Fachbereich Informatik

-
2 ¢
3 =
(oS,
])
D O
Lo ?
O
S
-o—cf)c
O cwxw
S O
03
>tl\
E 0L
=) o Nl £

SEKI - REPORI

Constructor-Based
Inductive Validity
in Positive/Negative-Conditional

Equational Specifications

Claus-Peter Wirth, Bernhard Gramlich
Ulrich Kuhler, Horst Prote

SEKI Report SR-93-05 (SFB)

Constructor-Based Inductive Validity
in Positive/Negative-Conditional
Equational Specifications

Claus-Peter Wirth, Bernhard Gramlich,
Ulrich Kihler, Horst Prote

Fachbereich Informatik, Universitit Kaiserslautern,
D-67663 Kaiserslautern,
Germany

TR

wirth@informatik.uni-kl.de

June 12, 1993

Abstract: We study algebraic specifications given by finite sets R of positive/negative-conditional equa-
tions (i. e. universally quantified first-order implications with a single equation in the succedent and a
conjunction of positive and negative (i. e. negated) equations in the antecedent). The class of models of
such a specification R does not contain in general a minimum model in the sense that it can be mapped to
any other model by some homomorphism. We present a constructor-based approach for assigning appro-
priate semantics to such specifications. We introduce two syntactic restrictions: firstly, for a condition to
be fulfilled we require the evaluation values of the terms of the negative equations to be in the construc-
tor sub-universe which contains the set of evaluation values of all constructor ground terms; secondly, we
restrict the constructor equations to have “Horn”-form and to be “constructor-preserving”. A reduction
relation for R is defined, which allows to generalize the fundamental results for positive-conditional rewrite
systems, which does not need to be noetherian or restricted to ground terms, and which is monotonic
w. r. t. consistent extension of the specification. Under the assumption of confluence, the factor algebra
of the term algebra modulo the congruence of the reduction relation is a minimal model which is (beyond
that) the minimum of all models that do not identify more objects of the constructor sub-universe than
necessary and which establishes one of the four notions of inductive validity of Gentzen clauses we discuss.
To achieve decidability of reducibility we define several kinds of compatibility of R with a reduction ordering
and present a complete critical-pair test for the confluence of the reduction relation.

Keywords: Positive/negative-conditional specification, partial specification, constructor-based semantics,
initial model, free model, inductive validity, constructor variables, order-sorted algebra, consistent exten-
sion, positive/negative-conditional rewriting, confluence, termination.

This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)

Contents
1 Introduction and Overview

2 Basic Notions and Notations
2.1 Sets and Classes, Multissabs =, | o 070 0 f i i ey sigmn Sk gl 2e S SIS B
e iTaRg R r A R e eI S Hi me o s Cosia e R e O s Rt Rl LR

3 Motivation

4 More Basic Notions and Notations
4.1 SSUbREIEOGIONE, o R 5 i S i B L R e
A el PR e e R e e e S
4.3 "-Orderings and other (binary) Relations . i & 0 o et vy v gt

4.4 =, Confluence, and Gh TR R8P rODRrtY o, et s e aier i g et e
5 Syntax and Semantics of Specifications
6 The Reduction Relation
7 How to Test for Confluence
8 Compatible CRSs
B Fhellse of Qrdetings . s w92 wid ol s e iaeranBEsns b S Do S
8.2 Several kinde of Compatibility of CRB8 . . vty s e b s e s e g ey
8:8- ‘Resulta for Compatible OR88:. - o h s o o et e e

9 Inductive Validity
10 Conclusion
A The Proofs
B Unification

References

12
12
13
14
15

16

18

22

24
24
27
28

30

37

38

54

57

1 Introduction and Overview

We present a constructor-based approach for assigning semantics to algebraic specifica-
tions with finite sets of positive/negative-conditional equations. In this approach, the
non-constructor function symbols can be used for (possibly partially) defining functions
on a domain of discourse supplied by the constructor terms and called the constructor sub-
universe. For such partial definitions of functions, variables ranging over the constructor
terms (or the constructor sub-universe) are likely to be more convenient than variables rang-
ing over all terms (including “junk” terms) (or the whole universe), because the specifier
usually® does not intend to tell how the functions behave on objects that are “undefined”
in the sense that they do not belong to the domain of discourse. Therefore we generalize
unconditional equations not only by adding positive and negative conditions but also by
allowing constructor variables in addition to the usual general variables.

In general, specifications with positive/negative-conditional equations lack an initial
model. The most promising attempt in literature to overcome this problem has been that
in Kaplan[17]. There, one of the quasi-initial models is distinguished from the other models
by means of control information extracted from the rules, which must be compatible with
a noetherian ordering. In addition, Kaplan gives a straightforward ground term reduction
relation. However, his approach violates the paradigm of separation of logic and control and
does not allow to express the distinction of his quasi-initial model without the control part
of the specification. For this reason (among others), we choose a new different approach.
Instead of using control information we introduce two syntactic restrictions:

A. For a condition to be fulfilled, the terms of its negative equations must be “defined” in
the sense that their evaluations fall into the constructor sub-universe. This require-
ment is achieved by adding condition literals expressing this property and goes well
with our intention of taking the constructor sub-universe as the domain of discourse.

B. We restrict the constructor rules (which express equalities among the constructor
terms) to have “Horn”-form and to be “constructor-preserving”.

We then obtain the results of Kaplan[17) without using control information or noetherian
orderings anymore. As a consequence, our reduction relation does not need to be noetherian
or to be restricted to ground terms. Contrary to [17], we can show the monotonicity
of this reduction relation w. r. t. consistent extension of the specification. As in (17],
assuming confluence of our reduction relation, the factor algebra of the ground term algebra
modulo the congruence of our reduction relation is a quasi-initial model for our specification.
Unlike [17], however, it is also initial in the class of all models which do not identify more
constructor ground terms than necessary. :

To achieve decidability of reducibility and to enhance our means of testing for conflu-
ence, we define several kinds of compatibility of R with a reduction ordering, which enable
us to present a complete critical-pair test for confluence of our reduction relation.

Finally, we define and disambiguate four notions of inductive validity of Gentzen
clauses, compare them with notions found in literature, and show their monotonicity w. r. t.
consistent extension of the specification.

The more difficult proofs of presented results can be found in appendix A.

Lunless he wants to specify error-recovery or non-strict functions

(W)

2 Basic Notions and Notations

In this section we describe our non-standard basic notions and notations for sets and terms.
More basic notions and notations (for substitutions, algebras, orderings, and reduction
relations) can be found in sect. 4.

2.1 Sets and Classes, Multi-sets

We use the following non-standard notation for classes A, B:

Wy = {nelN|n#£0}
dom(A) := {a|3b:(a,b)e A} (domain)
ran(A) = {b|3a:(a,b)E A} (range)
field(A) := dom(A)Uran(A)
ACB) = [¢ (function application of A)?
(B.C)eA
A[B] = {b|3a€B:(a,b)eA} . (relation application of A)
F(A) = {S| ST A A (S isfinite) }
A* = {w:{0,1,....n—-1} 5> A[neN} (set of words)
At = {w:{0,1,....,n—1} > A|ne N} (set of nonempty words)
id := { (a,0)|aisaset} (identity-function)
U := dom(id) (class of all sets)
A = {(ba)]|(a,b)E A} (reverse of a relation)
AoB := {(a,c)|3b: ((a,b)€ A A (byc)€ B)} (product of relations)®
ARPL e i
A+ .= Ao A forie N (power of a relation)
A = [4000 (U -reflexive, transiftive)
' o closure of a relation
o transitive
b l.etg+ AT (closure of a relation)

We use 0 both for the empty set and the empty word. For application of the function f to

i we write f; besides f(i), such that w; denotes the? ith “letter” of a word w. Speaking of a
" relation we always think of a binary relation unless indicated otherwise. We use W for the
union of disjoint sets.

Multi-sets differ from sets only in their possibility to contain an element more than once.
We denote them very similar to sets: § denotes the empty multi-set as well as the empty
set. We use ‘(" instead of ‘{’, ‘)’ instead of ‘}’, ‘C’ instead® of ‘C’, and ‘L)’ instead® of ‘U’.

2 As this set-theoretic definition might be difficult to understand, here is an equivalent one:
C if BGdom%A AYD:((B,D)eA = D=0C)
AB)=q U if B¢ dom(A
“rubbish” otherwise
3This is very convenient for relations because a AbBe implies a (A o B) c. It is, however, not generally
considered the most convenient definition when A and B are used as functions because B(A(a)) = b (and
not A(B(a)) = b) implies (A o B)(a) = b, provided that a € dom(A) and A(a) € dom(B) .
4Notic~ that we start with 0 instead of 1
SAC B :iff each element occurring n-times in A occurs at least n-times in B

6Bach element occurring exactly n-times in A and exactly m-times in B occurs exactly (n + m)-times
in AUB.

(f(i) | i € I') denotes the multi-set containing an element ‘a’ exactly [{ i € I | f(i) = a }|-
times. FMul(S) denotes the set of finite multi-sets whose elements are in the set S.

It would be nice to keep the multi-sets as abstract as they are now. But as we
don’t want to introduce a duplicate of set-theoretic mathematics for multi-sets we have
to be more concrete: We assume a multi-set to be a set that contains for each multi-set-

element a occurring n-times in it n different representation set-elements’ ao, ..., a,-; with
Vi< n:a=set(a;) . To avoid confusion we don’t introduce an analogue of ‘... € ...’ for
multi-sets, but write ‘... € set[...]" instead.

2.2 Terms

We will consider terms of fixed arity over many-sorted signatures. A signature
sig =\(E;5,a)

consists of an enumerable set of function symbols F, a finite set of sorts S (disjoint from
F), and a computable arity-function o : F — S*. For f € F: a(f) is the list of argument
sorts augmented by the sort of the result of f; to ease reading we will add a * — ’ after
a nonempty list of argument sorts. A constructor sub-signature of the signature sig is a
signature i

cons = (C, S, a|c)

such thatj the set C is a decidable subset of F. C is called the set of constructor symbols;
the complement N = F \ C is called the set of non-constructor symbols.

Example 2.1 (Signature with Constructor Sub-signature)

C = {0,s,false,true,nil, cons}
N = {-,memberp,}
S = {nat,bool,list}
a(l) = nat
a(s) = nat — nat
ofalse) = bool
aftrue) = bool
a(nl) = list
a(cons) = natlist — list
a(-) = natnat — nat
a(memberp) = natlist — bool

A variable-system for a signature sig is an S-sorted family of decidable sets of variable sym-
bols which are mutually disjoint and disjoint from F. As the basis for our terms throughout
the whole paper we assume two fixed disjoint variable-systems Vsig of general variables and
Veons of constructor variables such that for each s € S we have |Vsig,|, [Voons.s| € IN . By
abuse of notation we will use the symbol ‘X" for an S-sorted family not only to denote the
family X = (X,),es itself, but also the union of its ranges: Uses X5 . T (sig, VsigW Veons)

Tgeperated in some fixed manner (e. g. a; := (a,i)) for intensional equality of multi-sets to imply
extensional equality.

denotes the S-sorted family of all well-sorted (variable-mized) terms over sig/Vsic W Vcons,
while G7 (sig) denotes the S-sorted family of all well-sorted ground terms over sig. Simi-
larly, 7 (cons, VsicWVcons) denotes the S-sorted family of all (variable-mized) constructor
terms, T (cons,Vcons) denotes the S-sorted family of all pure constructor terms, while
GT (cons) denotes the S-sorted family of all constructor ground terms. For abstraction
from problems with empty sorts, we always assume G7 (cons) to have nonempty ranges
only. We will denote all terms in prefix-form without any confusing notational sugar (such
as parentheses or commas).

As exhibited in Avenhaus&Becker[l], our terms can be looked upon (and we will do
so) as family of order-sorted terms in the style of Gogolla[15] or Smolka&zal.[25]: Take
{SIG, CONS}xS for the sorts with the sort declaration that for each s € 5 the sort
(CONS, s) is a sub-sort of the sort (SIG, s); and replace each arity declaration of the form
a(f) = s0...8.-1 — 8, by the arity declaration
a(f) 3 (SIG, so) . - . (SIG, 8,-1) — (SIG, 8,);
moreover, for f € C add the arity declaration
a(f) 3 (CONS, sq)...(CONS, sp_1) — (CONS, s,).

A variable-system for signature sig with sub-signature cons is defined to be a
{SIG, CONS}xS-sorted family V = (Vi s)(,5)e{SI1G,CONS}xS of decidable sets which are mu-
tually disjoint and disjoint from F. For denoting the {SIG, CONS}xS-sorted family of
variables occurring in a structure A (which might be a term or a list of terms, e. g.) we
will use V(A). For denoting the S-sorted family of general (resp. constructor) variables
occurring in A we will use Vsig(A) (resp. Veons(A)).

Now the order-sorted notation for our sets of terms are the {SIG,CONS}xS-
sorted families 7 = (Tc‘_‘,)(g,,)e{SIG‘CONs}Xs and G7 = (QT ,s)(c,s)e{SIG.CONS}xS given by
Tsig. := T (sig, Vsia®WVoons), » 7Zcons,s := T (cons, Veons), » 97sig,s := G7 (sig), , and
GTcons,s := GT (cons), for each s € 5. To avoid confusion: Note that Zcons,s € 7siG,s
for s € S, whereas Vcons,s N Vsig,s = @ . Our custom of reusing the symbol of a family for
the union of its ranges now allows to write 7 as a shorthand for 7 (sig, Vsig WVcons) -

All in all, this leads to a simple treatment (also of subsequent notions) of our approach
within the order-sorted framework. For the sake of simplicity and flexibility, however, we
have also presented a more direct approach here.

An occurrence (or position) is an element of IN;. We write plg to express that neither p
is a prefix of q, nor q a prefix of p. For a term t € T we define the set of its occurrences
(or positions) O(t) recursively by: O(z) = {0} (z€V) and
Ol fty-ntn) = {0Y0. | " {ig]l g€ O®).} (FeFitii wyeT).
1<i<n

For a term ¢ we denote by t/p the subterm of ¢ at occurrence p and by t[p « t'] the result
of replacing t/p with ¢’ at occurrence p in t. For P C O(t), Vp,q € P: (p # ¢ = plg), we
denote by t[p — t, | p € P] the result of replacing for each p € P the subterm at occurrence
pin the term t with the term ¢}, A term t € 7 is linear :iff Vp,q € O(t): (t/p=t/q€V =
p=q) ; it is reducible w. r. t. a relation => :iff ¢ € dom(=).

We define the following sets of equations:
Eq(sig,X) := { (t,t") | Is € S: ¢, t' € T(sig,X), } “set of undirected equations”
DEq(sig, X) := { (¢,t) | 3s € S: t,t' € T(sig,X), } “set of directed equations”

3 Motivation

Just as with unconditional equations, the class of algebras satisfying a set R of positive-
conditional equations® contains an initial algebra, whereas reduction is more difficult be-
cause the equations only have to hold if their condition holds: The replacement of the
left-hand side of an instantiated rule by its right-hand side is not known to be correct
until the condition of the instantiated rule has been shown to hold in the initial model
of R. Further problems occur when one allows negated equations among the equations
of the conjunction that forms the condition. Kaplan[17] defines a [negated] equation in
the condition to hold :iff its terms [do not] have a common reduct (w. r. t. =2.). If the
resulting reduction relation is confluent and the rules are decreasing (cf. [12]) w. r. t. some
reduction ordering >, then its congruence closure is minimal (but not a minimum!) w. r. t.
set-inclusion among the congruence relations whose factor algebra (w. r. t. the ground term
algebra GT) is a model’® of R. Despite of the lack of an initial model even in this restricted
case, positive/negative-conditional equations are really necessary for convenient specifica-
tion, as can be seen by the following example, where ‘«—’ precedes the condition of an
equation.

Example 3.1 (continuing Example 2.1)

R: -z0 = &
-sTsy = =g
memberp z nil = false
memberpz consy ! = true — zT=y
memberpz consyl = memberpzl «— z#y

The Importance of Confluence .

First we are going to explain why confluence is essential for reduction with positive/negative-
conditional rules: Firstly (even without negative equations), confluence is needed for the
completeness of testing semantic equality of two condition terms by looking for a common
reduct!!. This means: We need confluence for the congruence defined in Kaplan[17] to yield
a model of R. Secondly, it is needed for guaranteeing the congruence to be minimal, as can
be seen from:

Example 3.2
Let a,b,c,d, e be constants of the same sort, a >b>c>d > e.

Ri Ve=d
ci='¢

== b — % d
Then, for the reduction relation of Kaplan[17]:

= = { (¢,d), (c,e), (a,b) } , whose congruence closure <2 is not minimal.

8By a positive-conditional equation we mean an equation that has associated with it a condition that
consisting of a (possibly empty) conjunction of positive (i. e. not negated) equations. For a detailed
treatment of positive-conditional equations cf. Kaplan[16].

%i. e. VZ:(equation(Z) <« condition(Z))

¢aking the conditional equations as universally quantified formulas of first order equational logic (as
indicated in footnote 9) and using standard algebra model semantics

w. 1. t. the reflexive and transitive closure =2 of —»

While confluence can be dropped for merely positive conditional equations by testing for
congruence instead of testing for the existence of a common reduct of two condition terms,
it is worse for positive/negative-conditional equations: It does not suffice to test non-
congruence for inequality of two condition terms if confluence is not provided, as can be
seen from:

Example 3.3
Let the signature and the ordering be as in the previous example.

Ri -e=d »— dee

c=e€

Any congruence yielding a model of R must contain (d,e): If it did not, it would contain
(¢c,d) and (c,e), and hence (d,e). Therefore, no matter which congruence we actually use
for condition-testing, the test of d#e with such a (model-yielding) congruence will always

fail, such that we cannot establish c<2>d by testing the condition of the first rule. But
R has the minimum model ‘c=d=e’, which cannot be obtained by the simple method of
condition-testing anymore, but only by paramodulation and factoring instead, which in our
opinion are too complicated for establishing just a simple reduction step.

By this we conclude that in case of negative equations in the condition, computation of
a correct reduct by the method of condition-testing is only possible if confluence is provided.

Criticism of Kaplan[17]

The major shortcoming of the reduction relation in [17], however, is (as noted above) that its
congruence closure is not a minimum'? but only minimal'® among the congruences yielding
a model of R. There might be reductions s==t¢ with s=t not holding in all models
logically specified by R. Kaplan[17] argues as follows:

By writing ¢ ¢=d «— d#e ’ instead of the logically equivalent ¢ ¢c=d V d=e ’ the
specifier adds some “operational” information to control the choice of the intended minimal
congruence ‘c=d’ of the congruences yielding a model of R (‘c=d’, ‘d=e’, and ‘c=d=e¢").

But writing ‘ ¢=d V d=e’ in the form of ‘ c=d «— d#e’ is actually motivated by the
ordering aspect and not by the specifier’s'* intention which of all minimal models to choose.
What’s worse is that semantics is given by control and not expressible without; thereby
violating the paradigm of separation of logic and control: R is not a logical specification
(suitable for computation) anymore (as it was the case with positive-conditional equations),
but a program with none but operational semantics. Therefore we lose the nice aspects of
the pure logic view. To name one: The monotonicity of logic is lost: If we, e. g., complete
the specification of a partially specified function'® in a proper way'®, we might destroy some
reductions and congruences'” that were possible before:

12j, e. being smaller than anything else
13

i. e. there is nothing smaller

'#Who is very likely to be unable to keep track of all consequences of his pieces of “operational”
information

15 And partially specified functions are very useful in expressing exactly what is required by the specifier!
16j e. not confusing different constructor terms

7by this we mean elements of <>

Example 3.4 (continuing Example 3.1)
memberp 0 cons —0s 0 nil =2, false no longer holds after adding the rule —0sxz =0 .

Similarly, reduction of non-ground terms is of no use because the reduction relation is not
stable:

Example 3.5 As z does not reduce to 0 , one might say
memberp 0 cons z nil =2 false .
But for xz+— 0 this does not make any sense.

The perfect model semantics approach of Bachmaird&zGanzinger[4], which also includes a
completion procedure, generalizes Kaplan’s approach [17] by abstracting the control in-
formation hidden in the syntactic form of rules into a reduction ordering which must be
total on ground terms and which determines the construction process of perfect models.
With our approach, however, reduction orderings are not at all needed for defining seman-
tics. Cf. Becker[6] for the exact interrelation between the three approaches of Kaplan[17],
Bachmair&Ganzinger[4], and us.

Looking for Remedy

One could think that the problem of a minimal congruence not being a minimum hardly
arises or is avoidable by convenient purely syntactic restrictions on the defining rules. The
following example will exhibit that such restrictions for the congruence of [17] cannot be
reasonable in practice of specification:

Example 3.6 (continuing Example 3.1)

We exclude'® the function symbols 0, s, and — (together with their respective rules), and
enrich the signature with the following two constants: «a(a) = a(b) = nat . The reduction
relation = of [17] is confluent'® and noetherian® in this case.

Consider the following two congruence relations on ground terms, given by their con-
gruence classes:
<2 fa)

{b) -
{false } U {memberpz ! |(z € {a,b} A (z doesn’t occur in 1))}
{true } U {memberpz | |(z € {a,b} A (z does occur in l))}
{nil }
{cons a nil }
{cons b nil }
{cons a cons a nil }
{cons a cons b nil }

'8]t’s not that they make trouble. We just omit them to make the example simpler.
19There are no feasible critical pairs
20Use the lexicographic path ordering given by memberp > true ,false

oo

i Ay bl
{ false, memberpa nil, memberpb nil }
{ true } U { memberpz ! |(z € {a,b} A [#nil)}
{nil}
{ consanil, consb nil }
{ conszconsynil | z,y € {a,b} }

Now, both <& and ~ vyield a model of R. By a~b ; a<Zb ; we know that ~ is
not a minimum. By memberpa consb nil <25 false and memberpa cons b nil 4 false

we know that <2 isn’t a minimum either. But both <= and ~ are minimal among the
congruences that yield a model of R. Hence their intersection does not yield a model of R.

Notice that the example is really a standard specification example and not a sophisticated
one. Therefore, restrictions on the structure of the rules for avoiding minimal non-minimum
models would necessarily forbid such basic and essential specifications as the memberp -
example above.

Thus, we have to choose between a # b and memberpaconsb nil # false . As & is
somehow more appealing than ~ , one may argue that a # b is somewhat more important
than memberpa consbnil # false by stating a, b to be constructors and thinking freeness
of constructors td be more important than that of non-constructors. But this treatment
does not solve the problem in general: If

1. a or b is changed into a (composite) non-constructor term,
or

2. memberp is stated to be a constructor symbol too,

then the very same problem arises again.

