
Strategic Issues, Problems and Challenges in

Inductive Theorem Proving

Bernhard Gramlich1

Fakultät für Informatik, TU Wien
Favoritenstr. 9 – E185/2, A–1040 Wien, Austria

Abstract

(Automated) Inductive Theorem Proving (ITP) is a challenging field in automated reasoning and
theorem proving. Typically, (Automated) Theorem Proving (TP) refers to methods, techniques
and tools for automatically proving general (most often first-order) theorems. Nowadays, the field
of TP has reached a certain degree of maturity and powerful TP systems are widely available and
used. The situation with ITP is strikingly different, in the sense that proving inductive theorems
in an essentially automatic way still is a very challenging task, even for the most advanced existing
ITP systems. Both in general TP and in ITP, strategies for guiding the proof search process
are of fundamental importance, in automated as well as in interactive or mixed settings. In the
paper we will analyze and discuss the most important strategic and proof search issues in ITP,
compare ITP with TP, and argue why ITP is in a sense much more challenging. More generally, we
will systematically isolate, investigate and classify the main problems and challenges in ITP w.r.t.
automation, on different levels and from different points of views. Finally, based on this analysis
we will present some theses about the state of the art in the field, possible criteria for what could
be considered as substantial progress, and promising lines of research for the future, towards (more)
automated ITP.

Keywords: Inductive theorem proving, automated theorem proving, automation, interaction,
strategies, proof search control, challenges.

1 Background and Overview

Theorem proving tasks are ubiquitous in computer science, e.g., in fields like
program specification, transformation and verification. Most often the given,
generated or resulting proof tasks are not general ones (in the sense, that va-
lidity in all models of the underlying logic specification is to be established),

1 Email: gramlich@logic.at www: http://www.logic.at/staff/gramlich/

Electronic Notes in Theoretical Computer Science 125 (2005) 5–43

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.01.006

mailto:gramlich@logic.at
http://www.logic.at/staff/gramlich/
http://www.elsevier.com/locate/entcs

but more specific ones, where (in)validity is to be shown only in some subclass
of models (or in a unique standard model provided it exists). The class of for-
mulae being valid in such restricted classes of models is usually much bigger
than the one consisting of the general theorems. Typically, any reasonable
approach for proving such properties – inductive theorems – needs some kind
of induction (which is one source of explanation why such theorems are called
inductive theorems). 2 In fact, in computer science applications, in particular
in (formal foundations of) software engineering and reasoning about speci-
fications and programs, most often the specifier, programmer or user is not
interested so much in all models of a given specification (or axiomatization),
but rather in a specific (and often unique) natural model that is induced by
the specification and that closely corresponds to her/his intuition. This means
that for proving properties (general) TP is usually insufficient and can only
be used as a kind of first default approach. If a conjecture is provable via TP,
then it is also an inductive theorem, but if it is not provable by TP (or even
proved to be not valid in general), it may still be an inductive theorem.

Automated TP has turned out to be fairly successful nowadays (in its range
of applications), whereas this does not really hold for ITP, more precisely for
automated ITP. Hence, a better understanding of the differences may also be
helpful for improving ITP approaches and techniques.

The paper is primarily non-technical and high-level, focusing on relevant is-
sues in (automated) ITP, that make the problem difficult. We assume some
basic knowledge, terminology and notations in first-order logic. Though the
presentation is essentially non-technical, to really understand, appreciate or
criticize the analysis developed, especially the conclusions and interrelations,
we conjecture that some familiarity with ITP in theory and practice will be
necessary, since without own experience the problems in ITP are typically
underestimated. For the interested reader, we give a lot of references to works
in the field that may serve as a starting point for a more detailed study of
various aspects and approaches in ITP. Although the links to the literature
are fairly comprehensive, we do not claim any kind of completeness with this
bibliography.

2 In fact, most often also the definition of inductive theorem can be given in such a way
that it has an inductive nature, in the sense that from many – typically infinitely many
(ground) – instances of a formula a more general one is (inductively) deduced, cf. e.g. [12].
Furthermore, it should be noted that the kind of induction (as proof method) we are dealing
with here should not be confused with induction in the field of inductive learning as it is
used for instance in the ALT (Algorithmic Learning Theory) conferences.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–436

As main contributions we consider the systematic analysis and evaluation of
the main problems and challenges in ITP. They finally yield an assessment of
the state of the art in the field, with some theses about what could be con-
sidered as substantial progress, with corresponding promising lines of research
for the future, towards (more) automated ITP.

Before going into details let us mention a couple of papers and proceedings,
that are not explicitly discussed later on, where certain issues related to proof
search in TP and ITP have been discussed in some depth. One major forum
for such work is the workshop on Strategies in Automated Deduction, held
since 1997, cf. [90], [93], [91], [92], [22]. Another source is the workshop
on the Automation of Inductive Proof, held irregularly since the beginning
of the 1990s, but with at most informal proceedings (cf. e.g. [108]). Further
literature includes [45,48], [49], [64], [65], [66], [68], [86,87,88,89], [104,106,110],
[119], [120], [125], [130], [135], [147], [149], [154], [155], [157,158,159], [161,162],
[171], [172], [175], [177], [178], [196], [203], [231], [233], [234].

The plan of the paper is as follows. In this section we will deal with some
basics about induction, with TP versus ITP, and with different approaches to
and assumptions about ITP. In Section 2 we will in detail cover and discuss
the relevant strategic issues and problems in ITP. In Section 3 we will give
an assessment of the current state of the art and of some prominent ITP
systems used nowadays (again without claiming completeness), together with
a summary of successes and failures. Finally, in Section 4 we will isolate,
summarize and interrelate what we consider to be the main problems and
challenges in ITP, giving rise to a few theses in Section 5 about the future,
and about promising lines of research / criteria for substantial progress. These
theses may be quite debatable and may not be widely shared, but there is
quite some evidence for them. If they were to entail a lively discussion in the
research community, this would already be a very positive consequence.

1.1 Basics about Induction

As already mentioned, the notion inductive is ambiguous in its usage, though
the underlying concept – going from specific instances to something more
general – is the same. Proof techniques can be inductive insofar as they em-
ploy induction schemata based on induction principles. Also the notion of
validity of statements may be inductive. There exist other notions and areas
where induction and inductive processes make sense, like (algorithmic) induc-
tive learning mechanisms. We are concerned with the former two, namely
inductive proofs of theorems (more precisely, conjectures) or proofs of induc-
tive properties. Before having a closer look at what this means more precisely,

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 7

let us consider where induction in this sense occurs (in computer science and
mathematics). The easy answer is: Almost everywhere! For instance, when
reasoning about recursively defined domains or data structures with functions
defined on them, or about programs and specifications, then most often not
only general TP is needed, but more, namely ITP. Especially in computer
science where logic-based specifications are often (explicitly or implicitly) as-
sumed to constructively specify and/or model some system or computation
task, one is often interested not in all conceivable models of a given spec-
ification, but only in certain ones (i.e., in some restricted class of models)
or even only in a distinguished particular one (a standard model) capturing
the essential properties that one has in mind. Such restrictions can often
be characterized by requiring that every element in some model considered
has to be term generated. In other words, elements in models need to have
a syntactic counterpart in the specification. In a sense, this is a very nat-
ural requirement in a computer science context for very many, though not
all, applications. Unfortunately, in the literature on verification and theorem
proving the distinction between (general) validity and inductive validity (the-
orems and inductive theorems, respectively) is sometimes not appropriately
mentioned or even ignored. For certain purposes this is quite problematic,
since, as we shall discuss, the proof-technical implications are far-reaching.

The very general principle of well-founded induction, for proving some
property P depending on a parameter x, may be stated in the form of an
inference rule as follows:

∀x. [(∀y. [y < x ⇒ P (y)]) ⇒ P (x)]

∀x.P (x)

with < a well-founded order (on the domain of x). The typically used induc-
tion principles and schemas (natural induction, structural induction, course-
of-values induction etc.) are all obtained from this general principle by ap-
propriate instantiations.

Next let us briefly review basic notions and relationships between syntax
and semantics, especially between derivability and validity (in a first-order
logic framework). Typically, based on some set of some set of axioms and
some some set of rules, the resulting inference system defines � F , (syntactic)
derivability of a formula F . If � F is derivable, it is a deductive theorem (of the
underlying set of axioms in the given inference system). Syntactic entailment
or relative derivability of F from some set G of assumptions (considered as
additional axioms) is denoted by G � F , in which case F is called a deductive
consequence of G.

One the semantic side, one usually has a notion of interpretation of a given

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–438

logical specification. An interpretation satisfying a specification G is a model
of G. A formula is F valid (|= F) if it holds in all models of the initial axioms.
Semantic entailment or relative validity of F from some set G of assumptions
(considered as additional axioms) is denoted by G |= F , where F is called a
semantic consequence of G. Abusing notation, the fact that F holds in some
particular model M of the initial axioms (or in some class K of models of the
initial axioms) is also denoted by M |= F (or K |= F , respectively).

Now, for obvious reasons — in logic and (automated) TP — one strives
for the equivalence of (semantic) validity and (syntactic) derivability, and for
effective and efficient ways to establish the latter. In first-order logic, any
reasonable inference system is well-known to be both sound (� F ⇒ |= F)
and complete (|= F ⇒ � F). Unfortunately, this nice (finitary) correspon-
dence between validity and derivability is in general lost in ITP. We will not
discuss this phenomenon in depth here, but mention only one particular sim-
ple case. Consider some set E of (implicitly universally quantified) equations
over some signature Σ. Then, inductive or initial validity of some equation
s = t is given by T (Σ)/=E

|= s = t, where T (Σ)/=E
is the ground term al-

gebra factored through the congruence induced by E. To capture this notion
of inductive validity syntactically, i.e., deductively or in terms of derivability,
requires an infinitary characterization:

T (Σ)/=E
|= s = t ⇐⇒ ∀σ.E � sσ = tσ

Here, the substitution σ ranges over all ground substitutions over the given
signature. To solve this infinitary proof task one typically uses an (appropri-
ate) inductive proof technique, to show that E � s′ = t′ holds indeed for all
ground instances s′ = t′ of s = t.

In the above case, it is at least possible to characterize inductive validity
by an infinite conjunction of derivability statements, i.e., to relate (inductive)
validity and derivability in a clear way. This need not always be so easily
the case. In fact, this depends very much on the notion of inductive valid-
ity that is used. In various cases, there are some good reasons to choose a
version of inductive validity that deviates from the standard way of defining
it. We briefly mention here only one aspect and give a few pointers to cor-
responding literature. The basic motivating aspect to proceed differently is
an undesirable non-monotonicity phenomenon. To illustrate this, consider an
equational specification E for addition given by 0+x = x, s(x)+y = s(x+y).
Then it is easy to verify (prove) that (∗) x + 0 = x is an inductive theorem
of E, i.e., it holds in the initial algebra T (Σ)/=E

. Now we enrich the original
specification by a (consistent) definition for subtraction, via x − 0 = x and
s(x) − s(y) = x − y yielding E ′. However, somehow contrary to intuition,

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 9

now (∗) is no longer an inductive theorem of E ′! The (essential) reason is
that the enrichment has introduced new junk terms in the initial model which
destroy the desired property. To wit, substituting e.g. 0−s(0) for x, we obtain
(0− s(0)) + 0 = 0− s(0) which cannot be proved in E ′. Here, the enrichment
was consistent (i.e., no previously distinct elements have been identified), but
incomplete in the sense that the new operation was only partially defined (in
terms of the “old data constructors”).

Starting with the work of [128,127] (on proof by consistency and com-
pletion of incomplete specifications), and of [232], [235] who used so-called
constructor models, this line of reasoning — to adopt, define and use “more
monotonic” versions of inductive validity — has been further discussed, de-
veloped and refined subsequently, e.g. in [223], [230,229], [169], [8]. We will
not discuss these approaches in detail, but it should be noted that the above
non-monotonicity phenomenon has serious consequences in ITP. Typically,
one either imposes a very strict specification discipline thus avoiding partial-
ity and non-monotonicity problems (this approach is adopted in most current
ITP systems), or one has to work with a more involved framework that is
more liberal, but also technically more complicated. So, in some sense there
is a trade-off between adequacy and feasibility of the existing approaches.

1.2 TP vs. ITP

Next we shall discuss a bit things in common of and differences between TP
and ITP, where depending on the context we assume that the goal is to be as
automatic as possible.

1.2.1 Comparison from a Logical Point of View

Suppose E is a first-order specification with equality such that it admits some
unique standard model. 3 Let us denote the set of all valid formulæ in E by
Th(E), and the set of inductively valid formulæ, i.e., those that are true in
the standard model of E, by ITh(E). Then, from a logical point of view we
can make the following observations:

(1) We have Th(E) ⊆ ITh(E), but in general ITh(E) �⊆ Th(E).

(2) Any reasonable calculus for Th(E) is sound and complete, and Th(E)
is (in general) undecidable but semi-decidable, i.e., Th(E) is recursively
enumerable but not its complement. Moreover, cut-elimination is possi-
ble.

3 For instance, if E is a set of (implicitly universally quantified) positive-conditional equa-
tions where the conditions are conjunctions of equations, then the existence of such a unique
standard model (the initial algebra) is guaranteed.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4310

(3) Any reasonable calculus for ITh(E) is sound, but in general necessarily
incomplete. 4 ITh(E) is in general neither decidable nor semi-decidable,
i.e., not even recursively enumerable. Moreover, cut-elimination is not
possible ([167]).

