] →∗ xi for (pairwise) distinct variables x1, . . . , xn such
that, by CON→, the index i is unique.

(2) If s = σl →λ,σ,l→r σr = t and s →p,τ,l′→r′ s′ for p ≥ q ∈ VPos(l) (with l/q = x)
then s′ = σ′l →λ,σ′,l→r σ′r τ,l′→r′←‖−− σr = t where σ′y = σy for y 6= x and
σ′x = (σx)[p\q ← τr′] (this is possible by left-linearity).35

Now the basic idea of the construction in [SMP95] is as follows: Consider in a coun-
terexample of minimal rank (consisting of ground terms, only) in the initial let’say top
black term a special subterm C [[ s1, . . . , sm]] (which is let’s say top black) of minimal
rank with the property that it allows a colour change but all its principal subterms si

do not (in other words, any derivation issuing from si does not contain a destructive
step). Then, according to (1) above, for any colour changing derivation s →∗ t, t
must have a unique ancestor sk in s, and moreover C[x1, . . . , xm] →∗ xk, hence also
C [[ s1, . . . , sm]] →∗ sk →∗ t. Now the idea is to replace in the initial term the top black
special subterm s = C [[ s1, . . . , sm]] by its (unique) principal top white subterm sk to
which it may collapse and to mimic the original infinite derivation. However, the black
information in the top layer of s to be deleted may be essential later on in the origi-
nal infinite derivation, since it may (by some destructive step(s)) coalesce with other
black layers above thereby enabling further steps otherwise not possible. In order to
compensate for this potential loss of information the black top layer of s is deleted,
i.e., s replaced by sk as mentioned, but simultaneously the black top layer of s is piled
above below all top black aliens on the way from the root to s. In fact, this pile and
delete process as it is called in [Mar95], and the fact that after it the original infinite
derivation can still be mimicked is the most difficult part of the proof.36 In particular,
we observe that left-linearity is essential to enable this mimicking (based on property

34To make this formally precise one has to introduce notions like ancestors / descendants of
(sub)terms w.r.t. reduction sequences that are labelled by the respective rule applications. We shall
not do this here, since we only try to give an intuitive account.

35In other words, after rewriting below the variable part of a left-linear rule application, the same
rule is still applicable, yielding a reduct that can also be obtained from the original reduct by a
corresponding parallel contraction of (possibly duplicated) corresponding redex occurrences within
the variable part.

36It should be mentioned that a similar, but more complicated pile and delete technique is also
essential in the second part of the proof of [TKB89; TKB95].



144 CHAPTER 5. MODULARITY OF TERMINATION PROPERTIES

(2) above). Repeating this transformation one eventually obtains an infinite derivation
where no destructive step is possible any more. But this means that the black system
is non-terminating yielding a contradiction.

Since confluence implies consistency w.r.t. reduction (CR =⇒ CON→), Theorem 5.3.45
is a corollary of Theorems 5.3.46 and 4.1.2. Moreover, we observe that any non-erasing
TRS is necessarily consistent w.r.t. reduction (NE =⇒ CON→). Hence, since the non-
erasing property is obviously modular, the following is also a consequence of Theorem
5.3.46.

Theorem 5.3.47 (termination is modular for left-linear, non-erasing TRSs,
[SMP95])
Termination is modular for disjoint unions of left-linear, non-erasing TRSs.

However, without left-linearity, the disjoint union of two terminating, non-erasing TRSs
need not be terminating in general, even if the systems are confluent and irreducible.
Corresponding (rather involved) counterexamples are given in [Ohl95c].

Finally, we observe that Theorem 5.3.46 combined with Theorem 4.2.7, the implica-
tions CR =⇒ CON =⇒ CON→, and the modularity of left-linearity, also entails the
following.

Corollary 5.3.48 (SN ∧ CON is modular for left-linear TRSs)
Termination plus consistency (SN ∧ CON) is modular for disjoint unions of left-linear
TRSs.

Asymmetric Preservation Results for Termination

Now let us turn to related asymmetric results. An interesting structural property for
disjoint unions of left-linear TRSs is the following.

Theorem 5.3.49 (counterexample properties for left-linear TRSs,
[SMP95]37 )
Let R1 and R2 be two disjoint, left-linear and terminating TRSs, and let R1 ⊕R2 be
non-terminating. Then one of the systems is CON→, while the other one is not CON→.

An asymmetric preservation result for termination corresponding to the symmetric one
in Theorem 5.3.45 above is given in [TKB95, Appendix B].

Theorem 5.3.50 (asymmetric version of Theorem 5.3.45, [TKB95])
The disjoint union R1 ⊕ R2 of a left-linear, complete TRS R1 and a non-collapsing,
terminating TRS R2 is terminating.

37The proof in [SMP95] is based on analyzing a minimal, let’s say top black, counterexample. It
is shown that the white system R2 must be CON→. Applying Theorem 5.3.46 then yields that R1

cannot be CON→.
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Recently we have obtained two further related asymmetric preservation results which
were presented in [Gra95e]. A detailed account of this work will be the subject of a
forthcoming paper.

5.4 Non-Disjoint Unions

In this section we consider modularity and preservation results for termination prop-
erties of constructor sharing and of composable TRSs.

5.4.1 Restricted Termination Properties and Semi-Complete-
ness

The modularity of the weak termination properties WN (weak termination), WIN
(weak innermost termination) and SIN (innermost termination) from the disjoint union
case easily carries over to constructor sharing as well as to composable TRSs.

Theorem 5.4.1 (WN, WIN and SIN are modular for composable TRSs)
The properties WN, WIN and SIN are modular for constructor sharing as well as for
composable TRSs.

Proof: The proofs are essentially the same as for the disjoint union case. For
WN (and implicitly also for WIN) of composable constructor systems this has been
shown in [MT91; MT93]. SIN of constructor sharing TRSs is treated in [Gra92b;
Gra95a], and the case of composable TRSs (for all three properties) in [Ohl94a; Ohl95a].

Since weak termination implies the existence of preserved reducts, an immediate con-
sequence of the modularity of weak termination (for composable TRSs) and Theorem
4.3.4 is the modularity of semi-completeness. In [Ohl94a; Ohl94b] this is shown for
constructor sharing TRSs,38 in [Ohl95a] for composable TRSs.39 For the (more spe-
cial case) of composable constructor systems the result has been established in [MT91;
MT93].

Theorem 5.4.2 (semi-completeness is modular for composable TRSs)
Semi-completeness is modular for constructor sharing as well as for composable TRSs.

38via weak termination of →c which is not really necessary as already mentioned since weak termi-
nation of the union already implies the the crucial property that every term has a preserved reduct;

39by a direct inductive proof which is also not really necessary by the same argument as before;
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5.4.2 Termination of Constructor Sharing / Composable Sys-
tems

For constructor sharing / composable TRSs the problematic effect of a layer coalescence
in the union is not only caused by (the existence of) collapsing rules, but also by
constructor lifting / shared function symbol symbol lifting rules. A simple example
demonstrating this is the following.

Example 5.4.3 (shared function symbol lifting rules are problematic, too,
[Gra94a])
The TRSs

R1 =
{

f(a, b, x) → f(x, x, x)

and

R2 =

{
D → a
D → b

which share the constructors a and b are both terminating. However, their union is
non-terminating as witnessed by the cycle

D : f(a, b,D) →R1
f(D,D,D) →R2

f(a,D,D)) →R2
f(a, b,D)

which obviously has rank 2. Note that R2 is non-collapsing but both its rules are
constructor lifting (hence, shared function symbol lifting). This enables the second
and third step in D above to be destructive at level 2. Note moreover that whenever
a reduction step s → t is destructive at level 2 then rank(s) ≥ 2.

Taking into account this additional complication for constructor sharing and for com-
posable TRSs our general structural approach by analyzing minimal counterexamples
as presented in Section 5.3.1 easily carries over. In particular, the general structure
Theorem 5.3.8(a) can be generalized as follows.

Theorem 5.4.4 (generalized version of Theorem 5.3.8(a), [Gra94a], [KO95a])

Let R1,R2 be two constructor sharing (composable), finitely branching TRSs which
are both terminating such that their union R = R1 ∪ R2 is non-terminating. Then
one of the systems, let’s say R1, is not termination preserving under non-deterministic
collapses, i.e., R1 ⊕ {G(x, y) → x,G(x, y) → y} is non-terminating, and the other
system R2 is shared symbol lifting, i.e., not layer preserving, or vice versa.

Proof: For constructor sharing TRSs the proof structure is analogous to the proof
of Theorem 5.3.8(a), cf. [Gra94a] for details. The only important difference is that the
white (black) abstraction Φ (Definition 5.3.4) has to be adapted, in the sense that for
top white (top black) principal aliens not only all top black (top white) but also all
top transparent successors have to be collected and recursively abstracted.

For composable TRSs one additionally needs a slightly refined minimality assumption
for the considered counterexample as detailed in [KO95a].
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Some straightforward consequences analogous to the disjoint union case are the follow-
ing (some of which are mentioned in [KO95a]).

Theorem 5.4.5 (derived termination criteria for unions of composable TRSs)

Let RF1

1 and RF2

2 be composable, finitely branching TRSs, with RF = RF1

1 ∪ RF2

2 .
Then the following assertions hold:

(1) If both R1 and R2 are terminating (SN) and termination preserving under non-
deterministic collapses (TPNDC),40 then RF is terminating and TPNDC, and
vice versa.

(2) If both R1 and R2 are terminating and layer preserving, then RF is terminat-
ing.41

(3) If one of the systems is both TPNDC and layer preserving, then RF is termi-
nating.

(4) If both R1 and R2 are subterm compatibly terminating, then RF is subterm
compatibly terminating, and vice versa.42

Some further results on preservation of termination for unions of composable TRSs,
which involve non-duplication and layer preservation but do not require the systems
to be finitely branching, are given in [Ohl94a; Ohl95a].

Interestingly, Theorem 5.3.8(b) (as well as some derived results) cannot be general-
ized to constructor sharing or composable TRSs,43 i.e., in Theorem 5.4.4 the finitely
branching requirement cannot be dropped.

Example 5.4.6 (finitely branching is essential for constructor sharing / com-
posable TRSs, [Ohl94c])
The constructor sharing TRSs

R1 =
{

fi(ci, x) → fi+1(x, x) | i ≥ 1
}

and

R2 =
{

A → ci | i ≥ 1
}

over F1 = {fi, ci | i ≥ 1} and F2 = {A}∪{ci | i ≥ 1}, respectively, are both terminating
(even subterm compatibly terminating because RF1

1 ∪ RF1

sub is terminating) and share

40which is for instance the case for non-duplicating (NDUP) as well as for non-deterministically
collapsing (NDC) systems

41This also holds without the assumption that R1 and R2 are finitely branching. The reason is —
as in the disjoint union case — that a top black (top white) term cannot have top transparent or top
white (top black) reducts at all.

42By Theorem 2.2.36 this implies in particular: Simple termination is modular for composable TRSs
over finite signatures.

43The reader familiar with Ohlebusch’s proof construction in [Ohl94a] may recognize that it does
not extend to the case where there are shared function symbols.
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the infinitely many constructors ci, i ≥ 1. However, the union is non-terminating (and
hence also not subterm compatibly terminating):

f1(c1, A) → f2(A,A) → f2(c2, A) → f3(A,A) → . . . .

Note that R2 is not finitely branching.

Yet, subterm compatibility (simplifyingness) is still modular for constructor sharing
and also for composable TRSs as shown by Kurihara & Ohuchi and Ohlebusch, respec-
tively.

Theorem 5.4.7 (extended version of Theorem 5.3.28: subterm compatibility
(simplifyingness) is modular for constructor sharing and for composable
TRSs, [KO92], [Ohl94a])
Subterm compatibility (or, equivalently, simplifyingness, or irreflexivity of →+

RF∪RF

sub

)

is modular for constructor sharing TRSs, and even for composable TRSs.

Proof (idea): The proof of [KO92] for the constructor sharing case is very similar
to the disjoint union case of [KO90a], and the proof of [Ohl94a] for composable TRSs
works by combining Kurihara & Ohuchi’s technique with our abstracting transforma-
tion construction for Theorem 5.3.8(a).

In contrast to subterm compatible termination the (revised) notion of simple termi-
nation (cf. Definition 2.2.41) in the general case (i.e., for possibly infinite signatures)
enjoys a better modularity behaviour for composable systems as recently shown by
Middeldorp & Zantema.

Theorem 5.4.8 (simple termination is modular for composable TRSs,
[MZ95])
Simple termination is modular for composable TRSs.

Proof (idea): Using basic properties of partial well-orderings (PWOs) the difficult
direction of this modularity result is proved in [MZ95] by reducing it to the preserva-
tion of subterm compatibility (simplifyingness) under the union of composable TRSs
(cf. Theorem 5.4.7 above).

Next we shall consider modularity and preservation results for termination in the case
of constructor sharing and composable TRSs corresponding to Section 5.3.2.

Theorem 5.4.9 (termination and completeness are modular for composable,
locally confluent overlay systems, generalized version of Theorem 5.3.31 and
Corollary 5.3.32)
Termination and completeness are modular for composable, locally confluent overlay
TRSs.

Proof: Straightforward by combining Lemma 4.3.1, Theorem 5.4.1 (modularity of
SIN, innermost termination) and Theorem 3.3.12.
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Similarly we obtain

Theorem 5.4.10 (termination and completeness are modular for compos-
able, non-overlapping TRSs, generalized version of Theorem 5.3.33 and
Corollary 5.3.34)
Termination and completeness are modular for composable, non-overlapping TRSs.

Proof: As for Theorem 5.4.9 above.

Theorem 5.4.11 (termination and completeness are modular for composable
TRSs satisfying CPC, generalized version of Theorems 5.3.37 and 5.3.38)
Termination and completeness are modular for composable TRSs satisfying CPC, in
particular for composable TRSs which are weakly non-overlapping (WNO) or have
strongly left-to-right joinable critical peaks (SLRJCP).

Proof: Straightforward by combining Theorems 5.4.1 (modularity of SIN), 3.4.11,
3.4.17 and Lemmas 3.4.14, 4.3.1.