Our Solution

Now, while the simple attempt above fails, the intended bias towards freeness of constructor
terms can be achieved with the help of a new unary predicate ‘Def’ (cf. sect. 4) (which is
also necessary for sufficient expressibility of lemmas for inductive theorem proving?') in the
fol. way:

A. Adding condition literals expressing definedness for all terms of negative equations in
the condition. A termt is defined :iff ‘Deft’ holds :iff ¢ has a congruent constructor
ground term. For our example above this means that the last memberp -rule is not
applicable if a or b is undefined, thereby avoiding the problem of (1) above.

B. Forcing rules whose left-hand sides are constructor terms to have no negative equations
in their conditions and to be constructor-preserving??. For our example above, this

means that ‘memberp’ cannot be a constructor symbol, thereby avoiding the problem
of (2) above.

*ICf. Wirth[28]. Lemmas of the form “ Deffzo ... 2,_; ” (with the z; being different constructor
variables), expressing that the symbol ‘f denotes a “fotal” function, are very imnortant for inductive
theorem proving.

22j, e.: all terms in such a “constructor rule” are (variable-mixed) constructor terms and all variables of
a constructor rule occur in its left-hand side

(B) is purely syntactic and not very restrictive in practice as it only limits congruences
between constructor terms (and this even less restrictively than usual). (A) is not a usage
of control information as before. It just means that ‘#’ is syntactically restricted to defined
terms.

Undefined terms are due to incomplete knowledge about the model world or partially
specified functions. In this context, functions are partial®® not because the specifier has ex-
plicitly stated their partiality as a property of importance, but because he has partially left
open their definition, maybe due to partial information, due to irrelevance of the functions’
further behaviour for the specification in the current state of development, or even due to
partiality being actually intended. Thus, partiality and undefinedness are not part of the
specification but a result from its incompleteness. For this reason, the undefined terms are
often thought to be equal to some unknown constructor ground terms:

Kapur&Musser[18, 19] consider those congruences which are maximally enlarged by
random identification of undefined terms with constructor ground terms, as long as this
identification does not identify two distinct constructor ground terms. Their intended
congruence is then the intersection of all those maximally enlarged congruences. In [18]
the maximal congruences are allowed to have some undefined terms left; this causes the
problem that one cannot describe the intended congruence by model semantics**. Therefore
in [19] the intersection is done only over those congruences that have no undefined terms
left: These congruences can easily be described in terms of model semantics: A model A
is additionally? required to satisfy the following: Let <2 denote the initial congruence®
of R and k its canonical?” cons-epimorphism from G7 (cons) to G7T (cons)/<2 . Now the
unique cons-homomorphism?? h from G7 (cons)/<2> to A given by kh = (Algz(cons),)ses
is required to be an isomorphism. A third way of removing the undefined terms is to
require h to be epimorphic instead of isomorphic, i. e. A is additionally?® required to be
cons-term-generated. While the theory of the last two attempts is very beautiful, the
resulting congruences may be very difficult to understand: One needs a very sophisticated
way of argumentation for showing two terms equal — even for some very simple examples.

Based on this tradition of thinking undefined terms to be possibly equal to constructor
ground terms, the above item (A) of our approach can be justified the fol. way:

23by which we mean a function with symbol say ‘f’, for which the application ‘ftp ... ¢, to some
constructor ground terms fg, ..., {,_; is an undefined term.

240f course, this is tried to be done in [18]. But their “inductive model” (which is defined to be a model
with free constructors whose proper epimorphic images are no models with free constructors) is a nasty
thing: Normally, a model uses to keep being a model when one throws away some equations of the specifi-
cation, thereby establishing the monotonicity of logic. The “inductive models” do not have this property.
To see this take C = {false,true,0} ; N = {s,zerop} ; R = { zerop0 = true, zeropsz = false } .
Now the following A is an “inductive model” for R but not for ® (where we need [|A(nat)|=1):
A(bool) = {FALSE, TRUE} ; A(nat) = {0,1} ; true® = TRUE ; false® = FALSE ; 04 =0; s(z)=1;
zerop”(0) = TRUE ; zerop*(1) = FALSE .

We can also see by this that we indeed have no monotonic logic here: # F 0 = s0 ; but (as seen by

A): R ¥ 0=s0.

*Shesides making true the universally quantified equations of R

26which exists because [18, 19] consider unconditional equations only

*7sometimes called natural instead of canonical; mapping each term of G7 (cons) to its congruence class.
*8given by the Homomorphism-Theorem(4.2)

10

e Considering dynamic extension of specifications: If two terms can be shown equal by

<2 they will keep being equal even if an undefined term will be identified with a
defined term later on.?® On the other hand might an undefined term become equal
(Wit «2.) to a previously unequal term when identifying an undefined term with
a defined term. Thus, we had better be cautious: We should not pretend to be able
to distinguish something undefined from anything else (as the former might in the
sequel be defined to be the latter).

From a static point of view on the specification: Two distinct terms may be equal
or unequal, no matter whether they are defined or undefined. In particular may an
undefined term be both unequal to some distinct undefined term and equal to some
other. This inequality between undefined terms, however, differs from the inequality
between defined terms in that it is not considered sufficient for the fulfilledness of an
inequality literal in the condition of an equation. This means that we have a “closed
world assumption” which is restricted to the constructor ground terms, saying that
two constructor ground terms are meant to be unequal unless their equality is specified
by the constructor rules. According to this, we use “negation as failure” on the defined
terms only, and not on the undefined terms where the specification is allowed to be

incomplete and open.

In the fol. sections we will show that by the little changes of (A), (B), we get a straight-
forward reductior relation = that has the following advantages (compared to the one of

Kaplan[17]) (cf. sect. 6):

1. Its congruence closure <& yields a model that is not only minimal but also the (up to

isomorphism) uniquely determined minimum among those sig-term-generated models
of R that do not identify more constructor ground terms than necessary (provided

(as also required for <&, of [17] being minimal) that = is confluent).

. —> is monotonic w. r. t. the addition of new rules that do not have left-hand sides

which are old constructor terms.

3. =—> is stable when defined also on non-ground terms.

As shown in the examples above, the reduction relation of [17] has none of these properties.
We will now revisit these examples to illustrate how our restrictions solve their problems.

1. (Example 3.6). If a and b are defined terms, then <&, becomes the minimum among

those congruences which do not identify more constructor ground terms than nec-

essary. Contrariwise, if a or b is undefined, then the intersection of <& and ~

becomes a model of R because the last memberp -rule now reads :
memberp z cons y | = memberpz [— x #y, Defz, Defy ;

thus, memberpa cons b nil is neither true nor false now, but undefined instead.

. (Example 3.4). We do not have memberp 0 cons-0s 0 nil =2, false anymore:

memberp 0 cons—0s0 nil is irreducible because —0s0 is undefined.

. (Example 3.5). As z is undefined: memberp0 cons z nil =24 false .

29Cf, Theorem 6.16

11

Furthermore, if our reduction relation is confluent and there aren’t any undefined ground
terms®, then there is no difference between our ground reduction relation and that of
Kaplan[lﬂ- Therefore in this important case we offer semantics for the reduction relation
of [17] not using any control information. 5

Finally, we are not only able to specify our semantics without using control information,
but also able to remove the control aspect of requiring (for admissibility of a specification)
the rules to be decreasing. As a consequence, our reduction relation does not need to be
noetherian or restricted to ground terms.

Two types of variables

An additional feature of our presentation here, is our distinction between two kinds of
variables. While the distinction between constructor terms and general terms is commonly
accepted and considered fruitful, our distinction between constructor variables and general
variables may require some explanation: General variables may be substituted by any term
of the whole signature. Constructor variables, however, may only be substituted by pure
constructor terms consisting of constructor function and constructor variable symbols. In
the field of model semantics, this distinction is mirrored by the possible valuations: While
a general variable can take the value of any object in the universe of its sort, a constructor
variable can take the value of an object of the constructor sub-universe only.

General variables are the common ones in the field of term rewriting. They allow to ex-
press semantic properties that cannot be expressed by constructor variables.®! Furthermore,
the general variables allow a higher abstraction from evaluation strategies than constructor
variables which result in an innermost rewriting strategy in case of free constructors.

Constructor variables are convenient in the field of inductive theorem proving®? for
expressing important lemmas that do not hold for undefined terms®. The means for au-
tomatically showing termination of the functions of classic inductive theorem proving (cf.
Boyer&Moore[10], Walther[26]) also depend on the variables in the function definitions be-
ing bound to constructor terms only. This dependence, however, and the intended meaning
of the variables at all, are usually hidden in the formalism and not made explicit as in
Avenhaus&Becker([1], where it is shown that the restriction to constructor variables only, is
beneficial to confluence®* and termination of rewriting systems.

Allin all, both kinds of variables have their benefits for specification with positive/nega-
tive-conditional equations and for expressing (inductive) properties with Gentzen clauses,
as well as for rewriting and (inductive) theorem proving. Since the technical treatment
of both kinds of variables can be achieved by simple means, we have decided to include
both of them in our constructor-based approach for positive/negative-conditional equations
here. Together with our generalization to positive- and negative-conditional equations,
the addition of constructor variables to classic term rewriting provides us with a unifying
approach to the function specification style of classic inductive theorem proving on the one
hand and to term rewriting on the other.

30 e. iff our =2 is sufficiently complete.

31Consider equations for error recovery or for non-strict functions whose meaning does not depend on
the definedness of all its variables, e. g. “ ortrue Y = true ”

32Cf. Walther[27], Biundo&al.[8], Boyer&Moore[10], Zhang&al.[32], Wirth[28].

33E. g., one certainly should be able to express a commutativity lemina for addition of rational numbers,
but one cannot expect it hold for ‘1/0’ or other undefined terms.

34Cf. our Theorem 8.18

B lore Basic Notions and Notations
RLVS

| gubstitutions

of substitutions from a variable-system X = (X¢,)(c,s)e{sIG,cONS}xs tO a
s}xS-sorted family of sets 7' = (1% s)(s.5)e{s1G,cons)xs 1s defined to be

T) .= { g X—=T | V((,S) € {SIG,CONS}XS V2 € Xm : U(.’B) € Tc"‘ } x
'mportant sets of substitutions are SUB(V,T) and SUB(V,GT).

application of the homomorphic extension of a substitution o € SUB(V,T)
et € 7T we use postfix-notation: to . Notice that for o€ SUB(V,gT) :

fnition of substitutions is consistent with the notion of order-sorted sub-
¢ one prefers the order-sorted view®® on our approach. A fortiori we get

i) i V(s,3) € {SIG,CONS}xS : Vt € T2 to € T, -

atioﬁs instead of the usual phrase “we always assume ... to have no variables
The set of separations for X,Y is defined for X,Y C V by:

X:Y) = { £ € SUB(V,V) | bijectiveon V A EXInY =10}

v we always have Sep(X,Y)# 0 3" and w. L. 0. g.%® we think ‘min Sep(X, Y)’
1e element chosen from Sep(X,Y), because for our purposes all its elements

; i genefal unifiers for E on X is defined for F € FMul(DEq(sig, Vsic® Vcons))
V) by: :

{ o0 € SUB(V,T) | set[Elo Cid A *®
Yu € SUB(V,T): (set[Elp Cid = 3r € SUB(V,T) : o|xT = plx) }

i.e for Iy e SUB(V,T): set[Elu C id , we always have Mgu(E,X) # 0
we think ‘min Mgu(E,X)’ to denote some element chosen from Mgu(E, X),

' purposes all its elements are equivalent. A unification algorithm can be
lix B. '

Plication of the abuse of notation for families mentioned in sect. 2.2. A proper notation

(2.<)€{51G,CONS)xS

€ and described in [1].

SIG, CONS}xS : [V, ¢ N

generality ; ;

88 the conjunciion by oo =o but not** by V(e[V(E)]) C V(E) , for which we have
3s in [28, 30]) or Vcons (as in [1]) but cannot allow all variables of VsigVcons in

Sider 2,y ¢ Veons nat 5 ¥ € Vsig,nat ; @ most general unifier for ((z, sY))' must be
SY, Y — y } a5

13

4.2 Algebras

We define a sig/cons-algebra A over the signature sig = (F,S,a) with constructor sub-
signature cons = (C,S,alc) to be a function A:(F W ({SIG,CONS}xS)) - U with
Vs € S: (0 # A(CONS,s) € A(SIG,s)) and "

A A(SIG, sp) x---%A(S1G,8,-1) = A(SIG,s,) for feF with a(f)=s0...55-18n,
c*[A(CONS, s¢) x- - - x A(CONS, s,_1)] € A(CONS, sp) for c€ C with a(c)=s¢...5p-154.

We write f4 instead of A(f) for f € F . A(s,s) is called the universe of A for (s,s) €
{SIG, CONS}xS.

The sig/cons-algebras of this definition are nothing but the order-sorted algebras over
the order-sorted signature exhibited in sect. 2.2.

A sig/cons-algebra A is called trivial :iff V(s,s) € {SIG,CONS}xS : |A(s,s)| =1 .
The differences between two trivial sig/cons-algebras not being too interesting we speak of
the trivial sig/cons-algebra if we mean any.

A (total) sig/cons-homomorphism h:: A — B from a sig/cons-algebra A to a sig/cons-
algebra B is an S-sorted family h = (h,),es of functions A, : A(SIG, s) — B(SIG, s) which
are compatible with sig and cons:

For fe€F; a(f) =3s¢...9,18:; Yi<n:a; € A(SIG,s;) :

O) = 7 ke ey B W)
and for all s € S: hs[A(CONS, s)] € B(CONS, s)

Taking the class of sig/cons-algebras for the class of objects and the class of sig/cons-
homomorphisms for the class of arrows, we get the sig/cons-homomorphism category
of sig/cons-algebras. The composition hk :: 4 —C of h:: A — B and k:: B — C is de-
fined as usual by hk:= (h;0k,),es and the identity homomorphism for A is given as
(id| A(s1G,s))aes : A — A .

Let XC V. We use 7(X) to denote the term algebra over X and sig/cons/V. This term
algebra has 7, N 7T (sig, X) as the universe for each (s, s) € {SIG, CONS}xS and works on
function symbols as follows:

fT(x)(to, oo ,tn_l) = AR s for f € F with O‘(f) =380...87-18n

and Vi<n: t; € 7 (sig,X),.
Similarly, (by abuse of notation) we sometimes use G7 for the ground term algebra T (0)
over sig/cons instead of the family of ground terms. An A-valuation x of X is an ele-
ment of SUB(X, A) := SUB((Vs,s N X)(c,0)e(s1c.cons)xss (A(S, 8))(c.s)e(s16,coNs)xs) . The
evaluation homomorphism A, :: 7(X) — A is recursively defined as follows (S-index of A,
omitted):
A (z) = k(z) for z € X

Ax(fto...tao1) = fA(Ax(to)s. .., Ax(tno1)) for f€F; to,... thy € T(sig,X)

For getting acquainted with this notation, here is a well-known lemma:

Lemma 4.1 (Substitution-Lemma)

Let A be a sig/cons-algebra and k an A-valuation of X. Fort € T ando € SUB(V,T(X)):

Ax(to) = Agoa,(t)

“!One would not call k a substitution, however, unless A is a term algebra.

14

For ¢ € {SIG,CONS}; dunno € {sig,cons}; a sig/cons-algebra A is called
¢:dunno-term-generated dff Vs € S:Vae€ A(s,s): 3t € GT(dunno), : Alt) =a
It is called dunno-term-generated :iff it is SIG:dunno-term-generated.

A sig/cons-congruence ~ on A is very similar to a sig-congruence in the multi-sorted case,
namely an S-sorted family ~ = (~,),es of equivalences ~, on A(SIG, s) being compatible
with sig, i. e. satisfying for f € F ; a(f) =50...5n8n+1; Vi < n:a; € A(SIG,s;) :

If aj~, b for some j < n, then PG s ottn) T f“‘(ao,...,aj_l,b, it L vl)i

The factor algebra of A modulo ~ is the sig/cons-algebra B (denoted by A/~) given by:
B(s,s) = { ~l{a}] |a € Al6,8)} ((s,s) € {SIG, CONS}xS)

FE(~sl{ao}),- - s ~onos[{an-1}]) i= ~o, [{F4(a0, .. ., an1)}]
(f € Fialf) = 805858y Yi< nia € ASIG, 8))

The canonical*® sig/cons-epimorphism of A modulo ~ is the sig/cons-homomorphism

k: A— A/~ given by (s € S; a € A(SIG, s)): ky(a) := ~,[{a}].

For a sig/cons-homomorphism A :: A — B we define its kernel to be the sig/cons-congruence

ker(h) given by (s € S; a,b € A(SIG, s)): (a,b) € ker(h), :iff h,(a) = h,(b).

The following trivial result is called a “theorem” due to its widespread area of application:
Theorem 4.2 (Homomorphism-Theorem)

Let h:: A — C be a sig/cons-homomorphism. Let ~ be a sig/cons-congruence on A with
Vs € S: ~, C ker(h), . Define B := A/~. Let k be the canonical sig/cons-epimorphism
of A modulo ~. Now h=kl uniquely defines an S-sorted family of functions | = (l,),es
with I, : B(SIG,s) — C(SIG, s) for s € S. Furthermore, this l is a sig/cons-homomorphism
l::B —C. Moreover, if ~=ker(h) holds, then l, is injective for each s € S, i. e.
l:: B — C is monic in the sig/cons-homomorphism category of sig/cons-algebras.

By specialization of notions of category theory to full sub-categories of the sig/cons-homo-
morphism category of sig/cons-algebras and to the forgetful functor we define for a class K
of sig/cons-algebras; a sig/cons-algebra 4; XCV; and £ € SUB(X, A):

A is initial in K :iff A € K and for all B € K there is a unique A :: A — B.

Ais free for K over X w. r. t. & :iff VBe K:Vue SUB(X,B):Fh:: A—-B: p=kh.
A is free in K over X w. r. t. & :iff A€ K and A is free for K over X w. r. t. &.

4.3 Orderings and other (binary) Relations

By an irreflexive ordering < we mean an irreflexive and transitive relation, sometimes called
“strict partial ordering” by other authors. As with all our asymmetric relation symbols:
a >b :iff b < a. Speaking of an ordering we always think of an irreflexive ordering. A
relation R is A-reflezive :iff id|4 € R . Simply speaking of a reflezive relation we mean
the biggest A that is appropriate in the local context. A quasi-ordering < on A is an
A-reflexive and transitive relation. An equivalence on A is an A-reflexive, symmetric, and
transitive relation. The equivalence ~ (on A) of a quasi-ordering < (on A) is SN 2. The
ordering < of a quasi-ordering < is <\ 2. A reflezive ordering < on A is an A-reflexive,
antisymmetric, and transitive relation. The ordering < of a reflexive ordering < is <\id.
‘The A-reflexive ordering < of an ordering < is <Uid|4.

423150 called natural instead

15

Let XCV. A relation R on 7 is called:
X-stable®® (w. r. t. substitution) Aff V(t,t) € R:Vo € SUB(V,T(X)): (to,t'o) € R

X-monotonic (w. r. t. replacement) :iff
V(t',t") € R:Vt € T(sig,X):Vpe O(t) : Vs€S:
(t/p,t',t" € Tsig,s = (t{p = t'],t[p —t"]) € R)
sort-invariant Aff V(t,t) € R:3s €S : t,t' € Tsig,s :
sufficiently complete (w. r. t. GT (cons)) :iff VteG7(sig): Jt'e GT (cons): (t,t')ER

A relation R is called:

total on A iff Ax A C (id|aURUR™)
noetherian :iff there is no a:IN — field(R) with Vi€ IN: (ai,ei41) € R
normalizing Aiff Vt: 3t :((t,t') € R® A t' g dom(R))

An ordering < or > is called well-founded :iff > is noetherian. A quasi-ordering or a
reflexive ordering is called well-founded :iff its ordering is well-founded.

A reduction ordering on T is a V-monotonic, V-stable, and well-founded ordering,.

The (proper) subterm ordering ¢, on T is the V-stable and well-founded ordering defined
by (¢,t' € T): .
| tQ t'iff I3pe O(t'):t=1t/p

A simplification ordering on T is a reduction ordering on 7 containing <.

-

For further information on orderings see [11].

4.4 =, Confluence, and Church-Rosser-Property

The symmetric closure of a relation = will be denoted by <.

Two terms v, w are called joinable w. r. t. = iff v | w :iff v=2s 0 E=w.

A relation = is called confluent below u :iff Vv,w: (v€&=u=w) = (v]w)).

A relation = is called locally confluent below u iff VYv,w: ((vé=u=w) = (v | w));
it is called [locally] confluent :iff it is [locally] confluent below all u.

A relation = is said to have the Church-Rosser-property :iff & c|.

Lemma 4.3 A noetherian relation => is confluent iff it is locally confluent.

Lemma 4.4 A relation = is confluent iff it has the Church-Rosser-property.

43Gimilarly a predicate P on T is X-stable :iff Vt € P:Vo € SUB(V,T(X)):tc € P

16

5 Syntax and Semantics of Specifications

Definition 5.1 (Syntax of CRS) A (positive/negative-)conditional rule system (CRS)
R over sig/cons/V is a finite subset of the set of rules RUL(sig, cons, V) over sig/cons/V,
that will be defined in Definition 6.1. The only thing we have to know about it
now 1s: RUL(sig,cons, V) C DEq(sig, VsigWVeons) x (LIT (sig, VsicWVeons))* , where
DEq(sig, VsicWVcons) is the set of directed equations and LIT (sig, VsicWVoons) is the set
of condition literals over the following predicate symbols on terms from 7 (sig, VsicW Veons)
=', ‘#’ (binary, symmetric, sort-invariant), and ‘Def’ (unary). A rule ((I,r),0) with an
empty condition will be written I=r. A rule ((I,r),C) with condition C will be written
I=r «— C. We call | the left-hand side and r the right-hand side of the rule ((Lir)C);
the terms** of the condition literals in C are called condition terms and their set is de-
noted by TERMS(C). The set of all left-hand sides of rules in R is denoted by lhs(R).
R is left-linear :iff all elements of lhs(R) are linear terms. A rule ((I,r),C) is said to
be extra-variable free :iff V(r, TERMS(C)) C V(I). R is extra-variable free sff all its
rules ((1,r),C) € R are eztra-variable free.

A rule l=r «— C expresses a universally quantified implication with the conjunction of
the literals in C' as the condition and with ‘/=r’ as the conclusion®>. The meaning of
the predicate symbols ‘=" and ‘#’ is not open to interpretation. The fixed meaning of
‘=" is standard; ‘%’ is its negation. ‘Def’, however, is the “definedness” predicate which
states that the evaluation of its argument belongs (with sort invariant) to the constructor
sub-universe of A which contains the set of evaluation values of constructor ground terms
and which is intended to supply a domain for (possibly partially) defining functions on
it. We speak of our new kind of model just as a “sig/cons-model” (without any further
attributes), because if we removed the new predicate symbol ‘Def’ and the constructor sub-
universes, we would just get the usual model concept of algebra; i. e., our sig/cons-model
is an upward-compatible extension.