Actually, regarding (1), in combination with (2) and (3), there are cases where
ITh(E) coincides with Th(E), hence where ITh(E) becomes semi-decidable in
particular. One case where the latter obviously holds is given when the inclu-
sion Th(E) ⊆ ITh(E) is non-strict. For instance, if E is purely equational,
then E is called ω-complete if an equation is valid iff it is inductively valid. In
such ω-complete (equational) specifications, trying to prove inductive validity
of a conjecture is the same as trying to prove its (general) validity. Unfor-
tunately, such cases where ITP and TP coincide are only possible for very
restricted cases and settings, and do not apply in most verification problems
where ITP is involved. Yet, it should be noted that there are known cases
where inductive validity of certain formulae is decidable, as well as concrete
decision procedures for certain sub-tasks. Such knowledge and corresponding
effective decision procedures are crucial ingredients of state of the art TP- and
ITP-systems, cf. e.g. [199], [63], [216], [184,185], [209], [6], [121], [141], [126],
[78,79], [140], [219,220].

Concerning ω-complete specifications which have interesting applications
for instance in process algebra, we refer to e.g. [98], [96], [1], [95], [170], [18],
[71].

Regarding (2) and (3), these relationships and properties show fundamen-
tal differences between proving validity and proving inductive validity that go
back to pioneering works in theoretical computer science and mathematical
logic, cf. e.g. [80], [97], [217,218], [156], [167]. In particular, w.r.t. (3), there
is no first-order proof system with induction that is complete for ITh(E).The
impossibility of cut-elimination ([167]) also has severe consequences, and con-
stitutes a substantial difference to general TP. In essence, this means that in
ITP auxiliary lemmas (to be guessed) can in general not be avoided.

Concerning the fact that ITh(E) is not even recursively enumerable, this
indicates (among other aspects) that one should, when trying to prove an
inductive conjecture, make sure that the positive proof attempt can possibly
be successful, by (also) searching for a contradiction and thus excluding as
early as possible false conjectures.

4 In essence, this is due to Gödel’s first incompleteness theorem that states that in any
formal (deductive) system for arithmetic there are formulæ that are true but unprovable
(cf. [80], [97]).

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 11

1.2.2 Comparison in Terms of Proof Search Aspects

Here we only give a first rough account of essential differences between TP
and ITP regarding the problem of proof search. Some of these aspects will be
detailed later on.

From an abstract point of view the proof search, the proof search tree
construction and proof search control can be characterized as follows:

• TP:
· The proof search tree is finitely branching, for any reasonable (sound

and complete) underlying inference system like ordered resolution cf. e.g.
[11] and paramodulation-based theorem proving (cf. e.g. [186]).

· Searching for and constructing counterexamples in the proof search process
(for instances via model building techniques, cf. e.g. [69], [197]) may help
but is in some sense not essential for successful proofs.

· The proof search control in (first-order) TP is (known to be) challenging,
especially when trying to be efficient but still complete.

• ITP:
· The proof search tree is infinitely branching, for any reasonable (sound)

underlying inference system, and for several different reasons.
· Searching for and constructing counterexamples in the proof search process

is very much essential and highly important in practice.
· The proof search control in (first-order) ITP is extremely challenging,

for almost every non-trivial inductive conjecture, and sometimes even for
trivial ones.

That the proof search tree is infinitely branching in ITP, as opposed to TP,
is in essence due to the incompleteness of inductive reasoning power. A basic
source for this infinitary character is already given by the fact that usually
there are infinitely many (sound) induction schemas that might serve for a
proof attempt. Additionally, as a well-known consequence in practice, one
often has to introduce various guessing steps, like generalizing conjectures,
inventing auxiliary inductive lemmas (to be proved as well) and introducing
inductive case splittings. These inductive guessing steps imply that often it
is not clear whether the actual conjecture treated can indeed be an inductive
theorem. Hence, to eliminate wrong conjectures and cut useless branches, it
is vital to simultaneously try to disprove conjectures, e.g., by searching for
counterexamples. 5 The combination of these aspects entails that in ITP

5 Somehow, it seems that in the automated reasoning community, the theme of (explicit)
disproving of conjectures, including model building and the construction of counterexamples,
has not yet received the attention it deserves (see, e.g., [200]). For a recent attempt to focus
on this theme see e.g. [3].

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4312

systems with some substantial amount of automation the proof search control
is extremely challenging.

1.3 Approaches to and Assumptions about ITP

For the purpose of the paper it is not really necessary to present and discuss
the existing approaches to ITP in appropriate depth. This would also be
clearly beyond the scope and require much more space. However, we want
to mention at least some issues that are important in practice and that have
consequences for the design and implementation of ITP systems.

First let us consider some issues and aspects regarding the logic and the
framework in different approaches.

• First-order vs. higher-order logic: Though higher-order logic is more ex-
pressive, for the purpose of (automation of) ITP, first-order logic is already
challenging enough.

• Full first-order vs. universal fragment: Most ITP systems and approaches
concentrate on universally quantified first-order formulae. Allowing exis-
tential quantification (or arbitrary quantifier alternations) clearly compli-
cates things considerably. Typically, existential inductive conjectures are
approached by trying to constructively find witnesses and prove that they
satisfy the respective inductive property, cf. eg [39,42], [20], [148], [105], [57],
[152], [166], [198], [174].

• Unsorted vs. many-sorted vs. order-sorted: Including / requiring a more
strict typing discipline may help a lot to avoid useless computations in
proof search, but of course also puts restrictions on the modeling of systems
and specifications. The typing concepts of ITP systems are quite diverse,
ranging from rather untyped (e.g. [39]) to strongly typed systems (e.g. [190]).

• Partiality and the notion of inductive validity: The treatment of partiality,
i.e., of only partially defined new functions is an important issue (see also the
discussion above). Allowing unrestricted partiality when extending specifi-
cations often invalidates most previous inductive theorems. Hence, either
one has to adapt the notion of inductive validity (cf. e.g. [235], [128,127],
[230,229], [169]), or to make partiality non-critical, for instances by simply
forbidding it, or by making specifications total in some well-defined way (cf.
e.g. [39], [41], [176]). In any case, the treatment of partiality has far-reaching
consequences for the framework and the whole ITP process.

• Constructor vs. destructor style induction: Concerning the representation of
basic data structures, one may either constructively represent data object
with constructor functions, or destructively extract the relevant informa-

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 13

tion via destructor (or selection) functions, like for lists with constructors
nil , cons and destructors car , cdr (cf. e.g. [39]). Normally, the representa-
tions and proofs can be easily translated from a constructor to a destructor
framework and vice versa, however, from a proof-technical point of view it
is advisable to stick to one of these dual frameworks.

• Fixed vs. lazy induction ordering (generation): Most approaches to ITP
start a proof attempt for an inductive conjecture by analyzing the formulae
(and the underlying specification) and devising an appropriate (and by then
fixed) induction schema for it according to which they then proceed. An
alternative approach is to start the proof without a fixed induction schema,
but rather gather information along the proof attempt about which induc-
tion schema would turn the reasoning indeed into a correct inductive proof.
This latter approach has been pursued e.g. in [201], and is also partially
incorporated in [169], [8]. Of course, the generality and elegance of this
latter approach has its price. Namely, correctness of the overall inductive
reasoning becomes non-trivial and has to be established a posteriori, and —
more severely — proof-technically the search becomes more difficult since
goal-directedness, which usually heavily relies on an existing fixed induction
schema, is not easily obtained anymore.

• Underlying (deductive) logical framework: This may be based on a couple
of different approaches (for first-order logic with equality), like ordered res-
olution, superposition, paramodulation, etc.. It may be saturation-based or
not, equational or non-equational, based on clausal normal forms or on ar-
bitrary clauses etc., with all advantages and disadvantages known for these
approaches. All these issues are certainly relevant for proof search in ITP,
but will not be discussed here.

• Explicit vs. implicit induction: The early works on (automated) ITP (cf.
e.g. [36,37,39,38,42,43], [223]) all use explicit induction, in the sense that
for a given inductive conjecture a concrete induction schema is explicitly
computed on which the subsequent reasoning is based. Starting with the
pioneering works of [182], [81], [101,102], an alternative approach of implicit
or “inductionless” induction was developed which is based on a proof by
consistency principle. The basic idea of the method roughly works as fol-
lows (in the context of clauses with equality), cf. [60]: Given a specification
(set of clauses) E and a set of inductive conjectures C, one adds C to E
and tries to derive an inconsistency. If this turns out to be impossible, then
the clauses in C are inductive consequences of E. Here, “inconsistency”
is understood w.r.t. an appropriate axiomatization of the standard model
of E. “Turning out to be impossible” means that one has to devise ap-
propriate strategies of inductive saturation such that using these strategies

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4314

the inductive saturation process hopefully terminates (with or without an
inconsistency) in many cases. In the 1980s and later on the approach of
[182], [81], [101,102] was extended, refined and generalized in various ways,
cf. e.g. [192], [122,123], [72,74], [9], [83], [76,77], [62], [60]. Also, a couple of
other related approaches somewhere in between explicit an implicit induc-
tion were developed, e.g., [100], [204], [44], [127,128], [133], [235], [131,132],
[160], [31], [29], [26], [27], [230,229], [169], [227]. There was and still is
an on-going debate about explicit vs. implicit induction and combinations
thereof, in particular concerning the strengths and weaknesses of and the
relationships between these approaches. But it seems clear that, regarding
the essential problems in the proof search process in ITP, both approaches
face essentially the same problems. For that reason we will not go into
details about the latter aspects and relationships here.

Next, for the sake of completeness let us mention a few (though not all)
important aspects regarding ITP systems, especially in connection with the
system architecture, its features, purpose, and its proof search control.

• Stand-alone tool vs. component in bigger system: Clearly, this property has
consequences for the design and the architecture.

• Homogeneous vs. heterogeneous tool: A homogeneous tool may be much
easier to implement, understand and maintain, but is likely to be much less
powerful.

• Built-in theories vs. explicit handling: How to handle pre-defined basic
data types and their properties, as well as certain problematic properties of
functions (like associativity plus commutativity) is a crucial aspect of any
implementation.

• Subtools for specialized proof tasks (decision procedures etc.): Such subtools
should certainly be available, but their integration is typically non-trivial.

• Intended functionality (yes/no vs. justifications, proof objects, reuse, incre-
mentality, modularity) : The intended functionality is of course extremely
important in the design process, and often makes different systems very
hard to compare.

• General purpose reasoning system vs. specialized tool for a particular prob-
lem domain: Obviously, such a decision also has far-reaching consequences.

• Experimental tool vs. high-fidelity system (certification): To develop a sys-
tem of the latter type usually amounts to much more work and care with
the relevant design decisions.

• Post- vs. pre- vs. integrated development: The type of the envisaged reason-
ing tasks (including inductive proofs) to be tackled with the system and the

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 15

overall development model (e.g., first program, then verify ; or, first specify
and verify, then program) obviously affect the system design and architec-
ture.

• Desired degree of automation / interaction: Clearly, a high degree of (de-
sired) automation implies a much more sophisticated proof search model
than an interactive style of reasoning.

• Proof search control architecture / concept / language: For ITP systems
with at least some degree of automation the architecture of the proof search
control, the underlying concepts and languages for describing and guiding
the proof search are crucial components to realize a system with the intended
automatic capabilities.

For the rest of the paper, let us fix the theoretical (logical) setting for ITP in
first-order logic with equality (although also for other reasonable settings the
resulting analysis would be the same), partially following [60]: Let E be a set
of first-order sentences. A first-order formula φ is an inductive consequence of
E iff, for every Herbrand interpretation H, H |= E implies H |= φ. If E is a
set of Horn clauses with equality, then there exists a unique smallest Herbrand
model of E (or standard) model IE. In this case, one does not need to consider
all the Herbrand interpretations, but only the smallest ones: If E is a set of
Horn clauses and c a positive clause, then c is an inductive consequence of E iff
IE |= c. Note that inductive consequences of E should not be confused with
elements in the theory of IE. The inductive theory is contained in IE, but not
conversely (because negative statements expressing that certain elements in IE

are distinct, do not hold in all Herbrand interpretations of E). In the sequel
when proving or disproving inductive conjectures we always have in
mind validity in IE, and inductive theorems are formulæ that are
valid in the standard model IE. In the ITP setting we assume moreover,
that the database contains the basic specification E with all the axioms and
definitions, a set of already proved (or otherwise established) inductive lemmas
L, and the current set of inductive conjectures C (allowing C to contain more
than one element is convenient in practice since often additional conjectures
are generated during a proof attempt).

In other reasonable basic logical settings for ITP, the subsequent analysis
of the basic problems in ITP will most probably be very similar. This also
concerns the aspect, whether the underlying induction concept is explicit or
implicit as discussed above. Although the precise analysis clearly depends on
the framework used, the essential technical and proof search problems are the
same. Yet, their syntactical and technical appearance may be different.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4316

2 Strategies in ITP

Here we will discuss in some depth (though non-technically) the crucial strate-
gic and proof control aspects in ITP, where (implicitly) the goal in mind is
always to get a high degree of automation.