Furthermore we can generalize the asymmetric preservation result of Theorem 5.3.42
for completeness of disjoint unions to the case of composable TRSs.

Theorem 5.4.12 (asymmetric preservation criterion for termination and com-
pleteness of composable TRSs, generalized version of Theorem 5.3.42)
Let RF1

1 , RF2

2 be composable, complete TRSs such that R1 is additionally a layer-
preserving overlay system. Then the union RF = RF1

1 ∪RF2

2 is complete, too.

Proof (sketch): The proof structure is the same as for Theorem 5.3.42. However, in-
stead of the non-collapsing property of R1 its layer preservation is exploited. Moreover,
for the case analysis of an assumed minimal counterexample

D : s1 → . . . → sn →λ sn+1 → . . . ,

where all proper subterms of sn are complete, the reasoning in the additional case
that sn is top transparent (i.e., then the root symbol of sn must be a shared function
symbol) is as for the case that sn is top black.

Finally let us briefly discuss the situation with preservation results for termination
which were based on uniqueness properties of collapsing reductions and left-linearity
(cf. Section 5.3.3).

Theorem 5.3.46, i.e., modularity of SN ∧ CON→ for disjoint unions, does not extend
to constructor sharing or composable TRSs. A simple counterexample is given by
Example 5.4.3 above. There we had the two constructor sharing TRSs

R1 =
{

f(a, b, x) → f(x, x, x)

and

R2 =

{
D → a
D → b
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which were both terminating, but with their union non-terminating. Indeed, we observe
that both systems are also left-linear and consistent with respect to reduction (CON→).
Other counterexamples of [Ohl94a] show that also confluence doesn’t help here (note
that R2 is not confluent in the example). Actually, recalling the crucial prerequisites
for the sketched proof of Theorem 5.3.46, this doesn’t come as a big surprise since
collapsing reduction (using rules with a variable as right hand side) is not the only
possibility any more of causing a layer coalescence (as it was the case for disjoint
unions). Consequently, the consistency property CON→ (which disallowed reductions
to two distinct variables) doesn’t account any longer for all problematic cases of ‘non-
deterministic’ layer coalescences.

Yet, bearing this in mind, it seems reasonable to conjecture that the union of construc-
tor sharing (composable) TRSs might be terminating provided that both systems are
terminating, left-linear, CON→ and not shared function symbol lifting (using essen-
tially the same proof as for Theorem 5.3.46. However, this remains to be checked in
detail.

Another related but more general idea is to try to adapt the required consistency prop-
erty appropriately, i.e., by taking into account not only diverging reductions leading to
two distinct variables, but also diverging reductions, let’s say in R1, of the form

s1
∗← s →∗ s2 ,

where s is top black and s1, s2 are top transparent (which includes both the case of
variables as well as of terms with a shared function as root symbol). However, whether
this approach for CON→ via refining it into something like ‘consistency with respect
to reduction to (distinct) top transparent terms’ might be successful for deriving new
interesting preservation results for termination, remains open at current.44

5.5 Conditional Rewrite Systems

Subsequently we shall study the modularity and preservation behaviour concerning
termination properties of combined CTRSs. Again we tacitly assume (if not explicitly
stated otherwise) that the CTRSs considered are join systems.

The modularity analysis for CTRSs is much more complicated than for (unconditional)
TRSs. For instance, we have already mentioned that — as exhibited in [Mid90] — the
fundamental decomposition property of TRSs,

s →R1⊕R2
t =⇒ s →R1

t ∨ s →R2
t

does not hold any more for CTRSs. This is due to the fact that when a rule of one of
the systems is applied rules of the other system may be needed in order to satisfy the
conditions. Recall that this phenomenon was already a major additional complication
in Middeldorp’s proof of the modularity of confluence for disjoint CTRSs (cf. Section
4.4).

44We had no time yet to investigate this in more detail though it seems promising.
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Further problems are caused by extra variables in the conditions which may cause a
conflict with proof techniques by induction over the rank, since for these (existentially
quantified) extra variables one may substitute arbitrary terms (of arbitrary rank!).

5.5.1 Termination Properties under Signature Extensions

Again the situation is much more complicated for CTRSs than for TRSs since neither
weak termination (WN), nor weak innermost termination (WIN) nor strong innermost
termination (SIN) are modular in general for CTRSs. For WN and WIN this has been
shown by Middeldorp ([Mid90; Mid93b]).

Example 5.5.1 (WN, WIN and SIN are not modular for CTRSs)
Consider the CTRSs RF1

1 , RF2

2

{
a → a ⇐= x ↓ b ∧ x ↓ c

and
{

G(x, y) → x
G(x, y) → y

over F1 = {a, b, c} and F2 = {G,A}, respectively. Here, we have a →R1⊕R2
a by

applying the R1-rule (x is substituted by G(b, c)), but neither a →R1
a nor a →R2

a.
Hence, a is an Ri-normal form (for i = 1, 2) but not a normal form w.r.t. R1 ⊕ R2.
Obviously, both R1 and R2 are strongly (hence also weakly and innermost) terminating
but their disjoint union is not. For instance, a →R1⊕R2

a →R1⊕R2
a →R1⊕R2

. . . is an
infinite innermost derivation, and a does not have a normal from w.r.t. R1 ⊕R2.

From the observation in Example 5.5.1 above one might be tempted to conjecture
(as it is done in [Mid93b]) that the preservation of normal forms, defined by (with
RF = RF1

1 ⊕RF2

2 )

NFP(R1,R2) : NF(RF) = NF(RF
1 ) ∩ NF(RF

2 ) ,

should be a sufficient condition for the modularity of weak termination. But this is
also not true in general.45 The situation is even worse, since – surprisingly – it may
happen that a weakly terminating CTRS may become not weakly terminating under
the disjoint union with another ‘empty’ CTRS, i.e., simply by extending the signature
without adding new rules.

45contradicting Theorem 5.2 in [Mid93b] (cf. also Theorem 4.3.20 in [Mid90]) the proof of which
implicitly relies on the incorrect assumption WN(RF1

1 ) ⇐⇒ WN(R1
F1⊎F2).
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Example 5.5.2 (WN, WIN are not preserved under signature extensions)
Consider the CTRSs RF1

1 , RF2

2 given by

R1 =





g(x, y) → g(x, y) ⇐= x ↓ z ∧ z ↓ y
g(x, x) → x
g(x, a) → c
g(x, b) → c

g(x, g(y, z)) → c
g(a, x) → c
g(b, x) → c

g(g(y, z), x) → c
c → a
c → b

over F1 = {g, a, b, c} and R2 = ∅ over F2 = {G} (with G unary). It is straightforward
to verify that RF1

1 is weakly terminating and even weakly innermost terminating. The
only potential reason for non-existence of a normal form of some given term from
T (F1,V) is the first R1-rule. But whenever this rule is applicable another rule is
applicable, too, which may be preferred (note that without the first rule the system
R1 is even terminating). Now consider the combined system RF = R1

F1⊎{G} and the
term g(G(a), G(b)). In RF we get the following cyclic derivation:

g(G(a), G(b)) →RF g(G(a), G(b)) →RF g(G(a), G(b)) →RF . . .

by applying the first rule (which is indeed applicable since instantiating the extra
variable z by G(c) we easily obtain G(a) ↓RF G(c) and G(c) ↓RF G(b) as desired).
Note moreover that there is no other way of reducing g(G(a), G(b)) (all its proper
subterms are in normal form w.r.t. RF , and the second rule is clearly not applicable).
Hence, RF = R1

F1⊎{G} is neither WIN nor WN although the property NF(RF) =
NF(RF

1 ) ∩ NF(RF
2 ) is trivially satisfied.

By slightly modifying Example 5.5.2 (where RF1

1 is not SIN !) we can also show that
SIN is not preserved under signature extensions in general.

Example 5.5.3 (SIN is not preserved under signature extensions)
Consider the CTRSs RF1

1 , RF2

2 given by

R1 =





f(g(x, y)) → f(g(x, y)) ⇐= x ↓ z ∧ z ↓ y
g(x, x) → x
g(x, a) → c
g(x, b) → c

g(x, f(y)) → c
g(x, g(y, z)) → c

g(a, x) → c
g(b, x) → c

g(f(y), x) → c
g(g(y, z), x) → c

c → a
c → b
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over F1 = {f, g, a, b, c} and R2 = ∅ over F2 = {G} (with G unary). It is straightforward
to verify that RF1

1 is SIN (hence also WIN and WN). The crucial point is that an
arbitrary infinite RF1

1 - derivation must contain rewrite steps using the first rule. But
whenever this rule is applicable, the contracted redex cannot be innermost, since some
proper subterm must then be reducible by the remaining rules which constitute a
terminating CTRS. Nevertheless, in the extended system RF = R1

F1⊎{G} we get the
cyclic (hence infinite) innermost RF -derivation

f(g(G(a), G(b)))
i

−→RFf(g(G(a), G(b)))
i

−→RFf(g(G(a), G(b)))
i

−→RF . . .

by applying the first rule (instantiating the extra variable z by G(c)). Note moreover
that there is no other way of reducing f(g(G(a), G(b))) (all its proper subterms are in
normal form w.r.t. RF , and the second rule is clearly not applicable). Hence, RF =
R1

F1⊎{G} is not SIN (and also neither WIN nor WN).46

By a thorough analysis of abstraction and innermost reduction properties which allow
to project reduction sequences on mixed terms to certain reduction sequences on pure
terms we shall show below how the monotonicity of WN, WIN and SIN under signature
extensions can be guaranteed. More generally, we also develop sufficient criteria for
the modularity of these properties. This analysis heavily relies on some very useful
terminology and technical results from [Mid93b].

First we recall the definition of →1, →2 and →1,2 (cf. Definition 2.4.16). Intuitively,
in a →1-step s →1 t using a (black) rule from R1 we are only allowed to rewrite
in the outermost black layers of the condition terms for verifying the corresponding
conditions (using R1-rules). Due to this restriction, the relation →1 enjoys a much
better behaviour than →R1

w.r.t. some desirable technical properties.

Lemma 5.5.4 (injective abstraction is possible for
o
→1-steps, cf. [Mid93b,

Proposition 3.5])
Let R1, R2 be disjoint CTRSs, s, t be black terms and σ be a top white substitution
with σ(s)

o
→1 σ(t). Then, for any substitution τ with σ ∝ τ , we have τ(s)

o
→1 τ(t).

Note that this result implies in particular that a step σ(s)
o
→1 σ(t) on mixed terms can

be injectively abstracted into a ‘pure’ step τ(s) →R1
τ(t) by injectively replacing the

maximal top white aliens of σ(s) and σ(t) by fresh variables. One may wonder whether
such an injective abstraction is also possible for an arbitrary outer step σ(s)

o
→R1

σ(t),
where for verifying the conditions of applied R1-rules also inner R1-steps are allowed.
This is not the case as shown next.

Example 5.5.5 (injective abstraction is not always possible)
Consider the CTRSs RF1

1 , RF2

2 given by
{

f(x, y) → x ⇐= x ↓ y
a → b

46Note that this example is also a counterexample under semi-equational semantics, i.e., when
considering R1 as a semi-equational CTRS.
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over F1 = {f, a, b} and R2 = ∅ over F2 = {G} (with G unary). Here we have
f(G(a), G(b))

o
→R1

G(a) (due to G(a) ↓R1
G(b)), but not f(G(a), G(b))

o
→1 G(a) since

for satisfying G(a) ↓R1
G(b) we need an inner R1-step. Note that after injective

abstraction of s = f(G(a), G(b)) and t = G(a) into f(x, y) and x, respectively, the
reduction f(x, y) →R1

x is not possible any more.

The above example somehow suggests that by forbidding the possibility of inner re-
duction steps injective abstraction of reduction steps might still be possible. But even
if all maximal top white aliens are irreducible, this is not possible in general.

Example 5.5.6
Consider the CTRSs RF1

1 , RF2

2 given by

R1 =





f(x, y) → x ⇐= x ↓ z ∧ z ↓ y
c → a
c → b

with F1 = {f, a, b, c}, R2 = ∅, F2 = {G} (with G unary). Here all proper subterms of
f(G(a), G(b)) are (RF -) irreducible and f(G(a), G(b))

o
→R1

G(a) but not
f(G(a), G(b))

o
→1 G(a) since for satisfying G(a) ↓R1

z ∧ z ↓R1
G(b) we have to

instantiate the extra variable z in the condition of the first rule by a mixed term of
the form G(u), e.g. G(c), and to use inner R1-steps for establishing G(a) ↓R1

G(u),
G(u) ↓R1

G(b). Note again that after injective abstraction of s = f(G(a), G(b)) and
t = G(a) into f(x, y) and x, respectively, the reduction f(x, y) →R1

x is not possible
any more.

Whereas in the above examples an injective abstraction of certain reduction steps on
mixed terms to a corresponding reduction step on pure terms is not possible, a non-
injective identifying one, which replaces all maximal top white aliens by the same fresh
variable, is indeed possible. This is shown next.

Lemma 5.5.7 (identifying abstraction is always possible)
Let RF1

1 , RF2

2 be disjoint CTRSs, s and t be black terms, σ be a top white substitution,
and σ̃ be defined by σ̃(x) = z for all x ∈ dom(σ) where z is a ‘fresh’ variable, i.e., not
occurring in σs. Then we have:

(a) σ(s)
o
→R1

σ(t) =⇒ σ̃(s)
o
→R1

σ̃(t) , and

(b) σ(s)
i
→R1

σ(t) =⇒ σ̃(s) = σ̃(t) .