Definition 5.2 (Semantics of CRS) Let R be a CRS over sig/coﬁs/V; let A be a
sig/cons-algebra, Now A is a sig/cons-model of R :iff

¥((1,r),C) € R : Vk € SUB(V, A) : ((C is true w. 1. t. A) = A(l) = Ax(r))

where C' is true w. r. t. A, aff

((((U,:v) inC) == Auu) = A:(v)) A
Vs €8:Vu,v € Tsig,e i | (((usv) in C) = Ag(u) # Av)) A
(((Defu) in C) = A.(u) € A(CONS,s))

44To avoid misunderstanding: For a condition, say “ s=t, uz#v, Defw ”, we mean the top level terms
s,t,u,v, w € T (sig, VsicWVcons) , but neither their proper subterms nor the literals Sa=iP gty (EDef 1p?
themselves.

*Notice that we don’t make any use of the fact that we have (I,r) € DEq(sig, Vsic®Vcons) beyond
(I,r) € Eq(sig, Vsic®¥Vcons) here; this ordering-property will be used for reduction only.

17

As we have negative equations in our conditions, we cannot hope to get a minimum model
because we can express things like ¢ a=b V b=c ’, which has the incomparable minimal
models ‘a=b#c’ and ‘a#b=c’. What we will get instead is a model that is the (up to isomor-
phism) uniquely determined minimum of all sig-term-generated models that are minimal
w. r. t. the identification of constructor ground terms.*® For formally expressing these
minimality-properties, we need the following definition.

Definition 5.3

1. Define Sy and Scons as (proper class) relations on sig/cons-algebras by
(A, B sig/cons-algebras):
AL, B :iff there is a sig/cons-homomorphism from A to B.
A Scons B :iff there is a cons-homomorphism from the cons-algebra A
to B|cw({cons}xs) -
We trivially get <y € Scows (by restriction of the homomorphism); and -
Scons @re quasi-orderings. The corresponding equivalences, orderings, and reflezive
orderings will be denoted by =, <, <, resp., with the corresponding subscript.

Cu({CONS)xS)

2. A sig/cons-algebra A will be called a minimum model (or else a constructor-minimum
model) of a CRS R over sig/cons/V :iff A is a Sy-minimum (or else Scons) of
the class of all sig/cons-models of R.

Similarly, a sig/cons-algebra A will be called a minimal model (or else a constructor-
minimal model) of a CRS R over sig/cons/V :iff A is a sig/cons-model of R and
there is no sig/cons-model B of R with B<,A (or else B< g, A).

The following lemma tells us that, considering minimum models, we can think in terms of
sig/cons-congruences on G7 instead of algebras:

Lemma 5.4 Let B be a sig/cons-model of the CRS R over sig/cons/V. Define the factor
algebra A := GT [ker(B) . Now:

1. A is a sig/cons-model of R.

2. ASyB . Moreover, there is a unique sig/cons-homomorphism l:: A — B
(, which is monic in the sig/cons-homomorphism category of sig/cons-algebras).

3. 'ASCONSB 5

The following lemma®® of theoretical nature ensures the existence of minimal models:
Lemma 5.5 Let R be a CRS over sig/cons/V.

1. The trivial sig/cons-algebra is a sig/cons-model of R.
2. If B is a sig/cons-model of R, then there is a minimal model A of R with A<, B.

3. R has a minimal model.

48Cf. Corollary 6.15
“"However, we do not have A= B in general, because Blcy({cons)xs) need not be cons-term-
generated.

48The lemma resembles Theorem 2.1 in Kaplan[17]. Our £, and S.ons, however, are reflexive and
therefore different from the relation < in [17], where the homomorphism is additionally required to be
unique.

18

6 The Reduction Relation

In this section we are going to define a reduction relation == which is convenient for the
semantics defined in the previous section. The overall idea is to reduce a lefi-hand side of
a rule to its right-hand side only if the condition of this rule can somehow be shown valid
by means of the same reduction relation again.

Many authors impose rather strong restrictions on constructor equations, such as “no
equations between constructors” (“free constructors”) or “unconditional equations between
" constructors only”. Compared to these, our restrictions are very weak. They serve to guar-
antee a constructor-minimum model for the constructor equations that is unique modulo

by requiring the constructor equations to have “Horn”-form and to be “constructor-
»49

wCONS ’
preserving

Definition 6.1 (Set of Rules)
(continuing Definition 5.1 by adding the restrictions on constructor equations)
The set of rules over sig/cons/V is defined to be: RUL(sig,cons, V) :i=
{ ((l,r), C) € (DEq(Sig,VSIQL*JVCONs) X (ﬁIT(Sig,Vs[G&JVCONs))’)

, YLdn C Yuw L % (us) A
V(r,TERMS(C)) C V() A
r € T (cons, Vsia®W Voons) A
3 Tg'RMS(C) & T(CODS, VSIGL?JVCONS)

-

l € T (cons, VsigWVcons) =

We are now going to define our reduction relation, having in mind to require it to be
confluent in the sequel, whereas we do not require confluence for the definition because we
cannot prove confluence criteria if the non-confluent case is undefined. Therefore, we have
to be explicit how we test the condition literals — even if this testing is not straightforward
when confluence is not provided. Our “operational” semantics for testing condition literals
is the following: ‘u=v’'is true if u,v have reducts @, 0, resp., which are syntactically equal.
‘Defu’ is true if u has a constructor ground reduct. ‘uzv’ is true if u,v have constructor
ground reducts i, 9, resp., which are not joinable. Thus, two terms in a condition literal are
“operationally” equal if they are joinable, whereas they are unequal if they are not joinable
after some reduction to constructor ground terms. The non-joinability alone of two terms is
not sufficient for regarding them as unequal because we are never sure about the inequality
of “undefined” terms. As it often occurs, our operational logic is four-valued (i. e. ‘=" and
‘#£’ can independently be true or false), but in case of confluence: tertium non datur. In
case of free or confluent constructors, the case of both ‘u=v’ and ‘us#v’ simultaneously being
true means that we have something like an ambiguous function definition. Moreover, our
reduction relation depends on the constructor sub-signature ‘cons’ beyond the signature
‘sig’ — just as our notion of “sig/cons-model” does.

49The constructor-preservation is really necessary here for guaranteeing the existence of a a minimal
constructor-minimum model as in Theorem 6.14: Let 0, 1, true, false be constructor constants, let weirdp be
a non-constructor constant, and take R: 1=0 «— weirdp=true ; weirdp=true «—— true#false .
Now there are sig/cons-models of R with 0#1 and models with true#false but no models with
“0#£1 A true#false ’. Also notice, that the constructor-preservation has some additional advantages, e. g.:
1. The rules become sort-decreasing w. r. t. to the order-sorted signature exhibited in sect. 2.2, i. e.
the right-hand side and the condition terms are from 7 (cons, Vcons) if the left-hand side is.

2. For u ¢ GT with computable and unique normal form NF(u) we can test
“ 34 € GT (cons) : u=2i ” by “ NF(u) € GT (cons) ”.
3. Theorem 6.16 has no reasonable analogue for CRSs which are not constructor-preserving.

19

Definition 6.2 (Our Reduction Relation =)
Let R be a CRS over sig/cons/V. Let XCV. The reduction relation =, , on T (sig, X)
(= for short) is defined to be the smallest relation satisfying the fol. requirement (:#):
s=>t if s,t € T(sig,X) A :
% sly =lo AR
3((I,r),C)eR: o eSUB(V,T(X)): IpeO(s): |t = s[p—ro] Vit I
: Co is fulfilled w. r. t. =
where (for D € LIT (sig,X)*) “D is fulfilled w. r. t. =" is a shorthand for
(((u=x) inD) = ulv) A
Yu,v€ T :| (((Defu) in D) = 3ie GT(cons): u=2>i) A
(((u#v)in D) = 3,0 GT(cons): u=2a}dE=yp)%

Usually one tries to find a minimal reduction relation by taking the closure over a finitary
generating relation. This is not possible here, because we have a negative condition ({). By
the “Horn”-form of our constructor equations (and the constructor-preservation), however,
we know that this negative condition does not influence the reduction of constructor terms;
and (in the definition) ‘4’ is applied to constructor (ground) terms only. Thus, we can get
our minimal reduction relation by a double closure: first for constructor rules only; second
for general rules knowing the constructor reduction to remain unchanged. This two step
construction does not destroy the uniformity of the defining requirement(#), which allows
to write mniform normal form procedures.

Define =, ,,:=0 and =, ,, to be the left-hand side® of the requirement(#)
of Definition 6.2 with =, , ; substituted for => on the right-hand side and the additional
restriction of [€ T (cons, VsigWVcons) ; formally: S=ppyint dff s,t € T(sig,X) A

! € T (cons, Vsic¥ Voons) A

A((!,7),C)eR: Joe SUB(V,T(X)): Ipe O(s): :/i 2[;0‘— ro | ;\\
Co is fulfilled w. r. t. =

R, X,i

Define =, , 1= U, =Pnx; and =, ..., to be the union of =, and the left-
hand side® of the requirement(#) of Definition 6.2 with =, ., substituted for = on
the right-hand side. Finally, define =, .. :=U, e “Prxwsi + NOW = . . satisfies
the requirement(#) of Definition 6.2, and every relation satisfying this requirement must
contain ==, .. Hence = , . is the intended smallest relation =>,,. A more
detailed proof for all this can be found in appendix A. We drop “R,X” in =ppx and
= x,» When referring to some fixed R and X. Let < denote the ordering on the ordinal
numbers. By induction over the above construction process it is trivial to verify the following
corollaries.

"’O_This formulation requires confluence and constructor-preservation to make sense in two-valued logic.
While other formulations (e. g. a universal instead of the existential quantification) might seem to be

more satisfactory, this is the one required for a correct definition. One might have expected utv instead

of 3,4 € GT (cons) : u:'-:rﬁtﬁ¢’:v for “u#v in D” here, but this modification would not allow the
conclusion that = is uniquely defined as can be seen from:

Example 6.3 Let c, d be constructor and a, b, e be non-constructor constants and take R: a=c «— b#d ;
b=d «— e#c ; e=a. Now {(a,c), (e,a) } and { (b,d), (e,a) } would be C-incomparable minimal
relations satisfying the modified requirement(#) of Definition 6.2. Their intc-section { (e,a) } , however,
salisfies the non-modified requirement only.

Slthe ¢ if * replaced by :iff

20

Corollary 6.4 (Monotonicity of => w. r. t. Replacement)
= xp (for B 2 wtw) and =, are X-monotonic.

Corollary 6.5 (Stability of =)
=y (for B 2 wtw), =, «, and their respective fulfilledness-predicates are X-stable.

The fol. technical lemmas state constructor-preservation and that there is no need for a
second closure for reduction of constructor terms.

Lemma 6.6
Vne IN:Vs € T(COIIS,VS[GUVCONs): Vi: (s=>t = (S_—rL}wt (= T(COHS,VSI(;L*JVCONs)))

Lemma 6.7 Vn € IN: Vs € T(cons, Vcons): Vt: (s=”~>t = T(cons,VCONs)))

Lemma 6.8 Vn e IN:Vse GT (cons): Vt: (s=>t = (s=>,t € GT(cons)))

Lemma 6.9 | N (7T (cons, VsicWVcons) X T (cons, Vsic®WVeons)) € L,

Lemma 6.10 (Monotonicity of =, and of Fulfilledness w. r. t. = in' g)
For B <y fwtw: =, € =, C = ; and if C is fulfilled w. 7. t. =, and
w=pB V Yu,v: ((u#v) is not in C) , then C is fulfilled w. 7. t. =, and w. r. t. =.

Lemma 6.11 (Eulfilledness Test may be Simple)
Let C € (LIT (sig,X))*. If for each element u € TERMS(C):

1. u has a normal form NF(u) (i. e. u=25NF(u) ¢ dom(=>))
and
2. = is confluent below u,
then C is fulfilled w. r. t. = iff
((((uzv)inC} = NF(u) = NE(v)) - ; /\)
VYu,veT: | (((Defu) in C) = NF(u) € GT (cons)) A
(((u#v)inC) = (NF(u),NF(v)€GT (cons) A NF(u)#NF(v)))

Lemma 6.12 Let XCYCV . Now:

For all B X wtw: VnelNy: == = = 0 (T(sig,X)x7T (sig, X)) ,

and for C.€ LIT (sig;X): C is fulfilled w. r. t. =>, , ff C is fulfilled w. r. t. =y y 5-
Furthermore, dom(=>,,) = dom(=>,,)N T (sig,X) .

Finally, if =>, , is confluent, then = , is confluent, too.

By Example 6.3 we know that (for guaranteeing a constructor-minimum model) we have
to restrict the terms of the negated equations to be “defined”. This semantic restriction
is made syntactically explicit in the fol. definition that specifies a “well-behaved” subclass
of the class of CRSs, in which inequalities are founded on' constructor ground terms. For
a motivation cf. item (A) in sect. 3 (“Our solution”), where we discussed the problems
involved.

Definition 6.13 (Def-Moderate Conditional Rule Systems (Def-MCRS))
A CRS R is a Def-moderate conditional rule system (Def-MCRS) :iff
Y((l,r),C) € R: V(u#v) in C: (Defu, Defv are in C) :

21

Now we are able to state the fundamental theorem about =. Its corollary says that for
Def-moderate CRSs R with confluent = ,, the factor algebra QT/&RIG is an (up to
isomorphism) uniquely determined sig/cons-model of R.

Theorem 6.14
(Minimal Model being Free in the Constructor-Minimal Models)
Let R be a Def-MCRS over sig/cons/V. Let XCV . Let K be the class of all constructor-

minimal®? models of R. Let k be given by (z€X): z > &R_x[{a:}] :
Now, if =, , is confluent®, then ‘T(X)/énlx is free for K over X w. . t. k.
Furthermore, if we assume =, , to be confluent®*, then the fol. items hold:

I T(X)/én‘x is a constructor-minimum®® model of R.

2. T(X)/%a.x is free in K over X w. r. t. k.

2 ’i"(}()/iébn.x is a minimal®® model of R.

Corollary 6.15 Let R be a Def-MCRS over sig/cons/V. Furthermore, assume =, ,

to be confluent. Now: g‘?'/~é>m is a minimal model of R, initial in the class of all
constructor-minimal models of R, and the (up to isomorphism) unique (<y-) minimum of
the sig-term-generated constructor-minimal models of R.

Theorem 6.16
(Monotonicity of =, , w. r. t. Consistent Extension of the Specification)
Let R be a CRS over sig/cons/V. Let XCV. Let R’ be another CRS, but over sig//cons’/V';

and X'CV'" with gig! = (F, 8500 FCF RGR
cons’ = (C', 8, dllg) C € C € F'|X & X'

V'|(sig,consixs = V 5.C 8

: aC o

Thus, sig/cons’/V' is an enrichment of sig/cons/V in the most general®® sense we can
think of. Moreover, assume®®: V((I,r),C) € (R'\R): | & T (cons, Vsic¥ Voons) (:$)

Now we have®” :
1. Vs€T(cons, X): Vt: ((s%nlxt) &5 (3%R,'x,t))

“no change on old constructor terms”

2. =mx & =ux “monotonicity”

3 VB Rwtw: = C =

@, L »
R.X,8 RX1 B \ monotonicity

52Cf. Definition 5.3

%3The remark of footnote 54 with X :=@ is applicable here.

%4The fol. allows to apply the confluence criterion of Theorem 7.6: If we additionally require
¥((1,r),C) € R : ¥(u=v) in C : (Defu, Defv are in C), then we can weaken the confluence requirement
to confluence of =, , N(DyxDy) for Dy := { u€ T(sig,X) | 34 € T(cons, VconsNX) : uéhlxﬂ e

%50ne may even introduce new constructor symbols for the old sorts and take them from the old non-
constructor symbols. Since all V; , are infinite, the restriction on V' is not severe.

$This has to be required for keeping the negative conditions fulfilled: Having founded our inequalities
on old constructor ground terms, all we have to take care of now is not to confuse these terms.

S"While it is important that =>, , tests (u#v) in a condition of an equation by
Ji,v € GT(cons) : u—;!:»n.xﬁin_xﬁ&mxv instead of 3i,9 € GT (cons’) : uénlxﬁ{mxﬁ&n,xv , for the
validity of the theorem it does not matter whether =y x 18 defined on T (sig, X) or 7T (sig’, X')

22

7 How to Test for Confluence

We are now going to define critical peaks that consist of the conditional critical pair, its
peak, and the overlap position. The other notions we will use are standard, with the
exception of “quasi overlay joinable” which is a slight weakening of “overlay joinable” in
Dershowitz[12] (cf. below), in that it allows an identical non-overlay part in the critical
pair.

Definition 7.1 (Critical Peaks and Joinability)

The set of (non-trivial) critical peaks between two rules ((lk,7x),Ck) € R ; k<28
defined as: Cp(((lo,70),Co), ((l1,71),C1)) :=

{ (((h[p « ro€],m1),Co€ Cr)o, hLo, p)

¢ = minSep(V(((lo, 7o), Co)), V(((11,71),Ch1))) A “no variables in common”
peO) AN LpgV A “non-variable position”
o = minMgu({(le&, 11/p)), V(((lo,70), Co), ((I1,71),C1))) A “most general unifier”
Lip « roflo # rio “non-trivial critical pair”
}
And the set of all critical peaks of R is CP(R) := | |J Cp(ruleg,rule;) .

rulegeR rule; €ER
R is said to be overlapping :iff CP(R) #0 .
A critical peak (((to,11), D), t,p) is joinable w. r. t. R, X :iff
Vo € SUB(V,T(X)): (D fulfilled w. r. t. =>p 5) = toplaxtip) -
A critical peak (((to,t1), D),t,p) is overlay joinable w. r. t. R, X /iff it is joinable w. r. t.
R, X and p=0. It is quasi overlay joinable w. r. t. R, X :iff

. Dy fulfilled tip = top[p — t10/p] A
bl e A ((w. Tt =gy) - ((to/p)sooln,xt1s0/p<g=a,x(f/p)sa)) '

Lemma 7.2 (Joinability of Critical Peaks is Necessary for Confluence)
Let R be a CRS over sig/cons/V and XCV. If =, , is confluent, then all critical peaks
in CP(R) are joinable w. r. t. R, X.

Lemma 7.3 (Overlay Joinable = Quasi Overlay Joinable = Joinable)
Let R be a CRS over sig/cons/V; XCV; and (((to,t1), D),%,p) € CP(R). Now w. r. t.
R, X the following holds:

1.0f (((to,tl),D),f, p) is overlay joinable, then it is quasi overlay joinable.
2. If (((to,t1), D), t,p) is quasi overlay joinable, then it is joinable.

Sufficient criteria for confluence of reduction relations for merely positive conditional rule
© systems are studied in Dershowitz[12]. As counterexamples for suggested sufficient con-
fluence criteria for merely positive conditional rule systems are counterexamples for Def-
MCRSs too, we repeat the results of [12] here: There are (left-linear) non-overlapping
positive-conditional rule systems whose reduction relations are not (locally) confluent®®
(but necessarily non-noetherian then®). Therefore, syntactic confluence criteria for non-
noetherian conditional rule systems must be very difficult to develop. Semantic confluence
criteria (in the style of Plaisted[24]) seem to require noetherian (or at least normalizing)

58Cf. [12], Example A, p. 36
59Cf. [12], Theorem 4, p. 39

23

reduction relations because they rely on the irreducible reducts of the terms; furthermore
irreducibility is not (semi-) decidable. Thus, for our confluence criteria we require = to be
noetherian. Even then the situation is not very encouraging, because there are noetherian
and non-confluent reduction relations of (left-linear, normal, and) positive-conditional rule
systems with joinable critical peaks only.®® Moreover, semantic confluence criteria remain
difficult because irreducibility is still not (semi-) decidable. However, for merely positive
conditional rule systems there are two known syntactic solutions of major®! interest: One
requires either more than joinability for the critical peaks (as, e. g., in Theorem 4 in [12]) or
the condition terms to be somehow smaller than the left-hand side of the rule (as, e. g., in
Theorem 3 in [12]). We will study the latter approach (which is the more important one in
practice (cf. Example 7.5)) later®?. The following result is a generalization of Theorem 4 in
Dershowitz[12] from positive-conditional to positive/negative-conditional rule systems and,
moreover, from overlay joinability to quasi overlay joinability.

Theorem 7.4 (Syntactic Confluence Criterion)
Let R be a CRS over sig/cons/V and XCV. If =, is noetherian and all critical peaks
in CP(R) are quasi overlay joinable w. r. t. R, X, then == , is confluent.

While this theorem is very nice (theoretically) and has a pretty complicated proof, it may
be difficult to apply even for merely positive conditional equations:

Example 7.5 Let R: fs2=0««—fz=0 ; fsz=1¢—fz=1 ; f...

Assume 0 and 1 to be irreducible. Now for showing the critical peak between the first two
rules to be quasi overlay joinable, one has to show that it is impossible that both conditions
hold simultaneously for a substitution {z — t}. However, in order to prove this, we need
the confluence below ‘ft’, which we are not allowed to assume for the joinability test here.

Theorem 7.6 (Semantic Confluence Criterion)
Let R be a CRS over sig/cons/V and XCV. Let A be a sig/cons-model of R and k an
A-valuation of X. Now:

1 If VseS: Vﬁ.,ﬁ - T(Sig,X)s\dom(—:}R'x) : (A‘(ﬁ) = Ax(i}) = U=20)
and ==, , is noetherian, then =, , is confluent.

2. Define®™ D, := {u € T(sig,X) | 34 € T(cons, VoonsNX) : u<E> ,a } . If
Vs € S : Vi € T(cons, VeonsNX), \dom(=>,) : Vo € T (sig, X),\dom(=;) :
(ds(B) =Au(0) = S8 =1
and ==, , , is noetherian, then =, , N(Dy xD,) is confluent.

80Cf. [12], Example B, p. 36

61We are not interested in the shallow-joinability of Dershowitz[12] here because there is a noetherian,
shallow-joinable, left-linear, but not confluent, merely positive conditional rule system (cf. [12], Example C,
p. 36) as well as a noetherian, shallow-joinable, normal, but not confluent, merely positive conditional rule
system (cf. [12], Example D, p. 36), which means that shallow-joinability is only sufficient for confluence
of rule systems which are both left-linear and normal. The combination of left-linearity and normality,
however, is a too severe restriction to be of major interest for us here, because left-linearity forbids the
positive part of the specification of an equality predicate by eqzz = 1 , which is the common trick for
achieving normality by transformation of ‘v=v’ in a condition of a rule into ‘eqovu = L’

62Cf. theorems 8.17 and 8.18

63Cf. footnote 54

24

8 Compatible CR 4

t. well-founded orderings enhance our mea
ns

ity restrictions on rul
strictions are necessary, as can be seen from

Compatibil
reducibility and conf]

of deciding
(Reduc1b111ty of Gr s is Not Co-semi-decidable)

Lemma 8.1
_linear, NON-0 :
ft] 'UCT'IGP f‘l"ee, me?‘ﬁ‘y pOSEti’Ue CoﬂditiOna[ru:e

There 18 @ le
syUs R with noetheria? and confl tion relation = for which reducibility of
iy o

ground terms ;s not co-semi-decidable.
erms is Not Semi-decidable)
pariable free, Def-moderate CRS R with

8 for which reducibility of ground terms

Lemma 8.2 (RedUCibility of Gr
There is @ left-lineat non-overlap
noetherian and conﬂ“e"t reduction rela

is not semi—decidable.