2.1 Why are Strategies so Important in ITP?

As we have argued previously (see Section 1), ITP is in some sense much
more difficult that general TP, hence this should also be reflected in the proof
search process. So, why are (good) strategies so important for ITP? Some of
the main reasons are

• the incompleteness of ITP methods,

• the structure and the size of the search space (infinitely branching in several
dimensions, see below),

• the recursive nature of inductive proof attempts,

• the difficulty of measuring progress within an ITP attempt

• the difficulty of controlling / guiding the proof search process in an adequate
and intelligent way. This difficulty comprises a lot of more detailed steps
and decisions:
· What should be done (attempted) next?
· When should a proof attempt be considered to be failed (hopeless)?
· What to do in this case?
· When should backtracking be applied?
· When and how to generalize?
· When and how to simplify (how far)?
· When and how to start induction (generate induction schema)?
· How to make induction hypothesis applicable (in a goal-directed manner)?
· When and how to perform a case analysis?

2.1.1 Essential Strategic Control Issues

Let us consider more precisely what are relevant strategic issues. For that we
look at a typical structure of an inductive proof attempt:

• Try non-inductive methods (when and how?):
· Testing for inconsistency, generation of counterexamples.
· Start a TP attempt (without induction).
· Simplify as much as possible w.r.t. current database of definitions and

lemmas.
· But: Simplifiability may require inductive arguments!

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 17

• Try induction:
· Analyze recursion structure in conjecture and involved functions.
· Generate candidate(s) for appropriate induction schemas based on this

analysis (involving some look-ahead).
· Perform induction:

Split into cases.
Simplify.
Make induction hypothesis applicable.

· Generalize conjecture.
· Generate (auxiliary) lemma.

Now, what are the crucial and essential strategic control issues in the above
list? First of all, the following questions are obvious, but not their answer:

• When should one test for inconsistency, and how? When should one search
for a counterexample, and how?

• When should one decide to try general TP without induction, and when
not?

The next list of actions is central and of fundamental importance for every
reasonable ITP system, and all these actions are critical 6 and — considered
as choice options in the search tree — infinitely branching:

(1) Simplification (infinitely branching 7 and critical)
(a) When?
(b) How? Using which definitions and lemmas? In which order?
(c) Recursively use induction to verify the applicability of conditional

lemmas?
(d) Simplify to normal form?
(e) Inverse simplification (expansion)? How far?

(2) Induction (infinitely branching and critical)
(a) Compute and select appropriate induction schema.
(b) Generate corresponding proof tasks.
(c) Make induction hypothesis applicable, e.g. by cross-fertilization, rip-

pling, and other difference reduction techniques.

6 By critical we mean here, that without such an (appropriate) action (or a similar one)
the whole proof attempt may be hopeless.
7 Actually, w.r.t. a finite database of definitions, lemmas and current conjectures, the first
step of such a simplification action is usually only finitely branching, because there are only
finitely many possibilities. However, many-step simplification is infinitely branching when
simplification can be non-terminating (in this case, “simplification” has only an intuitive
meaning, not a formal one), or when during simplification other infinitely branching oper-
ations, like induction for the verification of the condition of some conditional lemma, are
allowed.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4318

(3) Case analysis (infinitely branching and critical)
(a) When?
(b) How? According to which criteria?
(c) How to verify individual cases?

(4) Generalization (infinitely branching and critical)
(a) When?
(b) How? For what purpose?
(c) How to avoid over-generalization?

(5) Lemma generation / speculation (infinitely branching and critical)
(a) When?
(b) How? For what purpose?
(c) Organizational: Top-down (relative ITP) or bottom-up (proofs are

absolute)?

Some remarks and comments about this list seem in order (cf. also [47] for a
discussion of some aspects of the infinite branching behaviour in ITP).

First of all, it is clear that proof search with infinitely branching steps
of different types can in principle be sequentialized (assuming only countably
many choices), i.e., simulated by a finitely branching tree. However, in practice
and w.r.t. the nature of the problem this would be completely unsatisfactory
and infeasible.

Regarding simplification (1), there is typically a very high degree of non-
determinism (b) of what could be simplified and how, w.r.t. the current
database. Also, the notion of “simplification” is not always clear, since well-
foundedness of such transformations need not be ensured. If it is guaran-
teed, e.g., by imposing some well-founded ordering on terms and formulae,
then certain desirable transformation steps (expansion or inverse simplifica-
tion) are not allowed anymore. In the presence of permutative properties like
commutativity, guaranteeing termination of simplification processes is difficult
and extra efforts have to be made to avoid circular (or more general forms of
non-terminating) reasoning. On the other hand, it is also well-known that in
many examples certain transformations have to be “non-simplifying” to lead
to a final success. The power of simplification is considerably increased by
recursively allowing induction (c), e.g., to verify the applicability of a condi-
tional lemma of the form l → r ⇐ c on the actual formula C = D[lσ], by
inductively proving cσ. Since simplification is most often non-confluent, and
also frequently non-terminating, it is highly non-trivial to determine how far
one should simplify, cf. (e), (f). Experience shows, that simplifying too much
can also prevent a proof to be found, as well as the other way round.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 19

Induction (2) is perhaps the most intensively investigated operation. Initi-
ated by [39], the analysis of recursive definitions and proofs of well-definedness
(i.e., termination proofs) is a fairly well understood area. In [39], the com-
putation and selection of appropriate induction schemas for a given inductive
conjecture is a two-stage process. First, at the time of definition introduction
for some function f , the definition, in particular the recursion structure, is
analyzed and the resulting knowledge about the recursion structure of f and
the reasons for termination of its recursion are stored (in the internal knowl-
edge base). Then, when trying induction on some formula, all defined function
symbols in the conjecture give rise to candidate induction schemas that are
obtained from the generic information in the knowledge base together with
actual information extracted from the conjecture. This way a lot of candidate
induction schemas are computed, which are then merged as far as possible and
ranked, according to some quality criteria, until one final candidate remains.
The strategies and heuristics of [39,42] (and of its successor [151]) have been
amazingly successful and impressive. Other works, variations and explicit ver-
sions of recursion analysis and induction schema generation include e.g. [210],
[51,50], [222,222]. Given a concrete (sound) induction schema, the generation
of corresponding proof tasks (b) is normally straightforward. However, what
is challenging and at the heart of inductive reasoning, are goal-directed tech-
niques to make the induction hypothesis applicable. 8 Many ideas, strategies
and heuristics are known for this step, and more generally for reasoning based
on difference reduction and proof plans, cf. e.g. cross-fertilization ([39]), and
rippling (cf. e.g. [45], [46], [52], [50], [54], [53], [165,166], [164], [47], [103],
[107], [112], [113], [109], [14,15,17,16], [65], [67]), [136].

Case analysis (3) is also a very challenging topic and subtask in ITP. Espe-
cially, when should one initiate a case analysis, and if so, how? And according
to which criteria should the generation cases be done? Furthermore, if the case
analysis is not obviously complete, in the sense that all cases are covered, 9

verifying completeness involves in general again inductive reasoning, hence the
full power (and difficulty) of induction. The questions of when and how to ap-
ply case analysis (in ITP) are also very difficult questions where not so much
literature exists (although any ITP system has heuristics for doing so), cf. e.g.
[39,42], [151], [30]. A related question is how fine-grained the case distinction
should be. The more special some case is, the more information is available

8 In general, an induction schema for a conjecture consists of several base cases and several
induction steps, all of which have to be successfully processed.
9 Completeness of some case analysis with cases c1, . . . , cn can always be enforced by
adding a case for the negation of the disjunction of the ci. However, sometimes one rather
wants to use a semantic distinction where completeness has to be explicitly (inductively)
verified.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4320

to prove the property in this case. On the other hand, it is a well-known phe-
nomenon – like in induction in general – that more specialized statements may
be more difficult to prove, as compared to more general versions! Some of the
techniques for (2) above can also be useful to plan and attempt (hopefully)
reasonable case analyses.

Generalization of inductive conjectures (4) and lemma generation (5),
which are closely related, are often unavoidable, if a proof is to be found
at all. Of course, the search space is infinitely branching w.r.t. such an op-
eration. For lemma generation this is obvious. In the case of generalization
of some conjecture C to be proved, this is also easy to see. If C is just
an equation (or another universally quantified literal), then there are only
finitely many possibilities to do a syntactic generalization (according to the
well-founded instantiation ordering on formulae). However, as soon as one al-
lows semantic generalizations, 10 there are infinitely many possibilities. Both
generalization and lemma generation are highly error-prone in the sense that
they may lead to false conjectures whereas the original conjecture was induc-
tively true. Hence, it is extremely important to provide mechanisms in order
to avoid over-generalization and to avoid the generation of false “lemmas”.
Typically, both operations are only applied with some more or less concrete
goal in mind, namely, to solve a failure of a previous proof attempt. However,
to what extent such a step might really help in the context of the actual con-
jecture processed, remains to be found out and verified, either a priori or a
posteriori. To date, there is some but not really much literature about con-
crete heuristics and strategies for (4) and (5), and more generally on how to do
this (automatically) in practice and to integrate these features into the overall
ITP system, cf. e.g. [35,36,37,39,42], [146], [75], [118], [225], [138], [126], [141],
[163], [219,220].

2.1.2 Organizational Strategic Issues

Next let us discuss (more modestly: ask questions and state desirable proper-
ties) some of the most important organizational (and strategic) issues in ITP.
Again this list is necessarily incomplete, and we want to focus on some issues
that we find important.

(i) Concerning the data- and knowledge base (definitions, conjectures, lem-
mas, . . .):
(a) In case of successful proof attempts:

10 By this we mean any statement inductively implying C, for instance if C is conditional,
i.e., of the form D ⇐ c and we can prove c ⇒ d as well as D ⇐ d, then the latter
(inductively) generalizes D ⇐ c. More generally, in clauses generalization can be done by
weakening the succedent part and/or strengthening the antecedent part.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 21

Which (intermediate) lemmas should be kept (stored)? In which
form? In which order? And as what kind of knowledge (rewrite /
simplification lemma, type information, definition, . . .)?
Should the current data and knowledge base be modified / simplified
w.r.t. to the new knowledge, or not? And if the former, how?

(b) In case of (definitely) failed proof attempts:
What are the consequences for the next steps?
What can (internally) be learnt from this failure? How can it be
exploited for a more promising attempt?
If the original conjecture has been falsified, how can it be corrected,
e.g. via generalization.
If only the proof attempt has failed, how could this failed attempt
trigger a more promising one?

(c) In case of neither successful nor failed proof attempts:
This situation occurs in the middle of a proof, and there is always
the question what to do next.
Should the attempt be continued (as planned)?
Should the attempt be abandoned, because there seems to be not
much hope of successfully completing it?
Should there be some kind of backtracking, in order to resume prov-
ing at an earlier branching point with another decision?

(ii) Concerning the control structure and the knowledge base:
(a) When introducing new definitions, the recursion analysis should yield

appropriate control knowledge about the recursion schema of the
newly defined functions.

(b) There should be internal memory and history mechanisms, e.g., for
avoiding circular reasoning and loops.

(c) The proof search control model should somehow be layered and fairly
flexible, in order to enable a realization of many different heuristics
and strategies.

Most of the issues mentioned above are highly non-trivial, and in existing
ITP systems their solutions often appear a bit ad hoc. For instance, in most
of the major ITP systems, once an induction schema has been chosen, and
once the subsequent proof attempt has failed, then the whole proof attempt is
considered to have failed. An alternative point of view could be, at that point,
to resume the process with another, possibly sightly lower ranked, induction
schema. Similarly, backtracking rarely occurs in the existing ITP systems.
Once a certain operation has failed, not many attempts are made to backtrack
and proceed differently. Such a rigid proof search process may have dramatic
consequences. For instance, a proof attempt of some inductive conjecture

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4322

may go through, provided we are able to apply some simplification lemma at
a certain point. But, in order to verify an application condition of the lemma
(which holds indeed), special emphasis has to be put on this effort, whereas
with the standard way of simplifying we simply do not succeed in verifying
this applicability condition and fail. Similar phenomena occur, when formulae
are simplified too much, or when certain transformations (entailing a danger
of non-termination) are forbidden. In a sense, it is not really surprising why
current ITP systems (with a substantial degree of automation) have a rather
rigid proof search model and not much flexibility concerning the overall control
structure (w.r.t., for instance, the possibility of backtracking). We think that
the main reason for this actually is the inherent complexity and difficulty
of making the right decisions at the right points, of predicting the further
outcome of a proof attempt, and of judging/ranking/estimating correctly the
consequences of current decisions.

3 State of the Art

Let us give some comments on the current state of the art in ITP, based on
some evidence from the literature and also from personal experience with ITP
and different ITP systems. Of course, it is difficult to make general statements
and give a comprehensive overview. We do not really claim any kind of com-
pleteness here nor that there exists a consensus about these issues, but rather
aim at some conclusions which ideally should trigger further discussions.

3.1 Assessment, Comparison, Contests?

As to the state of the art, an assessment and comparison of different ITP
systems is very difficult. The reasons for this situation are manifold, and
include at least the following:

• There exists no (regular) competition of ITP systems.

• There are no (widely accepted and used) benchmarks.

• The underlying logics and the intended usage of the systems are rather
diverse.

• The degree of automation / interaction and the underlying philosophy are
often incomparable.

• The usage typically requires quite considerable expertise, or even high fa-
miliarity with the system.

Especially the first two aspects above indicate a major difference to the
first-order theorem prover community. There, the yearly system competitions

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 23

(cf. e.g. [213], [214]) and the corresponding databases of benchmarks (cf. e.g.
[215], [212], [211]) have been very inspiring and motivated a lot of fruitful
developments. In ITP, nothing comparable exists (for reasons which may
have become a bit more clear in the presentation above), though there have
been discussions and attempts in this direction, cf. e.g. [111], [108].