Proof: (b) is trivially satisfied by definition of
i
→ and of σ̃. We show (a) by in-

duction on n, the depth of rewriting (using the same proof structure as in [Mid93b]

for Prop. 3.5, see Lemma 5.5.4 above). In the base case, i.e. for n ≤ 1, (a) is triv-
ially satisfied. For the induction step, assume σ(s)

o
→R1

σ(t) is of depth n + 1. Hence
we have σ(s) = C[ρ(l)]

o
→R1

C[ρ(r)] for some context C[], some substitution ρ and
some rule l → r ⇐= s1 ↓ t1, . . . , sm ↓ tm from R1 such that ρ(si) ↓R1

ρ(ti) for
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i = 1, . . . ,m47 with depth less than or equal to n. Lemma 2.4.15 yields a decompo-
sition ρ2 ◦ ρ1 of ρ such that ρ1 is black, ρ2 top white and ρ2 ∝ id. We observe that
whenever ρ2(u1) →R1

u2 for some black term u1, then there is some black term u3 with
u2 = ρ2(u3). Hence, for any i, 1 ≤ i ≤ m, the conversion ρ(si) ↓R1

ρ(ti) has the form
ρ2(ui,1) →R1

ρ2(ui,2) →R1
. . . →R1

ρ2(ui,ki
) = ρ2(vi,li) R1

← . . . R1
←ρ2(vi,2) R1

←ρ2(vi,1)
(with ui,1 = ρ1(s1), vi,1 = ρ1(t1)) for black terms ui,1 . . . ui,ki

, vi,1, . . . , vli . Thus, by
using the induction hypothesis and (b) for any single step in ρ2(ρ1(si)) ↓R1

ρ2(ρ1(ti)) it
is straightforward to show ρ̃2(ρ1(si)) ↓R1

ρ̃2(ρ1(ti)) by an additional induction on the
length of the conversion ρ2(ρ1(si)) ↓R1

ρ2(ρ1(ti)), for i = 1, . . . ,m.

A straightforward consequence of this ‘identifying abstraction’ lemma is the fact that
for rewriting some black term with a black CTRS, considered as CTRS (with the same
set of rules) over an extended black-white signature, it is not necessary to instantiate
extra variables in the conditions of the (black) rules with non-black terms.

Corollary 5.5.8 (‘reduction of pure terms is purely possible’)
Let RF be a CTRS, F ′ be a signature with F ⊆ F ′, and s ∈ T (F ,V). Then we have:
s →RF′ t =⇒ s →RF t .

Using Lemma 5.5.7 we are now able to show that at least termination is preserved
under signature extensions.

Lemma 5.5.9 (termination is preserved under signature extensions)
Let RF be a CTRS and F ′ be a signature with F ⊆ F ′. Then the following holds:
SN(RF) ⇐⇒ SN(RF ′

).

Proof: It clearly suffices to show: SN(RF) =⇒ SN(RF ′

). Hence, assuming SN(RF),
we prove SN(s) for all s ∈ T (F ′,V) by induction on n = rank(s).48 For rank(s) = 1
we get SN(s) by assumption and Corollary 5.5.8. Let rank(s) > 1. If the root symbol
of s is a new one, i.e. from (F ′ \ F), then SN(s) follows by induction hypothesis,
since rewrite steps in the top layer of s are impossible. If root(s) ∈ F then – again by
induction hypothesis and the fact that (F ′\F)-layers cannot collapse – any infinite RF ′

-
derivation starting with s would have to contain infinitely many outer RF ′

-steps. But
then identifying abstraction using Lemma 5.5.7 would yield an infinite RF -derivation
contradicting the assumption SN(RF).

In order to present sufficient criteria for the preservation of restricted termination
properties under signature extensions and – more generally – under disjoint unions, we
will introduce now some more notations, in particular for certain innermost reductions
steps.

Definition 5.5.10 (more innermost reduction properties)
Let RF1

1 , RF2

2 be disjoint CTRSs and RF = RF1

1 ⊕ RF2

2 = (R1 ⊎ R2)
F1⊎F2 be their

47Note that ρ may also instantiate extra variables in the conditions of the applied R1-rule.
48Note that we may consider here RF

′

as disjoint union RF1

1 ⊕RF2

2 with RF1

1 = RF , R2 = ∅ and
F2 = F ′ \ F .
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disjoint union. If (for s ∈ T (F ,V)) s →RF t by applying some R1-rule (where for
satisfying the conditions also R2-rules are allowed) we denote this by s →RF

1
/RF t

or simply s →R1/R t. Furthermore, for j = 1, 2 we define the innermost reduction
properties IRP1(Rj,R), IRP2(Rj,R) and IRP3(Rj,R) by49





IRP1(Rj,R) : ∀s ∈ T (F ,V) : s
i

−→Rj
t =⇒ s

i
−→jt ,

IRP2(Rj,R) : ∀s ∈ T (F ,V) : s
i

−→Rj/Rt =⇒ ∃t′ : s
i

−→Rj
t′

IRP3(Rj,R) : ∀s ∈ T (F ,V) : s
i

−→Rj/Rt =⇒ s
i

−→Rj
t .

Note that IRP1 enables injective abstraction (via Lemma 5.5.4) which will be useful
for establishing preservation results under signature extensions. Combined with IRP2

or the stronger property IRP3 it will turn out to capture the essence for obtaining
modularity results later on.

Using the first innermost reduction property IRP1 defined above we obtain a sufficient
criterion for the preservation of WN, WIN and SIN under signature extensions as
follows.

Theorem 5.5.11 (a sufficient condition for the preservation of WN, WIN,
SIN under signature extensions)
Let RF1

1 , RF2

2 be disjoint CTRSs with R2 = ∅ (and RF = RF1

1 ⊕RF2

2 = R1
F1⊎F2) such

that IRP1(R
F1

1 ,RF
1 ) holds. Then we have the following equivalences:

(a) WN(RF1

1 ) ⇐⇒ WN(R1
F1∪F2).

(b) WIN(RF1

1 ) ⇐⇒ WIN(R1
F1∪F2).

(c) SIN(RF1

1 ) ⇐⇒ SIN(R1
F1∪F2).

Proof: Let RF1

1 , RF2

2 , RF be given as above satisfying IRP1(R
F1

1 ,RF
1 ). The ‘⇐=’-

directions of (a), (b) and (c) are easy by Corollary 5.5.8.

(a) For proving WN(RF1

1 ) =⇒ WN(RF
1 ) we proceed by contradiction assuming

WN(RF1

1 ). Let s be counterexample of minimal rank, i.e., s ∈ T (F ,V) such that
WN(s,RF

1 ) does not hold, with rank(s) minimal. The case rank(s) = 1 is impossible
by the assumption WN(RF1

1 ), Corollary 5.5.8 and the fact that R2 = ∅. If rank(s) > 1
then s has the form s = C [[ s1, . . . , sm]] . If the top layer C[, . . . , ] is white then by
the minimality assumption and R2 = ∅ we get WN(s,RF

1 ), hence a contradiction.
Otherwise, in the interesting case where C[, . . . , ] is black, we know by the minimality
assumption that every si (1 ≤ i ≤ m) has a normal form w.r.t. RF

1 , let’s say ti. Hence,
we get

s = C [[ s1, . . . , sm]] →∗
RF

1

C[t1, . . . , tm] = C ′ {{u1, . . . , un}}

for some black context C ′{, . . . , } and top white normal forms uj w.r.t. RF
1 . Choos-

ing fresh variables x1, . . . , xn injectively, i.e. with 〈u1, . . . , un〉∞〈x1, . . . , xn〉, we have

49The notations used here for innermost reduction are slightly ambiguous (for the sake of readabil-
ity). When writing s

i
−→Rj/Rt, s

i
−→Rj

t or s
i
−→jt, we always mean that the contracted subterm is

an innermost redex of s w.r.t. →R (then it is also an innermost redex of s w.r.t. →Rj/R, →Rj
or →j ,

respectively, since →Rj/R, →Rj
and →j are subsets of →R).
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rank(C ′{x1, . . . , xn}) = 1, hence again by the minimality assumption C ′{x1, . . . , xn}
can be reduced in RF1

1 to a normal form C ′′〈xi1 , . . . , xip〉. Thus we get

s →∗
RF

1

C ′ {{u1, . . . , un}} →∗
RF

1

C ′′ 〈〈ui1 , . . . , uip〉〉

with ui1 , . . . , uip ∈ NF(RF
1 ). Now, denoting uij by vj, it suffices to show

C ′′ 〈〈 v1, . . . , vp〉〉 ∈ NF(RF
1 ). If this were not the case then there would exist an (outer)

innermost RF
1 -reduction step of the form

C ′′ 〈〈 v1, . . . , vp〉〉
o

i
−→RF

1

C ′′′ 〈〈 vk1
, . . . , vkq

〉〉

with 1 ≤ kl ≤ p, 1 ≤ l ≤ q. But then, due to the assumption IRP1(R
F1

1 ,RF
1 ), we could

apply Lemma 5.5.4 which would yield (denoting xij by yj, 1 ≤ j ≤ p)

C ′′〈y1, . . . , yp〉 →R
F1

1

C ′′′〈yk1
, . . . , ykq

〉 .

But this is a contradiction to C ′′〈y1, . . . , yp〉 ∈ NF(RF1

1 ). Hence in all cases we have a
contradiction.

(b) For proving WIN(RF1

1 ) =⇒ WIN(RF
1 ) we use the same proof structure as for (a),

but the argumentation is slightly different. Namely, (using the notations from above)
in the interesting case we get

s = C [[ s1, . . . , sm]]
i

−→∗
RF

1

C[t1, . . . , tm] = C ′ {{u1, . . . , un}}

by innermost normalizing the si to ti, 1 ≤ i ≤ n. Furthermore, from

C ′{x1, . . . , xn} i
−→∗

R
F1

1

C ′′〈xi1 , . . . , xip〉

(which is possible by the minimality assumption) we obtain, using for any step the
same rule at the same position,

C ′ {{u1, . . . , un}} →∗
RF

1

C ′′ 〈〈ui1 , . . . , uip〉〉 .

Note that all RF
1 -reductions here are innermost steps, because otherwise we could con-

clude, using Lemma 5.5.4 (which is applicable due to the assumption IRP1(R
F1

1 ,RF
1 )),

that the corresponding step in

C ′{x1, . . . , xn} i
−→∗

R
F1

1

C ′′〈xi1 , . . . , xip〉

is a non-innermost RF1

1 -step. Hence we have

s
i

−→∗
RF

1

C ′ {{u1, . . . , un}} i
−→∗

RF

1

C ′′ 〈〈ui1 , . . . , uip〉〉 .

Now C ′′ 〈〈ui1 , . . . , uip〉〉 must be RF
1 -irreducible by the same argument as in (a) (ex-

ploiting again the assumption IRP1(R
F1

1 ,RF
1 )).

(c) For proving SIN(RF1

1 ) =⇒ SIN(RF
1 ) we assume SIN(RF1

1 ) and show by contradic-
tion that for every term s ∈ T (F ,V) we have SIN(s,RF

1 ). Consider a counterexample
which is minimal w.r.t. the subterm relation, i.e., a term s which has an infinite inner-
most RF

1 -derivation

(D) s = s0 i
−→RF

1

s1 i
−→RF

1

s2 i
−→RF

1

. . .
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such that all proper subterms of s are strongly innermost terminating (w.r.t. RF
1 ).

Then, necessarily s is a top black term with rank(s) > 1. By the minimality assumption
we know that there is some (first) innermost RF

1 -step

sk = Ck [[ t1, . . . , tn]]
i

−→RF

1

C ′ 〈〈 ti1 , . . . , tip〉〉 = sk+1

in (D) which is a root reduction step. This implies in particular that all maximal top
white aliens of sk (as well as of all sk′ , k′ > k) are RF

1 -irreducible. Hence all steps in

sk i
−→RF

1

sk+1 i
−→RF

1

sk+2 i
−→RF

1

. . .

are outer steps. Due to the assumption IRP1(R
F1

1 ,RF
1 )) we may apply now Lemma

5.5.4 which yields an infinite innermost RF1

1 derivation

ŝk i
−→

R
F1

1

ŝk+1 i
−→

R
F1

1

ŝk+2 i
−→

R
F1

1

. . .

by injectively abstracting the maximal top white aliens by fresh variables. But this is
a contradiction to SIN(RF1

1 ).

Using the second innermost reduction property from Definition 5.5.10, we get the
following preservation result for weak and weak innermost termination (on the same
signature).

Lemma 5.5.12 (a sufficient condition for the preservation of WN and WIN)
Let RF1

1 , RF2

2 be disjoint CTRSs and RF = (RF1

1 ⊕RF2

2 ). Then we have:

(a) IRP2(R1,R) ∧ IRP2(R2,R) =⇒ [ WN(RF
1 ) ∧ WN(RF

2 ) ⇐⇒ WN(RF) ].

(b) IRP2(R1,R) ∧ IRP2(R2,R) =⇒ [ WIN(RF
1 ) ∧ WIN(RF

2 ) ⇐⇒ WIN(RF) ].

Proof: Let RF1

1 , RF2

2 , RF be given as above satisfying IRP2(R
F1

1 ,RF). The ‘⇐=’-
directions of the equivalences in (a) and (b) are easy by Corollary 5.5.8.

(a) For proving WN(RF
1 ) ∧ WN(RF

2 ) =⇒ WN(RF) we proceed by contradic-
tion assuming WN(RF

1 ), WN(RF
2 ). Let s be counterexample of minimal rank, i.e.,

s ∈ T (F ,V) such that WN(s,RF) does not hold, with rank(s) minimal. The case
rank(s) = 1 is impossible, due to the assumptions WN(RF

j ), IRP2(Rj,R) (for j =
1, 2). If rank(s) > 1 then s has the form s = C [[ s1, . . . , sm]] with s top black w.l.o.g.,
and we know by the minimality assumption that every si (1 ≤ i ≤ m) has a normal
form w.r.t. RF , let’s say ti. Hence, we get

s = C [[ s1, . . . , sm]] →∗
RF C[t1, . . . , tm] = C ′ {{u1, . . . , un}}

for some black context C ′{, . . . , } and top white normal forms uj w.r.t. RF . By as-
sumption, we can reduce C ′ {{u1, . . . , un}} to some normal form w.r.t. RF

1 , i.e.

s →∗
RF C ′ {{u1, . . . , un}} →∗

RF

1

C ′′ 〈〈ui1 , . . . , uip〉〉

with C ′′ 〈〈ui1 , . . . , uip〉〉 irreducible w.r.t. →R2/R. Now, to obtain a contradiction,
it suffices to show C ′′ 〈〈ui1 , . . . , uip〉〉 ∈ NF(RF). If this were not the case then
C ′′ 〈〈ui1 , . . . , uip〉〉 would be innermost →RF

1
/RF -reducible, hence by the assumption

IRP2(R
F1

1 ,RF) it would also be (innermost) →RF

1

-reducible, contradicting
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C ′′ 〈〈ui1 , . . . , uip〉〉 ∈ NF(RF
1 ). Hence we are done.

