
VMTL–A Modular Termination Laboratory

Felix Schernhammer� and Bernhard Gramlich

TU Wien, Austria
{felixs,gramlich}@logic.at

Abstract. The automated analysis of termination of term rewriting sys-
tems (TRSs) has drawn a lot of attention in the scientific community dur-
ing the last decades and many different methods and approaches have
been developed for this purpose. We present VMTL (Vienna Modular
Termination Laboratory), a tool implementing some of the most recent
and powerful algorithms for termination analysis of TRSs, while provid-
ing an open interface that allows users to easily plug in new algorithms
in a modular fashion according to the widely adopted dependency pair
framework. Apart from modular extensibility, VMTL focuses on ana-
lyzing the termination behaviour of conditional term rewriting systems
(CTRSs). Using one of the latest transformational techniques, the result-
ing restricted termination problems (for unconditional context-sensitive
TRSs) are processed with dedicated algorithms.

1 Introduction and Overview

During the last decade, remarkable progress has been made in the field of termi-
nation analysis of term rewriting systems. Despite termination being an undecid-
able property of TRSs, increasingly sophisticated methods have been developed
to prove it for given systems. From these efforts several tools have emerged
that are capable of proving termination (semi) automatically (a list of currently
available tools can be obtained from the official website of the termination com-
petition [18].)

The currently most powerful tools implement the dependency pair framework
of [8] based on the idea of dependency pair analysis of [3]. This approach has
at least two advantages. First, it seems to be the most powerful one, which
is indicated by the latest results of a yearly termination competition ([18]).
Second, the pure dependency pair framework is strictly modular, which means
that concrete (correct) methods to prove termination within this framework can
be combined, added and removed arbitrarily, without affecting the correctness
of the tool. Thus, it is easy to extend tools implementing this framework by new
methods (called dependency pair processors in the terminology of [8]).

VMTL (currently available in Version 1.1, cf. http://www.logic.at/vmtl/)
is a new termination tool that implements the dependency pair framework and
focuses on openness, modularity and extensibility. It is easily extensible by new
� The author has been supported by the Austrian Academy of Sciences under grant

22.361.

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 285–294, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

286 F. Schernhammer and B. Gramlich

dependency pair processors, while providing the main technical infrastructure
of termination tools such as thread and processor scheduling, timeout handling,
input parsing, output formatting etc. In addition, VMTL contains implementa-
tions of several well-known methods of proving termination within the depen-
dency pair framework. These include

– a dependency graph processor used for decomposing dependency pair prob-
lems into strongly connected components of an estimated dependency graph
(the estimation described in [1, Section 4.1] is used),

– a reduction pair processor using recursive path orderings with status based
on [1, Theorem 21],

– a reduction pair processor based on polynomial interpretations featuring
linear and simple mixed polynomials, with coefficients from N and constants
from Z,

– forward and backward narrowing as well as instantiation processors (see
below resp. [17, Section 6] for more details), and

– a size-change principle processor based on results from [19].

The set of implemented processors (in particular the inclusion of the size change
principle processor) was chosen to optimize the power of VMTL with respect to
proving termination of conditional term rewriting systems. Moreover, all of these
processors are “context-restriction aware” in VMTL which means that they are
sound for both context-sensitive and standard termination problems.

The two reduction pair processors are implemented via reduction to satisfi-
ability problems and utilizing external SAT solvers, as it is state-of-the-art at
the time of writing. Benchmarks of VMTL on the set of TRSs used in the latest
termination competition can be found below.

Another focus during the development of VMTL was applicability to (and
suitability for) conditional term rewriting systems (CTRSs). Termination of such
CTRSs is usually verified by transforming them into ordinary TRSs and deriving
termination of the CTRSs from termination of the transformed TRSs. VMTL
provides a public interface that allows users to plug in such transformations.
Moreover, it includes a recent one ([17]) that transforms CTRSs into context-
sensitive (unconditional) TRSs.