Let us conclude this part with some general observations:

• Full automation in ITP is generally not (yet?) successful.

• The typical usage of such systems is (specification and) proof engineering
with
· human guidance for modeling, proof structure and proof ideas,
· human guidance for lower-level control if necessary,
· human failure analysis (with few automatic support), and with a

• tradeoff automation – interaction (w.r.t. efficiency, success rate, required
expertise, flexibility of control, etc.).

3.2 Successes and Failures

With certain ITP systems, especially the Boyer-Moore theorem prover NQTHM
([39,42], [145]) and its successor ACL2 ([152,153,151,150]), remarkable results
have been achieved. The successes (with a relatively high degree of automa-
tion, where, however, a substantial amount of human specification and proof
engineering is necessary) include in particular the following aspects:

• The computer supported specification and verification of certain complex
systems and relationships is indeed possible, e.g., of
· the prime factorization theorem,
· the undecidability of the halting problem,
· the specification and verification of microprocessors and hardware com-

ponents,
· the specification and verification of compilers and of model checking algo-

rithms.

• Often errors in initial specifications and conjectures could be revealed (with
human help, from failed proof attempts).

On the other hand, as “failures” one may still consider e.g. the following
aspects:

• The degree of automation is in general still rather low.

• Inductive specification and proof engineering continues to be rather tedious
and difficult, and requires a substantial amount of expertise and training
(by the human user), as well as a relatively high familiarity and most often

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4324

precise knowledge about the used ITP system.

• The automatic support for failure analysis is in general unsatisfactory.

• Building-in intelligence has turned out to be much more difficult than ex-
pected (by optimists, at least).

3.3 Systems for Induction

For the sake of illustration let us mention and briefly discuss some of the
existing and available ITP systems.

The most successful, widely used, and maintained systems include:

• ACL2 ([152,153,151,150]), the successor of NQTHM ([39,42], [145]): ACL2
is both a powerful and efficient functional programming language and an
ITP system. Its inductive theorem prover deals with the universal fragment
of first-order logic. There exists an impressive collection of non-trivial exam-
ples (cf. e.g. [150]). The system has a relatively high degree of automation
and sophisticated strategies, heuristics and mechanisms for induction.

• PVS ([190,191], [189], [70], [180] [179]): PVS provides mechanized sup-
port for formal specification and verification. It is based on a powerful
framework, namely classical, typed higher-order logic. Reasoning in PVS,
especially ITP, is partially automated, and the system includes a modern
framework for decision procedures.

• VSE/INKA ([115], [183], [7], [114]): VSE/INKA is a comprehensive tool
for supporting the formal software development process. Inductive proofs
are one focus area of the system, with sophisticated search control strategies
for certain subtasks (during induction). But the system has also substantial
support for the whole development process.

• Isabelle/HOL ([194,195], [187], [188], [94], [173,67]): Isabelle/HOL is a
(logical framework and a) generic theorem proving environment as well as
a proof assistant. Its main application is the formalization of mathematical
proofs and of logical systems, as well as formal verification. The system is
very powerful and flexible, however, usually a lot of user interaction with
an expert user is required.

Further ITP systems which are also available, but more experimental and not
that sophisticated, include e.g. (again, this list is by no means complete)

• RRL ([142,143,144], [235], [131], [234], [133], [2], [129,134]): RRL is rewrite-
based, first-order, and incorporates different inductive proof techniques. It
is fairly easy to use and to experiment with. Its working mode is highly
automatic.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 25

• Spike ([28], [32], [31], [29], [26], [208]): Spike is also rewrite- and saturation-
based, and incorporates different inductive proof proof techniques including
test set induction. It is based on conditional equations, and works mainly
automatically.

• Oyster/CLAM ([55], [50], [205], [46,47], [51,50]): Oyster/CLAM is a
tactic-based proof editor based on Martin-Löf constructive type theory,
together with a proof planner. It incorporates a meta language for con-
structing customized tactics for individual conjectures, based especially on
rippling techniques.

• QuodLibet ([229,230], [169], [168], [8], [227]): QuodLibet is the successor
system of UNICOM ([82,84,83]. It is both a specification language and
an ITP system for data types with partial operations. It has a flexible
control, is user-oriented, but with some automation facilities. It allows lazy
induction proofs and has a sophisticated concept for managing (possibly
simultaneous) proof attempts.

4 Problems and Challenges

In this section we try to summarize in a concise way what we think are the
main problem and challenges in ITP. First we consider technical, conceptual
and logical problems and challenges:

• Building-in knowledge: When and how to do it?

• Structuring / modularizing specifications and proof tasks: How to do this
as automatically as possible?

• Extending decidable cases (classes), cf. also [78,79], [126], [6]: How, and in
which direction?

• How to combine ITP system with tools for special purposes, like
· systems for particular data types and theories,
· decision procedures for restricted theories,
· combination mechanisms?

• How to get better methods for goal-directed reasoning?

• How to achieve better methods for look-ahead based reasoning?

• Generalization: When, why, and how to do it?

• Generation of (auxiliary) lemmas: When, why and how?

• How to recognize, analyze and deal appropriately with failure?

• How to make ITP more robust (monotonic, semantic)? 11

11 By monotonic we mean here that, when extending or enriching (inductive) specifications

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4326

Next we look at problems and challenges regarding control issues
(of course, there is a big overlap with the above mentioned aspects, too):

• Good strategies and heuristics are vital in ITP to generate and deal with
reasonable proof attempts. The question is how to improve currently em-
ployed strategies and heuristics substantially.

• How to achieve progress w.r.t. the basic (but ubiquitous) question in ITP of
what to do next, in view of the history, the current data and the knowledge
base?

• The overall proof search model of an ITP system
· is necessarily complex, and should be very flexible;
· needs both automation and interaction (for proof engineering);
· should allow for / support interrupts, inspection, failure analysis and

relative 12 proving;
· should guarantee correctness requirements, i.e., be sound together with

the inference machine;
· should be compatible with user interaction, navigation (in the search tree),

information extraction, and generation of proof objects (for possible later
off-line verification in the sense of proof checking);

· should also have different layers (for different types of reasoning);
· should allow the integration of other tools for sub-tasks and the integration

as a subsystem in other systems;
· needs to be able to understand and integrate strategic and heuristic user

input into the proof process.

Finally, from a software engineering point of view, problematic and challenging
issues are the following:

• How to design / implement / apply a structured control concept for proof
search that
· is user-friendly, fully transparent, intelligible, flexible, extensible and mod-

ifiable;

in a consistent way, previously (automatically or partially automatically) generated proofs of
inductive properties are still obtained after the extension/enrichment. In existing systems,
this is often not the case, since the new data and knowledge items may disturb previous
proof processes. By more semantic we refer to the fact that the success of proof attempts
very often heavily depends on the exact syntactic form of a conjecture, and fails if a slightly
different, but semantically equivalent, version is considered. Yet, for obvious reasons it
would be nice, if this strong dependence on syntax could be reduced or ideally eliminated,
at least for certain cases.
12 By relative proving we mean reasoning relative to some yet unproved intermediate as-
sumptions, that eventually also have to be verified, to obtain an overall proof. This way,
temporarily invented auxiliary lemmas can be tested on whether they are indeed sufficient
for making some main proof go through.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 27

· generates complete proof objects;
· has a programmable strategy/heuristics language with clearly defined se-

mantics, in which both high- low-level proof ideas can be easily expressed;
· allows efficient proof engineering in real time;
· allows unsafe reasoning (relative to unproved lemmas);
· allows a high degree of automation;
· enables human user to quickly test / implement / model key ideas;
· is able to easily and quickly integrate new tools / subtools (e.g., decision

procedures);
· can easily be specialized to specific domains;
· has an appropriate system for maintaining / adapting / its (large!) knowl-

edge base?

• HCI: How to do all this in a smart way as to human computer interaction?

5 Some Theses

Here are a few theses about (automated) ITP for which there is no formal
proof, but only some evidence: Theses:

• In the near future, ITP will only be successful for
· very specialized domains (e.g., with fixed axiomatizations),
· for very restricted classes of conjectures.

• ITP will continue to be a very challenging engineering process.

• Regarding the research question “What could be considered to be substan-
tial progress in ITP?”, we think that
· increased robustness (more monotonic, semantics based),
· an improved modularization and improved structuring of theo-

ries, proofs, and proof search, as well as
· appropriate framework(s) to model (and implement) strategic

proof search control, that are
expressive,
flexible (extensible, adaptable, programmable),
with well-defined semantics, and
layered, and also

· benchmarks for ITP problems, together with well-designed pro-
posals for ITP contests

would be elements of such substantial progress.

In fact, we are convinced that substantial progress in ITP will take time,
and that spectacular breakthroughs are unrealistic, in view of the enormous
problems and the inherent difficulty of inductive theorem proving.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4328

6 Conclusion

ITP problems are at the heart of many verification and reasoning tasks in
computer science. We have tried to give a thorough, though only high-level,
account of induction (in the sense of ITP), both regarding the possible ap-
proaches, methods, proof techniques and corresponding systems, as well as
concerning the main problems in actual proofs, having in mind the goal of
a high automation degree. In particular, we have worked out, isolated and
discussed the crucial differences to general TP. This comparison also reveals
or, better, explains, why automating inductive proofs is much harder than au-
tomating general theorem proving. We hope that this analysis and discussion
contributes to a better understanding of the essence of ITP, initiates further
debates in the ITP community and thus contributes a bit to the further de-
velopment of the field.

Acknowledgements: This paper is an extended version of the abstract of an
invited talk given at the STRATEGIES 2004 workshop. I’m very grateful to
Maria Paola Bonacina and Thierry Boy de la Tour, the Program Co-Chairs of
STRATEGIES 2004, for this kind invitation and for their helpful comments on
a draft version of this paper. 13 Thanks also to the audience at STRATEGIES
2004 for a lively and inspiring discussion.

References

[1] J. Adàmek. Recursive data types in algebraically omega-complete categories. Information
and Computation, 118(2):181–190, May 1995.

[2] R. Agarwal, D. Musser, D. Kapur, and X. Nie. The Tecton proof system. In R. Book,
ed., Proc. 4th Int. Conf. on Rewriting Techniques and Applications (RTA’91), LNCS 488,
pp. 442–444. Springer, Apr. 1991.

[3] W. Ahrendt, P. Baumgartner, and H. de Nivelle, eds. Proc. Workshop on Disproving: Non-
Theorems, Non-Validity, Non-Provability (DISPROVING’04), in conjunction with IJCAR’04,
Cork, Ireland, July 5, 2004, 2004.

[4] A. Armando and S. Ranise. Termination of constraint contextual rewriting. In H. Kirchner
and C. Ringeissen, eds., Proc. 3rd Int. Workshop on Frontiers of Combining Systems
(FROCOS 2000), LNCS 1794, pp. 47–61. Springer, Mar. 2000.

[5] A. Armando and S. Ranise. Constraint contextual rewriting. Journal of Symbolic
Computation, 36(1–2):193–216, 2003. July-August 2003.

[6] A. Armando, M. Rusinowitch, and S. Stratulat. Incorporating decision procedures in implicit
induction. Journal of Symbolic Computation, 34(4):241–258, 2002.

[7] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. System description: inka 5.0 - a logic
voyager. In H. Ganzinger, ed., Proc. 16th Int. Conf. on Automated Deduction, Trento, Italy,
July 7-10, 1999, LNCS 1632, pp. 207–211. Springer, July 1999.

13 and also for their patience regarding the final version

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 29

[8] J. Avenhaus, U. Kühler, T. Schmidt-Samoa, and C.-P. Wirth. How to prove inductive
theorems? QUODLIBET! In F. Baader, ed., Proc. 19th Int. Conf. on Automated Deduction
(CADE’03), Miami Beach, FL, USA, July 28 – August 2, 2003, LNCS 2741, pp. 328–333.
Springer, 2003.

[9] L. Bachmair. Proof by consistency in equational theories. In Proc. 3rd IEEE Symposium on
Logic in Computer Science, pp. 228–233, 1988.

[10] L. Bachmair and N. Dershowitz. Equational inference, canonical proofs, and proof orderings.
Journal of the ACM, 41(2):236–276, 1994.

[11] L. Bachmair and H. Ganzinger. Resolution theorem proving. In J. Robinson and A. Voronkov,
eds., Handbook of Automated Reasoning, volume 1, chapter 2, pp. 19–99. Elsevier and MIT
Press, 2001.

[12] S. Baker, A. Ireland, and A. Smaill. On the use of the constructive omega-rule within
automated deduction. In A. Voronkov, ed., Proc. 3rd Int. Conf. on Logic Programming and
Automated Reasoning (LPAR 1992), St. Petersburg, Russia, July 15-20, 1992, 1993, LNCS
624, pp. 214–225. Springer, July 1992.

[13] S. Baker and A. Smaill. A proof environment for arithmetic with the omega rule. In
J. Calmet and J. A. Campbell, eds., Proc. 2nd Int. Conf. on Integrating Symbolic Mathematical
Computation and Artificial Intelligence (AISMC’94), Cambridge, UK, August 3-5, 1994,
LNCS 958, pp. 115–130. Springer, Aug. 1994.

[14] D. Basin and T. Walsh. Difference matching. In D. Kapur, ed., Proc. 11th Int. Conf. on
Automated Deduction (CADE’92), Saratoga Springs, NY, USA, June 15-18, 1992, LNCS
607, pp. 295–309. Springer, June 1992.