(b) For proving WIN(RF1

1 ) =⇒ WIN(RF
1 ) we use the same proof structure as for (a),

but the argumentation is slightly different. Namely, (using the notations from above)
in the interesting case we get

s = C [[ s1, . . . , sm]]
i

−→∗
RF

1

C[t1, . . . , tm] = C ′ {{u1, . . . , un}}

by innermost normalizing the si to ti, 1 ≤ i ≤ n. Furthermore, from the assumption
WIN(RF1

1 ) we obtain

C ′ {{u1, . . . , un}} i
−→∗

R
F1

1

C ′′ 〈〈ui1 , . . . , uip〉〉 =: t

with t in RF
1 normal form. Moreover, t is also RF -irreducible since otherwise, by the

assumption IRP2(R
F1

1 ,RF) we would get a contradiction to t ∈ NF(RF
1 ).

An equivalent characterization of the precondition in Lemma 5.5.12 is given by the
normal form property defined above. More precisely, we obtain the following result.

Lemma 5.5.13 (relating normal form and innermost reduction properties)
Let RF1

1 , RF2

2 be disjoint CTRSs and RF = (RF1

1 ⊕RF2

2 ). Then we have:

NF(RF) = NF(RF
1 ) ∩ NF(RF

2 ) ⇐⇒ IRP2(R1,R) ∧ IRP2(R2,R) .

Proof: Let RF1

1 , RF2

2 and RF be given as above.
“=⇒”: Assuming NFP(R1,R2) we have to show IRP2(R1,R) ∧ IRP2(R2,R) . Now,
w.l.o.g. it suffices to show: s

i
−→R1/Rt =⇒ ∃t′ : s

i
−→R1

t′. Focusing on the contracted
redex in s, let’s say at position p, we get
s/p = C {{ s1, . . . , sn}} i

−→ λ,R1/R C ′ 〈〈 si1 , . . . , sip〉〉 = t/p with s/p irreducible w.r.t.
RF

2 . Hence, by →R1/R-reducibility of s and the assumption NFP(R1,R2) we know
that s/p (and thus also s) must be RF

1 -reducible, too, as desired.
“⇐=”: Assuming IRP2(R1,R) ∧ IRP2(R2,R) it suffices to show NF(RF

1 )∩NF(RF
2 ) ⊆

NF(RF). Suppose there exists a term s ∈ ( NF(RF
1 ) ∩ NF(RF

2 ) ) \ NF(RF). Hence s
is RF -reducible and also RF -innermost reducible, let’s say with an R1-rule. Thus we
have s

i
−→R1/Rt which by IRP2(R1,R) implies s

i
−→R1

t′ for some t′. But this is a
contradiction to s ∈ NF(RF

1 ), hence we are done.

Now, considering Lemma 5.5.12 above, the property IRP2(R1,R) ∧ IRP2(R2,R) does
not yet suffice for the equivalence SIN(RF

1 ) ∧ SIN(RF
2 ) ⇐⇒ SIN(RF) . To see this,

consider the following slightly modified version of Example 5.5.1.

Example 5.5.14
Consider the disjoint CTRSs RF1

1 , RF2

2 given by

R1 =

{
a → a ⇐= x ↓ b ∧ x ↓ c
a → d

and

R1 =

{
G(x, y) → x
G(x, y) → y
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over F1 = {a, b, c, d} and F2 = {G,A}, respectively. Here, both R1
F1⊎F2 and R2

F1⊎F2

are innermost terminating – and even terminating (it is easily shown that the first
R1-rule is never applicable) – but their disjoint union RF = (R1 ⊎ R2)

F1⊎F2 is not
innermost terminating due to a

i
−→R1⊕R2

a
i

−→R1⊕R2
a

i
−→R1⊕R2

. . .. Nevertheless R1

and R2 satisfy the normal form property NFP(R1,R2): NF(RF) = NF(RF
1 )∩NF(RF

2 )
or equivalently IRP2(R1,R) ∧ IRP2(R2,R) (since a is now both RF

1 - and RF -reducible
due the presence of the rule a → d in R1).

Requiring instead of IRP2(R1,R)∧ IRP2(R2,R) the stronger property IRP3(R1,R)∧
IRP3(R2,R) accounts for this fact.

Lemma 5.5.15 (a sufficient condition for the preservation of SIN)
Let RF1

1 , RF2

2 be disjoint CTRSs and RF = (RF1

1 ⊕RF2

2 ). Then we have:

IRP3(R1,R) ∧ IRP3(R2,R) =⇒ [ SIN(RF
1 ) ∧ SIN(RF

2 ) ⇐⇒ SIN(RF) ].

Proof: Let RF1

1 , RF2

2 and RF be given as above satisfying IRP3(R1,R)∧IRP3(R2,R).
Now, the ”⇐=”-direction is straightforward using Corollary 5.5.8. Vice versa, for
proving SIN(RF

1 ) ∧ SIN(RF
2 ) =⇒ SIN(RF) we proceed by contradiction assuming

SIN(RF
1 ) and SIN(RF

2 ). Consider a minimal counterexample, i.e., an infinite inner-
most RF -derivation s0 i

−→RF s1 i
−→RF s2 i

−→RF . . . such that no proper subterm of
s0 admits infinite innermost RF -derivations. By the minimality assumption some step
sk i
−→RFsk+1 in the above derivation must be a root reduction step, let’s say using a rule

from R1. But then we know that all subsequent steps must also be →R1/R-steps. Thus,
by the assumption IRP3(R1,R) we can conclude that sk i

−→RF

1

sk+1 i
−→RF

1

sk+2 i
−→RF

1

. . .

is an infinite innermost RF
1 -derivation contradicting SIN(RF

1 ).

Next we shall provide sufficient conditions for the innermost reduction properties IRP1,
IRP2 and IRP3. Having again a look at Example 5.5.3 we observe that the system R1

there is non-confluent and has a rule with extra variables which seems to be essential.
And indeed, forbidding extra variables or requiring confluence turns out to be crucial
as will be shown next.

Lemma 5.5.16 (a first sufficient condition: no extra variables)
Let RF1

1 , RF2

2 be disjoint CTRSs without extra variables, with RF = (RF1

1 ⊕ RF2

2 ).
Then the innermost reduction properties IRPk(Rj,R) hold for j = 1, 2 and k = 1, 2, 3.

Proof: It suffices to show the following for j = 1, 2:

∀s ∈ T (F ,V) : s
i

−→Rj/Rt =⇒ s
i

−→Rj
t =⇒ s

i
−→jt

This is straightforward by induction on the depth of rewriting, and exploiting the ab-
sence of extra variables (since the step s

i
−→Rj/Rt is innermost and due to the absence

of extra variables we know that for verifying the conditions of the applied Rj-rule only
outer →j-steps are possible).

For the case of confluent CTRSs we need two more technical lemmas from [Mid93b].
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Lemma 5.5.17 ([Mid93b, Propositions 3.6, 3.8])
Let R1, R2 be two disjoint confluent CTRSs and R = R1⊕R2. Then →1,2 is confluent
and ↓1,2 coincides with ↔∗

R.

Lemma 5.5.18 ([Mid93b, Proposition 3.13])
Let R1, R2 be two disjoint, confluent CTRSs, R = R1 ⊕R2 and s1, . . . , sn, t1, . . . , tn
be black terms. Then, for every substitution σ with σ(si) ↓1,2 σ(ti) for i = 1, . . . , n
there exists a substitution τ such that σ →∗

1,2 τ and τ(si) ↓
o
1 τ(ti) for i = 1, . . . , n.

Lemma 5.5.19 (a second sufficient condition: confluence)
Let RF1

1 , RF2

2 be disjoint confluent CTRSs, with RF = (RF1

1 ⊕ RF2

2 ). Then the
innermost reduction properties IRPk(Rj,R) hold for j = 1, 2 and k = 1, 2, 3.

Proof: It suffices to show the following for j = 1, 2:

∀s ∈ T (F ,V) : s
i

−→Rj/Rt =⇒ s
i

−→Rj
t =⇒ s

i
−→jt

Now consider a step s
i

−→Rj/Rt using some Rj-rule l → r ⇐= P with matching substi-
tution σ (which may also instantiate the extra variables in the conditions P ). Hence,
we have σ(u) ↓R σ(v) for all conditions u ↓ v in P . By Lemma 5.5.17 and Lemma
5.5.18 we obtain the existence of some substitution τ with σ →∗

1,2 τ and τ(u) ↓o
j τ(v) for

all u ↓ v in P . Since the step s
i

−→Rj/Rt is innermost we know that σ(x) is irreducible
for all x ∈ dom(σ) ∩ V(l), hence σ and τ coincide on V(l). Thus we get σ(l) = τ(l),
σ(r) = τ(r) which implies s

i
−→jt as desired.

Theorem 5.5.20 (sufficient conditions for preservation of WN, WIN, SIN
under signature extensions)
The termination properties WN, WIN and SIN are preserved under signature exten-
sions for confluent CTRSs as well as for CTRSs without extra variables.

Proof: Straightforward by combining Theorem 5.5.11 with Lemmas 5.5.12, 5.5.15,
5.5.16 and 5.5.19.

5.5.2 Restricted Termination Properties

By combining Theorem 5.5.11 and the Lemmas 5.5.12, 5.5.15, 5.5.16 and 5.5.19 we
now obtain the following modularity results.

Theorem 5.5.21 (sufficient conditions for modularity of WN, WIN, SIN)
Weak termination, weak innermost termination and (strong) innermost termination
are modular properties for CTRSs without extra variables (in the conditions) and for
confluent CTRSs.

Together with Theorem 4.4.1 this implies in particular the following.

Corollary 5.5.22 (semi-completeness is modular)
Semi-completeness is modular for disjoint unions of CTRSs.
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Before turning to other modularity results now let us have a look upon the fact that for
disjoint CTRSs R1, R2 confluence of R1 ⊕R2 implies confluence of both R1 and R2.
As already mentioned this is straightforward for systems without extra variables but
less obvious if extra variables are allowed. The problem is the following. Let the disjoint
union R = R1 ⊕R2 of R1 and R2 be confluent. Then we would like to show that for
any black term s, whenever we have s →∗

R1
t1 and s →∗

R1
t2 (with t1, t2 necessarily

black, too) then t1 →
∗
R1

u, t2 →
∗
R1

u for some black term u. By confluence of R1 ⊕R2

we know that there exists (a black term) u with t1 →∗
R u, t2 →∗

R u. Now we would
like to conclude that all the steps in t1 →∗

R u, t2 →∗
R u are R1-steps. So, in a sense

we would like to be sure that it is not necessary to substitute non-black terms for the
extra variables of the black rules (in order to verify their associated, correspondingly
instantiated conditions) applied in t1 →∗

R u, t2 →∗
R u. This can indeed be proved as

will be sketched now. First we need another technical result adapted from [Mid93b].

Lemma 5.5.23
Let R1, R2 be disjoint CTRSs such that R = R1 ⊕R2 is confluent, and let s1, . . . , sn,
t1, . . . , tn be black terms. Then, for every substitution σ with σ(si) ↓R σ(ti) for i =
1, . . . , n there exists a substitution τ such that σ →∗

R τ and τ(si) ↓o
1 τ(ti) for i =

1, . . . , n.

Proof: We omit a detailed proof here, because it is quite lengthy and completely
analogous to the proof of Prop. 3.1350 in [Mid93b] (cf. Lemma 5.5.18 above).

Lemma 5.5.24 (extra variables are harmless for the case of confluence)
Let R1, R2 be disjoint CTRSs such that R = R1 ⊕ R2 is confluent, and let s be a
black term with s →R1/R t. Then s →R1

t holds, too (by applying the same R1-rule).

Proof: Let R1, R2, R = R1 ⊕R2, s and t as above. Moreover assume that s1,...,sn,
t1,...,tn are the (black) condition terms of the applied R1-rule l → r ⇐= P with
matching substitution σ and σ(si) ↓R σ(ti) for i = 1, ..., n. Note that – due to the
possibility of extra variables in P – we have to take into account that σ may substitute
non-black terms for some extra variables. Using Lemma 2.4.15 we can decompose σ
into σ2 ◦ σ1 with σ1 black, σ2 top white, Dom(σ1) ⊇ V (l) and such that σ2 does not
affect the σ1-instances of the left hand side variables, i.e., σ2(σ1(x)) = σ1(x) for all
x ∈ V (l). Then we would like to conclude that there exists a black substitution σ′ with
σ′(si) ↓R1

σ′(ti) and σ′(x) = σ(x) = σ1(x) for all x ∈ V (l), i.e. the substitutions σ
and σ′ may differ but only on the extra variables. Now, from σ2(σ1(si)) ↓R σ2(σ1(ti))
we know that σ1(si), σ1(ti) are black, hence Lemma 5.5.23 yields a substitution τ
with σ2 →∗

R τ and τ(σ1(si)) ↓o
1 τ(σ1(ti)) for i = 1, . . . , n such that by applying again

Lemma 2.4.15 we obtain a decomposition of τ ◦ σ1 into τ ′ ◦ σ′
1 with σ′

1 black and τ ′

top white and moreover σ(x) = σ1(x) = σ′
1(x) = τ ′(σ′

1(x)) for all x ∈ V (l). Apply-
ing Lemma 5.5.4 now yields τ ′′(σ′

1(si)) ↓o
1 τ ′′(σ′

1(ti)) for every τ ′′ with τ ′ ∝ τ ′′. We
choose τ ′′ to be defined by τ ′′(x) = z for all x ∈ Dom(τ ′) with z some new variable.

50Lemma 5.5.23 is obtained from [Mid93b, Proposition 3.13] by replacing →1,2 by →R (and accord-
ingly, ↓1,2 by ↓R) and assuming confluence of R instead of confluence of →1,2.
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Hence we get τ ′′(σ′
1(si)) ↓o

1 τ ′′(σ′
1(ti)) with (τ ′′ ◦ σ′

1) a black substitution satisfying
σ(x) = σ1(x) = σ′

1(x) = τ ′′(σ′
1(x)) for all x ∈ V (l). Since

o
→1 is a subset of →R1

we
are done. This means that there exists a black substitution satisfying the conditions
w.r.t. R1 which coincides with the original (possibly mixed) substitution σ on V (l).