VMTL is also capable of proving termination of context-sensitive term rewrit-
ing systems (CSRSs). For this task the refined context-sensitive dependency pair
approach of [1] (cf. also [2]) is used. Using context-sensitive dependency pairs,
and their property that they coincide with context-free (i.e., standard) depen-
dency pairs for context-free (i.e., ordinary) term rewriting systems, allows VMTL
to treat every TRS as CSRS and analogously treat every standard dependency
pair problem as context-sensitive one. Still, the use of dedicated DP processors
for each kind of problem is possible in VMTL (see Section 4.1 below).

2 Preliminaries

We assume familiarity with the basic concepts and notations of term rewrit-
ing and context-sensitive rewriting (cf. e.g. [4,5,12]). As we will briefly discuss

VMTL–A Modular Termination Laboratory 287

VMTL’s approach to prove operational termination of deterministic conditional
term rewriting systems (DCTRSs) in Section 5, we introduce some basic notions
regarding conditional term rewriting.

Conditional rewrite systems consist of conditional rules l → r ⇐ c, with c of
the form s1 →∗ t1, . . . , sn →∗ tn such that l is not a variable and V ar(r) ⊆
V ar(l)∪ V ar(c). In the following we are concerned with deterministic 3-CTRSs
(DCTRSs), which have the additional property that for each conditional rule
l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn it holds that V ar(si) ⊆ V ar(l) ∪ ⋃i−1

j=1 V ar(tj).
Deterministic 3-CTRSs are arguably the most general class of CTRSs for which
termination analysis makes sense, as in non-deterministic CTRSs arbitrary in-
stantiations of extra variables usually entail that the system is not (effectively
[16] / operationally [13]) terminating.

The conditional rewrite relation induced by a CTRS R is inductively defined
as follows: R0 = ∅, Rj+1 = {σl → σr | l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈
R, σsi →∗

Rj
σti for all 1 ≤ i ≤ n}, and →R=

⋃
j≥0 →Rj . In contrast to ordinary

term rewriting systems well-foundedness of the induced rewrite relation is not
an adequate notion of termination for CTRSs. The proof-theoretic notion of
operational termination has turned out to be adequate to guarantee finiteness
of derivations in CTRSs (cf. [13,17] for details).

Given a CSRS R = (Σ, R) with replacement map μ, the relation of context-
sensitive narrowing (written �μ

R) is defined as t �μ
R s if there is a replacing

non-variable position p in t such that t|p and l unify (where l → r ∈ R and where
we assume that t and l do not share any variables) with mgu θ and s = θ(t[r]p).
We say that s is a one-step, context-sensitive narrowing of t.

2.1 The Context-Sensitive Dependency Pair Framework

The dependency pair framework of [8] resp. [1] basically reduces termination
problems to problems of proving finiteness of so-called dependency pair problems.

We call a triple (P,R, μ), where P and R are TRSs and μ is a replacement
map for the combined signatures of P and R, a (context-sensitive) dependency
pair problem (CS-DP-problem).1 Such a problem is finite if P terminates relative
to (R, μ) where →P steps may only occur as root steps and →R,μ steps may
only occur strictly below the root.

Within the dependency pair framework these problems are analyzed by so-
called dependency pair processors.

A CS-dependency pair processor is a function Proc that takes as input a CS-
DP-problem and returns either a set of CS-dependency pair problems or “no”.
We call a CS-DP-processor sound if finiteness of all CS-DP-problems in Proc(d)
implies finiteness of the input CS-DP-problem d. A CS-DP-processor is complete
if for all CS-DP-problems d, d is infinite whenever Proc(d) is “no” or Proc(d)
contains an infinite CS-DP-problem.

For further details regarding the dependency pair framework we refer to [8].