The fol. theorem is a genera
8.3 Let R be a CRS over B

1. ::mx-reducibz'lity of terms from 1 £} is co-semi-dect ;
' J T : - -decidable —
form for each term from T (sig, X) ts € mputable (i. e there is a c;{rn‘;utabﬁx;nozm?)[
partia

function F with dom(f) = (s €T (sig, X) | 3t (s% L
- Sigs) : : om(=
vs € dom(f) : 5= f(8) & dom(=>xx) /- 3 (=>nx))} such that
8. A ==n -normat form for eachiilg from T (sig, X) s computable (cf. above)
. above) if

—>nx _reducibility of terms from T (sig, X) is co-semi-decidable and

Vs € g’]'(cons) < i 3-—§=¢~Rlxt ¢ dom(=>nx)

Let R be a CRS over sig/cons/V. Let X be an enumerable subset of
subset of V.

to be noetherian. Now co-semi-decidabilit
; \ : ! Yy of =rp - oy o7
logically equivalent to computability of a Rf ; “ROR.X afl‘ﬁucab}hty of terms
g : rm for each term

Theorem /. Let X be an enumerable subset of V

Corollary 8.4
Assume =7rXx
from T (sig, X) s
from T (si8; X).

8.1 The Use of Orderings

In this and the fol. section we just want to give minimal easonable |
ments for achieving additional decidability properties of our L t_COmPatlbility require-
with a discussion © how to use orderings for reduction with con:litl;?n relation. We start
cussion mainly depends on the method of testing the conditions ull_)il‘la,l rules. This dis-
gain, where well-founded orderings are nee dednfloﬁl‘:lly by the same

aranteeing ter-

reduction relation 2
n of condition-testing and reduction. Since this method does not d
epend on the

concrete form of our rules, the situation under discussion d .
- : o
merely positive conditional equations. : es not differ from the case of
Define s*ax® Aiff s € T (sig, X) A 3((1,r),C)ER: Jo € SUB(
' L] 1 . V, T(X . 3
(s/p= L 3“ e TERMS(C) it =u2 A (Co is fulfilled w?)r 560(8):

As we test ourl conditions by reduction we must be allowed to switch f.r «=>ax))

and then to reduction of the condition terms, an Qo I(:‘Iz reduction to

) - Hence we require

condition-testing,
(=>ax Y o) tO be noetherian. By the fol. lemma, this requirement can b
€ expressed by

minatio

25

means of relations =3, <+ on T as follows: =, € 35 Ppx C «—; =3} issort-invariant,
V-monotonic, and V-stable; < is V-stable; and (= U (Byp0 <)) is noetherian.

Lemma 8.5
If (=>nx U»y) is noetherian, then (=, U (Bg o0 —».yv)) 18 noetherian, too.

The fol. two lemmas show that w. l. 0. g. we can require even (= UB U <) to be
noetherian:

Lemma 8.6 Let =3 be a sort-invariant®® and V-monotonic relation on T. Define > :=
(=3 UB..)®. Now the following holds: '

1. If = is noetherian [and V-stable], then - is a well-founded [and V-stable] ordering,
which doesn’t need to be sort-invariant or)-monotonic.

2. (1) does not hold in general if =% is not sort-invariant or not V-monotonic.
9 ibasesh € o=bolle

4o F S bSTU(:kEB o Br)
Lemma 8.7 Let®® b 03 C Fobg, . Assume (3 U (B0 <)) tobe noetherian.%®
Assume®? (3 Ubg,) to be noetherian. [Assume =3 and — to be V-stable.] Now:

b= (U Ubg)?® is a well-founded [and V-stable] ordering.
Finally, writing ‘>’ for ‘=3®’, this justifies the following definition:

Definition 8.8 (Termination-Pair) :
A termination-pair over sig/V is a pair (>, &) for which the following properties hold:

o o R e
2. > is a V-monotonic and V-stable®® ordering®.
3. b is a V-stable®® and well-founded ordering.
i sck
5 B e e

64The easiest way to achieve sort-invariance is to identify all sorts

55This matches Lemma 8.6(3).

56This matches the conclusion of Lemma 8.5.

67This matches the conclusion of Lemma 8.6(1).)

68V_gtability is included because it can always be achieved (for =} and <; and thereby for > and b,
too) by restriction to ground terms — and the non-ground part of an ordering > whose V-stable closure
is not noetherian anymore is of no use for showing termination anyway because then its 0-stable closure is
not noetherian, either.

69Ag discussed above, sort-invariance can be required here; but it is of no use for us and omitted for
convenience. For the benefit from this cf. Example 8.9(3).

TONotice that for proving alignment (cf. Definition 8.10 below) in practice we only have to show
Bero B C b and then take (g, U B)® instead of t>, because then we know by Lemma 8.6 (applied
to the sort-invariant restriction of >), and then by Lemma 8.7, that (>4, U >)® will do the job of .

26

Example 8.9 The standard examples for a termination-pair (>,) are:

. > some sort-invariant reduction ordering; b := B U(>o0B). ™

2. t some V-stable and well-founded ordering containing bg.; > i=

UL ") |t t"€ Tsig,s A VEET-VpeO(t): (t/p€Tsics = t[p — t'|t[p — t"])}.72
sES

3. > some simplification ordering; b = >.

In the field of ordering restrictions for conditional rule systems the notions of “simplifying”
and “reductive” are commonly used with diverse meanings. To avoid misunderstandings
we use “aligned” for the local restriction on a single rule and “compatible” (with different
prefixes) for the restrictions that involve the reduction relation of the whole rule system.

Definition 8.10 (Alignment of a Rule w. r. t. a Termination-Pair)

Let (>, &) be a termination-pair over sig/ V.

A rule ((I,r),C) € RUL(sig, cons, V) is called aligned with (>, i) :iff
I>r AN Yue TERMS(C): L bu

Now if we compare the use of orderings in the field of conditional equations (e. g., for
the “decreasing”-property in Dershowitz[13, 12]), we find that there usually is a single
noetherian ordering containing t>.,. This ordering corresponds™ to our ordering I of a
termination-pair{>, t>). Our additional >, however, is very useful both in'practice and for
establishing theoretical properties as we will see in the sequel. Furthermore, our previous
discussion reveals how to establish the properties required for > and its interference with
rules in practice.

While we require > to be a reduction ordering, we avoid the superfluous commonplace
restriction of B> to be™ b := B U ((> NU,es(Ts16,s X Tsia,s)) © B¢y), because this may
not be sufficient for alignment of given rules as in the fol. example of Dershowitz"*:

Example 8.11 (b := by U ((> NU,es(Tsia,s X Tsig,s)) © B4) is Too Restrictive)
b

=\l
fb = fa
a =¢ +«—b=c

Alignment of these rules requires a b which we cannot achieve by the above construction
of b: a>b isimpossible since alignment of the second rule requires fb > fa , which
also forbids a > f**'b , since then we get a > f(**1)a > f2n+l) 5 >

Thus, for theoretical treatment, the procedure of (2) of Example 8.9 is to be preferred to
that of (1) of Example 8.9, whereas (for practically guaranteeing alignment of rules) (2) of
Example 8.9 lacks any hints on how to semi-decide > (even for decidable ©).

All in all, there seems to be no proper reason for preferring one of >, b> to the other
and we thus have introduced the notion of a termination-pair (>, &).

"ICf. Lemma 8.6(4)
72While irreflexivity, transitivity, sort-invariance and V-monotonicity of > are trivial, V-stability for
t'>t"; t't"€Tsig,s W.r. t.asubstitution o € SWUB(V,T) can be seen the fol. way: For arbitrary t€7
and p € O(t) with t/p € Tsig,s define £ := minSep(V(t), V(t',t")) and then g := o]y) U £ v\war ey -
Now by t€[p«— t'] b té[p—1"] weget t[p —t'o]=té[p—t]ebté[p—1t"]e=t[p—1t'c].
' 73V _stability can always be achieved by restriction to ground terms
"4Cf. p. 546 in [13]

27

8.2 Several kinds of Compatibility of CRSs

The following kind of compatibility is a generalization to negative conditions and also a
slight weakening of the notion of “decreasingness” in Dershowitz[12].

Definition 8.12 (Compatibility of a CRS with a Termination-Pair)
A CRS R over sig/cons/V is X-compatible with a termination-pair T = (>,) over
sig/V iff V((I,r),C) € R: V7 € SUB(V,T (X)) : /

((C'r fulfilled w. r. t. = 4) = (((I,r),C)r is aligned with T))

Compatibility of a CRS R guarantees alignment of an instantiated rule of R when its
condition is fulfilled. But, while this kind of compatibility is convenient for obtaining
further theoretical properties of the reduction relation, we have a problem when using this
kind of compatibility of R in practice of reduction: The terms in C7 must be smaller than
I7 only if Cr is fulfilled; but for easily deciding whether C'r is fulfilled we need its terms
to be smaller than I7 and the analogous property for the other rules. That this need not
be a vicious circle is shown by the following definition, which allows’us to test the literals
in the condition from left to right, using the old programming trick of a sequential “short-
circuiting” AND-operator”. Notice that the difference to Definition 8.12 is in the quantified
variable 7 occurring as an index which allows us to step inductively from (< 2) to 7.

Definitien 8.13 (Left-Right-Compatibility)
A CRS R over sig/cons/V is X-left-right-compatible with a termination-pair T = (>, b)
over sig/V :iff V((I,7),Lo...Ln—1) € R: V7 € SUB(V,T (X)) :
Vi<n:(((Lo...Lim1)7 fulfilled w. r. t. =, ;) => Yu € TERMS(L;) : It b ur)
(A ((Lo« Lna)T fulfilled w. v. t. =g y) = It > 017))

Definition 8.14 (Don’t-Care-Compatibility)
A CRS R over sig/cons/V is X-don’t-care-compatible with a termination-pair T = (>, b)
over sig/V :iff V((l,7),Lo...Ln-1) € R: V7 € SUB(V,T (X)) :

Yi<n: Yu € TERMS(L;) : It b ur

A (((Lo.+.Ln-1)7 fulfilled w. 7. t. =>g4) = lr > r7)

Having a left-right-compatible CRS, we don’t have to test the instantiated rules for align-
ment anymore, provided that we test the literals of the instantiated conditions from left to
right until one of them fails. Having a don’t-care-compatible CRS, we can even test the
literals of the instantiated conditions in parallel and don’t have to care for the position
of these equations in the condition list. The don’t-care-compatibility is conceptionally the
Same as the “decreasingness” in Dershowitz[12].

The “compatibility” of Definition 8.12 (which seems to be the least restrictive one
tra‘c‘:ta.ble in theory) is intended to be an interface for generating logically stronger kinds
of “compatibility” that are useful in practice (cf. definitions 8.13, 8.14), where the don’t-
€are-compatibility seems to be the most important one. For restrictions of = ,, however,
€VeNn weaker kinds of “compatibility” than the one of Definition 8.12 may be sufficient.

75 € . .
of ¢ (]!:"__3-? and then’ (instead of ‘and’) in SIMULA, ‘&&’ (instead of ‘&’) (or more accurately ‘ && _’ instead
~=071:0)&(_1=071:0)’) in C, ‘AND’ in LISP.

28

8.3 Results for Compatible CRSs

Lemma 8.15 Let R be a CRS over sig/cons/V; XCYCV ; and T = (>, b) a termina-
tion-pair over sig/V. Assume that R is Y -compatible with T. Now we have =, , € > and
= U Ubg C© b, which is noetherian. Furthermore, R is X-compatible with T and

V-compatible with the termination-pair (=y (ZPay Uy U Bgr)®) over sig/V.

The following notion of “weakly joinable” weakens “joinable” by adding a confluence re-
quirement to the premise.
Definition 8.16 A critical peak (((to,t1), D), t,p) is -weakly joinable w. r. t. R, X :iff
Vr e SUB(V,T (X)) :
Dt fulfilled w. 1. t. = «
((Vu: (udir = (=, is confluent below u)) = Goflaglil |

For compatible CRSs we can now give a complete confluence test a la Knuth-Bendix:
Theorem 8.17 (Syntactic Confluence Test)
Let R be a CRS over sig/cons/V and XCV . Assume that R is X-compatible with a
termination-pair T = (>, &) over sig/V. The following two are logically equivalent:

1. ==, 4 ts confluent.

2. All eritical peaks in CP(R) are (t>-weakly) joinable w. r. t. R, X.

The following theorem, which is similar to Theorem 5.1 in Avenhaus&Becker(1], drops the
compatibility restriction of Theorem 8.17 for those condition literals which contain con-
structor variables only, while it does not require (quasi) overlay joinability as Theorem 7.4.
Theorem 8.18 (Syntactic Confluence Test)

Let R be a CRS over sig/cons/V; XCV ; and T = (>, b) a termination-pair oversig/ V.
Assume the constructors to be free, i. e. each left-hand side of R contains a non-constructor
symbol. Furthermore, we require the fol. compatibility-property:

V((1,r),C) € R : Vr € SUB(V,T (X)) :

Ir>rr A
(Ct fulfilled w. r. t. =>p) = (YL i s (Vu e TERMS(L) : It bur))) .
"\ V V(L) € Vcons
Now, the following two are logically equivalent:
1. =, is confluent.

2. All critical peaks in CP(R) are (b>-weakly) joinable w. r. t. R, X.

Lemma 8.19
Let R be a CRS over sig/cons/V and T = (>, b) a termination-pair over sig/V. Let X
be an enumerable subset of V. Now, if ®

1. R is X-left-right-compatible with T,
or

2. R is X-compatible with T, > N (7 (sig, X)x7 (sig, X)) is semi-decidable, and

B> N (GT (cons) x GT (cons)) is decidable,

then the fol. items hold:

76This condition is essential: Cf. Lemma 8.2

29

1. =, , -reducibility of terms from T (sig, X) is semi-decidable.
2t S%R‘xt } is a semi-decidable set for all s € T (sig, X).

e 4 3——&i>n.xt } is a finite computable set for all s € GT (cons).

The fol. lemma, however, shows that compatibility does not imply decidability of reducibil-
ity as long as extra-variables are permitted.

Lemma 8.20 (Reducibility of Ground Terms is Still Not Co-semi-decidable)
There is a left-linear, non-overlapping, merely positive conditional rule system R with
noetherian and confluent reduction relation =, ,,, which is V-don’t-care-compatible with
a termination-pair (>, b) with decidable t>, and for which reducibility of ground terms is
not co-semi-decidable.

If we do not allow extra-variables, however, we get the followmg decidability result, which
is important due to Corollary 8.4.
Lemma 8.21
Let R be a CRS over sig/cons/V and T = (>, b) a termination-pair over sig/V. Let X
be an enumerable subset of V. Now, if R is extra-variable free” and if ™
1. R s X-left-right-compatible with T,
or
2. R is X-compatible with T and l> N (7 (sig, X)x T (sig, X)) is decidable
then the fol. items hold:

1. =y x-reducibility of terms from T (sig, X) is decidable.

2. {#] S%R'xt } s a finite computable set for all s € T (sig, X).

3. Confluence of ==, , is co-semi-decidable.

Confluence of =, , for extra-variable free, V-don’t-care-compatible Def-MCRSs R cannot
be semi-decidable because it is not semi-decidable even for extra-variable free, noetherian,
left-linear, monadic, unconditional rule systems™. While confluence of =pq.v» however,
is decidable for noetherian, unconditional rule systems R, the fol. lemma does not give

us a chance in general to decide confluence of =, , for extra-variable free, don’t-care-
compatible Def-MCRSs R.

Lemma 8.22 (Confluence of =, , is Not Semi-decidable)

There is a signature sig with sub-signature cons and a termination-pair (b, b) oversig/V
with decidable >, such that confluence of =, is not semi-decidable in general for lefi-
linear, extra-variable free, merely positive conditional rule systems R over sig/cons/V which
are V-don’t-care-compatible with (>, b).

""This condition is essential: Cf. Lemma 8.20
"8This condition is essential: Cf. the lemmas 8.1 and 8.2
"9Cf. Kapur&al.[20]

30

9 Inductive Validity

Definition 9.1 (Syntax of Formulas)
Let XCV. The set of formulas (or Gentzen clauses) over sig, X is defined to be
_ Form(sig, X) := At(sig, X)" x At(sig, X)" ,

where At(sig, X) C LIT (sig,X) is the set of atoms over the following predicate symbols
on terms from T(sig,X): ‘=’ (binary, symmetric, sort-invariant) and ‘Def’ (unary). A
formula (T, A) will be written “ T — A 7.

Definition 9.2 (Validity of Formulas in sig/cons-algebras)

Let XCV; A be a sig/cons-algebra; and r € SUB(X, A) .

An atom (u=v) € At(sig, X) is true w. r. t. Ac :iff Ag(u) = A(v) ;

and an atom (Def u) € At(sig, X) (with u € T (sig,X), ; s €S) is true w. r. t. A sff
A.(u) € A(CONS,s) .

A formula (I', A) € Form(sig, X) is valid in A :iff Ve € SUB(X, A) :
(VAinI‘:(A is true w. . t. A) = 3JA in A: (A is true w. r. t. Ay))

The following example illustrates why v\frfzcm.lidity of a formula in all sig/cons-models may not
be appropriate fér our intended abstract notion of validity. Therefore, in the sequel we
define and disambiguate four different conceivable abstract notions of validity, which we

will call type-A/B/C/D-inductive validity.

Example 9.3 (continuing Ezample 2.1)
Let 2,y € Voons,nat and | € Veons list- Consider the following Def-MCRS:

R: memberpz nil = false
memberpz consy! = true — =y
memberpz consy! = memberpz! «— zF#y, Defz, Defy
Now we might have the intuition that the formula
— memberp z.[= true, memberp z | = false (:#)

should be inductively valid w. r. t. to R.

But this formula is not valid in all sig/cons-models of R because it is not even valid
in the constructor-minimum model T({l})/é}n‘m of R (c¢f. Theorem 6.14) (since
memberp 0/ é&mm true and memberp0!/ ‘%R.U} false).

This motivates the notions of inductive validity which are defined below and apply to
this formula, in the sense that the formula (#) is type-A/B/C/D-inductively valid.

Definition 9.4 (Inductive Substitutions)
Define the set of inductive substitutions by:
INDSUB(V,cons) := { 7€ SUB(V,T) | 7[Voons] € GT (cons) A T|vge = id|vge }

31

Definition 9.5 (Type-A/B/C-inductive Validity)
Let R be a CRS over sig/cons/V. Let M be the class of all sig/cons-models of R. Let
K be the class of all constructor-minimal models of R. Let (I',A) € Form(sig,V). Now
' — A s called . \
. type-A- mductwely valid w. r. t. R :ff
VA € M : Vr € INDSUB(V, cons) : ((I', A)7 is valid in A).
. type-B-inductively valid w. r. t. R :iff Ak i) :
VYA € K : Vr € INDSUB(V, cons) : ((T', A) is valid in A).
. type-C-inductively valid w. r. t. R :iff

VAeK: ((A is CONS:cons-term-generated) = ((I',A) is valid in A)) :

Type-A- and Type-B-inductive validity reduce inductive validity of formulas to validity
of their inductive instances. This disallows the constructor variables of formulas to range
" over objects of the constructor sub-universe which are not denoted by constructor ground
terms (with sort invariant). While we restrict the constructor variables in the formulas
by substituting them with constructor ground terms, we do not instantiate their general
variables with (general) ground terms. This is because we do not want the general variables
to range over the junk generated by ground terms only, but possibly over additional junk,
e. g. of non-constructor symbols which might be introduced later on. Indeed, allowing this
additional junk is necessary for the monotonicity of our logic w. r. t. consistent extensions

(cf. Theorem 9.17).

Type-C-inductive validity requires a model A considered for inductive validity to satisfy
that A is CONS:cons-term-generated, which is equivalent to
Vs € S : A(CONS,s) = A[GT (cons),] .
Because this means that there are no constructor objects unless they are syntactically
specified by constructor ground terms (with sort invariant), this restriction can be viewed
upon as another “closed world assumption” on the constructor part of the specification,

besides the one on constructor ground equality used for motivating the notion of Def-
moderate CRSs.

While our inductive validities of type-A/B/C do not change the “SIG-part of valid-
ity”, they differ from validity in all sig/cons-models due to their influence on the “CONS-
part” of the models or of the evaluation of formulas: Inductive substitutions make the
“junk” of the constructor sub-universes inaccessible to constructor variables; the construc-
tor sub-universes of CONS:cons-term-generated sig/cons-models contain no “junk” at all;
and constructor-minimal models have no “confusion” in their constructor sub-universes.
Thus, regarding the constructor sub-universes, we can classify type-A as “junk and con-
fusion”, type-B as “junk but no confusion”, and type- -C as “no junk and no confusion”.
A la carte, one could ask for “confusion but no junk” and define it like type-C with the
‘K’ replaced by an ‘M’, but we do not suggest this here because we think confusion to be
even less digestible than junk and because understanding the dissection of the notion of
inductive validity is even now difficult enough.

Before we are going to disambiguate our notions of inductive validity, we would like to
emphasize that the dissection into different types of inductive validity does not require our
two types of variables or the negative conditions in our rules, but instead is brought about
alone by nonempty antecedents ‘I’ in formulas of the form “T — A 7.

32

The fol. example shows the difference between type-A- and type-B-inductive validity:

Example 9.6 (Type-A # Type-B) (continuing Example 9.3)

We might have the intuition that true and false are not the same; t. e. that

true = false —»
should be inductively valid. This formula, however, is not valid in the trivial sig/cons-
algebra, and therefore not type-A-inductively valid (not even for R = 0). As the trivial
sig/cons-algebra is not constructor-minimal, we can exclude it by requiring the models under
consideration to be constructor-minimal. Indeed, the above formula is type-B-inductively
valid.

That it is very difficult to conclude from type-B- to type-A-inductive validily, can be
seen from the fol. formula which is type-B- but not type-A-inductively valid (since there are
sig/cons-models of R which identify s0 with 0 but do not identify true with false):

— memberp 0 cons s 0 nil = false

The above example is characteristic for the difference between type-A- and type-B-inductive
validity in the following sense:

Lemma 9.7
Let R be a CRS over sig/cons/V. Let (I',A) € Form(sig, V). Now w. r. t. R the fol. holds:

1 Type-A-indu;tive validity of (T',A) implies type-B-inductive validity of (A,

2. If no rule in R has a negative®® condition, then type-B-inductive validity of “— A ”
implies type-A-inductive validity of “ — A 7.