As straightforward consequence of Lemma 5.5.24 we obtain the following.51

Corollary 5.5.25 (confluence of the disjoint union implies confluence of the
component CTRSs)
Let RF1

1 , RF2

2 be disjoint CTRSs (with extra variables in the conditions allowed) such
that RF = RF1

1 ⊕RF2

2 is confluent. Then both RF1

1 and RF2

2 are confluent, too.

5.5.3 Termination and Completeness

Let us now come to the question under which conditions termination and completeness
are modular for disjoint CTRSs. Combining different results enables us to prove the
following.

Theorem 5.5.26 (termination and completeness are modular for
non-overlapping CTRSs)
Termination and completeness are modular for disjoint unions of non-overlapping
CTRSs.

Proof: Let R1, R2 be two disjoint non-overlapping and terminating CTRSs. Apply-
ing Theorem 2.3.21 yields confluence of Ri for i = 1, 2. By assumption we know in
particular that both systems are innermost terminating. Hence, by Theorem 5.5.21 we
get that R1⊕R2 is innermost terminating, too. The property of being non-overlapping
is obviously modular for CTRSs. Hence R1 ⊕R2 is innermost terminating and non-
overlapping. Finally, applying Theorem 3.6.19 yields termination of R1 ⊕ R2 which
– again by Theorem 2.3.21 – implies confluence of R1 ⊕ R2. Hence, R1 ⊕ R2 is a
confluent, terminating and non-overlapping CTRS. Vice versa, assume that R1 ⊕R2

is non-overlapping and terminating, hence complete. Then we know that both R1 and
R2 are non-overlapping and terminating, hence complete (by Theorem 2.3.21).

Note that in the above proof we did not explicitly make use of the modularity of
confluence (Theorem 4.4.1). However, this is necessary for the case of conditional
overlay systems.

Theorem 5.5.27 (termination and completeness are modular for overlay
CTRSs with joinable critical pairs)
Termination and completeness are modular for disjoint unions of conditional overlay
systems with joinable critical pairs.

51Actually, this easier (and less interesting), yet not completely trivial direction of the modularity
of confluence for disjoint CTRSs (cf. Middeldorp’s Theorem 4.4.1) is neglected in [Mid90; Mid93b].
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Proof: Let R1, R2 be two disjoint terminating, conditional overlay systems with
joinable critical pairs. Applying Theorem 2.3.21 yields confluence of Ri for i = 1, 2.
By assumption we know in particular that both systems are innermost terminating.
Hence, by Theorem 5.5.21 we get that R1 ⊕ R2 is innermost terminating, too. The
property of being a conditional overlay system is obviously modular for CTRSs. Hence
R1 ⊕R2 is an innermost terminating, conditional overlay system. Now, in order to be
able to apply Theorem 3.6.19 for inferring termination of R1⊕R2 we need to establish
joinability of all (conditional) critical pairs of R1⊕R2. Since both R1 and R2 are con-
fluent we know by Theorem 4.4.1 that R1⊕R2 is confluent, too. Hence, in particular,
all critical pairs of R1 ⊕ R2 must be joinable. Applying Theorem 3.6.19 now yields
that R1⊕R2 is a terminating and confluent conditional overlay system (with joinable
critical pairs, of course). Vice versa, assume that R1 ⊕ R2 is a conditional overlay
system with joinable critical pairs which is terminating, hence confluent and complete.
Then we know that both R1 and R2 are terminating conditional overlay systems. By
Corollary 5.5.25 confluence of R1 ⊕R2 implies confluence of both R1 and R2 (hence
in particular also joinability of critical pairs).

Note that – compared to the unconditional case – the proofs of Theorem 5.5.26 and
Theorem 5.5.27 are more complicated. This is due to the fact that both local confluence
and joinability of all critical pairs are not modular for CTRSs in general (in fact, not
even preserved under signature extensions (cf. Example 4.4.3) as well as innermost
termination (cf. Example 5.5.3 above).

Remark 5.5.28 (extensions to semantic versions of being non-overlapping /
overlaying are possible, too)
Let us mention that many (but not all) results for non-overlapping as well as for overlay-
ing CTRSs with joinable critical pairs, in particular the latter two modularity results,
can be slightly generalized by considering semantic versions of the properties NO and
OS. We can define that a CTRS is semantically non-overlapping (semantically over-
laying ) if it has no feasible critical peak (if all its feasible critical peaks are overlays).
For more details concerning such refined versions of NO and OS we refer to [Gra96b].

Next we shall sketch how our general abstraction approach for analyzing non-modularity
of termination in the unconditional case (cf. Section 5.3.1) can be extended to the con-
ditional case.

First we recall Example 5.5.14. There, the union of the disjoint terminating CTRSs

R1 =

{
a → a ⇐= x ↓ b ∧ x ↓ c
a → d

and

R1 =

{
G(x, y) → x
G(x, y) → y

was non-terminating with the minimal counterexample

a
i

−→R1⊕R2
a

i
−→R1⊕R2

a
i

−→R1⊕R2
. . .
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even having rank 1. This cannot happen if we forbid extra variables (in the conditions
of the rules).

Lemma 5.5.29 (Lemma 5.3.3 extended, [Gra93b])
Let RF1

1 , RF2

2 be two terminating disjoint CTRSs without extra variables such that

D : s1 → s2 → s3 → . . .

is an infinite derivation in R1 ⊕ R2 of minimal rank (involving only ground terms).
Suppose that s1 is top black, i.e., F1-rooted. Then all si, 1 ≤ i, are top black, and we
have:

(a) rank(D) ≥ 3.

(b) Infinitely many steps in D are outer R1/R-steps.52

Proof (idea): The proof that all si are top black and of (b) is as in the uncondi-
tional case. For the proof of (b) one shows that rank(D) = 1 and rank(D) = 2 are
impossible, too (by induction on the depth of rewriting; here the assumption that extra
variables are forbidden is crucial).

Note, that for unconditional TRSs in any minimal counterexample there are infinitely
many inner reduction steps which are destructive at level 2. This property does not
hold for CTRSs in general (even without variables).

Example 5.5.30 (minimal counterexamples need not contain
destructive steps)
Consider the disjoint CTRSs

R1 =
{

f(x) → f(x) ⇐= x ↓ a ∧ x ↓ b

and

R1 =

{
G(x, y) → x
G(x, y) → y

Both systems are terminating (even decreasing), but R1⊕R2 is not. In fact, the infinite
R1 ⊕R2-derivation

f(G(a, b)) → f(G(a, b)) → f(G(a, b)) → . . .

contains only outer (R1/R)-steps and hence no steps destructive at level 2.53

The extended version of our general structure Theorem 5.3.8(a) for CTRSs reads as
follows.54

52This means that the outer steps are by applying R1-rules where, however, for verifying the con-
ditions of the applied rules also R2-rules may be used.

53However, we observe that for verifying the instantiated conditions here, namely G(a, b) ↓ a and
G(a, b) ↓ b, destructive steps (using collapsing rules) are needed.

54It remains to be investigated whether Ohlebusch’s construction for Theorem 5.3.8(b) can also be
extended to disjoint unions of CTRSs.
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Theorem 5.5.31 (a general structure theorem for non-modularity of termi-
nation of CTRSs)
Let R1,R2 be two disjoint finitely branching CTRSs without extra variables which are
both terminating such that their disjoint union R = R1⊕R2 is non-terminating. Then
one of the systems, let’s say R1, is not termination preserving under non-deterministic
collapses, i.e., R1 ⊕ {G(x, y) → x,G(x, y) → y} is non-terminating, and the other
system R2 is collapsing, or vice versa.

Proof: The proof by minimal counterexample is analogous to the one of Theorem
5.3.8(a). In particular, the employed abstraction construction is the same. For the
crucial properties of the abstracting transformation one needs an extended version of
Lemma 5.3.6 which requires an additional global induction on the depth of rewriting.55

For details we refer to [Gra93b].

As in the unconditional case this result implies various sufficient criteria for modularity
of termination of CTRSs. However, due to lack of space we will not discuss them here
but simply refer to [Gra93b] for more details.

Instead let us mention some further known results due to Middeldorp which extend
the corresponding results for the unconditional case.

Theorem 5.5.32 (preservation results for termination of CTRSs involving
NCOL and NDUP, [Mid90; Mid93b])
Let R1 and R2 be two disjoint terminating CTRSs. Their union R1⊕R2 is terminating
if one of the following conditions holds:

(1) Both R1 and R2 are non-collapsing (NCOL).

(2) Both R1 and R2 are confluent and non-duplicating (NDUP).

(3) Both systems are confluent and one of them is non-collapsing and non-duplicating.

Preservation results for termination of disjoint (or non-disjoint) unions of CTRSs cor-
responding to the ones in Section 5.3.3 for TRSs (based on left-linearity and uniqueness
properties of collapsing reduction) are not known. Actually, we think that (non-)left-
linearity in CTRSs is generally not yet well-understood.

5.5.4 Non-Disjoint Unions

Here we shall only collect the most relevant known results concerning the preservation of
termination properties under non-disjoint unions of constructor sharing / composable
CTRSs. In fact, there are not very many results up to date. One reason for that
certainly is that most proofs are technically fairly involved.

Middeldorp ([Mid93a; Mid94]) has extended the corresponding results of [MT91; MT93]

from the unconditional to the conditional case.

55For the latter inductive proof the assumption that extra variables are forbidden seems again to
be essential.
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Theorem 5.5.33 (modularity results for composable conditional constructor
systems, [Mid93a; Mid94])
The following properties are modular for composable conditional constructor systems
without extra variables (in the conditions of the rules):

(1) Weak termination (WN).

(2) Semi-Completeness (WN ∧ CR).

(3) Completeness (SN ∧ CR).

Ohlebusch ([Ohl94a; Ohl95b]) extended some results on semi-completeness and termi-
nation from the disjoint union case to constructor sharing / composable CTRSs.

Theorem 5.5.34 ([Ohl94a; Ohl95b])
Semi-completeness is modular for constructor sharing CTRSs.

Theorem 5.5.35 (generalized version of Theorem 5.5.32, [Ohl94a; Ohl95b])
Let R1 and R2 be two constructor sharing terminating CTRSs. Their union is termi-
nating if one of the following conditions holds:

(1) Both R1 and R2 are layer preserving.

(2) Both R1 and R2 are confluent and non-duplicating.

(3) Both systems are confluent and one of them is layer preserving and non-duplicating.

Our results on weak termination, weak and strong innermost termination, termination
and completeness of disjoint unions of CTRSs presented above extend to the construc-
tor sharing case as follows.

Theorem 5.5.36 (generalized version of Theorem 5.5.21, [Gra96b])
The following properties are modular for constructor sharing CTRSs without extra
variables (in the conditions of the rules), as well as for confluent constructor sharing
CTRSs:56

(1) Weak termination (WN).

(2) Weak innermost termination (WIN).

(3) Strong innermost termination (SIN).

Similarly, the above results on termination and completeness of disjoint unions of non-
overlapping and overlay CTRSs extend to the constructor sharing case as well.

Theorem 5.5.37 (generalized version of Theorems 5.5.26, 5.5.27, [Gra96b])
Termination and completeness are modular for constructor sharing non-overlapping
CTRSs as well as for constructor sharing overlay CTRSs with joinable critical pairs.

56Note that, for confluent constructor-sharing CTRSs, part (1) is equivalent to Theorem 5.5.34
above.
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It seems plausible to conjecture that these results as well as (most, if not all) other
ones should also hold for composable CTRSs, however, corresponding proof attempts
will be — at least technically — challenging.



Chapter 6

Related Topics and Concluding
Remarks

Here we give an outline of issues that have not been not explicitly treated or only
touched. In Section 6.1 more general hierarchical as well as other types of combining
rewrite systems are briefly discussed including the relevant literature. We sketch basic
new problems arising for instance when considering hierarchically structured combina-
tions of systems. General aspects of combining abstract reduction systems and known
approaches in this field are very briefly dealt with in Section 6.2. Topics and fields
which are more or less closely related to the main themes in this thesis but which had
to be neglected or omitted in the presentation are finally summarized in Section 6.3.

6.1 Hierarchical and Other Types of Combinations

In the preceding chapters we have mainly dealt with combinations of disjoint, construc-
tor sharing or composable (C)TRSs. Actually, some basic ideas, techniques and results
also extend to more general types of combinations, for instance hierarchical ones.

Such asymmetric hierarchical combinations are obtained by requiring that one system
(the base system) does not depend — in a sense to be made precise — on the other one
(the hierarchical extension), but possibly vice versa. For instance, constructor sharing
combinations may be generalized to hierarchical ones by allowing that the defined
function symbols of the base system may occur in (right hand sides, or both right and
left hand sides but not as root symbols of the latter, of) rules of the extension but
not vice versa. A very simple example of this kind of hierarchical combination is the
following.

Example 6.1.1 ([Gra91]1 )
Consider the combination of the one-rule base system

a → b

1In another context, a variant of this example appears also in [Der81].
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with the one-rule extension system

h(x, x) → h(a, b) .

Clearly, both systems are (even simply) terminating (and confluent) however their
combination is non-terminating (and even not weakly terminating) due to the cycle

h(b, b) → h(a, b) → h(b, b) .

Intuitively it is clear that the problem here comes from the fact that the defined function
symbol a of the base system occurs below the defined symbol h of the extension, namely
in the right hand side of the second rule. Another problematic effect arising can also
be observed in this example: Reduction in the combined system need not be rank-
decreasing any more. Since, using a natural extension of the definition of rank (by
considering for instance a to be black, h to be white, and b as well as variables to
be transparent), it is obvious that the second rule is strictly rank-increasing. This
shows that without further restrictions most results for disjoint, constructor sharing
and composable systems are unlikely to extend to arbitrary combinations. In particular,
the very useful possibility of performing proofs by induction on the rank of terms is in
general not possible for hierarchical combinations.