1 Initially, P consists of the (context-sensitive) dependency pairs of (R, µ) or R, re-
spectively, cf. [1,3].

288 F. Schernhammer and B. Gramlich

Fig. 1. Snapshot of the VMTL web interface after specifying a particular proof strategy

3 User Interface

VMTL provides a command line interface for batch execution and a web inter-
face that eases configuration and extension. Figure 1 shows a screenshot of the
web interface, after specifying a particular proof strategy. It contains fields for
entering a TRS or alternatively uploading a file. VMTL exclusively accepts the
input format specified for the termination competition. On the right-hand side
the user can define the strategy, i.e., the order in which processors are applied,
together with time constraints to be satisfied. At the bottom there are two fields
allowing the user to upload new customized dependency pair processors and
transformations, respectively.

3.1 User Defined Strategies

Since dependency pair processors often modify and simplify dependency pair
problems, it is crucial to apply them in a reasonable order. Moreover, some
processors are more time consuming than others. Thus, in order to achieve the
goal of proving termination as quickly as possible, it is important to have a good
strategy for processor application. VMTL allows the user to fully configure this
strategy. It provides the following degrees of freedom in its specification.

– Dependency pair processors can be arbitrarily ordered.
– Time limits can be imposed on dependency pair processors.

VMTL–A Modular Termination Laboratory 289

– Dependency pair processors can be executed repeatedly (which can be help-
ful for instance for narrowing processors).

– Dependency pair processors can be hierarchically grouped to an arbitrary
depth. Each group can be given a time limit. In case of contradicting time
limits the shortest one is used.

– Execution of (groups of) dependency pair processors can be parallelized.

The semantics of parallelism in VMTL is that if one of the parallel branches
finishes the termination (or non-termination) proof, the whole execution stops
immediately and the proof is presented to the user. Otherwise, if all parallel
branches fail to prove termination, the termination proof continues according to
the strategy with the dependency pair problems derived before the start of the
parallel execution or with any of the problems derived in the parallel paths, de-
pending on which of these problems is the “most simple” one. This is determined
by a configurable measure function on dependency pair problems. By default,
this function compares the size of the problems to determine the “most simple”
one.

Graphically, a strategy is represented in VMTL as a tree, where each node
can either be a dependency pair processor, or a “Group node”. Group nodes are
used to build groups of processors or other groups, cf. Figure 1.

VMTL provides a default strategy that turned out to be a reasonable com-
promise between power and efficiency, which allows users to test systems for
termination without manually specifying a proof strategy. This standard strat-
egy was also used in the benchmarks below.

4 VMTL API

VMTL provides a public java programming interface that allows a user to easily
build extensions. There are three basic functionalities that can be extended.

– New dependency pair processors can be added.
– New transformations, from (conditional/context-sensitive) TRSs to (context-

sensitive) TRSs, can be added.
– New plug-ins for output formatting can be added.

4.1 Adding New Dependency Pair Processors

VMTL provides two interfaces DPProcessor and ContextSensitiveDpProcessor
from which one has to be implemented by the user depending on whether the
processor takes context-restrictions into account or not. In case DPProcessor is
implemented, VMTL will make sure that the processor is not applied to context-
sensitive dependency pair problems (even if the processor occurs in the strat-
egy). Note that each context-sensitive DP processor is trivially a context-free one
(as context-free DP problems can be seen as special cases of context-sensitive
ones), thus ContextSensitiveDpProcessor is a “subinterface” (in an object ori-
ented sense) of DPProcessor. See e.g. [10, Example 3] for a justification that

290 F. Schernhammer and B. Gramlich

context-free dependency pair processors (for instance using usable rules) may in
general not be applied to context-sensitive dependency pair problems.

Technically, a user-defined processor is given a dependency pair problem (that
has possibly been processed by other processors before) and a set of (processor)
parameters from VMTL and is required to return a set of derived dependency
pair problems. In VMTL, the datastructure of a dependency pair problem con-
sists of two sets of rewrite rules and a replacement map according to the definition
in Section 2.1. Additionally, in VMTL it contains a subsignature (cf. [17, Section
6]) and several additional flags (in particular one for position-based strategies
such as innermost rewriting and one for completeness indicating whether infin-
ity of the dependency pair problem implies non-termination of the initial rewrite
system).