[15] D. Basin and T. Walsh. Difference unification. In R. Bajcsy, ed., Proc. 13th Int. Conf. on
Artificial Intelligence (IJCAI’93), Chambéry, France, August 28 -September 3, 1993, pp. 116–
122. Morgan Kaufmann, 1993.

[16] D. Basin and T. Walsh. A calculus for and termination of rippling. Journal of Automated
Reasoning, 16(1/2):147–180, Mar. 1996.

[17] D. A. Basin and T. Walsh. A calculus for rippling. In N. Dershowitz and N. Lindenstrauss,
eds., Proc. 4th Int. Workshop on Conditional and Typed Rewriting Systems (CTRS 1994),
Jerusalem, Israel, July 13-15, 1994, LNCS 968, pp. 15–30. Springer, July 1995.

[18] J. A. Bergstra and J. Heering Which data types have omega-complete initial algebra
specifications. Theoretical Computer Science, 124(1), Feb. 1994.

[19] N. Berregeb, A. Bouhoula, and M. Rusinowitch. Automated verification by induction with
associative-commutative operators. In R. Alur and T. Henzinger, eds., Proc. 8th International
Conference on Computer Aided Verification (CAV’96), New Brunswick, NJ, USA, July 31 –
August 3, 1996, LNCS 1102, pp. 220–231. Springer, 1996.

[20] S. Biundo. A synthesis system mechanizing proofs by induction. In J. Boulay, D. Hogg,
and L. Steels, eds., Proc. 7th European Conf. on Artificial Intelligence (ECAI’86), Brighton,
United Kingdom, July 20-25, 1986, pp. 287–296. North-Holland, July 1987.

[21] S. Biundo, B. Hummel, D. Hutter, and C. Walther. The Karlsruhe induction theorem proving
system. In J. Siekmann, ed., Proc. 8th Int. Conf. on Automated Deduction (CADE’86),
Oxford, England, July 27 – August 1, 1986, LNCS 230, pp. 672–674. Springer, 1986.

[22] M. Bonacina and B. Gramlich, eds. 4th International Workshop on Strategies in Automated
Deduction (STRATEGIES 2001) – Selected Papers, volume 58 of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 2001.

[23] A. Bouhoula. Sufficient completeness and parameterized proofs by induction. In G. Levi
and M. Rodŕıguez-Artalejo, eds., Proc. 4th Int. Conf. on Algebraic and Logic Programming,
Madrid (ALP’94), LNCS 850, pp. 23–40. Sept., Sept. 1994.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4330

[24] A. Bouhoula. General framework for mechanizing induction using test set. In N. Foo and
R. Goebel, eds., Proc. 4th Pacific Rim International Conference on Artificial Intelligence
(PRICAI’96), Cairns, Australia, August 26-30, 1996, LNCS 1114, pp. 1–12. Springer, Aug.
1996.

[25] A. Bouhoula. Using induction and rewriting to verify and complete parameterized
specifications. Theoretical Computer Science, 170(1–2):245–276, Dec. 1996.

[26] A. Bouhoula. Automated theorem proving by test set induction. Journal of Symbolic
Computation, 23(1):47–77, Jan. 1997.

[27] A. Bouhoula and J.-P. Jouannaud. Automata-driven automated induction. Information and
Computation, 169(1):1–22, 2001.

[28] A. Bouhoula, E. Kounalis, and M. Rusinowitch. SPIKE, an automatic theorem prover. In
A. Voronkov, ed., Proc. 3rd Int. Conf. on Logic Programming and Automated Reasoning
(LPAR 1992), St. Petersburg, Russia, July 15-20, 1992, 1993, LNCS 624, pp. 460–462.
Springer, July 1992.

[29] A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathematical induction. Journal
of Logic and Computation, 5(5):631–668, 1995.

[30] A. Bouhoula and M. Rusinowitch. Automatic case analysis in proof by induction. In
Proc. 13th Int. Conf. on Artificial Intelligence, pp. 88–94, Chambéry Savoie, France, Apr.
1993.

[31] A. Bouhoula and M. Rusinowitch. Implicit induction in conditional theories. Journal of
Automated Reasoning, 14(2):189–235, 1995.

[32] A. Bouhoula and M. Rusinowitch. SPIKE: A system for automatic inductive proofs. In
V. Alagar and Maurice Nivat, eds., Proc. 4th Int. Conf. on Algebraic Methodology and
Software Technology (AMAST’95), Montreal, Canada, July 3-7, 1995, LNCS 936, pp. 576–
577. Springer, July 1995.

[33] R. Boulton and K. Slind. Automatic derivation and application of induction schemes
for mutually recursive functions. In J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K.
Lau, C. Palamidessi, L. Pereira, Y. Sagiv, and P. Stuckey, eds., Proc. 1st Int. Conf. on
Computational Logic (CL’00), London, UK, 24-28 July, 2000, LNCS 1861, pp. 629–643.
Springer, 2000.

[34] R. Boyer and J Moore. Program verification. Journal of Automated Reasoning, 1(1):17–23,
1985.

[35] R. Boyer and J S. Moore. Proving theorems about LISP functions. In N. Nilsson, ed.,
Proc. 3rd Int. Conf. on Artificial Intelligence (IJCAI’73), Standford, CA, August 1973, pp.
486–493. William Kaufmann, Aug. 1973.

[36] R. Boyer and J S. Moore. Proving theorems about lisp functions. Journal of the ACM,
22(1):129–144, Jan. 1975.

[37] R. Boyer and J S. Moore. A lemma driven automatic theorem prover for recursive
function theory. In R. Reddy, ed., Proc. 5th Int. Conf. on Artificial Intelligence (IJCAI’77),
Cambridge, MA, August 1977, pp. 511–519. William Kaufmann, Aug. 1977.

[38] R. Boyer and J S. Moore. Overview of a theorem-prover for a computational logic. In
J. Siekmann, ed., Proc. 8th Int. Conf. on Automated Deduction (CADE’86), Oxford, England,
July 27 – August 1, 1986, LNCS 230, pp. 675–678. Springer, 1986.

[39] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.

[40] R. S. Boyer and J S. Moore. Metafunctions: Proving them correct and using them efficiently
as new proof procedures. In R. S. Boyer and J S. Moore, eds., The Correctness Problem In
Computer Science. Academic Press, London, 1981.

[41] R. S. Boyer and J S. Moore. The addition of bounded quantification and partial functions to a
computational logic and its theorem prover. Journal of Automated Reasoning, 4(2):117–172,
June 1988.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 31

[42] R. S. Boyer and J S. Moore. A Computational Logic Handbook, volume 23 of Perspectives in
Computing. Academic Press, 1988. Formerly: Notes and Reports in Computer Science and
Applied Mathematics.

[43] R. S. Boyer and J S. Moore. A theorem prover for a computational logic (keynote address).
In M. Stickel, ed., Proc. 10th Int. Conf. on Automated Deduction (CADE’90), Kaiserslautern,
FRG, July 24-27, 1990, LNCS 449, pp. 1–15. Springer, July 1990.

[44] F. Bronsard, U. Reddy, and R. Hasker. Induction using term orderings. In A. Bundy, ed.,
Proc. 12th Int. Conf. on Automated Deduction (CADE’94), Nancy, France, June 26 – July
1, 1994, LNCS 814, pp. 102–117. Springer, 1994.

[45] A. Bundy. Analysing mathematical proofs (or reading between the lines). In Proc. 4th
Int. Conf. on Artificial Intelligence (IJCAI’75) - Advance Papers, Tbilisi, Georgia, USSR,
3-8 September 1975, pp. 22–28, 1975.

[46] A. Bundy. The use of explicit proof plans to guide inductive proofs. In E. Lusk and
R. Overbeek, eds., Proc. 9th Int. Conf. on Automated Deduction, LNCS 310, pp. 111–120.
Springer, 1988.

[47] A. Bundy. The automation of proof by mathematical induction. In J. Robinson and
A. Voronkov, eds., Handbook of Automated Reasoning, volume 1, Part IV, chapter 13, pp.
845–911. Elsevier and MIT Press, 2001.

[48] A. Bundy. A critique of proof planning. In A. Kakas and F. Sadri, eds., Computational Logic:
Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, LNCS
2408, pp. 160–177. Springer, 2002.

[49] A. Bundy, F. Giunchiglia, A. Villafiorita, and T. Walsh. Abstract proof checking: An example
motivated by an incompleteness theorem. Journal of Automated Reasoning, 19(3):319–346,
Dec. 1997.

[50] A. Bundy, F. Harmelen, J. Hesketh, and A. Smaill. Experiments with proof plans for
induction. Journal of Automated Reasoning, 7(3):303–324, 1991.

[51] A. Bundy, F. Harmelen, J. Hesketh, A. Smaill, and A. Stevens. A rational reconstruction
and extension of recursion analysis. In N. Sridharan, ed., Proc. 11th Int. Conf. on Artificial
Intelligence, Detroit, MI, USA, August 1989, pp. 359–365. Morgan Kaufmann, 1989.

[52] A. Bundy, Harmelen, Frank van, A. Smaill, and A. Ireland. Extensions to the rippling-out
tactic for guiding inductive proofs. In M. Stickel, ed., Proc. 10th Int. Conf. on Automated
Deduction, LNCS 449, pp. 132–146. Springer, 1990.

[53] A. Bundy and V. Lombart. Relational rippling: A general approach. In Proc. 14th Int. Joint
Conf. on Artificial Intelligence, IJCAI 95, Montréal, Québec, Canada, August 20-25, 1995,
pp. 175–181. Morgan Kaufmann, 1995.

[54] A. Bundy, A. Stevens, F. Harmelen, A. Ireland, and A. Smaill:. Rippling: A heuristic for
guiding inductive proofs. Artificial Intelligence, 62(2):185–252, 1993.

[55] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system. In M. E.
Stickel, ed., Proc. 10th Int. Conf. on Automated Deduction (CADE’90), Kaiserslautern, FRG,
July 24-27, 1990, LNCS 449, pp. 647–648. Springer, 1990.

[56] F. Cantu, A. Bundy, A. Smaill, and D. Basin. Experiments in automating hardware
verification using inductive proof planning. In M. Srivas and A. Camilleri, eds., Formal
Methods in Computer-Aided Design, First International Conference, FMCAD ’96, Palo Alto,
California, USA, November 6-8, 1996, Proceedings, LNCS 1166, pp. 94–108, 1996.

[57] J. Chazarain and E. Kounalis. Mechanizable inductive proofs for a class of forall exists
formulas. In A. Bundy, ed., Proc. 12th Int. Conf. on Automated Deduction (CADE’94),
Nancy, France, June 26 – July 1, 1994, LNCS 814, pp. 118–132. Springer, 1994.

[58] H. Comon. Inductive proofs by specification transformation. In N. Dershowitz, ed., Proc. 3rd
Int. Conf. on Rewriting Techniques and Applications (RTA’89), LNCS 355, pp. 76–91.
Springer, Apr. 1989.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4332

[59] H. Comon. Complete axiomatizations of some quotient term algebras. Theoretical Computer
Science, 118(2):167–191, 1993.

[60] H. Comon. Inductionless induction. In J. Robinson and A. Voronkov, eds., Handbook of
Automated Reasoning, volume 1, chapter 14, pp. 913–962. Elsevier and MIT Press, 2001.

[61] H. Comon and F. Jacquemard. Ground reducibility is exptime-complete. In Proc. 12th
Annual IEEE Symposium on Logic in Computer Science, pp. 26–34, Warsaw, Poland, June
29 – July 2 1997. IEEE Computer Society Press.

[62] H. Comon and R. Nieuwenhuis. Induction=i-axiomatization+first-order consistency.
Information and Computation, 159(1–2):151–186, May/June 2000.

[63] D. C. Cooper. Theorem proving in arithmetic without multiplication. Machine Intelligence,
7:91–99, 1972.

[64] L. Dennis, A. Bundy, and I. Green. Making a productive use of failure to generate witnesses for
coinduction from divergent proof attempts. Annals of Mathematics and Artificial Intelligence,
29(1–4):99–138, 2000. Special Issue on Strategies in Automated Deduction, ed. by Bernhard
Gramlich, Hélène Kirchner, and Frank Pfenning.

[65] L. A. Dennis and A. Smaill. Ordinal arithmetic: A case study for rippling in a higher order
domain. In R. J. Boulton and P. B. Jackson, eds., Proc. 14th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs’01), Edinburgh, Scotland, UK, September
3-6, 2001, LNCS 2152, pp. 185–200. Springer, 2001.

[66] E. Deplagne, C. Kirchner, H. Kirchner, and Q. Nguyen. Proof search and proof check for
equational and inductive theorems. In F. Baader, ed., Proc. 19th Int. Conf. on Automated
Deduction (CADE’03), Miami Beach, FL, USA, July 28 – August 2, 2003, LNCS 2741, pp.
297–316. Springer, 2003.

[67] L. Dixon and J. D. Fleuriot. Higher order rippling in IsaPlanner. In K. Slind, A. Bunker, and
G. Gopalakrishnan, eds., Proc. 17th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs’04), Park City, Utah, USA, September 14-17, 2004, LNCS 3223, pp.
83–98. Springer, Sept. 2004.