Somewhat better behaved is another basic example from algebraic specification by
(equations and) rewrite rules. Namely, take the usual hierarchical rewrite specification
of multiplication in terms of a base system specifying addition, for instance on natural
numbers constructed by zero and the successor function. Here, the base system is
given by

0 + y → y
s(x) + y → s(x + y)

and the extension consists of the rules

0 × y → 0
s(x) × y → y + (x × y)

Here, the combined specification for addition and multiplication indeed inherits all nice
properties like termination and confluence from the component systems as one would
probably expect.

One may also define and consider extended versions of hierarchical combinations which
additionally allow for a common shared part thus extending the notion of composable
systems.

The first results on termination properties of hierarchical combinations of TRSs were
reported independently by Krishna Rao ([Kri92]) and Dershowitz ([Der92]). More
thorough investigations by the same authors as well as by others — concerning (in-
nermost, general, weak and simple) termination, completeness and semi-completeness
followed subsequently: [Kri93; Kri95b], [Der95], [Gra93a], [Kri94b], [Kri95c]. In par-
ticular, in [Kri95b], [Kri95c] an interesting refined notion of hierarchical combination
is introduced2 which generalizes not only combinations of constructor sharing, but also

2which is termed super-hierarchical there
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of composable TRSs.

Another recent interesting paper is by Fernández & Jouannaud ([FJ95]) who besides
hierarchical combinations also consider cap-decreasing and alien-decreasing unions.
Cap-decreasing and alien-decreasing unions naturally generalize the cases of disjoint
unions of non-collapsing and of non-duplicating systems, respectively.

6.2 Combining Abstract Reduction Systems

Many results on properties of combined TRSs actually rely on corresponding results
for abstract reduction systems (ARSs), in particular on various commutation proper-
ties. Commutation properties are in a sense rearrangement properties for reduction
sequences. In the early literature (cf. e.g. [Hin64], [Ros73], [Sta75]) commutation (more
precisely, its symmetric version, sometimes also called commutation with) is mainly
used for giving confluence criteria for combined ARSs in terms of commutation con-
ditions. Later on, asymmetric versions of commutation, in particular commutation
over and quasi-commutation over , have been defined and used to derive abstract cri-
teria for termination as well as for other related properties involving both termination
and confluence (cf. e.g. [BD86]). Further interesting papers dealing with related proof
techniques for properties of ARSs include among others [Klo80] (ARSs, combinatory re-
duction systems), [Hue80] (an early survey of the state of the art for ARSs and TRSs),
[Der83] (construction mechanisms for well-founded orderings), [Ges90] (relative ter-
mination), [Toy92] (balanced weak Church-Rosser property), [Oos94a] (confluence by
decreasing diagrams).

For TRSs, results on termination and confluence properties (of single or combined
systems) based on commutation techniques via additional syntactic conditions like left-
and right-linearity and critical pair properties appear e.g. in [RV80], [Hue80], [Der81],
[BD86], [Toy88], [Ges90], [BL90], [TKB89; TKB95], [Pre94], [Der95], [Oos95].

6.3 Related Fields

Finally, we would like to mention and briefly discuss various interesting topics and
fields, which are more or less closely related to the main subjects of this thesis but
which have at most been touched. Even this list is not exhaustive, and we concentrate
on the most relevant aspects.

• String Rewriting Systems (SRS): Various results presented and mentioned
in this thesis might have interesting applications and consequences for string
rewriting systems, a special case of TRSs. This should be investigated in more
detail (cf. e.g. [BO93], [Kur90], [Wra92]).

• Forward / Overlap Closures: Some results presented in Chapter 3 are closely
related to properties of (forward) closures of TRSs ([Geu89], [DH95]) which can
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also be used to derive modularity results. Forward / overlap closures have been
introduced as an interesting syntactical means for termination proofs (cf. [Der81],
[GKM83], [Zha91]).

• Extending /Combining Orderings: Positive modularity results for termina-
tion of combined systems somehow always have a counterpart in corresponding
extensions / combinations of appropriate well-founded orderings on terms. First
promising results on such ordering extensions and combinations have been ob-
tained in [Rub95]. More efforts in this direction are likely to produce further
interesting insights and results.

• Combining Equation Systems / Unification Theory: Combining equa-
tional theories and corresponding matching / unification algorithms has been an
active and fruitful area of research (cf. e.g. [Sch89], [Nip89], [JK91], [BS92],[BS94]).
And it is well-known that for instance collapsing rules are also problematic within
an equational setting. Hence, it might be worth investigating whether modular-
ity results in term rewriting (as treated here) and in bi-directional rewriting, i.e.,
equational term rewriting and unification theory, could have a mutually fertilizing
effect.

• Typed Rewriting: By imposing a type (or sort)) discipline certain semantic
aspects of computation by rewriting / equational reasoning can be better mod-
eled than by unsorted systems. For instance, many-sorted and (various forms
of) order-sorted versions of equational reasoning are well-established nowadays.
Consequently, modularity, preservation and decomposition results for many-and
order-sorted versions of rewriting would also be very useful. Moreover, these typ-
ing mechanisms can also be applied for the purpose of termination and confluence
proofs in the untyped (unsorted) setting. Some works along this line of reasoning
are [GG87], [Pol92], [Gna92], [Zan94]. However, many interesting questions in
this field are still open.

• Function Definition Formalisms: General term rewriting provides an ele-
gant and powerful formalism for specifying recursive functions (algorithms) in a
rather abstract way, with a well-defined denotational semantics. Other, more op-
erationally and algorithmically oriented formalisms have been widely used, too
([BM79]). Typically arising problems there involve termination proofs for al-
gorithms and inductive theorem proving tasks ([Wal94a; Wal94b], [Gie95]). In
these latter function definition formalisms the employed evaluation mechanism
corresponds to innermost term rewriting, and the imposed specification disci-
pline means specification by locally confluent constructor (hence overlaying or
even non-overlapping) systems. Thus, our results in Chapter 3 on innermost and
general termination close the gap between the latter formalisms and term rewrit-
ing. For fully exploiting the potential benefits thereof, however, more detailed
investigations seem to be necessary.

• Rewriting Modulo: Almost all modularity results presented apply only for
ordinary rewriting. Of course, it would be interesting to try to generalize (at
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least some of) these results to the more general case of rewriting modulo some
equational theory. Some progress along this line of reasoning is reported in [FJ95],
[Rub95].

• Term Graph Rewriting: In implementations of term rewriting often various
forms of graph rewriting are used. The basic idea here is to represent terms as
directed acyclic graphs (DAGs) thereby enabling a flexible amount of structure
sharing. Hence, shared subterms may be simultaneously rewritten. In general,
the corresponding versions of term graph rewriting systems have other properties
than TRSs, also with respect to their modularity behaviour. For modularity
and other results in this setting we refer to [Plu93b; Plu93a; Plu94], [KO95b],
[FJ95], [Kri95a]. Graph rewriting is surveyed in [Cou90], term graph rewriting
in [SPe93].

• Combining First- and Higher-Order Rewriting: The combination of (first-
order) TRSs and various versions of λ-calculi and the investigation of confluence
and termination properties of the resulting systems is a rapidly expanding, in-
teresting field of research. Many papers in this direction have appeared in the
last few years, for instance: [BT88], [BTG89; BTG91; BTG94], [Oka89], [Bar90],
[JO91], [BF93b; BF93a], [DK94].





Appendix A

Proofs

Proof: (of Theorem 3.6.1)
For the sake of readability, let us recall the statement to be proved (under the assump-
tion that R is a CTRS with OS(R) and JCP(R)):

Let s be a term with SN(s). For all terms t, u, v and sets Π of mutually
disjoint positions, such that s →∗ t and u = C[s]Π →∗ v, we have C[t]Π ↓ v.

We shall proceed by proving a slightly more general statement, making use of the
encoding of conditions by an equality predicate eq. 1 For this purpose we extend the
CTRS R over the given signature F as follows. The signature F is extended into
F ′ := F ⊎ {eq, true}, with true a new constant of some new sort and eq a new binary
function symbol of the same new sort with arguments of the ‘old’ sort. R is extended
into R′ := R⊎{eq(x, x) → true} where x is a variable of the ‘old’ sort. This extension
R′ (over F ′) of R (over F) is conservative in the sense of Remark 2.3.6. Moreover, R′

obviously also satisfies OS(R′) and JCP(R′).

Now consider the following statement (I):

Let s̄ ∈ T (F ,V) with SN(s̄). For all terms t ∈ T (F ,V), u, v ∈ T (F ′,V)
and all sets Π of mutually disjoint positions, such that s̄ →∗

R t and u =
C[s̄]Π →∗

R′ v, we have C[t]Π ↓R′ v.

According to the properties of the extension as described in Remark 2.3.6 (and since
R′ also satisfies OS(R′) and JCP(R′)), this statement implies the above original one
to be proved.

Actually, instead of (I) we shall prove the following strengthened version (II):

Let s̄ ∈ T (F ,V) with SN(s̄). For all terms s ∈ T (F ,V) with s̄ >1 s,
all t ∈ T (F ,V), all u, v ∈ T (F ′,V) and all sets Π of mutually disjoint
positions, such that s →∗

R t and u = C[s]Π →∗
R′ v, we have C[t]Π ↓R′ v.

1Cf. Remark 2.3.6.
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Here the partial ordering >1 (depending on s̄) is defined by >1:= (→ ∪ ⊲)+
below s̄, where

— for some binary (ordering) relation R — Rbelow a is defined by R∩ ({b|aR∗b}2). Note
that >1 (in (II) above) is well-founded due to SN(s̄). We shall prove (II) by induction,
using the following complexity measure2 M(s, t, u, v, Π) for s ∈ T (F ,V) with s̄ >1 s,
t ∈ T (F ,V), u, v ∈ T (F ′,V) and Π some set of mutually disjoint positions, such that
u = C[s]Π →∗

R′ v:

M(s, t, u, v, Π) = 〈s, n, k〉 ,

where

n = n(u, v) = min{m |u
m
−→

∗
v}

and

k = k(u, v, n) = min{l |u
n

−→
l
v} .

These triples 〈s, n, k〉 are compared using the lexicographic combination
≻= lex(>1, >2, >3) with >2=>3=>=>IN (and >1 as above). Now, by well-foundedness
of >1 (and of >IN) ≻ is well-founded, too.

For a proof of (II) by contradiction, we may assume that there exists a minimal coun-
terexample w.r.t. ≻, i.e., s, t, u, v, Π as above with

(a) s →∗
R t ∧ u = C[s]Π →∗

R′ v

and

(b) ¬ ( C[t]Π ↓R′ v )

such that the corresponding complexity measure M(s, t, u, v, Π) = 〈s, n, k〉 (with 〈s, n, k〉
as above) is minimal w.r.t. ≻.3 In order to obtain a contradiction we proceed by case
analysis showing that the counterexample above cannot be minimal. Subsequently,
for the sake of readability we shall omit the subscripts in notations like s →∗

R t and
u →∗

R′ v (since they are always clear from the context).

If u = v (i.e. n = k = 0) or s = t we are done since (b) is violated. Otherwise,
let s → s′ →∗ t. If we can show that C[s′]Π ↓ v holds then by induction (the first
component of the measure decreases) we get C[t]Π ↓ v because we have s → s′, hence
s >1 s′. But this is a contradiction to (b). We shall distinguish the following cases:

(1) Proper subterm case (see Figure 1): If the first step s → s′ reduces a proper
subterm of s, i.e. s →p s′ for some p > λ, then we have

C[s]Π = C[C ′[s/p]p]Π = (C[C ′[]p]Π)[s/p]Πp →
+ C[s′]Π

= (C[C ′[]p]Π)[s′/p]Πp

2Actually, this measure does not depend on t.
3Note that instead of requiring here minimality of 〈s, n, k〉 w.r.t. to ≻ (the definition of which

depends on s̄) it would also suffice to require only minimality w.r.t. ≻s = lex((→ ∪ ⊲)+below s, >2, >3).
For a detailed discussion of this aspect and a theoretical foundation of the underlying parameterized
version of the well-founded induction principle the reader is referred to Appendix B.
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with s = C ′[s/p]p for some context C ′[]p, hence C[s′]Π ↓ v as desired by induction
(the first component of the measure decreases because s ⊲ s/p = σ(l1) implies
s >1 s/p).

Figure 1 : Proper subterm case

s′

σ(r1)

+

∗ ∗
v

u

s′

σ(l1) σ(l1) σ(r1)

•
+

s

s >1 σ(l1)

by induction

s

(s ⊲ σ(l1))

(2) Otherwise, we may suppose

s →λ,σ,l1→r1⇐=P1
s′, i.e., s = σ(l1) , s′ = σ(r1) and σ(P1) ↓

for some rule l1 → r1 ⇐= P1 ∈ R and some substitution σ. Moreover assume

u = C[s]Π
n

−→q,τ,l→r⇐=P u′ n
−→

k−1
v ,

i.e., C[s]Π/q = τ(l), u′/q = τ(r) and τ(P )↓n−1, for n ≥ 1 minimal with u
n

−→
∗

v

and k ≥ 1 minimal with u
n

−→
k

v.4

Then we have to distinguish the following four subcases according to the relative
positions of q and Π:

(2.1) q |Π (disjoint peak, see Figure 2.1): Then we have u = C[s]Π
n

−→q C ′[s]Π =

u′ n
−→

k−1
v, C ′[s]Π →∗ C ′[s′]Π and C[s]Π →∗ C[s′]Π →q C ′[s′]Π for some con-

text C ′[, . . . , ], hence by induction (the measure decreases in the second or third
component) C ′[s′]Π ↓ v and thus C[s′]Π → C ′[s′]Π ↓ v as desired.