4.2 Adding New Transformations

Adding transformations to VMTL can be accomplished by implementing the
interface TrsToTrsTransformation. Transformations in VMTL are not restricted
to ones that transform conditional systems. The interface can be used to perform
arbitrary preprocessing steps, such as semantic labelling etc. (this is the reason
why the interface is not called CtrsToTrsTransformation). However, in case ter-
mination of a conditional rewrite system is to be proved, a transformation is
mandatory. If none is specified by the user, VMTL will use the context-sensitive
unraveling transformation of [6,15,17].

4.3 Customizing Output Formatting

The proof information, that is accumulated by VMTL, and the used dependency
pair processors are represented in a simple native markup language, providing
basic structuring and formatting tags. From this intermediate representation the
actual (human or machine) readable output is created by so-called OutputWriter
objects. Out of the box, VMTL only supports HTML output. However, the
user may extend VMTL by additional OutputWriters through the OutputWriter
interface and can thereby provide additional support for proof certification (see
e.g. [11]).

5 Termination of CTRSs

In ([17]) it was shown that when verifying (operational) termination of a CTRS
by transformation, it is sufficient to prove termination of the transformed system
only on a restricted set of terms. This idea is incorporated in VMTL by extending
(context-sensitive) dependency pair problems as defined in [8] by an additional
component representing a sub-signature, which identifies the set of terms for
which termination is to be shown.

In VMTL the following context-sensitive version ([17]) of an unraveling trans-
formation ([14,16]) is included.

VMTL–A Modular Termination Laboratory 291

Definition 1. (context-sensitive unraveling of DCTRSs) Let R be a DCTRS
(R = (Σ, R)). For every rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn we use n
new function symbols Uα

i (i ∈ {1, . . . , n}). Then α is transformed into a set of
unconditional rules in the following way:

l → Uα
1 (s1, V ar(l))

Uα
1 (t1, V ar(l)) → Uα

2 (s2, V ar(l), EV ar(t1))...
Uα

n (tn, V ar(l), EV ar(t1), . . . , EV ar(tn−1)) → r

Here V ar(s) denotes an arbitrary but fixed sequence of the set of variables of
the term s. Let EV ar(ti) be V ar(ti) \ (V ar(l) ∪ ⋃i−1

j=1 V ar(tj)). Abusing nota-
tion, by EV ar(ti) we mean an arbitrary but fixed sequence of the variables in the
set EV ar(ti). Any unconditional rule of R is transformed into itself. The trans-
formed system Ucs(R) = (U(Σ), U(R)) is obtained by transforming each rule of
R where U(Σ) is Σ extended by all new function symbols. The replacement map
μU(Σ) is given by μU(Σ)(f) = {1, . . . , ar(f)} for all f ∈ Σ and μU(Σ)(f) = {1}
for all f ∈ U(Σ) \ Σ.

For this transformation it turns out that termination of the transformed TRS
on original terms, i.e., on terms over the original signature of the conditional
system, is sufficient (and indeed equivalent) to derive (operational) termination
of the DCTRS (cf. [17, Theorems 4, 5 and Corollary 3]). In particular, this means
that potential infinite reduction sequences issuing from (non-original) terms built
over the extended signature of the transformed system may be ignored.

This generalizes previous results of [6] and [15]. In [6] general termination of
Ucs(R) was used as a sufficient condition for operational termination of R (how-
ever, there the transformation dealt with a wider class of conditional systems). In
[15] it was shown that derivations (from original terms to original terms) in the
transformed system correspond to derivations in the original conditional systems
if the reduction in the transformed system follows a certain reduction strategy.
We refer to [17] for a more thorough discussion of our above characterization
result for operational termination of DCTRSs.