[68] R. Erickson and D. Musser. The AFFIRM theorem prover: Proof forests and management of
large proofs. In W. Bibel and R. Kowalski, eds., Proc. 5th Int. Conf. on Automated Deduction
(CADE’80), Les Arcs, France, July 8-11, 1980, LNCS 87, pp. 220–231. Springer, 1980.

[69] C. G. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution decision procedures. In
J. Robinson and A. Voronkov, eds., Handbook of Automated Reasoning, volume 2, chapter 25,
pp. 1791–1849. Elsevier and MIT Press, 2001.

[70] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated canonizer and solver. In
G. Berry, H. Comon, and A. Finkel, eds., Proc. 13th International Conference on Computer
Aided Verification (CAV 2001), LNCS 2101, pp. 246–249, Paris, France, July 2001. Springer.

[71] W. Fokkink and B. Luttik. An omega-complete equational specification of interleaving. In
U. Montanari, J. Rolim, and E. Welzl, eds., Proc. 27th International Colloquium on Automata,
Languages and Programming (ICALP’00), Geneva, Switzerland, July 9-15, 2000, LNCS 1853,
pp. 729–743. Springer, July 2000.

[72] L. Fribourg. A strong restriction of the inductive completion procedure. In E. Kott, ed.,
Proc. 13th Int. Conf. on Automata, Languages and Programming, LNCS 226, pp. 105–116.
Springer, 1986.

[73] L. Fribourg. On the use of conditional rewrite rules in inductive theorem proving. In
S. Kaplan and J.-P. Jouannaud, eds., Proc. 1st Int. Workshop on Conditional Rewriting
Systems (CTRS’87), LNCS 308, pp. 56–61. Springer, 1988.

[74] L. Fribourg. A strong restriction of the inductive completion procedure. Journal of Symbolic
Computation, 8:253–276, 1989.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 33

[75] L. Fribourg. Automatic generation of simplification lemmas for inductive proofs. In
V. Saraswat and K. Ueda, eds., Proc. International Symposium on Logic Programming
(ISLP’91), San Diego, California, USA, Oct. 28 - Nov 1, 1991, pp. 103–116. MIT Press,
1991.

[76] H. Ganzinger and J. Stuber. Inductive theorem proving by consistency for first-order clauses.
In Informatik – Festschrift zum 60. Geburtstag von Günter Hotz. Teubner Verlag, 1992.

[77] H. Ganzinger and J. Stuber. Inductive theorem proving by consistency for first-order clauses.
In M. Rusinowitch and J. Remy, eds., Proc. 3rd Int. Workshop on Conditional Term Rewriting
Systems (CTRS’92), Pont-á-Mousson, France, July 8-10, 1992, LNCS 656, pp. 226–241.
Springer, 1993.

[78] J. Giesl and D. Kapur. Deciding inductive validity of equations. In R. Goré, A. Leitsch,
and T. Nipkow, eds., Proc. 1st Int. Joint Conf. on Automated Reasoning (IJCAR’01), Siena,
Italy, June 18-23, 2001, LNCS 2083, pp. 17–31. Springer, June 2001.

[79] J. Giesl and D. Kapur. Deciding inductive validity of equations. In F. Baader, ed., Proc. 19th
Int. Conf. on Automated Deduction (CADE’03), Miami Beach, FL, USA, July 28 – August
2, 2003, LNCS 2741, pp. 17–31. Springer, 2003.

[80] K. Gödel. Über formal unentscheidbare Sätze der principia mathematica und verwandter
Systeme. i. (German). Monatsh. Math. Phys., 38:173–198, 1931.

[81] J. A. Goguen. How to prove algebraic inductive hypotheses without induction. In W. Bibel
and R. Kowalski, eds., Proc. 5th Int. Conf. on Automated Deduction, LNCS 87, pp. 356–373,
1980.

[82] B. Gramlich. Completion based inductive theorem proving: A case study in verifying sorting
algorithms. SEKI Report SR-90-04, Fachbereich Informatik, Universität Kaiserslautern, 1990.

[83] B. Gramlich. Completion based inductive theorem proving: An abstract framework and its
applications. In L. Aiello, ed., Proc. 9th European Conf. on Artificial Intelligence, pp. 314–
319. Pitman Publishing, London, 1990.

[84] B. Gramlich. Unicom: A refined completion based inductive theorem prover. In M. Stickel,
ed., Proc. 10th Int. Conf. on Automated Deduction, LNCS 449, pp. 655–656. Springer, 1990.

[85] B. Gramlich. Towards intelligent inductive proof engineering. SEKI Report SR-92-01,
Fachbereich Informatik, Universität Kaiserslautern, 1992.

[86] B. Gramlich. Experiences with the development, maintenance and enhancement of unicom.
In D. Basin, F. Giunchiglia, and M. Kaufmann, eds., Proc. CADE-12 Workshop “Correctness
and Metatheoretic Extensibility of Automated Reasoning Systems”, pp. 42–43, Nancy, France,
June 1994.

[87] B. Gramlich. On evaluation criteria for inductive theorem proving systems. In R. Boyer,
A. Bundy, D. Kapur, and C. Walther, eds., Proc. 4th Int. Workshop on the Automation of
Proof by Mathematical Induction, Dagstuhl-Seminar-Report, July 1995.

[88] B. Gramlich. Design issues for inductive theorem proving systems. In CADE-14 Workshop on
Automated Induction Theorem Proving, Townsville, North Queensland, Australia, July 1997.

[89] B. Gramlich. Strategic aspects in inductive theorem proving and proof engineering (extended
abstract). In D. H. et al., ed., Proc. FLoC’99 Workshop on the Automation of Proof by
Mathematical Induction, pp. 25–28, Trento, Italy, July 1999.

[90] B. Gramlich and H. Kirchner, eds. Proceedings of the CADE-14 Workshop on Strategies in
Automated Deduction (70 pp., Townsville, North Queensland, Australia, July 1997. 70 pp.

[91] H. Kirchner, B. Gramlich and F. Pfenning, eds. Proc. FLoC’99 Workshop on Strategies in
Automated Deduction (STRATEGIES’99), 92 pp., Trento, Italy, July 1999.

[92] B. Gramlich, H. Kirchner, and F. Pfenning, eds. Strategies in Automated Deduction (special
issue). Annals of Mathematics and Artificial Intelligence, Volume 29, Number 1/4, 2000.
Kluwer Academic Publishers, Feb. 2001.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4334

[93] B. Gramlich and F. Pfenning, eds. Proceedings CADE-15 Workshop on Strategies in
Automated Deduction, Lindau, Germany, July 1998. 74 pp.

[94] D. Griffioen and M. Huisman. A comparison of PVS and Isabelle/HOL. In Proc. 11th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs’98),
Canberra, Australia, September 27 - October 1, 1998, LNCS 1479, pp. 123–142. Springer,
1998.

[95] J. Groote. A new strategy for proving omega-completeness applied to process algebra.
In J. Baeten and J. Klop, eds., Proc. CONCUR’90, Theories of Concurrency: Unification
and Extension, Amsterdam, The Netherlands, August 27-30, 1990, LNCS 458, pp. 314–331.
Springer, Aug. 1990.

[96] J. Heering. Partial evaluation and omega-completeness of algebraic specifications. Theoretical
Computer Science, 43:149–167, 1986.

[97] J. v. Heijenoort. From Frege to Gödel – A Sourcebook in Mathematical Logic, 1879–
1931. Source Books in the History of the Sciences. Harvard University Press, Cambridge,
Massachusetts, 1967.

[98] L. Henkin. A generalization of the concept of omega-completeness. Journal of Symbolic Logic,
22(1):1–14, 1957.

[99] R. Hennicker. Context induction: a proof principle for behavioural abstractions. In A. Miola,
ed., Proc. International Symposium on Design and Implementation of Symbolic Computation
Systems, DISCO ’90, Capri, Italy, April 10-12, 1990, LNCS 429, pp. 101–110. Springer, Apr.
1990.

[100] D. Hofbauer and R.-D. Kutsche. Proving inductive theorems based on term rewriting systems.
In J. Grabowski, P. Lescanne, and W. Wechler, eds., Proc. 1st Int. Workshop on Algebraic
and Logic Programming (ALP’88), Gaussig, GDR, November 14-18, 1988, LNCS 343, pp.
180–190. Springer, Nov. 1988.

[101] G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors. In
Proc. 21st Conf. on Foundations of Computer Science, pp. 96–107, 1980. also in JCSS 25(2),
pp. 239–266, 1982.

[102] G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors.
Journal of Computer and System Sciences, 25(2):239–266, Oct. 1982.

[103] D. Hutter. Guiding induction proofs. In M. Stickel, ed., Proc. 10th Int. Conf. on Automated
Deduction, LNCS 449, pp. 147–161. Springer, 1990.

[104] D. Hutter. Adapting a resolution calculus for inductive proofs. In B. Neumann, ed., Proc. 10th
European Conf. on Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7, 1992, pp.
65–69. John Wiley and Sons, Chichester, Aug. 1992.

[105] D. Hutter. Synthesis of induction orderings for existence proofs. In A. Bundy, ed., Proc. 12th
Int. Conf. on Automated Deduction (CADE’94), Nancy, France, June 26 – July 1, 1994,
LNCS 814, pp. 29–41. Springer, 1994.

[106] D. Hutter. Using rippling for equational reasoning. In G. Görz and S. Hölldobler, eds.,
Proc. 20th Annual German Conference on Artificial Intelligence (KI’96), Dresden, Germany,
September 17-19, 1996, LNCS 1137, pp. 121–133. Springer, Sept. 1996.

[107] D. Hutter. Coloring terms to control equational reasoning. Journal of Automated Reasoning,
18(3):399–442, June 1997.

[108] D. Hutter, ed. Proc. FLoC’02 Workshop on Automation of Proofs by Mathematical Induction
(IND-WS’99), July 6, 1999, Trento, Italy, 1999.

[109] D. Hutter. Annotated reasoning. Annals of Mathematics and Artificial Intelligence, 29(1–
4):283–222, 2000. Special Issue on Strategies in Automated Deduction, ed. by Bernhard
Gramlich, Hélène Kirchner, and Frank Pfenning.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 35

[110] D. Hutter. Deduction as an engineering science. Electronic Notes in Theoretical Computer
Science, 86(1), June 2003. Final Proc. of 4th International Workshop on First-Order Theorem
Proving (FTP 2003), June 12-14, 2003, Valencia, Spain.

[111] D. Hutter and A. Bundy. The design of the CADE-16 inductive theorem prover contest. In
H. Ganzinger, ed., Proc. 16th Int. Conf. on Automated Deduction, Trento, Italy, July 7-10,
1999, LNCS 1632, pp. 374–377. Springer, July 1999.

[112] D. Hutter and M. Kohlhase. A coloured version of the λ-calculus. In W. McCune, ed.,
Proc. 14th Int. Conf. on Automated Deduction, LNCS 1249, pp. 291–305, Townsville, North
Queensland, Australia, July 1997. Springer.

[113] D. Hutter and M. Kohlhase. Managing structural information by higher-order colored
unification. Journal of Automated Reasoning, 25(2):123–164, 2000.

[114] D. Hutter, G. Rock, J. H. Siekmann, W. Stephan, and R. Vogt. Formal software development
in the verification support environment (VSE). In J. N. Etheredge and B. Z. Manaris,
eds., Proc. 13nth International Florida Artificial Intelligence Research Society Conference
(FLAIRS’00), May 22-24, 2000, Orlando, Florida, USA, pp. 367–376. AAAI Press, 2000.

[115] D. Hutter and C. Sengler. INKA: The next generation. In M. McRobbie and J. Slaney, eds.,
Proc. 13th Int. Conf. on Automated Deduction, New Brunswick, NJ, USA, July 30 – August
3, 1996, LNCS 1104, pp. 288–292. Springer, 1996.

[116] A. Ireland. The use of planning critics in mechanizing inductive proofs. In A. Voronkov,
ed., Proc. 3rd Int. Conf. on Logic Programming and Automated Reasoning (LPAR 1992),
St. Petersburg, Russia, July 15-20, 1992, 1993, LNCS 624, pp. 178–189. Springer, July 1992.

[117] A. Ireland. Productive use of failure in inductive proof. Journal of Automated Reasoning,
16(1–2):79–111, Mar. 1996.

[118] A. Ireland and A. Bundy. Extensions to a generalization critic for inductive proof. In J. S.
Michael A. McRobbie, ed., Proc. 13th Int. Conf. on Automated Deduction, New Brunswick,
NJ, USA, July 30 – August 3, 1996, LNCS 1104, pp. 47–61. Springer, 1996.

[119] A. Ireland and A. Bundy. Automatic verification of functions with accumulating parameters.
Journal of Functional Programming, 9(2):225–45, 1999.

[120] A. Ireland, M. Jackson, and G. Reid. Interactive proof critics. Formal Aspects of Computing,
11(3):302–325, 1999.

[121] P. Janicic and A. Bundy. A general setting for flexibly combining and augmenting decision
procedures. Journal of Automated Reasoning, 28(3):257–305, Apr. 2002.

[122] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in equational theories
without constructors. In Proc. Symposium on Logic in Computer Science, pp. 358–366. IEEE,
1986. also in Information and Computation, vol. 82(1), pp. 1–33, 1989.

[123] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories without
constructors. Information and Computation, 82:1–33, July 1989.

[124] J.-P. Jounnaud. Theorem proving languages for verification. In F. Wang, ed., Proc. 2nd
International Conference on Automated Technology for Verification and Analysis (ATVA’04),
Taipei, Taiwan, ROC, October 31-November 3, 2004, LNCS 3299, pp. 11–14. Springer, 2004.