The fol. example shows the difference between type-B- and type-C-inductive validity:

Example 9.8 (Type-B # Type-C) (continuing Ezample 2.1)

Suppose that we enrich the signature of Ezample 2.1 with a new non-constructor constant
dunno of sort bool . Since for type-B-inductive validity we also have to consider models
A with |A(CONS, bool)| > 2, the fol. formula is type-C- but not type-B-inductively valid
(not even for R = 0):

Def dunno — dunno = true, dunno = false .

The above example is characteristic for the difference between type-B- and type-C-inductive
validity in the following sense:

Lemma 9.9
Let R be a CRS over sig/cons/V. Let (I'; A) € Form(sig, V). Now w. r. t. R the fol. holds:

1. Type-B-inductive validity of (T',A) implies type-C-inductive validity of (T, A).

2. If for each atom (Defu) in T' the formula “ — Defu ” is type-C-inductively valid,
then type-C-inductive validity of (T', A) implies type-B-inductive validity of (T, A).

80i. e. containing a literal of the form (us#v)

33

Example 9.10 (Type-C # Type-D) (continuing Ezample 9. 3)
Suppose that we enrich the signature of Example 9.3 with a new non-constructor symbol
cdr and add the rule cdrconsz =1 . One might have the intuition that cdrnil is still
undefined and thus the formulas

Def cdr nil —

cdr nil = nil —
should be inductively valid. They are not type-C-inductively valid, howe'uer because they are
not valid in the initial constructor-minimal model®* (cf. Corollary 6.15) of the Def-MCRS
R augmented with the rule cdrnil =nil . They are type-D-inductively valid (defined below),
though.

Definition 9.11 (Type-D-inductive Validity)
Let R be a CRS over sig/cons/V. Let (I',A) € Form(sig, V).
Now “T — A ” is called type-D-inductively valid w. r. t. R :iff

(T, A) is valid in 'l"(VsI(;)/<é>m,s]G 5

If =, isconfluent and R is Def-moderate, then (by Theorem 6.14) 7 (Vsig)/ & i

is a constructor-minimal model of R (i. e. T(Vsig)/ <2 vere € K) which is obviously
CONS:cgns-term-generated, and thus belongs to the models considered for type-C-inductive
validity. Furthermore, T (Vsig)/ <=>R v 18 free in K over Vsig and therefore distinguished
from the other models having no “confusion” in their constructor sub-universes by also
having no confusion in its (general) universes and by all its junk being generated by Vsic.

Example 9.10 is characteristic for the difference between type-C- and type-D-inductive
validity in the following sense:

Lemma 9.12
Let R be a Def-MCRS over sig/cons/V. Let (I',A) € Form(sig,V). Now w. r. t. R the
following holds:

1L If =y, i confluent®?, then type-C-inductive validity of (I',A) implies type-D-
inductive validity of (I',A).

2. If =>,, is confluent® and for each u€ TERMS(T) the formula “ — Defu ”
is type-D-inductively valid, then type-D-inductive validity of (I',A) implies type-C-
inductive validity of (I, A).

81which has to be considered for type-C-inductive validity because it is CONS:cons-term-generated and
constructor-minimal also w. r. t. the non-augmented rule system R

82The following allows to apply the confluence criterion of Theorem 7.6: If we additionally require
Y((I,r),C) € R :¥(u=v) in C : (Defu, Defv are in C), then we can weaken the confluence requirement

to confluence of =, ., N (D) for D, := { u€T(sig, Vsig) | HuEGT(cons) uébn "‘s:cu I

Vs[a Vsm Vsia

83Footnot.e: 82 is applicable here if we replace =, = with =Ppe 38 well as D, with

= {u€GT(sig) | 30 € GT (cons) : usE>, it } .

34

Next thing to note about type-D-inductive validity is that it is rather close to operationali-
zation:

Lemma 9.13
Let R be a CRS over sig/cons/V. Let (I',A) € Form(sig, V). Now the following two items
are logically equivalent:

1. (I, A) s type-D-inductively valid.

2. V1 € SUB(V,T(Vsia)) :
(V(uzv) in F:'uréﬂ_vsm vr A VY(Defu) in I: 34 € GT (cons): “Tén.vsmﬁ)
=
(I(u=v) in A: ur(:%}mvs[c vr V 3(Defu) in A: 34 € GT (cons): ur<Z,))

R,\Vs16

By the following corollaries we see that our notions of inductive validity specialize to the
single well-known notion of inductive validity of equations w. r. t. merely positive conditional
specifications.

Corollary 9.14 (of Lemma 9.7)
Let R be a CRS over sig/cons/V without negative conditions. Let A € At(sig, V)*. Now
w. r. t. R the foffowing items are logically equivalent:

L% A M type-A-inductively valid.
2. “ — A 7 is type-B-inductively valid.

Corollary 9.15 (of Lemma 9.9)
Let R be a CRS over sig/cons/V. Let A € At(sig,V)". Now w. r. t. R the following items
are logically equivalent:

1. “ — A 7 is type-B-inductively valid.
2. “ — A 7 is type-C-inductively valid.

Corollary 9.16 (of Lemma 9.12)
Let R be a Def-MCRS over sig/cons/V. Let A € At(sig,V)". Furthermore, assume
=pvg t0 be confluent. Now w. . t. R the following items are logically equivalent:

1. “ — A 7 is type-C-inductively valid.
2. “ — A 7 is type-D-inductively valid.

Having established our notions of inductive validity, let us now have a brief look on no-
tions of inductive validity in literature, most of which can be described as specializations
of our notions of inductive validity. If we consider all symbols to be constructor symbols
(and, a fortiori, drop our negative conditions in our rules), we find type-A-inductive va-
lidity in Kounalis&Rusinowitch[22] as well as in Bouhoula&al.[9]. The notion of inductive
validity of Zhang&al.[32] can be described as type-A when we implicitly take all variables
in rules for general variables and all variables in formulas for constructor variables. Con-
sidering again all symbols to be constructor symbols (but allowing an unrestricted set of
Gentzen clau.es over equality atoms for specification)®, type-A-inductive validity had

84instead of our R, which is restricted to be a subset of our set of rules RIU L(sig, cons, V)

35

also been included in a preliminary version of Bachmair&Ganzinger(3]. In the final ver-
sion, however, after developing their perfect model in Bachmair&Ganzinger[4], they have
dropped it; instead, we now find in Ganzinger&Stuber[14] inductive validity defined to be
validity in the perfect model,®® which is more similar to type-D with our free constructor-
minimal model (which their approach (allowing more general specifications) does not pro-
vide) replaced with the perfect model. In Padawitz[23] and Kounalis&Rusinowitch[21]
(contrary to Kounalis&Rusinowitch[22] (cf. above)), we find the usual validity in the ini-
tial model which is 1ike®® our type-D. Bevers&Lewi[7] also use initial model or type-D-
inductive validity (without non-constructor symbols and without negative conditions in
rules or formulas); however, they claim it to be equivalent to type-A, which is obviously
not correct, even in their restricted context. We have already discussed the general ideas of
Kapur&Musser[18, 19] in sect. 3 (“Our Solution”; around footnote 24). We have no notion of
inductive validity corresponding to their notion in [18]. However, if a constructor-minimum
model A exists and we take a choice set of G7 (cons)/(ker(A) N (GT (cons)xGT (cons)))
for their set of constructor terms, the notion of inductive validity of [19] coincides®® (at
least for their restriction to formulas of the form “ — u=v ") with our type-C and (in
the absence of ‘Def’-literals equivalently) type-B.

Now it is difficult to conclude which notion of inductive validity is the appropri-
ate one. We think that all our four types are of interest. Type-C and type-D are our
favourites because they capture the intuition of our approach. (Reconsider the formu-
las of Example 9.6 as well as the formula of Example 9.8.) In particular, the permission
of confusion in the constructor sub-universes of the models considered for type-A, con-
flicts with our treatment of negative conditions of rules by negation as failure restricted
to the objects of the constructor sub-universes, which was justified in sect. 3 by a closed
world assumption on equality of these objects. The second formula of Example 9.6 illus-
trates this conflict: Since we have “ memberp 0 cons s 0 nil ém false ” we really would like
“ — memberp 0 cons s 0 nil = false ” to be inductively valid. A more objective criterion for
convenience of a notion of inductive validity is its suitability for theorem proving. Type-D
is rather close to operationalization (cf. Lemma 9.13) and a prover for it may be used (via
Lemma 9.12(2)) for showing type-C. This procedure is not complete (cf. Example 9.8) for
establishing type-C-inductive validity; but the type-C-inductively valid formulas we lose
seem to be in general very difficult to prove. While the details of inductive theorem proving
methods and techniques within our constructor-based approach are far beyond the scope
of this paper, one important feature which a notion of inductive validity needs for being
convenient for inductive theorem proving is its monotonicity w. r. t. consistent extension
of the specification: Contrary to deductive first order theorem proving, inductive theorem
proving often is only successful when one tries to show stronger theorems than one initially
intended to show. This is because induction hypotheses are not only a task but also a
tool for the inductive argumentation. Sometimes the required induction hypotheses or lem-
mas are not expressible by our formulas unless we extend the specification in a consistent
manner. Consistent extensions also play an important role for incremental refinement and
modular construction of specifications. Since then we do not want to lose the theorems
already shown, we need some means to tell whether they are still valid in the extended
specification. Thus a notion of inductive validity can be said to be more adequate the

85still considering all symbols to be constructor symbols and allowing an unrestricted set of Gentzen
clauses over equality atoms for specification

86when we consider all symbols to be constructor symbols and drop our negative conditions in our rules

36

more monotonic w. r. t. consistent extension of the specification it is. Luckily, (contrary to
perfect model validity) our four notions behave rather well:

Theorem 9.17 (Monotonicity of Inductive Validity of Formulas w. r. t. Consis-
tent Extension of the Specification)

Let R be a CRS over sig/cons/V. Let R' be another CRS, but over sig)/cons’/V'; with

sig/ = (F,8",¢') |FCF RC R
eons! = (C, 8, ole:) | C € C' € F
V'|(s1c,consyxs = V S ¢ 8
aCa

and forg"‘ c€ C'\C ; a&'(c) =80...8n-1 — 8 ¢ 8, €S\S .
Thus, sig'/cons’/V' is an enrichment of sig/cons/V in a very general®® sense.

Moreover, assume®®: Y((I,r),C) € R'\ R : [& T (cons, Vsic¥Vcons) - (:8:)
Assume®® =, b0 be confluent®'. ' (:$,)

Now, for (I',A) € Form(sig, V), we have:

A. (Even without the assumptions ($:), (82):) If (I'\A) is type-A-inductively valid
w. r. t. R, then ([, A) is type-A-inductively valid w. r. t. R, too.

B. If R’ is Def-moderate, and if (T',A) is type-B-inductively valid w. r. t. R, then (I',A)
is type-B-inductively valid w. r. t. R, too.

C. If R is Def-moderate, and if (I',A) is type-C-inductively valid w. r. t. R, then (I', A)
is type-C-inductively valid w. r. t. R, too.

D. If for each v € TERMS(T) the formula “ — Defu ” is type-D-inductively valid
w. 7. t. R,% and if (I',A) is type-D-inductively valid w. r. t. R, then (T, A) is type-
D-inductively valid w. r. t. R', too. :

871f we did not require this, we would get new constructor ground terms of old sorts and new inductive
instances of old formulas, which clearly destroys type-A/B/C/D-inductive validity. E. g.: If we add the
new constructor constant strange-list of sort list to the specification of Example 9.3, then the formula (#)
becomes type-A/B/C/D-inductively invalid.

88Please notice that the last requirement is the only additional one on the signatures compared to
Theorem 6.16.

89This has to be required for keeping the negative conditions of the instantiated rules being fulfilled:
Having founded our inequalities on old constructor ground terms, all we have to take care of now is not to
confuse these terms.

99Confluence is necessary of course: Consider the rule system

nicep = true «—— true # false , Def false , Def true
and the type-B/C/D-inductively valid formulas true = false —
—— nicep = true ,
none of which keeps being type-B/C/D-inductively valid if we add the rules dunno = true
dunno = false ..

91The following allows to apply the confluence criterion of Theorem 7.6: If we additionally require
Y((l,r),C) € R’ : Y(u=v) in C : (Defu, Defv are in C'), then we can weaken the confluence requirement
to confluence of =, , N (D, xD,) for D, := { ue€GT(sig') | I € GT (cons') : uéﬂ,_.ﬁ =

92This means that each SUB(V, 7 (Vsig))-instance of a term occurring in the antecedent I' must be
defined, i. e. have a congruent constructor ground term. This restriction is necessary because R’ may define

some terms that were undefined in R: In the situation of Example 9.10 we can destroy the type-D-inductive
validity of the two formulas there by adding the rule cdr nil = nil .

37

10 Conclusion

We have presented a novel constructor-based approach to positive/negative-conditional
equational specifications, which was heavily inspired by previous work of Kapur&Musser[18,
19] (for the case of unconditional equations only) and Zhang[31]. Under some reasonable
syntactical restrictions on the form of positive/negative-conditional rules it turns out that
the combination of these ideas with the approach of Kaplan[17] becomes very fruitful and
also relevant for practical purposes since many natural specifications involve both condi-
tional equations with positive and negative conditions and partially defined functions. For
such specifications we have been able to define semantics admitting a unique model, being
initial in the class of constructor-minimal models, if [ground] confluence of our reduction
relation is provided. The lack of an initial model was one of the main disadvantages of the
approach of Kaplan[17]. The addition of constructor variables conceptually completes the
constructor-based approach and shows up new possibilities for the practice of specification.
Furthermore, a thorough and precise analysis of termination and decidability issues has
led to some useful and slightly weakened “decreasingness”-notions for positive/negative-
conditional rule systems. Moreover, we have also been able to provide some interesting
confluence criteria. Finally, we have defined and disambiguated several notions of inductive
validity in our constructor-based approach. Since (under reasonable assumptions) all these
kinds of validity are monotonic w. r. t. consistent extension of the specification, the whole
approach.may be considered to be a firm theoretical basis for (first-order) inductive theorem
proving in theories specified by positive/negative-conditional equations.

Dedication:
To my father, Friedhelm Wirth, in gratefulness.

Acknowledgements:
We would like to thank Jiirgen Avenhaus and Klaus Becker for fruitful discussions, and
Klaus Madlener and Riidiger Lunde for useful hints.

Editorial Remark:

This report is a thorough revision of Wirth&Gramlich[29]%® including lots of significant

refinements and extensions®*.

93Cf. also the shortened version Wirth&Gramlich[30], which has been published in the proceedings of
the Third International Workshop on Conditional Term Rewriting Systems in Pont-a-Mousson, July 1992.
94Besides lots of important details, Wirth&Gramlich[29] lacks the following: Constructor variables, em-
bedding into the order-sorted framework, parameterization of =, , in X, Theorem 6.14, Theorem 7.6,

Lel]:‘:ima 8.5, Theorem 8.18 and the rest of sect. 8.3, and (most important) the entire sect. 9 about inductive
validity.

38

A The Proofs

Proof of Lemma 5.4

1. Due to ker(A) = ker(B), A and B do not differ in their evaluation of two ground

terms of the same sort regarding ‘=" or ‘#’. Furthermore, if A(¢) € A(CONS, s)

for some t € G7Tsi1g,s, then there is some t' € GTcons,s with B(t') = B(t) , by which
we get B(f) € B(CONS,s) . Thus ‘Deft’ is true w. r. t. A only if it is true w. r. t.
B. Since ‘Def’ occurs as a positive literal in the conditions of the rules only, A is a
sig/cons-model of each ground rule of which B is a sig/cons-model.

Now, if B is a sig/cons-model of R, by the Substitution-Lemma(4.1), it is a sig/cons-
model of all ground instances of the rules of R, which implies that A is a sig/cons-
model of all ground instances of the rules of R, which again implies that A is a
sig/cons-model of all rules of R. This last step can be seen the following way: Let &
be any A-valuation of V. Then by the Axiom of Choice there is a o € SUB(V,GT)

such that 0o A = & . Then by the Substitution-Lemma Vt € T : A,(t) = A(to) .

2. This is nothing but an application of the Homomorphism-Theorem(4.2).
3. By (2) and Sy C Scows -

Proof of Lemma 5.5

1 PHYial g

2. If B is minimal itself, we are finished. If not, by Lemma 5.4(2) we can w. l. 0. g.

assume B to be a factor algebra of G7 and consider congruences on G7 instead of
sig/cons-algebras. We only have to apply Zorn’s Lemma to get a minimal congruence
whose factor algebra is a sig/cons-model of R, because this factor algebra will be a
minimal sig/cons-model of R. Therefore, we are now going to show that the premise
of Zorn’s Lemma is satisfied.

Let CHAIN = {~; |t € I} be a nonempty C-chain of congruences on G7 with
Viel:(GT/~; is asig/cons-model of R) . Define m:=[;c; ~ . Of course, =
is a congruence on G7 that bounds CHAIN below. The only thing left to be shown
is that G7 /=~ is a sig/cons-model of R.

Contrariwise there was®® a (I=r«— C)€R and a o€ SUB(V,GT) with
YLin C: Yu,vi (L= (u=v) = uo & vo);

VL in C :Vu: (L = (Defu) = 34 € GT(cons) : uo = 1) ;

VLin C :Vu,v: (L = (uv) = uo@gvo); lo¥kro.

Now, by asking for the “reasons” of the ‘@’, there is a J with JCI ;
VL in C :Vu,v: (L = (u#v) = 3jp € J: uo #;, vo);

jur €S lo iy, ro;and |J|<|{LinC | Ju,v: L= (uv) }|+1.

Define = := ey ~j . As = C =, = yields no model of R for the same “reason”
as ~. But (as J finite) {~; |7 € J} has a C-minimal®® element ~;, with jo € J .
Now ==~ . Hence ~j, yields no sig/cons-model of R, which is a contradiction.

3. By (1) and (2).

95We tacitly use the Substitution-Lemma(4.1) again, just the way we used it at the end of (1) in the
proof of Lemma 5.4.
96and minimum

39

Proof of Correctness of Definition 6.2

Let = be the intersection of all relations satisfying the requirement of Definition 6.2. We
. claim the following;:

It

. =

=>. x,. 18 the minimum of all relations satisfying the requirement of Definition 6.2
with the additional restriction of [€ 7 (cons, Vsic® Vcons) .

. Vs e T(COI]B,VSIG WVcons) : Vi : (S:Q;-}-R'xﬂt = te T(ConS,VsmlﬂVcoNs))

Yie IN:VYne IN: (—_,1'>R.X,w+i N (T(COHS,VSIG L‘!’JVC()NS) X T)) & é’n.x,w

VieIN: =0 C©

R,X,wtitl

satisfies the requirement of Definition 6.2; i. e. = C = ,.

R.X

PR X C =

. (=> N (T (cons, VsicWVcons) X T)) C =u4.

VielN: =4 .0 C© =

==, x is the minimum of all relations which satisfy the requirement of Definition 6.2.

To the proofs of these claims:

1.

By the restriction on the rules of Definition 6.1, = , , is just the standard closure
over a finitary relation. ;

By the restriction on the rules of Definition 6.1.
By induction on ¢ using (1), (2), and the restriction on the rules of Definition 6.1.
By induction on ¢ using (3) and the restriction on the rules of Definition 6.1.

By (4), taking ==, 4,4, on the left-hand side of the requirement for the maximum
¢ of all ==, , .. occurring positively (i. e. not in a {-statement) on the right-hand
side of the requirement.

By (1), = x., is the intersection of a superset of the set whose intersection is =.

By (3) and (5).

. £=0: By (6). i = (i + 1): By (6), (7), and (2).

By (5) and (8).

Q. e. d. (Correctness Proof for Definition 6.2)

40

Proof of Lemma 6.6
By (9), (3), and (2) in the correctness proof for Definition 6.2 above.
Q. e. d. (Lemma 6.6)

Proof of Lemma 6.7 ‘

By the restriction on the rules of Definition 6.1 and induction over ¢ one gets

Vie IN:Vn € IN: Vs € T(cons, Vecons) : Vt : (5:_'1—>’n.x..-t = t € T(cons, Vcons)) -

By Lemma 6.6 this is sufficient. Q. e. d. (Lemma 6.7)

Proof of Lemma 6.8

By the restriction on the rules of Definition 6.1 and induction over ¢ one gets
VieIN:VneIN:Vse GT (cons): Vi :(s==p,4,t = t€GT(cons)).