4Note that n′ = min{m |u′ m
−→

∗

v}, k′ = min{l |u′ n′

−→
l

v} and n, k are related as follows: either
n′ < n or else n′ = n and k′ < k. For that reason, one may apply the induction hypothesis in
situations of the form u′ = C ′[s]Π′ →∗ v, s →∗ t′ for inferring C ′[t′]Π′ ↓ v, because of a decrease of
the measure in the second or third component.
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Figure 2.1 : Disjoint peak case

k − 1

n (k > k − 1)

(2.2) q ∈ Π (critical peak, see Figure 2.2): In this case we have a critical peak which is
an instance of a critical overlay of R, i.e. s = σ(l1) = τ(l). Since all conditional
critical pairs are joinable (overlays) we know that there exists some term w with
s = σ(l1) → σ(r1) = s′ →∗ w and s = τ(l) → τ(r) →∗ w. Obviously, we have
u = C[s]Π →l→r⇐=P (C[τ(l)]Π)[q ← τ(r)] = u′ →∗

l→r⇐=P C[τ(r)]Π. For |Π| = 1
we obtain Π = {q} and (C[τ(l)]Π)[q ← τ(r)] = u′ = C[τ(r)]Π →∗ v. Otherwise,

we have C[τ(l)]Π[q ← τ(r)]
n

−→
k−1

v. Hence, by induction (the measure decreases
in the second or third component) we obtain C[τ(r)]Π ↓ v Moreover, τ(r) →∗ w
yields C[τ(r)]Π →∗ C[w]Π which by induction (the measure decreases in the first
component due to s = τ(l) → τ(r), hence s >1 τ(r)) implies C[w]Π ↓ v. Thus,
C[s′]Π = C[σ(r1)]Π →∗ C[w]Π ↓ v because of σ(r1) →

∗ w. Hence we get C[s′]Π ↓ v
as desired.

The remaining case is that of a variable overlap, either above or in some subterm
C[s]Π/π = s (π ∈ Π) of C[s]Π. Note that a critical peak which is not an overlay
cannot occur due to OS(R).
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Figure 2.2 : Critical peak (overlay)

k − 1 (s = τ(l) → τ(r))

q, τ, l → r ⇐= P

n (k > k − 1)

(2.3) q < π for some π ∈ Π (variable overlap above, see Figure 2.3): Let Π′ be the set
of positions of those subterms s = σ(l1) of u/q = τ(l) which correspond to some
u/π = s, π ∈ Π. Formally, Π′ := {π′ | qπ′ ∈ Π}. Moreover, for every x ∈ dom(τ),
let ∆(x) be the set of positions of those subterms s in τ(x) which are rewritten
into s′ in the derivation u = C[s]Π →+ C[s′]Π, i.e. ∆(x) := {ρ′ | ∃ ρ : l/ρ =
x ∧ ρρ′ ∈ Π′}. Then τ ′ is defined by τ ′(x) := τ(x)[ρ′ ← s′ | ρ′ ∈ ∆(x)] for all
x ∈ dom(τ). Obviously, we have τ(x) →∗

l1→r1⇐=P1
τ ′(x) for all x ∈ dom(τ). Thus

we get

u = C[s]Π = C ′[τ(l)]q
n

−→l→r⇐=P C ′[τ(r)]q = u′ n
−→

k−1
v

for some context C ′[]q,

u = C[s]Π →∗
l1→r1⇐=P1

C[s′]Π →∗
l1→r1⇐=P1

C ′′[τ ′(l)]q

for some context C ′′[]q, and

u′ = C ′[τ(r)]q →
∗
l1→r1⇐=P1

C ′′[τ ′(r)]q .
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Moreover we have

C ′′[τ ′(l)]q →q,τ ′,l→r⇐=P C ′′[τ ′(r)]q

by induction (due to τ ′(P ) ↓ as shown below) and finally

C[s′]Π →∗ C ′′[τ ′(r)]q ↓ v

as desired by induction (the measure decreases in the second or third component).

It remains to prove the claim τ ′(P ) ↓ . This means that we have to show τ ′(z1) ↓
τ ′(z2) for all z1 ↓ z2 ∈ P . If P is empty or trivially satisfied (i.e., n ≤ 1) we
are done. Otherwise, we know by assumption that τ(z1) ↓ τ(z2) for all z1 ↓

z2 ∈ P in depth at most n − 1. This means eq(τ(z1), τ(z2))
n−1
−→

∗
true. By

construction of τ ′ we know τ(z1) →∗
l1→r1⇐=P1

τ ′(z1), τ(z2) →∗
l1→r1⇐=P1

τ ′(z2).
Moreover, eq(τ(z1), τ(z2)) is of the form E[s]Q, for some context E[]Q, such that
E[s]Q →∗ E[s′]Q = eq(τ ′(z1), τ

′(z2)). By induction (the measure decreases in the
second component due to n > n− 1) we obtain E[s′]Q = eq(τ ′(z1), τ

′(z2)) ↓ true,
hence eq(τ ′(z1), τ

′(z2)) →
∗ true (since true is irreducible) which means that τ ′(z1)

and τ ′(z2) are joinable (without using the rule eq(x, x) → true ). This finishes the
proof of the claim τ ′(P ) ↓ . Summarizing we have shown C[s′]Π ↓ v as desired.

(2.4) π < q for some π ∈ Π (variable overlap below, see Figure 2.4): Remember
that we have u/π = σ(l1) = s and u/q = τ(l). Now let q′, q′′, q′′′, Π′, Π′′

and contexts C ′[]q, D[]q′′′ , D′[]Π′ , D′′[]Π′′ be (uniquely) defined by u = C ′[τ(l)]q,
q = πq′, q′ = q′′q′′′, l1/q

′′ = x ∈ V, σ(x) = D[τ(l)]q′′′ , Π′ = {π′ | l1/π
′ = x}, Π′′ =

{π′′ | r1/π
′′ = x}, σ(l1) = D′[D[τ(l)]q′′′ ]Π′ , σ(r1) = D′′[D[τ(l)]q′′′ ]Π′′ . Moreover let

σ′ be the substitution on V (l1) defined by

σ′(y) =

{
σ(y) , y 6= x

D[τ(r)]q′′′ , y = x, σ(x) = D[τ(l)]q′′′ .

Then we get

C[s]Π = C[σ(l1)]Π

= C[D′[D[τ(l)]q′′′ ]Π′ ]Π →+
σ,l1→r1⇐=P1

C[s′]Π = C[σ(r1)]Π

= C[D′′[D[τ(l)]q′′′ ]Π′′ ]Π →∗
τ,l→r⇐=P C[D′′[D[τ(r)]q′′′ ]Π′′ ]Π

= C[σ′(r1)]Π ,

and

C[s]Π = C[σ(l1)]Π = C[D′[D[τ(l)]q′′′ ]Π′ ]Π

= C ′[τ(l)]q →q,τ,l→r⇐=P u′

= C ′[τ(r)]q →
∗
τ,l→r⇐=P C[D′[D[τ(r)]q′′′ ]Π′ ]Π = C[σ′(l1)]Π .
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By induction (the first component decreases due to s ⊲ τ(l)) we obtain

C[s]Π = C[σ(l1)]Π →+ C[σ′(l1)]Π ↓ v ,

hence s >1 τ(l)). Moreover, we get

C[σ′(l1)]Π →∗
σ′,l1→r1⇐=P1

C[σ′(r1)]Π

since σ′(P1) ↓ is satisfied by induction (the first component decreases due to s ⊲

τ(l), hence s >1 τ(l)).5 Furthermore we have C[σ′(r1)]Π ↓ v by induction (again
the first component decreases due to s = σ(l) →+ σ′(l1), hence s >1 σ′(l1)).
Summarizing we have shown

C[s′]Π →∗ C[σ′(r1)]Π ↓ v

as desired.

Thus, for all cases we have shown C[s′]Π ↓ v yielding a contradiction to (b), hence we
are done.

5Note that – in contrast to case 2.3 – a ‘proper eq-reasoning’ can be avoided here (by applying
the induction hypothesis twice), since the inductive argument needed does not involve the depth of
rewriting.
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Appendix B

A Parameterized Version of the
Well-Founded Induction Principle

The well-known and powerful proof principle by well-founded induction says that for
verifying ∀x : P (x) for some property P it suffices to show ∀x : [[∀y < x : P (y)] =⇒
P (x)] , provided < is a well-founded partial ordering on the domain of interest. Here
we investigate a more general formulation of this proof principle which allows for a
kind of parameterized partial orderings <x which naturally arises in some cases. More
precisely, we develop conditions under which the parameterized proof principle ∀x :
[[∀y <x x : P (y)] =⇒ P (x)] is sound in the sense that ∀x : [[∀y <x x : P (y)] =⇒
P (x)] =⇒ ∀x : P (x) holds, and give counterexamples demonstrating that these
conditions are indeed essential.1

Usually, in proofs by well-founded induction (cf. e.g. [Coh65], [Fef77], [MW93]) one
tries to verify

∀x : P (x) (B.1)

by showing

∀x : [ [∀ y < x : P (y) ] =⇒ P (x) ] (B.2)

where < is a fixed well-founded partial ordering on the domain of interest. In fact, <
need not be a partial ordering. Any well-founded or terminating relation suffices.

Definition B.0.1 (cf. e.g. [Wec92]) Let R be a (binary) relation on a set A.

• Let B be a non-empty subset of A. An element b ∈ B is said to be R-minimal
(or simply minimal) if, for all a ∈ A, bRa implies a /∈ B.

• R is called well-founded (or Noetherian) if every non-empty subset of A has a
minimal element.2

• R is called terminating if there is no infinite sequence (an)n∈IN such that anRan+1

for all n ∈ IN.

1An extended version of the results in this appendix has been published in [Gra95c].
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Well-foundedness and termination are equivalent notions. Well-foundedness obviously
implies termination, and the reverse direction is also easy but requires the Axiom of
(Dependent) Choice (cf. e.g. [Jec77]).

Theorem B.0.2 (cf. e.g. [Wec92])
A (binary) relation is well-founded if and only if it is terminating.

In practice, i.e., when trying to apply the general principle of proof by well-founded
induction, it often occurs that an appropriate well-founded partial ordering either is not
available or unknown, or – if some partial ordering seems to be an obvious candidate
– its well-foundedness is not guaranteed or somehow depends on the property to be
proved. To illustrate this situation consider the following local version of Newman’s
Lemma:

Every terminating element a ∈ A in a locally confluent ARS A = (A,→) is
confluent (or more succinctly: ∀ s ∈ A : SN(s) ∧ WCR(A) =⇒ CR(s)).3

A typical proof of this lemma might looks as follows:

Proof: Let A = 〈A,→〉 be an ARS with WCR(A), and let s ∈ A with SN(s) be
given. Let Q(x) (for x ∈ A) be defined by

Q(x) := CR(x) .

We proceed by induction over x w.r.t. the ordering > := >s := →+ |G(s)×G(s), where
G(s) := {t ∈ A | s →∗ t}, showing

∀x ∈ A, x ≤ s : Q(x) .4

Observe that we have x > y ⇐⇒ s →∗ x →+ y, and x ≥ y ⇐⇒ s →∗ x →∗ y (for
the reflexive ordering ≥ induced by the strict partial ordering >). By the assumption
SN(s) we know that > =→+ |G(s)×G(s) is well-founded. Now, assuming s ≥ x and
y ∗← x →∗ z, we have several cases. If y or z equals x, we are done. This includes
the case that x is a minimal element w.r.t. >, i.e. irreducible. Otherwise, there exist
y′, z′ ∈ A with y ∗← y′ ← x → z′ →∗ z. By WCR(x), which follows from WCR(A),5

we know that there exists some u with y′ →∗ u ∗← z′. By induction hypothesis for y′

(x > y′ due to s →∗ x → y′) we conclude that there exists some v with y →∗ v ∗← u
and the induction hypothesis for z′ (x > z′ due to s →∗ x → z′) yields the existence of
some w with y′ →∗ u →∗ v →∗ w ∗← z ∗← z′. Summarizing we get y →∗ v →∗ w ∗← z

2Following common usage, we call a partial ordering relation denoted by < well-founded / termi-
nating if > := <−1 is well-founded / terminating.

3Note that this formulation is slightly weaker than Theorem 2.1.26 (yet, the corresponding state-
ments are equivalent).

4Note that in general the statement ∀x ∈ A, x ≤ s : Q(x) is stronger than Q(s) (although here
both are equivalent)! In fact, it is well-known that in proofs by induction it is often easier to prove a
stronger statement than the original one since this also provides stronger induction hypotheses.

5Obviously, the assumption WCR(A) in this local version of Newman’s Lemma can even be weak-
ened to WCR(G(a)) where G(s) = (G(s),→ |G(s)×G(s)) is the sub-ARS of A determined by the element
s (cf. Theorem 2.1.26).
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and hence CR(x) as desired.
Note that in the above proof the ordering used for showing

∀x ∈ B : Q(x)

with B = {x ∈ A |x ≤s s} depends on s and its well-foundedness was assumed before.
A careful inspection of the proof which was done via the instantiated scheme

∀x ∈ B : [∀y <s x : Q(y) ] =⇒ Q(x) (B.3)

reveals that in the induction step we could have also used the induction hypotheses

∀y <x x : Q(y)

instead of

∀y <s x : Q(y)

with <x defined by

u >x v ⇐⇒ s →∗ x →∗ u →+ v , (B.4)

i.e., according to the instantiated scheme

∀x ∈ B : [∀y <x x : Q(y) ] =⇒ Q(x) . (B.5)

Similarly, when defining Q′(x) (for x ∈ A) by

Q′(x) := [ SN(x) =⇒ CR(x) ]

the dependence on well-foundedness of the applied partial ordering is incorporated in
Q′(x). Then, proving the local version of Newman’s Lemma above amounts to showing

∀x ∈ A : Q′(x)

which one might be tempted to accomplish by showing

∀x ∈ A : [∀y ∈ A, y <x x : Q′(y) ] =⇒ Q′(x) (B.6)

with <x defined by (u, v ∈ A):

u >x v ⇐⇒ x →∗ u →+ v . (B.7)

Here, the proof of (B.6) is analogous to the proof of (B.5).6

Note that proceeding as sketched above presupposes in general correctness of the follow-
ing induction principle which is parameterized by a family of (strict partial) orderings
<x:

∀x : [∀y <x x : P (y)] =⇒ P (x) (B.8)

The correctness of (B.8) is expressed by

[∀x : [ [∀y <x x : P (y)] =⇒ P (x) ] ] =⇒ [∀x : P (x) ] (B.9)

and obviously depends on properties of the involved ordering relations <x. As already
mentioned, a careful inspection of the above proof for the local version of Newman’s
Lemma shows that essentially the same proof can be used for establishing (B.8) with

6From an intuitive point of view one would usually prefer to proceed according to (B.3) (or (B.5))
since there the well-foundedness assumption and the statement to be proved are clearly separated,
and thus easier to understand.