[125] D. Kapur. An automated tool for analyzing completeness of equational specifications.
In T. Ostrand, ed., Proc. of the 1994 International Symposium on Software Testing and
Analysis (ISSTA’94), August 17-19, 1994, Seattle, WA, USA, volume Special Issue of Software
Engineering Notes, pp. 28–43, Aug. 1994.

[126] D. Kapur. Rewriting, decision procedures and lemma speculation for automated hardware
verification. In E. Gunter and A. Felty, eds., Proc. 10th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’97), Murray Hill, NJ, USA, August 19-22, 1997,
LNCS 1275, pp. 171–182. Springer, Aug. 1997.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4336

[127] D. Kapur and D. Musser. Inductive reasoning with incomplete specifications. preliminary
report. In Proc. of 1st IEEE Symposium on Logic in Computer Science (LICS’86), Cambridge,
MA, 1986.

[128] D. Kapur and D. Musser. Proof by consistency. Artificial Intelligence, 31:125–157, 1987.

[129] D. Kapur, D. Musser, and X. Nie. The Tecton proof system. In V. Alagar, L. Lakshmanan,
and F. Sadri, eds., Formal Methods in Databases and Software Engineering, Proceedings of
the Workshop on Formal Methods in Databases and Software Engineering, Montreal, Canada,
15-16 May 1992, Workshops in Computing, pp. 54–79. Springer, 1993.

[130] D. Kapur, D. Musser, and X. Nie. An overview of the Tecton proof system. Theoretical
Computer Science, 133(2):307–339, 1994.

[131] D. Kapur, P. Narendran, and H. Zhang. Proof by induction using test sets. In J. Siekmann,
ed., Proc. 9th Int. Conf. on Automated Deduction (CADE’88), Argonne, Illinois, USA, May
23-26, 1988, LNCS 230, pp. 99–117. Springer, 1986.

[132] D. Kapur, P. Narendran, and H. Zhang. On sufficient completeness and related properties of
term rewriting systems. Acta Informatica, 24:395–415, 1987.

[133] D. Kapur, P. Narendran, and H. Zhang. Automating inductionless induction using test sets.
Journal of Symbolic Computation, 11(1/2):83–111, 1991.

[134] D. Kapur, X. Nie, and D. Musser:. An overview of the Tecton proof system. Theoretical
Computer Science, 133(2):307–339, Oct. 1994.

[135] D. Kapur and N. Sakhanenko. Automatic generation of generalization lemmas for proving
properties of tail-recursive definitions. In D. Basin and B. Wolff, eds., Proc. 16th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’03), Rom, Italy, September
8-12, 2003, LNCS 2758, pp. 136–154. Springer, Sept. 2003.

[136] D. Kapur and M. Subramaniam. Using linear arithmetic procedure for generating induction
schemes. In P. Thiagarajan, ed., Proc. 14th Conf. on the Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’97), Madras, India, December 15-17, 1994,
LNCS 880, pp. 438–449. Springer, Dec. 1994.

[137] D. Kapur and M. Subramaniam. Automating induction over mutually recursive functions.
In M. Wirsing and M. Nivat, eds., Proc. 5th Int. Conf. on Algebraic Methodology and
Software Technology (AMAST’96), Munich, Germany, July 1-5, 1996, LNCS 1101, pp. 117–
131. Springer, July 1996.

[138] D. Kapur and M. Subramaniam. Lemma discovery in automated induction. In M. McRobbie
and J. Slaney, eds., Proc. 13th Int. Conf. on Automated Deduction, New Brunswick, NJ, USA,
July 30 – August 3, 1996, LNCS 1104, pp. 538–552. Springer, 1996.

[139] D. Kapur and M. Subramaniam. New uses of linear arithmetic in automated theorem proving
by induction. Journal of Automated Reasoning, 16(1–2):39–78, Mar. 1996.

[140] D. Kapur and M. Subramaniam. Extending decision procedures with induction schemes. In
D. McAllester, ed., Proc. 17th Int. Conf. on Automated Deduction, Pittsburgh, PA, USA,
June 17-20, 2000, LNCS 1831, pp. 324–345. Springer, June 2000.

[141] D. Kapur and M. Subramaniam. Automatic generation of simple lemmas from recursive
definitions using decision procedures – preliminary report. In V. Saraswat, ed., Advances in
Computing Science – ASIAN 2003, Programming Languages and Distributed Computation,
8th Asian Computing Science Conference, Mumbai, India, December 10-14, 2003, LNCS 2896,
pp. 125–145. Springer, 2003.

[142] D. Kapur and H. Zhang. An overview of RRL: Rewrite rule laboratory. In N. Dershowitz,
ed., Proc. 3rd Int. Conf. on Rewriting Techniques and Applications (RTA’89), LNCS 355, pp.
513–529. Springer, 1989.

[143] D. Kapur and H. Zhang. An overview of the rewrite rule laboratory. Journal of Computer
and Mathematics with Applications, 29(2):91–114, 1995.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 37

[144] D. Kapur and H. Zhang. An overview of the rewrite rule laboratory. Journal of Computer
and Mathematics with Applications, 29(2):91–114, 1995.

[145] M. Kaufmann. An interactive enhancement to the boyer-moore theorem prover. In E. Lusk
and R. Overbeek, eds., Proc. 9th Int. Conf. on Automated Deduction (CADE’88), Argonne,
Illinois, USA, May 23-26, 1988, LNCS 310, pp. 735–736. Springer, May 1988.

[146] M. Kaufmann. Generalization in the presence of free variables: A mechanically-checked
correctness proof for one algorithm. Journal of Automated Reasoning, 7(1):109–158, Mar.
1991.

[147] M. Kaufmann. An informal discussion of issues in mechanically-assisted reasoning. In
M. Archer, J. Joyce, K. Levitt, and P. Windley, eds., Proceedings 4th International Workshop
on the HOL Theorem Proving System and its Applications, August 1991, Davis, California,
USA, pp. 318–337. IEEE Computer Society, 1991.

[148] M. Kaufmann. An extension of the Boyer-Moore theorem prover to support first-order
quantification. Journal of Automated Reasoning, 9(3):355–372, 1992.

[149] M. Kaufmann. Acl2 support for verification projects (invited talk). In C. Kirchner and
H. Kirchner, eds., Proc. 15th Int. Conf. on Automated Deduction, Lindau, Germany, July
5-10, 1998, LNCS 1421, pp. 220–238. Springer, July 1998.

[150] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: ACL2 Case Studies.
Kluwer Academic Publishers, June 2000.

[151] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, 2000.

[152] M. Kaufmann and J S. Moore. Design goals of ACL2. CLI Technical Report 101,
Computational Logic, Inc., 1994.

[153] M. Kaufmann and J S. Moore. An industrial strength theorem prover for a logic based on
Common Lisp. IEEE Transactions on Software Engineering, 23(4):203–213, Apr. 1997.

[154] M. Kaufmann and J S. Moore. Structured theory development for a mechanized logic. Journal
of Automated Reasoning, 26(2):161–203, 2001.

[155] M. Kaufmann and P. Pecchiari. Interaction with the boyer-moore theorem prover: A tutorial
study using the arithmetic-geometric mean theorem. Journal of Automated Reasoning, 16(3),
June 1996.

[156] L. A. S. Kirby and J. Paris. Accessible independence results for Peano arithmetic. Bull.
Lond. Math. Soc., 14:285–293, 1982.

[157] T. Kolbe and C. Walther. Reusing proofs. In A. Cohn, ed., Proc. 9th European Conf. on
Artificial Intelligence (ECAI’94), Amsterdam, The Netherlands, August 8-12, 1994, pp. 80–
84. John Wiley and Sons, Aug. 1994.

[158] T. Kolbe and C. Walther. Patching proofs for reuse (extended abstract). In N. Lavrac and
S. Wrobel, eds., Proc. 8th European Conference on Machine Learning (ECML’95), Heraclion,
Crete, Greece, April 25-27, 1995, LNCS 912, pp. 303–306. Springer, 1995.

[159] T. Kolbe and C. Walther. Termination of theorem proving by reuse. In M. McRobbie and
J. Slaney, eds., Proc. 13th Int. Conf. on Automated Deduction, New Brunswick, NJ, USA,
July 30 – August 3, 1996, LNCS 1104, pp. 106–120. Springer, 1996.

[160] E. Kounalis. Testing for the ground (co-)reducibility property in term-rewriting systems.
Theoretical Computer Science, 1:87–117, 1992.

[161] E. Kounalis and M. Rusinowitch. Mechanizing inductive reasoning. In Proc. 8th National
Conference on Artificial Intelligence, pp. 240–245. American Association For Artificial
Intelligence, MIT Press, 1990.

[162] E. Kounalis and M. Rusinowitch. Mechanizing inductive reasoning. Bulletin of the European
Association for Theoretical Computer Science, 41:216–226, June 1990.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4338

[163] E. Kounalis and P. Urso. Generalization discovery for proofs by induction in conditional
theories. In A. Kumar and I. Russell, eds., Proc. 12th International Florida Artificial
Intelligence Research Society Conference (FLAIRS’99), May 1-5, 1999, Orlando, Florida,
USA, pp. 250–256. AAAI Press, May 1999.

[164] I. Kraan. Using the rippling heuristic in set membership proofs. In J. P. Bowen, M. G.
Hinchey, and D. Till, eds., Proc. 10th International Conference of Z Users (ZUM’97), Reading,
UK, April 3-4, 1997, LNCS 1212. Springer, Apr. 1997.

[165] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for logic program synthesis. In
D. Warren, ed., Proc. 10th Int. Conf. on Logic Programming, June 21-25, 1993, Budapest,
Hungary, pp. 441–455. MIT Press, 1993.

[166] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and induction. Journal
of Automated Reasoning, 16(1–2):113–145, 1996.

[167] G. Kreisel. Mathematical logic. In T. Saaty, ed., Lectures on Modern Mathematics, volume 3,
pp. 95–195. J. Wiley & Sons, 1965.

[168] U. Kühler. A Tactic-Based Inductive Theorem Prover for Data Types with Partial Operations.
PhD thesis, Fachbereich Informatik, Universität Kaiserslautern, Infix, Sankt Augustin, 2000.

[169] U. Kühler and C.-P. Wirth. Conditional equational specifications of data types with partial
operations for inductive theorem proving. In H. Comon, ed., Proc. 8th Int. Conf. on Rewriting
Techniques and Applications (RTA’97), LNCS 1232, pp. 38–52, Sitges, Spain, June 1997.
Springer.

[170] A. Lazrek, P. Lescanne, and J.-J. Thiel. Tools for proving inductive equalities, relative
completeness, and ω-completeness. Information and Computation, 81(1):47–70, 1990.

[171] J. C. López and R. Monroy. A rippling-based difference reduction technique to automatically
prove security protocol goals. In C. Lemâıtre, C. A. Reyes, and J. A. González, eds., Proc.
9th Ibero-American Conference on Artificial Intelligence, Puebla, México, November 22-26,
2004 (IBERAMIA’04), LNCS 3315, pp. 364–374. Springer, Nov. 2004.

[172] H. Lowe, A. Bundy, and D. McLean. The use of proof planning for co-operative theorem
proving. Journal of Symbolic Computation, 25(2):239–261, 1998.

[173] L. Dixon and J. D. Fleuriot IsaPlanner: A prototype proof planner in isabelle. In F. Baader,
ed., Proc. 19th Int. Conf. on Automated Deduction (CADE’03), Miami Beach, FL, USA, July
28 – August 2, 2003, LNCS 2741, pp. 279–283. Springer, 2003.

[174] P. Madden, A. Bundy, and A. Smaill. Recursive program optimization through inductive
synthesis proof transformation. Journal of Automated Reasoning, 22(1):65–115, 1999.

[175] A. Manning, A. Ireland, and A. Bundy. Increasing the versatility of heuristic based theorem
provers. In A. Voronkov, ed., Proc. 4th Int. Conf. on Logic Programming and Automated
Reasoning (LPAR 1993), St. Petersburg, Russia, July 13-20, 1993, LNCS 698, pp. 194–204.
Springer, July 1993.

[176] P. Manolios and J S. Moore. Partial functions in ACL2. Journal of Automated Reasoning,
31(2), 2003.

[177] R. Monroy, A. Bundy, and I. Green. Planning proofs of equations in ccs. Automated Software
Engineering¡, 7(7):263–304, 2000.

[178] R. Monroy, A. Bundy, and A. Ireland. Proof plans for the correction of false conjectures.
In F. Pfenning, ed., Proc. 5th Int. Conf. on Logic Programming and Automated Reasoning
(LPAR 1994), Kiev, Ukraine, July 16-22, 1994, LNCS 822, pp. 54–68. Springer, 1994.

[179] L. M. de Moura, S. Owre, H. Rueß, J. M. Rushby, and N. Shankar. The ICS decision
procedures for embedded deduction. In D. A. Basin and M. Rusinowitch, eds., Proc. 2ndd
Int. Joint Conf. on Automated Reasoning (IJCAR’04), Cork, Ireland, July 4-8, 2004, LNCS
3097, pp. 218–222. Springer, July 2004.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 39

[180] L. M. de Moura, S. Owre, H. Rueß, J. M. Rushby, N. Shankar, M. Sorea, and A. Tiwari. SAL
2. In R. Alur and D. Peled, eds., Proc. 16th International Conference on Computer Aided
Verification (CAV 2004), Boston, MA, USA, July 13-17, 2004, LNCS 3114, pp. 496–500.
Springer, July 2004.