R.X,t

By Lemma 6.6 this is sufficient. Q. e. d. (Lemma 6.8)

Proof of Lemma 6.9
By Lemma 6.6. Q. e. d. (Lemma 6.9)

Proof of Lemma 6.10

By (4), (9) in the correctness proof above we get = x, & =rx, C = . A literal'L
in C (being fulfilled w. r. t. =, , ,) must have one of the following forms: If L = (u=v),
then by ul,,,v weget uly, v.If L= (Defu) , then there is some @ € G7 (cons) with
u%n'x‘ﬂﬁ and we get u%mxﬂﬁ . If L = (us#v), then there are i, € G7 (cons) with
u%&x.ﬂﬁin,x,ﬁﬁ%%a,x,pv and by w = B we get u%&xnﬂia.x.wﬁ&n,x,q” and finally
by Lemma 6.9 u=2 ity 0=, - . Q.e. d. (Lemma 6.10)

R

Proof of Lemma 6.11

The ‘if’-part of the proof is trivial. The ‘only if’-part is straightforward as follows:
If w | v, then by confluence (below v) u=25NF(v) and then by confluence (below u)
NF(u) = NF(v). If u=2% € GT(cons) then by confluence 4=25NF(u) and then by
Lemma 6.8 NF(u) € GT(cons). If 4,0 € GT(cons) and u=2s149<€=v then by conflu-
ence NF(u)«:Qﬁﬁiﬁ%NF(“v); hence NF(u) # NF(v) and by Lemma 6.8 NF(u),NF(v) €
GT (cons). Q. e. d. (Lemma 6.11)

Proof of Lemma 6.12

By the Axiom of Choice there is some 7 € SUB(Y,T (X)) with 7|x € id . Using this 7 in
combination with Corollary 6.5 for getting rid of variables from Y\X (introduced by extra-
variables), the first sentence is trivial by induction on B. The rest then follows immediately
from Corollary 6.5. : Q. e. d. (Lemma 6.12)

Proof of Theorem 6.14
Let A 1= T(X)/<Duy - Let T 1= GT |, .
Claim 1: If C is a sig/cons-model of R; p € SUB(X,C); then

VB<Xw:VsE 82 =nx.p N (TSIG,aXTS[G,n) & ker(Cu)a :
The proof of Claim 1 is omitted because it reads just like the proof of Claim 2 until it comes
to .8 =w .
Proof of (1.): By the Axiom of Choice, each element of SUB(V, A) can be written oo A
for some o € SUB(V,T(X)). Thus (by the Substitution-Lemma(4.1)), for A being a
sig/cons-model of R it is sufficient to note that (by confluence of ==, 4 [N(D, xD,)], the
fact that R is a Def-MCRS, and Lemma 6.8) for ((/,7),C) € R; o € SUB(V, T (X)):

41

Co is fulfilled w. r. t. =, iff

(((u=v)in Co) = Gk
Vu,v€ T : | (((Defu)in Co) = 3Iu € GT(cons) :uémxﬁ) A
(((ufv)inCo) = U kv)

For the proof of A being a constructor-minimum model, suppose C to be a sig/cons-model
of R. We have to find a cons-homomorphism from A|cw({cons)xs) 0 Clcu({consixs) - Let
B be the term algebra over Vcons N X and cons/Voons. There is a’cons-homomorphism
h: Ale({CONS}xS) =y (B/(%n,x n (’T(cons,VCQNS)XT(cons,VCONs)))) given by (5 (S S;
A € A(CONS,s)): A — T(cons,Vcons)N A . Thus we only have to find a cons-
homomorphism from B/({-ﬁﬁ}nlx n (T(Cons,VCONs)XT(ConS, VCONS))) to CICu({CONS}xS) A
Let 4 be a C-valuation of X (which always exists by the Axiom of Choice). Using the
Homomorphism-Theorem (the usual one for cons-homomorphisms, not ours) all we have
to show is Vs e S: én‘x N (Tcons,s XTcons,s) € ker(C,), , which by confluence of
= x [N(Dy xD,)] is the same as Vs € S: |., N (Tcons,:%XTcons,s) S ker(C,), . Be-
cause of Lemma 6.7, Vs € S: =, , N (Zcons,s%Tcons,) € ker(C,), is sufficient for
this. But this is implied by Claim 1. Q.lendii(1.)
Claim 2: If C € K; p € SUB(X,C); =, 4[N(Dy%xD,)] is confluent; then

VB 2 wtw:VseS: =, ,N (To1:%Ts1a,s) S ker(Ch), .
Proof of Claim 2: For the non-limit ordinals 0, w, w+w the induction step is trivial. For
a non-limit ordinal §+1 the induction step is as follows: Suppose s== ; ,.,t. fw X B
and s==4, , t, then we already have C,(s) =C,(t). Otherwise there are ((/,r),C)€ R ;
o € SUB(V, T(X)) ; peO(s); with s/p=lo; t=s(p—ro]; and Co fulfilled
w. I. t. =, ,. As C is a sig/cons-model of R, for C,(s) = C,(t) (by the Substitution-
Lemma(4.1)) we only have to show that the condition Co is true w. r. t. C,. Three cases
for L in Co: If L = (u=v), by u |, , v the induction hypothesis implies C,(u) = Cy(v) .
If L = (Defu) with u € Tg1g,4, by the existence of some 4@ € GTcons,» With u%n‘x‘pﬁ
the induction hypothesis implies C,(u) = C,(%) € C(CONS s'"). If L = (u#v), by the exis-
tence of some 1,0 € GT (cons) with u=>Rx Utax 3U<==nx ;v the induction hypothesm
implies C,(u) =C,(4) =C(d) and C(v) = ¢ () = Cu(v) . Thus, for C,(u) # Cu(v) itis
sufficient to show C(d) #C(9) . By w < # and Lemma 6.9 we know that 44,0 ; then
by Lemma 6.12 4, ,0 ; and therefore (by confluence of =, ,[N(D,xD,)]) U< ,0 .
Because of (1) (for X := @), C must be not only a constructor-minimal model but also a
constructor-minimum model of R. Hence C(i) # C(¢) simply because 4,9 € G7T (cons) ;
Z(a) #Z(0) ; and T is (by (1)) a sig/cons-model of R. Q. e. d. (Claim 2)
Claim 3: If =, [N(D, xD,)] is confluent, then A is free for K over X w. r. t. .
Proof of Claim 3: Suppose C € K and g to be a C-valuation of X. The uniqueness of the
required sig/cons-homomorphism h :: A — C with g = xh is trivial. For its existence (by
the Homomorphism-Theorem(4.2)) we only have to show

Vse§: én,x N (TSIG,B XTSIG,a) & ker(C,‘), y

which is implied by Claim 2. Q. e. d. (Claim 3)
Claim 4: If == ,[N(Dy xDy)] is confluent, then = [N(D,x D,)] is confluent, too.
Proof of Claim 4: Trivial by Lemma 6.12. Q. e. d. (Claim 4)

Proof of (2.): By (1) and the claims 4 and 3.

Proof of (3.): Suppose C to be a sig/cons-model of R with C <, A. By (1) weget C € K,
and then by (2) AZ,C.

42

Proof of Theorem 6.16
First note that the remark of footnote 57 is respected during the whole proof.
Claim 1: Vi € IN: Vn € IN: Vs € T(cons, X): Vi

(5:“>R,x, t = (3==p, . tie T(cons, X)))
Claim 2: VB Jwtw: =, , C =i xt s
Claim 2 and Claim 1 (using Lemma 6.6 and 7 (cons, VsicWVeoons) C
T (cons’, V516w Voons)) imply (1); and Claim 2 implies (2) and (3).
Proof of Claim 1: 1 = 0: =,,,, =0. 7= (¢ +1): n=0: Trivial.
n = (n + 1): Suppose S":"n>w.x',.+13 :z>wxr
d==n s s s' € T(cons,X) . By (3) there must be some €& 7 (cons, Vsic®WVoons) ;
((,r),C)eR; ceSUBNV(),T); pe O(s') with /p=lo; t=8§[pero]; Co
fulfilled w. r. t. =, ., . ; ran(o) C 7 (cons,X) . By the structure of constructor equations
we have no inequality literal in C'o. For (u=v) in Co we have wu,v € T(cons,X) and
Ul v and therefore by induction hypothesis in 7: uly v . For (Defu) in Co we have

,t . By induction hypothesis in n we know

u € T(cons, X) and u:S;;-R' B

in % “&n.x.aﬁ € (7 (cons, X) N GT (cons')) = GT (cons) . Thus, finally we conclude that
Co is fulfilled w. r. t. =, ,, 1. e. 8'== .t € T(cons,X) . Q. e. d. (Claim 1)
Proof of Claim 2: The induction step for the limit ordinals 0, w, and w + w is trivial. For
a non-limit ordinal # + 1 the induction step is as follows: Suppose s==;, ,.,t . In the
case of w < A this‘may be due to s= ; but then by induction hypothesis we succeed
by =uxe € =nxe € =nixisn Otherw1se there must be some (({,7),C) € R ;

o€ SZA’B(V T); pe O(s) with s/p = lcr t=s[pero];Co fulfilled w. r. t. ==, , .
The only thing to be shown is: Co fulﬁlled w.r. t, =,,,,,. For (u=v) in Co we have

ulax sv and therefore by induction hypothesis Ulpi g ,v - For (Defu) in Co we have

@ for some @ € G7 (cons’) and hence by induction hypothesis

A

u=>R'x‘§u for some 4 € GT (cons) and therefore by induction hypothesis u=2s e

For (u#v) in C'o we have u%n'x,ﬁﬁtn.x,ﬁtv{:mx’ﬁv for some @,0 € G7 (cons) and w ;5 il
We get i4, .0, and then (by Claim 1) 44 v and (by Lemma 6.9) U8y, 0 - Finally,

by induction hypothesis we get u=2 ey B R ﬂi‘:éa:m W

rxl

Proof of Lemma 7.2

For (((to,t1),D),%,p) € CP(R) there are ((lx,74),Ck) €ER; k<2; €0 € SUB(V,T)
with loéo = lio/p ; ((to,t1),D) = ((Li[p « ro€],71),Coé Ci)o. Let ¢ € SUB(V,T (X))
and assume D¢ to be fulfilled. Then Coéop and Ciop are fulfilled, too. Therefore:
top = lhow[p « rolop] <= Loy = riop = t;p and by confluence we have top | t1p .
Q. e. d. (Lemma 7.2)

Proof of Lemma 7.3
(1): For p = 0 the definition of “quasi overlay joinable” reads:

Vo € SUB(V,T(X)) : (Dy fulfilled = top | t;0<E=ip)
As we assume (((tg,tl),D),f,ﬁl) to be joinable, we now only have to show tﬂp(eﬁfgo
under the assumption of Dy bemg fulﬁlled There are ((lesre)y Cr)€R ;0 k< 2y
§,0 € SUB(V,T) with (((-..,t1),D),8) = (((...,m1),Co€ C1),li)o. Since Cyo¢ is ful-
filled, we have t;p = rlacp-::llo‘cp teo.
(2): If D¢ is fulfilled, then we get by quasi overlay joinability and Corollary 6.4:

top = top[p — tow/p] | top[p — tip/p] = tip .

43

Proof of Theorem 7.4

For the proof of Sub-claim 3 below, we enrich the signatures by a new sort spew and new

constructor symbols eq, for each old sort § € S with arity 85 — Spew and L with arity

Snew. We take (in addition to R) the following set of new rules (with z5 € Vsig,s for 5 € S):
R':={eqzs2;=L1|3€8S} '

Since the sort restrictions do not allow = orrx.p O make any use of terms of the sort spew
when rewriting terms of an “old” sort, we get '
VB Rwtw: = ., N (T (sig, X)X T (sig, X)) = =5 s/uig/cons
(the latter being defined over the non-enriched signatures). Therefore (as no new critical
peaks occur) the critical peaks keep being quasi overlay joinable. We are going to show
confluence of =P rorix? which implies confluence of = , We know that =P urix
is noetherian on each “old” sort; and by this we also know ==, ., to be noetherian on
Snew because L is irreducible and terms of the form ‘eq; u v’ allow at most one reduction

step via =PRuR’ X \ =R /ilg! feoms! *
We define =>D == R/, X) ﬁp S =>RUR_'X B for any ordinal ﬂ with 0 < ﬂ ot

(where < is the ordering of ordinal numbers); and => 1= =, = =y 0k -

For v,u,s,t € T with v<&y and s=2>t; 11 C O(u) with
Vp,qell:(p#q = plg) and Vo€ Il:ufo=s ; we say that P(v,u,s,t,1I) holds :iff
v u[o«t|oell. Now (by Il := {0}) it suffices to show that P(v,u,s,t,II) holds for all
appropriate v,u,s,t, [I. We will show this by noetherian induction over the lexicographic
combination of the following orderings:
Loenit==t"Clifs, 4% (Cf. Lemma 8.6)
2. =
B fioe
using the following measure on (v, u, s, ¢, II):
15t s
2. the smallest ordinal 8 < w+w for which véﬁu

3. the smallest n € IN for which v<*=,u for the 8 of (2)

For the limit ordinals 0, w, w+w in the second position of the measure, the induction step
is trivial (<&, C <=, Uid; &=, C Uien, L &ww C Uien <=..,;)- Thus, as we now
suppose a smallest (v,u,s,t, 1) with P(v,u,s,t,II) not holding for, the second position of

the measure must be a non-limit ordinal S+1.
As P(v,u,s,t,II) holds trivially for u=1wv or s =1 we have some v/, s’ with

ve&=,, u'<=, u (neN) (withVm e IN: (v&=,,,u = m > n)) and s=>5'=2¢ . Now
for a contradiction it is sufficient to show

p+1

Claim: There is some z with v=232&=u[0 — s’ | 0 € TI].

because then we have z | u[o«t|o€Il] by P(z,ulo « &' |o0e€Il],s,tII), which is
smaller than (v,u, s,t,II) in the first position of the measure by s==-s.

If we had s==s’ by some redex below the top of s, then Claim would hold by induction
hypothesis with P(...) being smaller in the first position using b.. Thus, there are some
((lo,70),Co) € RUR; po € SUB(V,T(X)); with s = lopo; 8’ = ropo; Copo fulfilled w. r. t.
=>. Furthermore, we have some ¢ € O(u); ((l1,m1),C1) € RUR'; py € SUB(V,T(X));
with u/q = lipy; v’ = u[q — rip |; Cypy fulfilled w. 1. t. =>,.

We now distinguish two cases by the relative position of ¢ and II:

42

“g not strictly below any p € I1": There is no p’ with pp' = ¢, p’ # @, and pe 1l
Define II":= { p | gp € I }.

The critical peak case: There is some p € [I'NO(ly) with Li/p ¢ V.

Let € := minSep(V(((los70),Co)), V(((l1,m1),C1))) - Let o be given by (z € V): zp :=
{zg‘ll o € (b ODY By toge = logt o = s = u/ap = hua/p = (a/p)e It
Y = V(((IO!TO)acO)ga ((11,7‘1),01)), g .\:= min Mgu(((lofa ll/p»&Y) and NS SUB(VsT(X))
with ooly = oly . Let (((to,t1), D), t) := (((lhi[p « m0€],m1), Co€ Ch),l1)o . Now we have
(((to,t1), D), D) = ((lypa[p = Topo) r1p1), Copo Capta), lipr). Therefore Dep is fulfilled.
Sub-claim 1: There is some w with s=2»r u1/p=2>w<E=s’ and ripi = hp[p — rip/p] .
Proof of Sub-claim 1: If t, = t;, then s==s' = ropo = top/p = tip/p = rip1/p; and
ripy = riplp — ripa/p] = tig(p « rip/p] = top[p — rip/p] = Ly[p & rim/p].
Otherwise, if to # t1, (((to,t1), D),1,p) is a critical peak and we get s = u/gp = lip1/p =
fo/p=2t10/p | (to/p) = Topo = ' where typ/p = r111/p; and '

ripy = tip = top[p — tip/p) = hipa[p — ria/p)- Q. e. d. (Sub-claim 1)
Sub-claim 2: For o € IT\ {¢p} we have u'/o=s.
Proof of Sub-claim 2: If there is some p’ with o = ¢p/, then by Sub-claim 1: u'/o = u'/qp =
ropn /P = hp[p — ...]/p = /P = u/qp’ = ufo = s. Otherwise, by gp € II we know

olq, and therefore u//o = u/o = s. Q. e. d. (Sub-claim 2)
By Sub-claim 1 we get u/[gp — w] = u[q e rym[p — w]] = u[g e« hu[p —w]] =
ulgp — w]. Hence, for d:=u'[gp+ w]lo— s |o€cIl\ {gp}] we get 4 =

ulgp — w][lo— s |oe I\ {qp}]<E=ulo «— s' | 0 € II] by w<=4' (by Sub-claim 1). Thus,
for Claim we only have to show v | @. For u” := w'[o « s’ | o € II\ {gp}] (cf. Sub-claim 2)
there is some w' with v=2sw'<€=u" by Sub-claim 2 and P(v,u/,s,s’,II \ {gp}), which is
smaller in the second or third position. Finally, we get w’ | & by u”/qp = u'/qp = r1p1/p,
Sub-claim 1, and P(w',u”,r1p1/p,w, {gp}), which is smaller in the first position by Sub-
claim 1. Q. e. d. (The critical peak case)
The variable overlap (if any) case: Vpe I'NO(hL) : L/p eV :
DefineI': V — F(O[I)) by (z€ V): T(z):={p |Ip:(h/p=2x A pp €II') } .

Define g} by (z € V): ap! :=am[p' « ¢ | p' € I'(z)] . Define

i:=ulqgerpllo—s | o€\ (gl)] and @:=u[ge hpllo—s|oell\(qll')] .
We are going to show v | ti<=t<E=u[o « ¢’ | 0 € II] for Claim. Since for p' € I'(z) we
always have some p with I/p = z; zu1/p’ = lipa/pp = u/qpp’ = s=>s'; we get v | i by
P(v,u',s,8,(IT\ (¢I)) U { gpp’ | Iz : (ri/p =2 A p' € I'(z)) }), which is smaller in the
second or third position. We get <=1 by

Sub-claim 3: Cipu) is fulfilled.

Finally, 4<®=u[q — L [o — s |0 € II']][0o « s' | 0 € IT\ (¢II')] = u[o « &' | 0 € TI].
Proof of Sub-claim 3: For (@=%) in C; we have @],y and hence for the sort s of
u: L48= (equd)m. We get L | (eq;ud)uy by P(L, (eqsu®)py, s, s ,{ pp' | 3z :
((eq;@9)/p == A p' € I'(z)) }), which is smaller in the second position. Since there are
no rules for L and only one for eq;, this means) | vpj. For (Defd) in Cy we know
the existence of some @ € G7 (cons) with ﬁ'-{@iﬁﬁpl. We get some 4 with i uEay,
by P(i,apu,s,9,{ pp' | Iz : (a/p = = A p' € T(z)) }), which is smaller in the second
position. By Lemma 6.8 we get u € G7 (cons). Finally, for (2#0) in C; we have some
i,o € GT(cons) with ﬁpli@—}ﬂﬁi'ﬁ'&ﬂﬁpl. By applying the same procedure as before
twice we get i, 9 € GT (cons) with upu,=250E=0t=250=vy}, i. e. up, =25 4o E=vp).
Q. e. d. (Sub-claim 3; The variable overlap (if any) case; “q not strictly below any p € 11”)

45

“q strictly below p € II": There is some p’ with pp’ = ¢, p' # 0, and p € I

Sub-claim 4: For o€ Il \ {p} we have u'/o =5 = lgup .

Proof of Sub-claim 4: Since o|p, we have u'/o = u[pp’ « ...]/o = ufo = s = loue.

Q. e. d. (Sub-claim 4)

The (second) critical peak case: p' € O(lg) A lo/p' € V

Let & := minSep(V(((l1,71),C1)), V(((lo,70),Co))) . Let p be given by (z € V): zp:=
{2?31”1 ft}‘fefwli)s(é(lo,ro),co)) - By hiée=0& m=u/q=u/pp’ =lopo/p’ = (lo/p)e let
Y := V(((h,m1), C1)¢, ((lo, 7o), Co)), o := min Mgu({(l:&, lo/p')), Y) and ¢ € SUB(V, T (X))
with oply = .9|Y Let (((to, t1), D), 1) := (((lo[p’ — r1£],70), C1€ Co),lo)o . Now we have
(((tost1), D),) = (((lopto[P’ « r111],Topo), Capa Co,uo) loyo) Therefore D is fulfilled.
Sub-claim 5: There is some w with s==s[p’ — rpu |Bowd=s' .

Proof of Sub-claim 5: Since s/p' = u/pp’ = u/q = Iy 11 we have s=>s[p’ « ryp;]. Because
s[p' «— ripa] = lopo[p' — rip1] = top and t1p = rope = s’ we now only have to show
tow | tip. If to = ty, this is trivial. Otherwise, if to # t1, (((to,t1), D), ,p') is a critical
peak and we get top | t; by Lemma 7.3. Q. e. d. (Sub-claim 5)
For i :=u[p « w][o+ &' | 0 € T\ {p}] weget i1<E=u[o — s' |0 € I1] by w<€=s’ (by Sub-
claim 5). Thus, for Claim we only have to show v | &i. For u” := w/[0 « s’ | 0 € I\ {p}]
(Cf. Sub-claim 4) there is some w’ with v=25w'<«®=y” by Sub-claim 4 and Plvgls, 8T
{r}), which is smaller in the second or third position. Finally, we get w’ | @ by
uw/p = ¥/p = u[pp’ — ryul/p = u/plp’ —rip] = s[p’ « rip], Sub-claim 5, and
P(w',u",s[p" « rip];w, {p}), which is smaller in the first position by Sub-claim 5.

Q. e. d. (The (second) critical peak case)

The (second) variable overlap case: There are p, p, z with p' = pp and lo/ p=zeV
spolp = rum] ify=z . Define @ :=

Yo otherwise

u[o « ropgy | 0 € I] and @ := u[o « louy | o € I]. Since zpo/p = lopo/pp = s/p'=u/pp'=
u/q=lp==r1ps and v'=u[ppp & rip |=ulp — louo[z" & w%]]lo — lopo | 0 € IT \ {p}]
(by Sub-claim 4), we get some w with v=23w<&u by P(v, o', lypy, rypa,
{oop|o€Il A lg/o =z A 06 # pp }), which is smaller in the first position by s Byrs/p =
u/pp’ = u/q = lipu;. Now by u<=u[o — ropo | 0 € IT] = u[o « &' | 0 € II] for Claim we
only have to show w | 4. But this is given by Sub-claim 6 below and P(w, %, lopg, ropg,),
which is smaller in the first position of the measure by s = lop =2 lopg.

Sub-claim 6: Coug is fulfilled.

Proof of Sub cla.lm 6: For (4=v) in Cy we have some w with Guo=2>w<E=5,. We get some
w' with w=2w'E=au! by P(w, dpo, lypy,r1p1,{ 0p | i/o = z }), and then w’ | Ty by
P(w', Do, i, rip1, { 0p | 9/o = z }), which are smaller in the first position of the measure
by s bST11 1 (shown above). For (Def u) m Co we know the existence of some @ € G7 (cons)
with @<&=ipy. We get some # with =2 aEaul by P(t, tipo, iy, ripy,{ op | ifo =
z }), which is smaller in the first position (as before) By Lemma 6.8 we get & €
GT (cons). Finally, for (4#%) in Co we have some #,% € G7 (cons) with tpo=251145<E= 0.
By applylng the same procedure as before twice we get 1, € GT (cons) with
u,uo=>u<=uiv=>v¢=v,uo,x e. u,u0=>u¢v<———v,u0

Q. e. d. (Sub-claim 6) Q. e. d. (The {second) variable overlap case)
Q. e. d. (“q strictly below p € I1”) Q. e. d. (Proof of Theorem 7.4)

Define pg by (y € V): yug :=

46

Proof of Theorem 7.6

Claim: For f = w+w and sz>nx ,t we have A,(s) = Ax(l).

Proof of Claim: By induction on . By mductlon on the number of derivation steps, it
suffices to do the proof for =, , , instead of :»Rx . If B is one of the limit ordinals 0, w,
w+w, the induction step is trivial. If 3 is a non-limit ordinal y+1, the induction step is as
follows: For $=p y 41ty €ither s=>, , ¢t and w <X v, and then (by induction hypothesis)
A.(s) = A.(t); or there is a substitution o € SUB(V,T(X)), a rule ((/,7), C) € R, and
ap € O(t) with s/p = lo, t = s[p « ro], and Co fulfilled w. r. t. :>R,x.1‘ Since A is a
sig/cons-model of R, we only have to show that Co is true w. r. t. A,. For (u=v) in Co
we have u|, , v and hence by induction hypothesis we have Ag(u) = Ai(v): Fot 4 €85,

u € T (sig,X);, (Defu) in Co there is some @& € GTcons,a with U%R’X'Tft and hence by

induction hypothesis we have A.(u) = A.(2) € A(CONS,u). For (u#v) in Co we know
w =< v and there are @,0 € G7T (cons) with uzﬁnx.fuiklxﬂﬁéa'xﬂv and w. l. 0. g. (since
= ., is noetherian and by Lemma 6.8) i, ¢ dom(==y x); thus, (since @ and © are of the
'same sort and unequal) we have by induction hypothesis: A, (u) = Ag() # Ax(D) = Ax(v).