VMTL takes advantage of these facts by adapting its narrowing processors.
Inside the dependency pair framework a narrowing processor basically exploits
the fact that in a dependency pair chain the reduction sequence between two
dependency pairs must be non-empty if the right-hand side of the first pair does
not unify with the left-hand side of the second one. The (forward) narrowing
processor then anticipates the possible first steps of this reduction sequence that
affect the right-hand side of the first dependency pair l → r and replaces the
latter by new pairs θ1l → r1, . . . , θnl → rn where {r1, . . . , rn} is the set of
(context-sensitive) one-step narrowings of r and θi are the involved mgu’s.

According to [17, Definitions 10–13, Theorems 7–10], only a subset of these
narrowings need to be considered. Although heuristics are needed to approximate
the relevant terms here, this helps to counter the explosion of the number of
dependency pairs one often has to deal with when using narrowing processors.

292 F. Schernhammer and B. Gramlich

6 Implementation Details and Benchmarks

VMTL (version 1.1) is entirely written in Java. The core module (i.e., without
user interface) contains approximately 11.500 lines of code. MiniSat ([7]) is used
as SAT solver.

Currently, there is no dedicated category for conditional TRSs in the termina-
tion problem database. Still, a few conditional TRSs are contained in it. Table 1
shows the benchmarks of VMTL and AProVE (Version 1.2)2 on these examples,
extended by further examples taken from [9,14,16]. Numbers in parentheses of
the “Successful Proofs” column mean successful disproofs of termination. All ex-
periments had a time limit of 60 seconds and were performed on an Intel E8500
(3.16 GHz) with 4GB of RAM under Ubuntu Hardy Heron (32 Bit) using java
6 Build 13.

Table 1. Benchmarks on conditional TRSs

Tool Successful Proofs Number of Systems

VMTL 19(3) 24

AProVE 14(2) 24

Table 2. Benchmarks on standard TRSs from the TPDB

Tool Successful Proofs Number of Systems

VMTL 629(106) 1391

AProVE 1226(231) 1391

TTT2 970(178) 1391

Jambox 810(60) 1391

Table 3. Benchmarks on context-sensitive TRSs from the TPDB

Tool Successful Proofs Number of Systems

VMTL 72(2) 109

AProVE 94(0) 109

MU-TERM 82(0) 109

For several examples used in the table, proving termination heavily depends
on the methods described in [17, Section 6].

Tables 2 and 3 show the performance of VMTL on the set of standard TRSs
and the set of context-sensitive ones, respectively, from the TPDB. More de-
tails regarding all benchmarks, including execution times and actual termination
proofs can be found on the VMTL homepage3.
2 Newer versions of AProVE as well as other termination tools do not seem to support

proper deterministic conditional rewrite systems (i.e., DCTRS with extra variables).
3 http://www.logic.at/vmtl/

VMTL–A Modular Termination Laboratory 293

Note that apart from the restricted set of proof methods available in VMTL,
the inferior performance for standard and context-sensitive TRSs is due to the
strict modularity. Strategies in VMTL cannot be history-aware, which for in-
stance prevents using methods like safe narrowing from [8]. In addition, the
proof strategy cannot be adapted to certain classes of TRSs such as applicative
ones.

7 Conclusion, Related and Future Work

We introduced the termination tool VMTL that provides an easily extensible
implementation of the dependency pair framework. In particular, interfaces for
dependency pair processors, preprocessing steps (e.g. transformations) and out-
put preparation are available. VMTL is supposed to support researchers in the
field of termination analysis, who do not have direct access to one of the existing
termination tools. Using VMTL they may relatively easily try out and evaluate
their ideas without having to build their own implementation from scratch. The
system also comprises implementations of some standard termination analysis
methods, that should make it even easier to obtain useful benchmarks. Moreover,
VMTL provides implementations of state-of-the-art methods for the termination
analysis of conditional and context-sensitive rewrite systems.

Regarding conditional rewrite systems, VMTL provides the infrastructure to
follow the transformational approach of [17], that reduces the problem of proving
(operational) termination of CTRSs to the problem of proving termination of
a (transformed context-sensitive) TRS on a restricted set of terms. A simple
method to exploit these results is realized in terms of two generalized narrowing
processors, that enable VMTL to prove termination on original terms even if
general termination does not hold.