[181] L. M. de Moura, H. Rueß, and M. Sorea. Bounded model checking and induction: From
refutation to verification (extended abstract, category a). In W. A. Hunt Jr. and F. Somenzi,
eds., Proc. 15th International Conference on Computer Aided Verification (CAV 2003),
Boulder, CO, USA, July 8-12, 2003, LNCS 2725, pp. 14–26. Springer, July 2003.

[182] D. R. Musser. On proving properties of abstract data types. In Proc. 7th ACM Symposium
on Principles of Programming Languages, Las Vegas, Nevada, January 1980, pp. 154–162,
1980.

[183] D. H. nad Bruno Langenstein, C. Sengler, J. H. Siekmann, W. Stephan, and A. Wolpers.
Deduction in the verification support environment (VSE). In M.-C. Gaudel and J. Woodcock,
eds., Proc. 3rd International Symposium of Formal Methods Europe: Industrial Benefit and
Advances in Formal Methods (FME’96), Co-Sponsored by IFIP WG 14.3, Oxford, UK, March
18-22, 1996, LNCS 1051, pp. 268–286. Springer, Mar. 1996.

[184] G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems (TOPLAS), 1(2):245–257, 1979.

[185] G. Nelson and D. Oppen. Fast decision procedures based on congruence closure. Journal of
the ACM, 27(2):356–364, Apr. 1980.

[186] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In J. Robinson and
A. Voronkov, eds., Handbook of Automated Reasoning, volume 1, chapter 7, pp. 371–443.
Elsevier and MIT Press, 2001.

[187] T. Nipkow. Term rewriting and beyond – theorem proving in Isabelle. Formal Aspects of
Computing, 1(4):320–338, 1989.

[188] T. Nipkow, L. C. Paulson, and M. Wenzel, eds. Isabelle/HOL – A Proof Assistant for Higher-
Order Logic, LNCS 2283. Springer, 2002.

[189] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining specification,
proof checking, and model checking. In R. Alur and T. A. Henzinger, eds., Proc. 8th
International Conference on Computer Aided Verification (CAV’96), New Brunswick, NJ,
USA, July 31 – August 3, 1996, LNCS 1102, pp. 411–414. Springer, 1996.

[190] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In D. Kapur,
ed., Proc. 11th Int. Conf. on Automated Deduction (CADE’92), Saratoga Springs, NY, USA,
June 15-18, 1992, LNCS 607, pp. 748–752. Springer, June 1992.

[191] S. Owre, J. M. Rushby, N. Shankar, and D. W. J. Stringer-Calvert. PVS: An experience
report. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, eds., Proc. International
Workshop on Current Trends in Applied Formal Methods (FM-TRENDS’98), Boppard,
Germany, October 7-9, 1998, LNCS 1641, pp. 338–345. Springer, Oct. 1998.

[192] E. Paul. Proof by induction in equational theories with relations between constructors. In
B. Courcelle, ed., Proc. Coll. on Trees in Algebra and Programming (CAAP’84). Cambridge
University Press, 1984.

[193] E. Paul. Equational methods in first order predicate calculus. Journal of Symbolic
Computation, 1(1):7–29, Mar. 1985.

[194] L. C. Paulson. Isabelle: The next seven hundred theorem provers. In E. L. Lusk and R. A.
Overbeek, eds., Proc. 9th Int. Conf. on Automated Deduction (CADE’88), Argonne, Illinois,
USA, May 23-26, 1988, LNCS 310, pp. 772–773. Springer, May 1988.

[195] L. C. Paulson. Isabelle – A Generic Theorem Prover (with a contribution by T. Nipkow).
Springer, 1994.

[196] L. C. Paulson. Proving properties of security protocols by induction. In Proc. 10th Computer
Security Foundations Workshop (CSFW ’97), June 10-12, 1997, Rockport, Massachusetts,
USA, pp. 70–83. IEEE Computer Society, June 1997.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4340

[197] N. Peltier. Model building with ordered resolution: Extracting models from saturated clause
sets. Journal of Symbolic Computation, 36:5–48, 2003.

[198] B. Pientka and C. Kreitz. Instantiation of existentially quantified variables in inductive
specification proofs. In J. Calmet and J. Plaza, eds., Proc. 4th Int. Conf. on Artificial
Intelligence and Symbolic Computation (AISC’98), Plattsburgh, New York, USA, September
16-18, 1998, LNCS 1476, pp. 247–258. Springer, Sept. 1998.

[199] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In Sprawozdanie z I
Kongresu Matematikow Krajow Slowianskich (Comptes Rendu I Congrès des Mathématiciens
des Pays Slaves), Warszawa, 1929, pp. 92–101, 1930.

[200] M. Protzen. Disproving conjectures. In D. Kapur, ed., Proc. 11th Int. Conf. on Automated
Deduction (CADE’92), Saratoga Springs, NY, USA, June 15-18, 1992, LNCS 607, pp. 340–
354. Springer, June 1992.

[201] M. Protzen. Lazy generation of induction hypotheses. In A. Bundy, ed., Proc. 12th
Int. Conf. on Automated Deduction (CADE’94), Nancy, France, June 26 – July 1, 1994,
LNCS 814, pp. 42–56. Springer, 1994.

[202] M. Protzen. Patching faulty conjectures. In M. McRobbie and J. Slaney, eds., Proc. 13th
Int. Conf. on Automated Deduction, New Brunswick, NJ, USA, July 30 – August 3, 1996,
LNCS 1104, pp. 77–91. Springer, 1996.

[203] Z. Qian. Structured contextual rewriting. In P. Lescanne, ed., Structured Contextual
Rewriting, LNCS 256, pp. 168–179. Springer, May 1987.

[204] U. Reddy. Term rewriting induction. In M. Stickel, ed., Proc. 10th Int. Conf. on Automated
Deduction (CADE’90), Kaiserslautern, FRG, July 24-27, 1990, LNCS 449, pp. 162–177.
Springer, July 1990.

[205] J. Richardson, A. Smaill, and I. Green. System description: Proof planning in higher-order
logic with Lambda-Clam. In C. Kirchner and H. Kirchner, eds., Proc. 15th Int. Conf. on
Automated Deduction, Lindau, Germany, July 5-10, 1998, LNCS 1421, pp. 129–133. Springer,
July 1998.

[206] J. A. Robinson and A. Voronkov, eds. Handbook of Automated Reasoning. Elsevier and MIT
Press, 2001. in two volumes.

[207] M. Rusinowitch, S. Stratulat, and F. Klay. Mechanical verification of an ideal incremental
ABR conformance. In E. Emerson and A. Sistla, eds., Proc. 12th International Conference
on Computer Aided Verification (CAV’00), Chicago, IL, USA, July 15-19, 2000, LNCS 1855,
pp. 344–357. Springer, July 2000.

[208] M. Rusinowitch, S. Stratulat, and F. Klay. Mechanical verification of an ideal incremental
ABR conformance algorithm. Journal of Automated Reasoning, 30(2):53–177, Feb. 2003.

[209] R. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1–12, 1984.

[210] A. Stevens. A rational reconstruction of Boyer and Moore’s technique for constructing
induction formulas. In Y. Kodratoff, ed., Proc. 8th European Conf. on Artificial Intelligence
(ECAI’88), Munich, Germany, August 1-5, 1988, pp. 565–570. Pitmann Publishing, London,
Aug. 1998.

[211] G. Sutcliffe. System description: Systemon tptp. In D. A. McAllester, ed., Proc. 17th
Int. Conf. on Automated Deduction, Pittsburgh, PA, USA, June 17-20, 2000, LNCS 1831,
pp. 406–410. Springer, June 2000.

[212] G. Sutcliffe and C. B. Suttner. The TPTP problem library - CNF release v1.2.1. Journal of
Automated Reasoning, 21:177–203, Oct. 1998.

[213] G. Sutcliffe and C. B. Suttner. The CADE-15 ATP system competition. 1999, 23(1):1–23,
July 1999.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 41

[214] G. Sutcliffe, C. B. Suttner, and F. J. Pelletier. The IJCAR ATP system competition. Journal
of Automated Reasoning, 28(3):307–320, Apr. 2002.

[215] G. Sutcliffe, C. B. Suttner, and T. Yemenis. The TPTP problem library. In A. Bundy, ed.,
Proc. 12th Int. Conf. on Automated Deduction (CADE’94), Nancy, France, June 26 – July
1, 1994, LNCS 814, pp. 252–266. Springer, 1994.

[216] A. Tarski. A Decision Method for Elementary Algebra and Geometry (2nd ed.), volume III.
University of California Press, Berkeley, 1951. 63 p.

[217] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proc. Lond. Math. Soc., II. Ser. 42, pp. 230–265, 1936.

[218] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. a
correction. Proc. Lond. Math. Soc., II. Ser. 43, pp. 544–546, 1937.

[219] P. Urso and E. Kounalis. ”Term partition” for mathematical induction. In R. Nieuwenhuis,
ed., Proc. 14th Int. Conf. on Rewriting Techniques and Applications (RTA’03), Valencia,
Spain, June 9-11, 2003, LNCS 2706, pp. 352–366. Springer, June 2003.

[220] P. Urso and E. Kounalis. Sound generalizations in mathematical induction. Theoretical
Computer Science, 323(1–3):443–471, Sept. 2004.

[221] C. Walther. Computing induction axioms. In A. Voronkov, ed., Proc. 3rd Int. Conf. on Logic
Programming and Automated Reasoning (LPAR 1992), St. Petersburg, Russia, July 15-20,
1992, 1993, LNCS 624, pp. 381–392. Springer, July 1992.

[222] C. Walther. Combining induction axioms by machine. In R. Bajcsy, ed., Proc. 13th
Int. Conf. on Artificial Intelligence (IJCAI’93), Chambéry, France, August 28 -September
3, 1993, pp. 95–101. Morgan Kaufmann, 1993.

[223] C. Walther. Mathematical induction. In D. Gabbay, C. Hogger, and J. Robinson, eds.,
Handbook of Logic in Artificial Intelligence and Logic Programming, volume 2, chapter 13,
pp. 127–228. Oxford University Press, 1994.

[224] C. Walther. On proving the termination of algorithms by machine. Artificial Intelligence,
71(1):101–157, 1994.

[225] C. Walther and T. Kolbe. On terminating lemma speculations. Information and
Computation, 162(1–2):96–116, October/November 2000.

[226] C. Walther and T. Kolbe. Proving theorems by reuse. Artificial Intelligence, 116(1–2):17–66,
Jan. 2000.

[227] C.-P. Wirth. Descente infinie + deduction. Logic Journal of the IGPL, 12(1):1–96, Jan. 2004.

[228] C.-P. Wirth and K. Becker. Abstract notions and inference systems for proofs by
mathematical induction. In N. Dershowitz and N. Lindenstrauss, eds., Proc. 4th
Int. Workshop on Conditional and Typed Rewriting Systems (CTRS 1994), Jerusalem, Israel,
July 13-15, 1994, LNCS 968, pp. 353–373. Springer, 1995.

[229] C.-P. Wirth and B. Gramlich. A constructor-based approach for positive/negative conditional
equational specifications. Journal of Symbolic Computation, 17:51–90, 1994.

[230] C.-P. Wirth and B. Gramlich. On notions of inductive validity for first-order equational
clauses. In A. Bundy, ed., Proc. 12th Int. Conf. on Automated Deduction, LNCS 814, pp.
162–176, Nancy, France, 1994. Springer.

[231] T. Yoshida, A. Bundy, I. Green, T. Walsh, and D. A. Basin. Coloured rippling: An extension
of a theorem proving heuristic. In A. G. Cohn, ed., Proc. 9th European Conf. on Artificial
Intelligence (ECAI’94), Amsterdam, The Netherlands, August 8-12, 1994, pp. 85–89. John
Wiley and Sons, Aug. 1994.

[232] H. Zhang. Reduction, Superposition and Induction: Automated Reasoning in an Equational
Logic. PhD thesis, Rensselaer Polytech. Inst., Dept. of Comp. Sci., Troy, NY, 1988.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–4342

[233] H. Zhang. Contextual rewriting in automated reasoning. Fundamenta Informaticae,
24(1/2):107–1–23, 1995.

[234] H. Zhang and X. Hua. Proving the Chinese Remainder Theorem by the cover set induction. In
D. Kapur, ed., Proc. 11th Int. Conf. on Automated Deduction (CADE’92), Saratoga Springs,
NY, USA, June 15-18, 1992, LNCS 607, pp. 431–445. Springer, June 1992.

[235] H. Zhang, D. Kapur, and M. Krishnamoorthy. A mechanizable induction principle for
equational specifications. In E. Lusk and R. Overbeek, eds., Proc. 9th Int. Conf. on Automated
Deduction (CADE’88), Argonne, Illinois, USA, May 23-26, 1988, LNCS 310, pp. 162–181.
Springer, May 1988.

B. Gramlich / Electronic Notes in Theoretical Computer Science 125 (2005) 5–43 43

	Background and Overview
	Basics about Induction
	TP vs. ITP
	Approaches to and Assumptions about ITP

	Strategies in ITP
	Why are Strategies so Important in ITP?

	State of the Art
	Assessment, Comparison, Contests?
	Successes and Failures
	Systems for Induction

	Problems and Challenges
	Some Theses
	Conclusion
	References