Q. e. d. (Claim)

Now we show confluence for part (1) of the theorem. Suppose u&n‘xsi‘a—}mxv. Since

=, ¢ is noetherian, there are i, € 7T (sig, X)\dom(=) with u#ﬁ}-ﬁlxﬁ and v=®L>RIXﬁ.
By Claim we have A, (%) = Ax(u) = Ax(s) = Ax(v) = Ax(?) and therefore @ = v.

Finally for the proof of part (2) of the theorem, in the above we can additionally assume
s € D, and thus the existence of some t € 7 (cons, VoonsNX) \ dom(==,) (since ==y,

is noetherian and by Lemma 6.7) with séa.xt. Then by Claim we have A.(t) = Ax(u) =
Ax(8) = Ax(t) and AL (D) = Au(v) = Ac(s) = Axlt), . e. i=t=1.

Proof of Lemma 8.1 and Lemma 8.2

It is standard to encode a universal deterministic Turing machine with a finite set of left-
linear, non-overlapping rules. This can be done in the following way, where stop, left, right,
nil, 0, L are constant symbols, s is a unary function symbol, cons and nth are binary, cmd,
state are ternary, and T is sexary; and “ Tlarcsp ” encodes the Turing machine with

meaning intended range

1 being the tape to the left of the head nil or conss™0 list-of-integers

a being the symbol under the head s"0

r being the tape to the right of the head nil or conss"0 list-of-integers

¢ being the next command to be executed stop or left or right or s"0

s being the next state to be in s"0

p being the program cons table-of-commands table-of-states
The rules are:
] [a stop. .4.p =il
T nil G left sp=T nil 0 consar cmdOsp stateOsp p
T consbl a eft. s n=T ' b consar cmdbsp statebsp p
] a nil right s p=T consal 0 nil cmdOsp stateOsp p
il el a consbr right sp=T consal b r cmdbsp statebsp p
e vy 0 gp=T 1 P cmd0sp stateOsp p
/ey a r [AR T)] IR | S cmdsz sp stateszsp p

with the following auxiliary functions:

47

nth 0 consal = 0

nth sz consal = nth z !
cmd a s cons table-of-commands table-of-states = nth a nth s table-of-commands
state a s cons table-of-commands table-of-states = nth a nth s table-of-states

We use L instead of a reasonable output because we are interested in the halting problem
only. We assume all function symbols so far to be constructor symbols.

From this system we are now going to construct our positive-conditional rule system
by exchanging the recursive T-rules of the form “ Tlarcsp=T1'a'r'c¢'s'p’ " for rules of
the form ¢ Tlarcsp = Le—Tla Y slp = L.

Now the above Turing machine halts iff the ground term “ Tlarcsp ” is reducible.
Therefore (the halting problem being not co-semi-decidable) the reducibility of ground
terms cannot be co-semi-decidable.

For Lemma 8.2 we now add the following new rule:

foreverplarcsp=true «— Tlarcsp# L, DefTlarcsp, Def L
Now “ foreverplarcsp ” is reducible iff the above Turing machine does not halt. There-
fore the reducibility of ground terms cannot be semi-decidable..

Proof of Theorem 8.3
Proof of (1.): The function g that firstly tests whether its single argument s is in the enu-

merable set 7 (sig, X), secondly tries to compute f(s), and thirdly (if s € 7 (sig,X) and
f(s) is defined) is defined iff the test f(s) = s succeeds, is defined exactly on the irre-
ducible terms from 7 (sig, X).
Proof of (2.): Claim 1: Let 8 < w+w. For all s € T (sig, X) the fol. sets are enumerable:
Yp(s) := { t| 8==>p x gl }
Zﬁ(s) s= { t | Sén.x,,et }
If Claim 1 holds, we can enumerate Z,4.(s) and simultaneously the irreducible terms from
T (sig, X) until one term ¢ occurs in both enumerations and we can return f(s) := t.
Proof of Claim 1: By induction on 8. It suffices to show that Yj(s) is enumerable for all
s € T(sig,X). The induction step for the limit ordinals 0, w, w+w is trivial (Yo(s) = 0;
Y. (8) = Uicw Yi(8); Yorw(s) = Uizw Yuti(s)). The induction step for the non-limit ordi-
nals B+1 can be done the following way: For all rules (({,r),C) € R and all p € O(s)
and all ¢ in the enumerable set SUB(V(((!,r),C)),7T (X)) with s/p = lo we test in an
enumerative fashion whether Co is fulfilled w. r. t. =>,, , and enumerate s[p « ro|
if the test succeeds. For w < we merge this enumeration with that of Y, (s). The
test of “Co fulfilled w. r. t. =>_, ,” can be semi-decided the following way: For (u=v)
in Co we test the enumerable set Zg(u) N Zg(v) for non-emptiness. For (Defu) in Co
we test the enumerable set Zg(u) N G7 (cons) for non-emptiness. For (u#v) in Co we
test for the existence of & € A(u) and ¥ € A(v) with @ # o (syntactically) for the enu-
merable sets A(w) := Zg(w) N (GT (cons) \ dom(=>, ,)). This last test succeeds only if

34,9 € GT (cons) : ué}a,x.patn,x.pﬁ&n,x,pv holds. It also succeeds if this property holds
because of Vs € GT (cons) : 3t : sﬁga‘xt ¢ dom(== 4), Lemma 6.8, and w < j.

Proof of Lemma 8.5

There exists some 7 € SUB(V, T (X)). It suffices to show the fol. claims for all ¢,t' € T
Claim 1: For t==, ,t' we have tr= ,t'r.

Claim 2: For ¢ € O(t) and t/q—»,,t' we ha.ve trow, sHir

48

Proof of Claim 1: By Corollary 6.5 we get tr==,,t'r and then by Lemma 6.12
tr= tir. ‘

Proof of Claim 2: There are (({,r),C) € R; 0 € SUB(V,T); p€ O(t/q); u € TERMS(C)
with t/qp=lo ; t'=uo ; Co fulfilled w. r. t. = ,. By Corollary 6.5, Cor is fulfilled
w. r. t. =, ,. By Lemma 6.12, Cor is fulfilled w. r. t. =, ;. Thus; since ¢t € T(sig, X);
or € SUB(V,T(X)); qp € O(tr); tr/qp=loT; t'r =uot ; we get tr—» t'r,

Proof of Lemma 8.6

1.: Suppose that > is not noetherian. As b, and =} are noetherian, there must be
r,s:IN—= T with Vie N:rj>gsi 3% r; . Then there is a p:IN — INI with
Vie IN:ri/pi=38; . Define t, = ro[po « ri[pr « r2...[pn-1 +~ o] ...]]. Be-
cause of r;/p; =3; 3P riyy weget t, €T (as 3® sort-invariant) and ¢, =3® ¢, (as
=% V-monotonic). This contradicts =3 being noetherian.

If =3 is V-stable, additionally, then > is V-stable too, because >, is.

Here is an example for > not sort-invariant and not §-monotonic: Let A, B be two different
sorts. Let a(a)=A, aff)=A — B, a(g) =A — A. Define =3:= (. Then we have
> = b, and therefrom: fa > a (hence not sort-invariant); and ga > a but fga ¥ fa
(hence not (-monotonic).

2.: Take the signature from the example in the proof of (1). =3 := {(a,fa)} is a V-monotonic
(indeed!), well-founded ordering on 7 that is not sort-invariant. Now > is not irreflexive:
aLstotd) busral, :

If one changes a(f) to be «a(f) = A — A, then =3 is a sort-invariant, well-founded order-
ing on 7 that is not V-monotonic.

3.: For tb t' 3t"” thereisap € O(t); p # 0 with ¢’ =t/p . By sort-invariance and
V-monotonicity of =3 we get t =t[p — t'| D t[p — "] b t".

4.: W. r. t. the noetherian word rewriting system {(b,, =3, = b4,)} , generated from
(8), words from {=3}, >4}t have normal forms only in { b}t U ({3} o { b }").

" Proof of Lemma 8.7
Suppose b is not noetherian. Then thereisa t:IN — 7 with

VieIN: ty(U—UB)t -
Define k:IN — IN by: ko=0

k,'+1 =] +min{j |]2 k.‘ A tJ' ‘—)t_H_l}

The above minimum always exists because (= U,) is noetherian. We have
tki((:; U I>s-r)® e ‘_’) tk-‘+1 . By Psr0 3 C Fobg, we get
te,(3® 0 > ® 0)y, , which means t;,(3 U (B0 —))®t,,, , which contradicts the
assertion that (=3 U (B,.0 <)) is noetherian.
An alternative proof (using the Axiom of Choice) can be done the following way:
(3 U (Bgp0<)) quasi-commutes over (3 U >,) in the sense of Bachmair& Dershowitz[2].
Thus, (= U <= U b,) must be noetherian by Theorem 1 of Bachmair&Dershowitz[2].

Proof of Lemma 8.15
=y & > s trivial by induction on the construction of =, , using Lemma 6.10.
=py U U b © b s trivial. R is X-compatible with T by Lemma 6.12. By
Lemma 8.5 we know that (=, U (Bg.0-»,,)) is noetherian. By Lemma 8.6 and
Lemma 8.7 we know that (ée:—,w, (=rpv U2,y U B)®) is a termination-pair over
sig/V, with which R is trivially V-compatible.

49

Proof of Theorem 8.17
(1) = (2): By Lemma 7.2. Q.e. d. ((1)=(2))

(2) = (1): First notice that the usual modularisation of the proof for the unconditional

analogue of the theorem (by showing first that local confluence is guaranteed except for
the cases that are matched by critical peaks (the so-called “critical pair lemma”)) is not
possible here because we need the confluence-property to hold for the condition terms even
for the cases that are not matched by critical peaks. Now to the proof: Let s be minimal in
B> such that = is not confluent below s. Because of = C b (by Lemma 8.15), =
is not even locally confluent below s. Let p,q € O(s) ; tos=,s==>1t1; toft; . Now as
one of p, ¢ must be a prefix of the other, w. 1. 0. g. say that ¢ is a prefix of p. As s B s/q,
by the minimality of s we have ¢ = . Now for k < 2 there must be ((l,7k),Ck) € R ;
pr € SUB(V, T (X)) ; with Cypy fulfilled; s =1lijp; s/p=lopo; to=lip[p — ropo] ;
ty =ripy .

The inductive case: p = qoq1; h/go=x €V : By zpi/q1 = lip1/qoq1 = 8/p = lopo and
Lemma 6.7 (in case of € Vcons), we can define v € SUB(V,T (X)) by (y € V): yv =

{ ;::1[‘11 — Toflo | gtl!ie?wai:se and get ypl_s—l}—yu for y € V. By Corollary 6.4:
1

to = lip[goq — ropo] = hilgo — av]l¢' —ym | h/d' =y €V A ¢ # q]

2ol[g —yv |/ =yeV]=lv;
ty= r1pﬁ——§-¢-r1u . It suffices to show [jy==rjv , which follows from:
Claim: C;v is fulfilled.
Proof of Claim: For each L in C; we have to show that Lv is fulfilled. By our compatibility-
property we get Yu € TERMS(L) : lipy b up,y .
L = (u=v): We know uraupy | v =2vv. As s =l b up; wehave uv | v =2vp .
As s=lipu b ouy we have uv | vv.
L = (Defu): We know the existence of & € G7T (cons) with uu&um =2.4. By Lemma 6.8
and Lemma 8.15 we can additionally assume @ to be irreducible. By s = [y, b uy;, we
get wr=21 .
L = (us#v) : We know the existence of #,0 € G7 (cons) with
uv&um%ﬂiﬁ&vm%vu . Just like above we can additionally assume u,v to be
irreducible. By s = liju; b upi, v we get uv | 4; | vv; and hence ur==5046<E=vv .
Q. e. d. (Claim; The inductive case)

The critical peak case: p € O(l;); li/p € V : Let
¢ := min Sep(V(((lo, 7o), Co)), V(((l1,m1),C1))) and Y :=V(((lo,m0), Co)¢, ((l1s71),Ch)) -
Ty ifx € V(((Il,'l"l),C1))

zépo otherwise (@e V)

By lofo = 10€€ po = s/p = iy /p = he/p = (L/p)e let o :=minMgu(((lc€,/p)),Y)

and 7 € SUB(V,T(X)) with or|ly = o|y . ;

Let ((I';r"), D) := ((li[p « r0o€],71),Cof C1)o and t :=ly0. Now we have: ((I',r'), D)r =
((h[p «— ro€],71),Col Cr)e = ((lym[p « Tp#o],f‘l.ul), Copo Cip1) = ((to, 1), Copro Cipa) -

Hence D7 is fulﬁlled. Furthermore, by tr =ljp=1[lijg; =s and induction hypothesis

we get Vu 4 tr : = is confluent below u . If ¢, = t;, then ¢o | ¢; trivially. Otherwise

(((r",r", D),t,p) € CP(R) and then by (2) we get to | t; , tco.

Q. e. d. (The critical peak case; (2) = (1))

Let o be given by zp =

50

Proof of Theorem 8.18

Since the analoguos conclusions of Lemma 8.15 still hold, the proof reads just like the proof
of Theorem 8.17 with the exception of the “Proof of Claim” in “The inductive case” of
“(2) = (1) ", where after the first sentence we have to add the fol.:

3

Since we have free constructors and zp;==zv , we know = € Vsig . Now, if V(L) € Vcons ,
we get = & V(L) , and thus Lv = Ly, is fulfilled. Therefore we can assume V(L) € Vcons
in the sequel. /

Proof of Lemma 8.19

Item (1) follows from item (2). By Lemma 8.15 we can now show items (2) and (3) by
noetherian induction on s w. r. t. b.

Proof of (2): There is only a finite number of of positions p € O(s) and of rules I=r «— C
of R matching s/p, and the set of matching substitutions o € SUB(V(I=r +— C),T (X))
with s/p = lo is enumerable. Since s b s[p « ra] for Co being fulfilled, by induction
hypothesis we only have to be able to semi-decide whether Co is fulfilled. In case of
left-right-compatibility we semi-decide the fulfilledness of the literals from left to right;
in case of compatibility only, we wait with our parallel enumeration until we have been
able to establish the condition terms to be <i-smaller than lo. Thus, for semi-deciding
the fulfilledness of a literal L in C'o we can assume its terms to be <I-smaller than s. By
induction hypothesis it is obvious now how to semi-decide fulfilledness of ‘=’- and ‘Def’-
literals in C'o, and how to semi-decide ‘#"literals using item (3).

Proof of (9): By Lemma 6.8, the constructor rules being extra-variables free, and R and
O(s) being finite, there can be only a finite number of ¢ with s==t , and by the induction
hypothesis this also holds for those ¢ with s=2¢ . In case of left-right-compatibility we
decide the fulfilledness of the literals from left to right; in case of compatibility only, we
know that Co cannot be fulfilled if the test fails whether all its terms are <1-smaller than
lo. Thus, for deciding the fulfilledness of a literal L in C'o we can assume its terms to be
<-smaller than s. By induction hypothesis it is obvious now how to decide fulfilledness of
‘="- and ‘Def’-literals in Co.

Proof of Lemma 8.20

Take the unconditional rule system of the proof of Lemma 8.1. From this system we are

now going to construct our positive-conditional rule system by adding as new first argument

a step-counter to our Turing machine by exchanging the recursive T-rules of the form

“Tlarcsp=Tla'r' c's' p' " for rules of the form “ Tszlarcsp = Tzl'a'r'c's'p’”

and the non-recursive T-rule by T zlarstopsp = L . Finally we add the rule
terminatesplarcsp=true +— Tz larcsp= 1,

where ‘terminatesp’ and ‘true’ are of a new sort. For the decidable ordering > of the

termination-pair take the lexicographic path ordering where ‘terminatesp’ is bigger than all

other function symbols and the variables of the old sorts; ‘T’ is bigger than all function

symbols except ‘terminatesp’; and ‘cmd’ and ‘state’ are bigger than ‘nth’.

Now, since “ terminatesplarcsp ” is reducible iff the Turing machine of the proof of

Lemma 8.1 halts, reducibility of ground terms cannot be co-semi-decidable.

Proof of Lemma 8.21
The proof is very similar to that of Lemma 8.19. Finally, (&) follows from (2), Theorem 8.17,
and 7 (sig, X) being enumerable.

ol

Proof of Lemma 8.22
Take the unconditional part of the rule system of the proof of Lemma 8.20. For getting our
positive conditional CRS R, add the rules

terminatesp = = false

terminatesp z = true +«— Tzlarcsp=.1,
where ‘terminatesp’, ‘false’, and ‘true’ are of a new sort; and l,a,r,c,s,p are ground terms.
For the decidable ordermg > of the termination-pair take the lexicographic path ordering
where ‘terminatesp’ is' bigger than all other function symbols and the variables of the old
sorts; ‘T’ is bigger than all function symbols except ‘terminatesp’; and ‘cmd’ and ‘state’ are
bigger than ‘nth’.
Now, the fol. statements are logically equivalent:

o =, is confluent.

e The critical peak (((true,false), Tzlarcsp=.L1),terminatesp z, @) is joinable w. r. t.
RV

e There is no term ¢ € 7 (sig, VsicWVcons) with Ttlarcsp ie?-,w ¥ e

e The Turing machine of the proof of Lemma 8.1 does not halt.

Proof of Lemma 9.7

Proof of (1): Since KC M .

Proof of{2): If no rule in R has a negative condition, then there is some A being free in M
over V w. r. t. some k. Then A is in K. Let B € M and p € SUB(V,B). There must be
some h :: A — B with g = kh . Since “ — A ” is type-B-inductively valid by assumption,
there must be some atom (u=v) or some atom (Defu) in A which is true w. r. t. A.. Then
we have A.(u) = A(v) or Ax(u) € A(CONS,s) for some s € S. Then we have B,(u) =
Ben(u) = h(Ax(u)) and then B,(u) = h(Ax(v)) = Bu(v) or B,(u) € B(CONS,s) .

Proof of Lemma 9.9
Proof of (1): Let A be a CONS:cons-term-generated constructor-minimal model of R. Let
x € SUB(V, A). By the Axiom of Choice there is some 7 € INDSUB(V, cons) with x = 7A,.
Claim: For A € At(sig,V): Aistruew.r. t. A, iff A7 istruew.r.t. A,
Proof of Claim: By the Substitution-Lemma(4.1) we get for u € T:
Ay (u) = Ara, (u) = Ay (ur) Q. e. d. (Claim)
Now, if each atom A in I is true w. r. t. A, , then (by Claim) Ar is true w. r. t. A, , too.
Thus (since (T, A) is type-B-inductively valid by assumption), there must be some atom A
in A for which A7 is true w. r. t. A, . Then (by Claim) A is true w. r. t. A, , too.
Proof of (2): Let A be a constructor-minimal model of R. Define the sig/cons-algebra B by
8= fA (f€F); B(SIG,s):= A(SIG,s) (s€S); B(CONS,s) := A[GTcons,] (s€S).
Claim 1: For x € SUB(V, B); (u=v) € At(sig, V):
(u=v)is true w. r. t. By iff (u=v)is true w.r. t. A,

Claim 2: For x € SUB(V,B); (Def u) € At(sig, V):

If (Def u) is true w. r. t. B, , then (Def u) is true w. r. t. A, too
By these two trivial claims and B<yA ; B is a constructor-minimal model of
R, which, of course, is CONS:cons-term-generated. Let r € INDSUB(V,cons) and
X € SUB(Vsig, A) = SUB(Vsig,B) . Now, suppose that for each atom A in I': A7 is true
w.r. t. A, . Two cases: For A = (u=v), by Claim 1 we know that A7 is true w. r. t. B, ,

52

and by the Substitution-Lemma(4.1) A is true w. r. t. B.s, . For A = (Defu), we know
that “ — A " is type-C-inductively valid by assumption, 1. e. A is true w. r. t. B;s, , too.
Thus (since (I', A) is type-C-inductively valid by assumption), there must be some atom A
in A which is true w. r. t. Brp, . By the Substitution-Lemma(4.1) A7 is true w. r. t. By .
By Claim 1 or by Claim 2 we know that AT is true w. r. t. A, . -

Proof of Lemma 9.12 '
Define A := T (Vsig)/ <S>, - Define I := GT <%, , . Let & be given by (z € Vsia):

T {2

Proof of (1): By confluence of ==y [N(Dyg, XDy,)] and Theorem 6.14(1), A is a
constructor-minimum model of R. Furthermore, A is CONS:cons-term-generated.

Proof of (2): Let B be a CONS:cons-term-generated constructor-minimal model of R. Let
1 € SUB(V, B). By confluence of == ,[N(D,x D,)] and Theorem 6.14, there is a sig/cons-
homomorphism h :: A — B with plv,e = &b . Furthermore, by the Axiom of Choice
there is some 7 € SUB(Voons, GT) with plveons = TB = TAh . Define x € SUB(V, A) by
x = kW 1A. We have p = xh . Now assume each atom A in T to be true w. r. t. B,. Two
cases: If A= (Defu) , then (since “ — A 7 is type-D-inductively valid by assumption)
Ais trie w, . b Ay . If A = (u=v) , then (sinee ¢ — Defu ™ and “ — Defv ”
are type-D-inductively valid by assumption) there are some s € S; 4,9 € GTcons,s with
Ay (u) = A(t) and Ay(v) = A(9) . Then we get B(d) = h,(A(@) = hy(A(u)) =
Bon(u) = Bu(u)i= Bu(v) = Bun(v) = hy(Ay(v)) = hs(A(D)) = B(?). By confluence of
=, o[N(Dy % D,)] and Theorem 6.14(1), T and therefore also B is a constructor-minimum
model. Hence (since ii,9 € GT (cons)) Z(d) =Z(d) ; i. e. ﬁ%n.eﬁ . By Lemma 6.12
we get &«:%)R'%mﬁ . and then A,(u) = A(d) = A(®) = A,(u). Thus A is true
w. r. t. A, . All in all, all atoms in I' are true w. r. t. to A, . By the assumed
type-D-inductive validity of (I',A), there must be an atom A in A which is true w. r. t.
A, . Two cases: If A= (Defu) with u€ Tsig, , then (since A, (u) € A(CONS,s))
B, (u) = By(u) = hy(Ay(u)) € B(CONS,s) . If B = (u=v) , then (since Ay(u) = Ay(v))
B,u(u) = hy(Ax(1)) = hs(Ax(v)) = Bu(v) -

Proof of Lemma 9.13
Let A::T('VSIG)/éR.VSIG . Let k€ SUB(Vsig, A) be given by (z€Vsig): z émvsm[{x}].
Claim: For € SUB(V,T (Vs1a)); A € At(sig, V): ‘

Aistrue w. r. t. A,4, iff A7 istruew.r. t. A..
Proof of Claim: By the Substitution-Lemma(4.1). ~ Q. e. d. (Claim)
(1) = (2): Let 7 € SUB(V,T(Vsig)) and suppose that for each (u=v) in T’ we have

A

”Tég’n.vsm vt and for each (Def u) in I' we have some % € GT (cons) with u‘ré}n_v GO
Then for each atom A in ' we know that A is true w. r. t. A, , and then (by Claim) that
A is true w. r. t. A, 4. . Thus (since (T',A) is type-D-inductively valid by assumption),
there is some A in A which is true w. r. t. A,4, . By Claim Ar is true w. r. t. A, . Two
cases: For A = (u=v) , we get ”Tén,vsm vr . For A = (Defu) , we get some s € S and

some % € GTcons, = T (Veia)(CONS, s) with ur<Z, 4 .