Many of the currently developed termination tools follow the dependency pair
framework. Although VMTL is not yet competitive for standard and context-
sensitive TRSs, we see at least two points that distinguish VMTL from other
existing tools:

– VMTL provides open and easily accessible interfaces for extensions.
– VMTL provides dedicated methods for the termination analysis of condi-

tional rewrite systems that go beyond reduction to standard termination
problems.

Future extensions of VMTL may provide means for an even more fine-grained
guidance of proof attempts through a more powerful strategy language (adding
for instance non-determinism). Moreover, an extension to new classes of rewrite
systems and termination problems (e.g. higher-order rewrite systems and in-
nermost/outermost or relative termination) and programming languages (e.g.
Haskell) as input is desirable.

294 F. Schernhammer and B. Gramlich

References

1. Alarcón, B., Emmes, F., Fuhs, C., Giesl, J., Gutiérrez, R., Lucas, S., Schneider-
Kamp, P., Thiemann, R.: Improving context-sensitive dependency pairs. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol. 5330, pp.
636–651. Springer, Heidelberg (2008)

2. Alarcón, B., Gutiérrez, R., Lucas, S.: Context-sensitive dependency pairs. In: Arun-
Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 297–308. Springer,
Heidelberg (2006)

3. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236(1–2), 133–178 (2000)

4. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York (1998)

5. Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term rewriting systems. Cambridge
Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cam-
bridge (2003)

6. Durán, F., Lucas, S., Meseguer, J., Marché, C., Urbain, X.: Proving operational
termination of membership equational programs. Higher-Order and Symbolic Com-
putation 21, 59–88 (2008)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

9. Gmeiner, K., Gramlich, B.: Transformations of conditional rewrite systems revis-
ited. In: Corradini, A., Montanari, U. (eds.) Recent Trends in Algebraic Develop-
ment Techniques (WADT 2008) – Selected Papers. LNCS. Springer, Heidelberg (to
appear, 2009)

10. Gutiérrez, R., Lucas, S., Urbain, X.: Usable rules for context-sensitive rewrite sys-
tems. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 126–141. Springer,
Heidelberg (2008)

11. Koprowski, A.: Termination of rewriting and its certification. PhD thesis, Eind-
hoven University of Technology (2008)

12. Lucas, S.: Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming 1998(1) (January 1998)

13. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term
rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005)

14. Marchiori, M.: Unravelings and ultra-properties. In: Hanus, M., Rodŕıguez-
Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 107–121. Springer, Heidelberg
(1996)

15. Nishida, N., Sakai, M., Sakabe, T.: Partial inversion of constructor term rewriting
systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 264–278. Springer,
Heidelberg (2005)

16. Ohlebusch, E.: Advanced topics in term rewriting. Springer, London (2002)
17. Schernhammer, F., Gramlich, B.: Characterizing and proving operational termina-

tion of deterministic conditional term rewriting systems. Technical Report E1852-
2009-01, TU Wien (March 2009), http://www.logic.at/vmtl/

18. The termination competition,
http://termination-portal.org/wiki/Termination_Competition

19. Thiemann, R., Giesl, J.: The size-change principle and dependency pairs for termi-
nation of term rewriting. Applicable Algebra in Engineering, Communication and
Computing 16(4), 229–270 (2005)

http://www.logic.at/vmtl/
http://termination-portal.org/wiki/Termination_Competition

	VMTL–A Modular Termination Laboratory
	Introduction and Overview
	Preliminaries
	The Context-Sensitive Dependency Pair Framework

	User Interface
	User Defined Strategies

	VMTL API
	Adding New Dependency Pair Processors
	Adding New Transformations
	Customizing Output Formatting

	Termination of CTRSs
	Implementation Details and Benchmarks
	Conclusion, Related and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