188
APPENDIX B. A PARAMETERIZED VERSION OF THE WELL-FOUNDED

INDUCTION PRINCIPLE

P instantiated appropriately (by Q) and <x defined by (B.4). Hence, in this special
case the induction scheme (B.8) is correct, i.e., (B.9) holds. So one may ask in general,
under what conditions concerning the applied family of orderings <x and the involved
predicate Q(x) is (B.8) a correct induction principle as expressed by (B.9)? That
correctness is not assured in general, can be seen from the following counterexamples.

Example B.0.3 Let G = {a, b} be a set of two elements and <a, <b be two partial
orderings on G given by <a:= {(b, a)}, <b:= {(a, b)}. Moreover let Q be some unary
predicate on G such that ¬Q(a) and ¬Q(b) hold, i.e. Q is neither satisfied for a nor
for b. Then the induction principle (B.8) with P instantiated by Q becomes

∀x ∈ G : [∀y ∈ G, y <x x : Q(y)] =⇒ Q(x) (B.10)

which is equivalent to

[ [∀y <a a : Q(y) ] =⇒ Q(a) ] ∧ [ [∀y <b b : Q(y) ] =⇒ Q(b) ]

which in turn is, by definition of <a, <b, equivalent to

[ Q(b) =⇒ Q(a) ] ∧ [ Q(a) =⇒ Q(b) ] . (B.11)

Note that due to the assumptions ¬Q(a), ¬Q(b) we obviously have that (B.11) holds.
However,

∀x ∈ G : Q(x)

is false, hence the instantiated version of the parameterized induction scheme (B.8) is
incorrect, i.e.,

[∀x ∈ G : [ [∀y ∈ G, y <x x : Q(y)] =⇒ Q(x) ] ] =⇒ [∀x ∈ G : Q(x) ]

is false.

Note that in the above example the parameterized ordering relations <a, <b are clearly
well-founded, but the ordering information of <a, <b is ‘contradictory’. The latter is
not the case in the following example.

Example B.0.4 Let G = {a0, a1, a2, . . .} be a countably infinite set with ordering
relations <ai

(for i ≥ 0) defined by

a0 >a0
a1 >a0

a2 >a0
a3 >a0

a4 . . .
a1 >a1

a2 >a1
a3 >a1

a4 . . .
a2 >a2

a3 >a2
a4 . . .

. . . . . . . . . . . . ,

i.e. <ai
is defined by <ai

:= {(ak, aj) | k > j ≥ i}. Moreover, for some unary predicate
Q on G let ¬Q(ai) hold for all i ≥ 0. Then the induction principle (B.8) with P
instantiated by Q becomes

∀x ∈ G : [∀y ∈ G, y <x x : Q(y)] =⇒ Q(x) (B.12)

which holds since the induction hypothesis [∀y ∈ G, y <x x : Q(y)] is never satisfied
(note that for any aj ∈ G there exists ak ∈ G (choosing e.g. k = j + 1) with ak <aj

aj

but not Q(ak)).
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Note that in this example the ordering information is somehow consistent, but <ai
is

clearly not well-founded.

The previous examples motivate the following abstract correctness conditions for the
parameterized induction principle (B.8):

∀x, y : [ y <x x =⇒ <y ⊆<x ] (B.13)

and

∀x : [¬P (x) =⇒ <x is well-founded. ] (B.14)

We shall show now that if both the “compatibility” condition (B.13) and the “well-
foundedness” condition (B.14) hold, then the parameterized induction principle (B.8)
is correct as expressed by (B.9).

Theorem B.0.5 The principle of parameterized (well-founded) induction (B.8) is cor-
rect, i.e. (B.9) holds, provided that the “compatibility” condition (B.13) and the
“well-foundedness” condition (B.14) are satisfied.

We shall present two alternative proofs for this result. The first one is a more direct
one and works by contradiction, and the second one essentially shows that (B.8) is
equivalent to the usual principle of well-founded induction using one fixed uniform
well-founded ordering.

Proof: (by contradiction)
Assume that (B.13) and (B.14) are satisfied, and assume that (B.8) holds, but not
(B.9). Hence, there exists some x with ¬P (x), let’s say x0. Condition (B.14) implies
that <x0

is well-founded. Now (B.8) implies in particular

[∀y <x0
x0 : P (y) ] =⇒ P (x0)

which, due to ¬P (x0), yields the existence of some x1 <x0
x0 with ¬P (x1). Choosing

x = x1 in (B.8) and using ¬P (x1) we know that there is some x2 <x1
x1 with ¬P (x2),

and so on.7 Hence, by (ordinary) induction (on the ordering of the natural numbers)
we can conclude that (for every i ≥ 0) there exists some xi with ¬P (xi) and

x0 >x0
x1 >x1

x2 >x2
x3 >x3

x4 . . . .

Applying repeatedly condition (B.13) we get

x0 >x0
x1 >x0

x2 >x0
x3 >x0

x4 . . . .

But this means that <x0
is not well-founded, contradicting condition (B.14).

Proof: (by ordinary well-founded induction)
Assume that (B.13) and (B.14) are satisfied. Then we define a binary relation < as
follows:

u < v : ⇐⇒ ¬P (v) ∧ u <v v . (B.15)

Next we show that < is a well-founded partial ordering, i.e., it is irreflexive, transitive,
and well-founded. Irreflexivity of < follows from irreflexivity of <u for all u. For

7Note that this actually requires the Axiom of Choice.
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showing transitivity we have to show that u < v and v < w implies u < w. By
definition of < the assumption yields u <v v <w w. Using (B.13) we get u <w v <w w
which, by transitivity of <w, implies u <w w. From v < w we get ¬P (w), hence
together this yields u < w. For proving well-foundedness of < (by contradiction)
assume that

u0 > u1 > u2 > u3 > . . .

is an infinite decreasing >-chain. This implies

∀i ≥ 0 : ¬P (ui)

and

u0 >u0
u1 >u1

u2 >u2
u3 >u3

u4 . . .

which, again by the compatibility condition (B.13), yields

u0 >u0
u1 >u0

u2 >u0
u3 >u0

u4 . . . .

But this means that <u0
is not well-founded contradicting (B.14). Hence, we conclude

that < is indeed a well-founded partial ordering, for which the principle of well-founded
induction (B.2) is correct. Thus, substituting the definition of < into (B.2) we obtain

∀x : [ [∀y : ¬P (x) ∧ y <x x =⇒ P (y) ] =⇒ P (x) ]

which is equivalent to

∀x : [ [∀y : P (x) ∨ ¬(y <x x) ∨ P (y) ] =⇒ P (x) ]

and to

∀x : [ [ [∀y : y <x x =⇒ P (y) ] ∨ P (x) ] =⇒ P (x) ]

hence yielding

∀x : [ [∀y, y <x x : P (y) ] =⇒ P (x) ] .

Thus, correctness of the ordinary well-founded induction principle (B.2) implies correct-
ness of the parameterized (well-founded) induction principle (B.8) under the conditions
(B.13) and (B.14) as was to be shown.

The counterexamples (B.0.3) and (B.0.4) above demonstrate that the “compatibility”
condition (B.13) and the “well-foundedness” condition (B.14) cannot be dropped with-
out loosing correctness of the principle of parameterized (well-founded) induction (B.8)
in general. In our introductory Example above we observe that these two conditions
are indeed satisfied. In fact, with >u defined by

x >u y ⇐⇒ s →∗ u →∗ x →+ y ,

compatibility means

x >x y =⇒ >x ⊇>y

or equivalently

x >x y =⇒ [∀u, v : u >y v =⇒ u >x v ]
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which holds, since x >x y and u >y v imply s →∗ x →∗ x →+ y, s →∗ y →∗ u →+ v,
hence s →∗ x →+ y →∗ u →+ v and thus u >x v. The well-foundedness condition
(B.14) is also satisfied, since every >x is well-founded by the global assumption SN(s).

Although the second proof of Theorem B.0.5 reveals that (B.8) is not more powerful
than ordinary well-founded induction, the parameterized induction principle (B.8) has
the advantage that one may directly work with (B.8), i.e. with a family of ordering
relations, which may arise quite naturally in certain cases. The only thing to be verified
for correctness is to ensure that the abstract properties (B.13) and (B.14) are satisfied.
Working directly with with (B.8) may be useful (from a conceptual point of view) for
instance in inductive proofs by some counterexample x which is assumed to be minimal
w.r.t. some well-founded ordering >, in the sense that w.l.o.g. x may be assumed to be
minimal w.r.t. some (naturally defined) >x (instead of minimal w.r.t. >). This may
be beneficial for the sake of better understanding the essence of the involved inductive
reasoning, in particular in cases where the whole inductive proof is very complicated .

Finally let us mention that the two conditions (B.13) and (B.14) are only one possibility
for guaranteeing correctness of (B.8). Indeed, let us consider the following modification
of Example B.0.4.

Example B.0.6 Let G = {a0, a1, a2, . . .} be a countably infinite set with ordering
relations <ai

(for i ≥ 0) defined by

>ai
:= {(ai, ai+1)} .

Moreover, for some unary predicate Q on G let ¬Q(ai) hold for all i ≥ 0. Then the
induction principle (B.8) with P instantiated by Q becomes

∀x ∈ G : [∀y ∈ G, y <x x : Q(y)] =⇒ Q(x) (B.16)

which holds since the induction hypothesis [∀y ∈ G, y <x x : Q(y)] is never satisfied
(note that for any aj ∈ G we have aj+1 <aj

aj but not Q(aj+1)). Hence,

[∀x : [ [∀y <x x : P (y)] =⇒ P (x) ] ] =⇒ [∀x : P (x) ]

is obviously incorrect in this case.

In this example, the ordering relations (>ai
)i≥0 are all well-founded, and compatible

in the sense that combining any two >ai
, >aj

of them (or even finitely many >ak
) still

yields a well-founded relation. However, the problem is, that
⋃

i≥0 >ai
is not well-

founded any more. In fact, the crucial point for correctness of (B.8) is that an infinite
sequence of the form

x0 >x0
x1 >x1

x2 >x2
x3 >x3

x4 . . . .

issuing from some counterexample x0 (i.e. with ¬P (x0)) is impossible (cf. the (first)
proof of Theorem B.0.5). To ensure this property, one might require instead of (B.13),
(B.14) the following more general condition:

∀x0 : [¬P (x0) =⇒ (
⋃

x

>x)
below x0

is well-founded ] (B.17)
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APPENDIX B. A PARAMETERIZED VERSION OF THE WELL-FOUNDED

INDUCTION PRINCIPLE

where, for some binary relation R, Rbelow y is given by

Rbelow y = R ∩ {(u, v) | yR∗uRv} = R|{z | yR∗z}2 .

Then the proof(s) of the modified version of Theorem B.0.5 go through as well,8 just
as before.

In order to ensure correctness of (B.8) as a general scheme – and not only of specific
instances of (B.8) as considered above and in particular in Theorem B.0.5 – one simply
has to require well-foundedness of

⋃

x

>x .

8Note that any well-founded (binary) relation can be turned into a well-founded (strict partial)
ordering, simply by taking the transitive closure. Thus, for proofs by well-founded induction, it does
not really matter whether the underlying well-founded relation is an ordering or not, since transitivity
can always be enforced.
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[Gra95c] Bernhard Gramlich. A note on a parameterized version of the well-founded
induction principle. SEKI-Report SR-95-08, Fachbereich Informatik, Uni-
versität Kaiserslautern, May 1995. (This is a revised and extended version
of the contribution in Bulletin of the EATCS 52, pp. 274–277, February
1994)

[Gra95d] Bernhard Gramlich. On termination and confluence of conditional rewrite
systems. In Nachum Dershowitz and Naomi Lindenstrauss, editors,
Proc. 4th Int. Workshop on Conditional and Typed Rewriting Systems
(CTRS’94), Jerusalem, Israel, Lecture Notes in Computer Science 968,
pages 166–185. Springer-Verlag, 1995.

[Gra95e] Bernhard Gramlich. Termination by divide and conquer: Some new preser-
vation results. In Proc. 2nd Int. Workshop on Termination (abstracts), La
Bresse, France, May 1995.

[Gra96a] Bernhard Gramlich. On proving termination by innermost termination.
Submitted to RTA’96, January 1996.

[Gra96b] Bernhard Gramlich. On termination and confluence properties of disjoint
and constructor-sharing conditional rewrite systems. Theoretical Computer
Science, 1996. To appear (this a revised and extended version of [Gra94b]).

[GW96] Bernhard Gramlich and Claus-Peter Wirth. Confluence of terminating
conditional rewrite systems revisited. Submitted to RTA’96, January 1996.

[Hin64] J.R. Hindley. The Church-Rosser Property and a Result in Combinatory
Logic. PhD thesis, University of Newcastle-upon-Tyne, 1964.

[HL78] Gérard Huet and Dallas Lankford. On the uniform halting problem for
term rewriting systems. Technical Report 283, INRIA, 1978.

[HL91] Gérard Huet and Jean-Jacques Lévy. Computations in orthogonal rewrit-
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[Kap88] Stéphane Kaplan. Positive/negative conditional rewriting. In S. Kaplan
and J.-P. Jouannaud, editors, Proc. 1st Int. Workshop on Conditional Term
Rewriting Systems (CTRS’87), Lecture Notes in Computer Science 308,
pages 129–143. Springer-Verlag, 1988.

[KB70] Donald E. Knuth and P.B. Bendix. Simple word problems in universal
algebra. In J. Leech, editor, Computational Problems in Abstract Algebra,
pages 263–297. Pergamon Press, Oxford, U. K., 1970. Reprinted 1983 in
“Automation of Reasoning 2”, Springer, Berlin, pp. 342–376.

[KK90] Masahito Kurihara and Ikuo Kaji. Modular term rewriting systems and
the termination. Information Processing Letters , 34:1–4, 1990.
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