(2) = (1): Let x € SUB(V, A). Now suppose that each atom A in I' is true w. r. t. Ay .
By the Axiom of Choice there is some 7 € SUB(V, T (Vsig)) with x = 7A. . By Claim A7
is true w. r. t. A, . Thus (since (2) holds by assumption), there is some A in A such that
AT is true w. . t. Ax . By Claim, A is true w. r. t. A, .

53

Proof of Theorem 9.17
Let A’ be a sig'/cons’-algebra. Define the sig/cons-algebra A by: A := A'|ru(sic,cons)xs -
Now an “old” formula (I',A) € Form(sig,V) is valid in A iff it is valid in A'. Fur-
thermore, its inductive instances (I',A)r do not differ for 7 € INDSUB(V,cons) and
7 € INDSUB(V’,cons’) since Vs € S:GT(cons), = GT(cons’), . Thus for proving (A)
[and (B)], it suffices to show the fol.:
Claim: If A’ is a [constructor-minimal] model of R/,

then A is a [constructor-minimal] model of R.
This Claim is also sufficient for (C); because if A’ is CONS:cons'-term-generated, then A
is CONS:cons-term-generated.
Proof of Claim: As each rule from R can be translated into an “old” formula (on
which A and A’ do not differ (cf. above)), A is a sig/cons-model of R. Let GT'
denote the ground term algebra over sig'/cons’ and G7(cons) denote the ground
term algebra over cons. By confluence of =, ,[ND;xD;] and Theorem 6.14(1),

Q‘T'/é#ﬁ,a is a constructor-minimum model of R’ w. r. t. sig’/cons’. Thus, A’
must be a constructor-minimum model of R’ w. r. t. sig’/cons’, too. Therefore there

must be some cons’-homomorphism A&’ :: A’|cry({cons)xsy) — (gT'/ém'aﬂc'w({com}xs') :
By defining h,(a) := hi(a) NGT(cons) (a€ A(CONS,s) ; s€S), we get
a cons-homomorphism h :: A|cw{cons)xs) — QT(cons)/(&R,'a N (GT (cons)xGT (cons))).
By conﬂuence of =,,[ND,xD] and Theorem 6.16(1) and Lemma 6.9

wo N(GT (cons)xGT (cons))) S (LN (GT (cons)xGT (cons))) C
@

(lao N(GT (cons)xGT (cons))) C |l,,, € <“=,, - Finally, for each sig/cons-model
Cof Rweget V<Xw:VseS: =>as (GTs16,s %G Ts16,s) € ker(C), by induction

on f3; thus Vse€ S: (<=I~R,a N (GT (cons),xG7 (cons),)) < ker(C), ; and then by the
Homomorphism-Theorem(4.2) A Soons C - Thus A is not only a sig/cons-model of R but
also a constructor-minimal one. Q. e. d. (Claim)
Proof of (D): We do the proof for the equivalent version of type-D-inductive validity given
by Lemma 9.13(2). Let v/ € SUB(V’',T'(V%sic)) and suppose the premise of Lemma 9.13(2)
to hold for this 7. There is a 7 € INDSUB(V', cons’) and a ¢ € SUB(Vs16,T'(V'sig)) such
that 7/ =710 . Note that 7|y € SUB(V,T(Vsig)) . For each atom (u=wv) in I' we have

assumed that — Defu ” and “ — Defv ” are valid in 7 (Vsig LN . Thus
n‘lVSIG
¢ and vré}mvﬂcfb . By Theorem 6.16(2)

we get * (<&

there are #,9 € GT (cons) with ur<Z»

R,VsiG
4 and vr<d , and then by Corollary 6.5 and the supposed

A

we get ur <2

R/ Visig R/ Vig G
' . ® ! ’
ur', o VT et 7} <=>R'-V’slc uro *::’R',V‘sxc vTOo @R, ol . By Lemma 6.12 we
get ﬁén,’af) and then (by confluence of =, [[N(DyxD,)]) ulR, ¢ , and then by The-

orem 6.16(1) we get @, ,0 and then by Lemma 6.12 "T<=}'R,Vsm u-(m}m\,sm 6&&\'31:: vT .
Furthermore, for each atom (Def u) in I' we have assumed that “ — Defu ” is valid in
T(VSIG)/%R vere - Thus thereis a @@ € GT (cons) with ur <>, Varg ¥+ Thus (since (T',A)is
type-D- mductlvely valid by assumptlon) there is a literal (u=v) in A with ur<®s e
or a literal (Def u) in A with “T*E’n.vm“ for some & € GT (cons). By Theorem 6.16(2)

@ ® .
we get UTE, VT OF UTSS,, G, and then by Corollary 6.5 UTU&R,V

Visig
or uro<ds U-.

R/\Vigig

T

vTo

54

B Unification

An (inefficient) algorithm for computing a most general unifier for a finite multi-set E of
sort-invariant pairs of terms is given by the fol. inference system, which must be started
with (E, Veons(E, X), id) for computing an element of Mgu(£, X) in the last position of
any triple to which no inference rule applies anymore:

Delete: (E U {(t,1)) , X go)
(E ’X ' T)
Function Symbol Clash: (E U {((fso...Sm-1,9t0..-tn-1)) ,X o)
FAILURE
if f#g.
Divide: (B ([80 «.c:8my flos s Tem)) X)
(B (sut) i Sm) O s
Align: _ (E U ((t,z)) , X (@)
(E H(et)) .4)
if (;CGV/\ tQV) or (z € Vsig A t € Vcons) -

Occur-In Clash: (E U {(z,t)) 0,0)

_ ‘ FAILURE
if z € V(¢) and z # ¢.

Solve SIG-Variable: (E U {(z,1)) . S L)
_ (Ep X yOf)
if z€ Vaig\V(t); pueSUB(V,T) givenby zpu =1t and plv\(z) = id|v\(z} -

Solve CONS-Variable: (B U {(z,1)) 0.« e)

(Ep ,XUran({) ,oup

if € Voons\V(t); t € T(cons, VsicWVoons) ; i € SUB(V,T) givenby (y € V)
t(EUidlveons) ify=2
yp =14 yé if y € Vsia(t)
Y otherwise
such that ¢ : Vsig(t) — Vcons\X is injective.

Variable Sort Clash: (E U ((z,t)) 6 i A
FAILURE
if 2 € Veons and t € T\T(COHS,VSIG LﬂVCONs) :

Lemma B.1 :

The inference relation of the above inference system is noetherian on triples from
FMul(DEq(Sig,VSIGHﬂVC()Ns)) x }_(VCONS) X SUB(V,T) A

If it terminates on (E, Voons(E, X), o) with FAILURE, then there is no p € SUB(V,T)

with set[Elp € id. If it terminates on (E, Vcons(E,X), id) with (E',X', o), then

o € Mgu(E,X), oco=0c ,and E'=0.

55

Proof of Lemma B.1

Let ‘' denote the inference relation. I is noetherian because it either yields FAILURE or
decreases (w. r. t. the lexicographic combination of (1.) the usual ordering on N , (2.) the
multi-set extension of the subterm. ordering, (3.) the usual ordering on IN)
(E, X, o) measured by 1. |[V(E),

2. (set(e)y,set(e), | e € E), '

3. |{e€ E|set(e) € (T\V) x V)U (Voons x Vsia) }|.

Claim 1: Let n€IN ; Vi<n:(E;,Xio0)t (Eig1, Xig1,0i41) ; and oo =1d . Now:
V1 € SUB(V,T) : ((set[Eolont C id) & (set[E,]r Cid)) . :
Proof of Claim 1;: n = 0: Trivial. n = (n+1): If (En,Xa,00) F (Ep+1,Xn41,9n41) by a
Delete, Divide, or Align, the proof succeeds due to on41 = 0n and set[Folo,T Cid iff
set[E,]r Cid iff set[En4i1]r Cid . Thus, suppose this step to be a Solve. Then for
some E', using the denotation of the rules, we get ony1 = onpt ; E, = E'U{(z,t)) ; and
En.+.] - E"U. .

Sub-claim: zp = tu

Now: = set[Eglons1T C id iff set[Eolonur Cid iff (by induction hypothesis)
set[En)pur Cid iff (set[E')ur Cid A zpr =tpr) iff (by Sub-claim) set[E'|ur C id
iff set[Enqi]T Cid .

Proof of Sub-claim: In case of a Solve SIG-Variable, we get zp =1t =tp using z ¢ V(i)
for the lagt step. In case of a Solve CONS-Variable, we get zp = t(€ Uid|veons) = ti using
z & V(t) for the last step. Q. e. d. (Claim 1)

Claim 2: Let nelN ; Vi<n:(E,Xi;0)t (Eigr,Xig1,0i41) 3 do=id ; and
VCONs(Eo) g Xo . NOW:
1. Veons(En U 0a[Xo U Vsia]) € X,

2. aﬂ|v(En)U(vCONS\xn) Cid
3. 0n0s = Oy
4. If set[Eo)mo Cid for some my € SUB(V,T), then there is some 7, € SUuB(v,T)

with WolXuUVsm = UanoUVsm“'ﬂ :

Proof of Claim 2(1): n=0: Trivial. n=> (n+1): If (En,Xn,00) F (Ent1, Xns1,n41)
by a Delete, Divide, or Align, the proof succeeds trivially. Now suppose
this step to be a Solve CONS-Variable. Then Vcons(Ent1 U onta[XoU Vsig]) €
Veons (1#[Vsia U Veons(En U 04[Xo U Vsia])]) € Veons(p[Vsic U Xa]) € XaUVcons(t)Uran(£)
C X, Uran(f) = Xn41. For a Solve SIG-Variable we only have to omit the “U ran(€)”.
Q. e. d. (Claim 2(1))

Proof of Claim 2(2): n = 0: Trivial. n = (n +1): If (En,Xn,0n) F (Ent1; Xnt1,0n41) by
a Delete, Divide, or Align, the proof succeeds due to on11 = 0 , V(Eny1) € V(En) , and
Xnt+1 = Xn . Now suppose this step to be a Solve CONS-Variable. Since V(En+1) € V(Enp)
C V(En)\ ({2} Udom(£))) U (ran(€) \ {z}) (using ran(€) N Xn = 8, 2 € Voons(Ex) € Xn (by
Claim 2(1)), = € V(t)), it suffices to show yon.pu =y for the following three cases: First,
for y € V(E,) \ ({z} U dom(¢)) we get yo.u = yu =y. Second, for y € ran(¢) \ {z} by
y € Voons \ Xn we get yon.u = yu =y . Third, for y € Voons\Xn+1 C Voons \ X, we have
yo.u = yp =y because if we had ypu #y then y € Voons(En) € X, (by Claim 2(1)).
For a Solve SIG-Variable we only have to omit “dom(&)”, “ran(€)”, “z € Vcons(En) C X"
and the second case. Q. e. d. (Claim 2(2))

56

Proof of Claim 2(3): n.=0: Trivial. n = (n+1): If (B, Xps o) (Bt Xnpty Trisér) DY
a Delete, Divide, or Align, the proof succeeds due to ony1 = 0n . Now suppose this step
to be a Solve.

Sub-claim: po,p = onp

Now we get Op410n41 = OnflOnft = OnOnfh = Onfl = Ony4q :

Proof of Sub-claim:

Solve CONS-Variable: zpuo.pu = t(€ U id|ygons(t))onkt = (using Claim 2(2))

t(€ U id|veons(ty)t = (using ran(é) N X, =0, z€ Veons(Er) € Xn (by Claim 2(1)), z € V(1))
t(€ Uidlyeons(r)) = T = (using = € V(En), Claim 2(2)) zonp .

For y#z; y€ Vaig(t): yponp = yéoapu = (using Claim 2(2))

yép = (using Claim 2(1) just as last time) yé = yp = (using Claim 2(2)) youp .

For y#z; y€ V\Vaig(t) : yponp = yonp . :

Solve SIG-Variable: Very similar. Q. e. d. (Claim 2(3))

Proof of Claim 2(4): n.= 0: Trivial. n = (n+ 1): If (En,Xn,00) b (Bt XagiyTngi). DY
a Delete, Divide, or Align, the proof succeeds due to on41 = n by choosing 41 1= ™y .
Thus, suppose this step to be a Solve. Then for some E’, using the denotation of the rules,
we get Onp1 = onpt ; En = E'U{(z,t)) ; and Enp = E'p .

Sub-claim A: tr, = zm,

Sub-claim B: 3mn41 € SUB(V,T) : pt|xX,uVsia Tnt1 = TnlXaUVers

By induction hypothesis and for the next step by Claim 2(1) and Sub-claim B we succeed
with mo|xeuvsis F TnlxXouveia Tn = On|XouVsio Tnt1 = Tn+1|XouVsia Tt -

Proof of Sub-claim B:

Solve CONS-variable: Define mn41 := (67 U id|v\ran(e))Tn - Now mnyy € SUB(V,T) be-
cause sort-invariance is obvious and for y € V \ ran(¢) we have ymn41 =ym, and for
y € ran(€) we have yé!' e V(t), yé'maytw, = zm, € 7 (cons, Veons) (using Sub-
claim A, z € Vcons and 7, € SUB(V,T)), and then ymni1 =yl 1, € 7 (cons, Voons) -
Now: zum, i1 = t({ U idlvcorls(f))(g_.l U ile\ran({))'frn =

(using ran(€) N X, = B, Voons(t) € Veons(En) € Xa (by Claim 2(1)))

t(£67" U id|veons(t)id|v\ran(e))Tn = tmn = zm, (using Sub-claim A).

For y#z , y€Vac(t), we have ypumni1 =yEMpp1 =ym, . For y #iEs
y € (X — Waig) \ Vaig(t) , we have yumnyr = yTar = ymy (using ran(é)N(XAVsic) = 0).
Solve SIG-variable: Define 4y := Ty . Now: 2pmu4q = tmpyy = 7y = zm, (using Sub-

claim A). For y # ¢ we have yumn41 = yTny1 = Y7o . Q. e. d. (Sub-claim B)
Proof of Sub-claim A: By set[Eolonm, = set[Fo]mo C id and Claim 1 we get
set[Eq.lm, Cid , 1. e. zm, = tm, . Q. e. d. (Claim 2(4))

Claim 3: If (E,Vcons(E,X),o) B FAILURE , then —3u € SUB(V,T) : set[E]u C id .

Proof of Claim 3: W. . o. g. suppose (E, Voons(E,X), o) # (E',X',0") FAILURE . Since
the last element of the triple has no influence on the inference steps, there is a o with
(E, Veons(E, X),id) # (E',X’,o') - FAILURE . Now if we had set[E]p Cid , then by
Claim 2(4) there is some 7 with set[E]o’r Cid , and then by Claim 1 set[E'lr Cid ,
which contradicts (E’,X’,¢") F FAILURE due to the form of each of the inference rules
yielding FAILURE. ' Q. e. d. (Claim 3)

Claim 4: If (E,X,0) ¢ dom(t),then E=10.) (Trivial.)
Claim 5: If (£, Veons(E,X),id) #® (0,X’,0) , then o € Mgu(E,X) and oo =o0.

Proof of Claim 5: Since set[@]id Cid we get set[E]o Cid by Claim 1. For each u €
SUB(V,T) with set[E]u Cid thereisa m € SUB(V,T) by Claim 2(4) with u|x = or|x .
Thus o € Mgu(E, X) . Finally, by Claim 2(3) we get 0o = 0. Q. e. d. (Claim 5)

57

References

[1]

(2]
[3]
[4]
[5]

[6]
(7]
(8]

[9]

[10]
[11]

[12]
[13]

[14]

[15]

[16]

(17]

Jiirgen Avenhaus, Klaus Becker. Conditional Rewriting modulo a Built-in Algebra.
SEKI-Report SR-92-11, 1992, Fachbereich Informatik, Universitat Kaiserslautern, D-
67663 Kaiserslautern.

Leo Bachmair, Nachum Dershowitz. Commutation, Transformation, and Termination.
8th CADE 1986, LNCS 230. Springer-Verlag, Berlin 1986.

Leo Bachmair, Harald Ganzinger. On Restrictions of Ordered Paramodulation with
Simplification. 10" CADE 1990, LNAI 449. Springer-Verlag, Berlin 1990.

Leo Bachmair, Harald Ganzinger. Perfect Model Semantics for Logic Programs with
Equality. Proc. of 8" Int. Conf. on Logic Programming, pp. 645-659. MIT Press, 1991.

Leo Bachmair, Harald Ganzinger. Rewrite-Based Equational Theorem Proving with
Selection and Simplification. Technical Report MPI-1-91-208. Max-Planck-Institut fiir
Informatik, Saarbriicken, August 1991.

Klaus Becker. Semantics for Positive/Negative Conditional Rewrite Systems. 3** CTRS
1992, LNCS 656. Springer Verlag, Berlin 1993.

Eddy Bevers, Johan Lewi. Proof by Consistency in Conditional Equational Theories.
Report CW 102, Revised July 1990. Department of Computer Science, K. U. Leuven.

Susanne Biundo, Birgit Hummel, Dieter Hutter, Christoph Walther. The Karlsruhe In-
duction Theorem Proving System. 8" CADE 1986, LNCS 230. Springer-Verlag, Berlin
1986.

Adel Bouhoula, Emmanuel Kounalis, Michaél Rusinowitch. Automated Mathematical
Induction. Technical Report 1636, INRIA, 1992.

Robert S. Boyer, J Strother Moore. A Computational Logic. Academic Press, 1979.

Nachum Dershowitz. Termination of Rewriting. J. Symbolic Computation (1987) 3,
pp. 69-116.

Nachum Dershowitz, Mitsuhiro Okada, G. Sivakumar. Confluence of Conditional
Rewrite Systems. 1** CTRS 1988, LNCS 308. Springer-Verlag, Berlin 1988.

Nachum Dershowitz, Mitsuhiro Okada, G. Sivakumar. Canonical Conditional Rewrite
Systems. 9" CADE 1988, LNAI 310. Springer-Verlag, Berlin 1990.

Harald Ganzinger, Jirgen Stuber. Inductive Theorem Proving by Consistency for First-
Order Clauses. In: Informatik-Festschrift zum 60. Geburtstag von Giinter Hotz. Teub-
ner Verlag, Stuttgart 1992. Also in: 3" CTRS 1992, LNCS 656. Springer Verlag, Berlin
1993.

Martin Gogolla. Algebraic Specifications with Partially Ordered Sorts and Declarations.
Forschungsbericht Nr. 169, 1983. Universitat Dortmund, Postfach 500500, W-4600
Dortmund.

Stéphane Kaplan. Conditional Rewrite Rules. Theoretical Computer Science 33 (1984),
pp. 175-193. North-Holland.

Stéphane Kaplan. Positive/Negative Conditional Rewriting. 1** CTRS 1988, LNCS 308.
Springer-Verlag, Berlin 1988.

58

[18] Deepak Kapur, David R. Musser. Proof by Consistency. Artificial Intelligence 31
(1987), pp. 125-157.

[19] Deepak Kapur, David R. Musser. Inductive Reasoning with Incomplete Specifications.
Preliminary Report. IEEE symposium on Logic In Computer Science 1986.

[20] Deepak Kapur, Paliath Narendran, Friedrich Otto. On Ground-Confluence of Term
Rewriting Systems. Technical Report TR 87-6, Dept. of Computer Science, State Univ.
of New York, USA, 1987.

[21] Emmanuel Kounalis, Michaél Rusinowitch. On Word Problems in Horn Theories. 9%
CADE 1988, LNAI 310. Springer-Verlag, Berlin 1988.

(22] Emmanuel Kounalis, Michaél Rusinowitch. Mechdnizing Inductive Reasoning. Proc. of
8" AAAT1990. AAAI Press/The MIT Press, Menlo Park, Cambridge, London, Vol. 1,
pp. 240-245.

(23] Peter Padawitz. Horn Logic and Rewriting for Functional and Logic Program Design.
MIP-9002, Marz 1990. Fakultat fuir Mathematik und Informatik, Universitéit Passau,
Postfach 2540, W-8390 Passau.

(24] David A. Plaisted. Semantic Confluence Tests and Completion Methods. Information
and Control 65, 1985, pp. 182-215.

[25] Gerd Smolka, Werner Nutt, Joseph A. Goguen, José Meseguer. Order-Sorted FEqua-
tional Computation. In: H. Ait-Kaci, M. Nivat (eds.). Resolution of Equations in Al-
gebraic Structures, Vol. 2. Academic Press, San Diego CA, 1989.

[26] Christoph Walther. Argument-Bounded Algorithms as a Basis for Automated Termi-
nation Proofs. 9" CADE 1988, LNAI 310. Springer-Verlag, Berlin 1988.

[27] Christoph Walther. Computing Induction Azioms. LPAR 1992, LNAI 624. Springer-
Verlag, Berlin 1992.

(28] Claus-Peter Wirth. Inductive Theorem Proving in Theories specified by Posi-
tive/Negative Conditional Equations. Diplomarbeit, 1991, Fachbereich Informatik, Uni-
versitat Kaiserslautern, D-67663 Kaiserslautern.

(29] Claus-Peter Wirth, Bernhard Gramlich. A Constructor-Based Approach for
Positive/Negative-Conditional FEquational Specifications. SEKI-Report SR-92-10
(SFB), May 4, 1992, Fachbereich Informatik, Universitit Kaiserslautern, D-67663
Kaiserslautern.

[30] Claus-Peter Wirth, Bernhard Gramlich. A Constructor-Based Approach for
Positive/Negative-Conditional Equational Specifications. 3" CTRS 1992, LNCS 656.
Springer Verlag, Berlin 1993.

[31] Hantao Zhang. Reduction, Superposition and Induction: Automated Reasoning in an
Equational Logic. Rensselaer Polytech. Inst., Dept. of Comp. Sci., Troy, NY, PhD
thesis, 1988.

[32] Hantao Zhang, Deepak Kapur, Mukkai S. Krishnamoorthy. A Mechanizable Induction

Principle for Equational Specifications. 9" CADE 1988, LNAI 310. Springer-Verlag,
Berlin 1988.

