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Abstract
It has been shown that linear logic can be successfully used as a framework for both specifying proof systems for
a number of logics, as well as proving fundamental properties about the specified systems. This paper shows how
to extend the framework with subexponentials in order to declaratively encode a wider range of proof systems,
including a number of non-trivial proof systems such as multi-conclusion intuitionistic logic, classical modal logic
S4, intuitionistic Lax logic, and Negri’s labelled proof systems for different modal logics. Moreover, we propose
methods for checking whether an encoded proof system has important properties, such as if it admits cut-elimination,
the completeness of atomic identity rules, and the invertibility of its inference rules. Finally, we present a tool
implementing some of these specification/verification methods.

1 Introduction
Designing suitable proof systems for specific applications has become one of the main tasks
of many applied logicians working in computer science. Proof theory has been applied in
different fields including programming languages, knowledge representation, automated rea-
soning, access control, among many others. Such proof systems should also have good prop-
erties, e.g. the admissibility of the cut-rule (which leads to other important properties such
as the sub-formula property and the consistency of the system) as well as the completeness
of atomic identity rules and the invertibility of inference rules. It is therefore of interest to
develop techniques and automated tools that can help logicians (and possibly non-logicians)
in specifying and reasoning about proof systems.

In recent years, a series of papers [19, 18, 25, 31] have shown that linear logic [13] can
be used as a framework for specifying and reasoning about proof systems. In particular,
[31, 25] showed how to specify not only sequent calculus systems, but also natural deduction
systems for different logics, such as minimal, intuitionistic and classical logics. Moreover,
[19, 18] showed how to check whether an encoded proof system enjoys important properties
by simply analyzing its linear logic specification. This existing material provides sufficient
conditions for guaranteeing cut-elimination of the specified systems.

In our previous work [26], we proposed using linear logic with subexponentials as a frame-
work for specifying proof systems. The motivation for this step comes from the fact that,
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since exponentials in linear logic are not canonical [23, 7], one can construct linear logic
proof systems containing as many subexponentials as one needs. This feature made it possi-
ble to declaratively encode a wide range of proof systems, such as a multi-conclusion proof
system for intuitionistic logic [16]. In addition, since the proposed encoding is natural and
direct, we were able to use the rich linear logic meta-level theory in order to reason about the
specified systems in an elegant and simple way.

The contribution of this paper is three-fold. First, in Section 4, we demonstrate how to
declaratively specify proof systems with more involved structural and logical inferences rules
using linear logic theories with subexponentials. We encode proof systems that have struc-
tural restrictions that are much more interesting and challenging than those of the systems
specified in [26]. Besides the multi-conclusion system for intuitionistic logic specified in our
previous work, we specify proof systems for intuitionistic lax logic [10], focused intuitionis-
tic logic LJQ∗, classical modal logic S4 as well as Negri’s labelled proof systems for different
modal logics. These examples provide evidence that linear logic with subexponentials can be
successfully used as a framework for a number of proof systems including systems for modal
logics.

Our second contribution, in Section 5, follows and enhances the ideas presented in [19].
We provide sufficient conditions for guaranteeing three properties of systems specified us-
ing subexponentials: (1) the admissibility of the cut-rule; (2) the completeness of the system
when using only atomic instances of the initial rule; and (3) the invertibility of each inference
rule. The main difference from what is presented here and the work developed in [19] is the
establishment of some criteria for permutation of rules. Such analysis is needed for checking
whether cuts can be transformed into principal cuts. Since our framework enables the encod-
ing of much more complicated proof systems, the behavioral analysis is more involved and it
leads to more general conditions when compared to [19].

Finally, we have implemented a tool, described in Section 6, that accepts a linear logic
with subexponentials specification and automatically checks whether principals cuts can be
reduced to atomic cuts and whether initial rules can be atomic only. Our tool is able to show
that most of the systems mentioned1 above satisfy these conditions. Furthermore it also can
check cases for when the cut-rule can be permuted over an introduction rule and when an
introduction rule can permute over another introduction rule. Such analysis can greatly help
to discover corner cases for when the reduction of a proof with cuts into a proof with principal
cuts only is not immediate.

This paper is structured as follows. Section 2 introduces the proof system for linear logic
with subexponentials, called SELLF, which is the basis of the proposed logical framework. In
Section 3, we describe how to encode a proof system in our framework. Section 4 describes
the encoding of a number of proof systems, namely, the proof system G1m for minimal
logic [33], the multi-conclusion proof system for intuitionistic logic mLJ [16], the focused
proof system LJQ∗ for intuitionistic logic [8], a proof system for the classical modal logic
S4, a proof system for intuitionistic lax logic [10], and the labelled proof system G3K for
modal logics [21]. Section 5 introduces the conditions for verifying whether an encoded
proof system satisfies the properties mentioned before, which can be checked using our tool
described in Section 6. Finally, in Sections 7 and 8, we end by discussing related and future
work.

This is an improved and expanded version of the workshop paper [26].

1The exception is LJQ∗ , whose cut-elimination argument is quite involved.
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2 Linear Logic with Subexponentials
Although we assume that the reader is familiar with linear logic, we review some of its
basic proof theory. Literals are either atomic formulas (A) or their negations (A⊥). The
connectives ⊗ and O and their units 1 and ⊥ are multiplicative; the connectives ⊕ and &
and their units 0 and > are additive; ∀ and ∃ are (first-order) quantifiers; and ! and ? are the
exponentials (called bang and question mark, respectively). We shall assume that all formulas
are in negation normal form, meaning that all negations have atomic scope.

Due to the exponentials, one can distinguish in linear logic two kinds of formulas: the
linear ones whose main connective is not a ? and the unbounded ones whose main connective
is a ?. The linear formulas can be seen as resources that can only be used once, while the un-
bounded formulas represent unlimited resources that can be used as many times as necessary.
This distinction is usually reflected in syntax by using two different contexts in linear logic
sequents (` Θ : Γ), one (Θ) containing only unbounded formulas and another (Γ) with only
linear formulas [1]. Such distinction allows to incorporate structural rules, i.e., weakening
and contraction, into the introduction rules of connectives, as done in similar presentations
for classical logic, e.g., the G3c system in [33]. In such presentation, the context (Θ) contain-
ing unbounded formulas is treated as a set of formulas, while the other context (Γ) containing
only linear formulas is treated as a multiset of formulas.

It turns out that the exponentials are not canonical [7] with respect to the logical equiva-
lence relation. In fact, if, for any reason, we decide to define a blue and red conjunctions (∧b

and ∧r respectively) with the standard classical rules:

Γ, A, B ` ∆

Γ, A ∧b B ` ∆
[∧bL]

Γ ` ∆, A Γ ` ∆, B
Γ ` ∆, A ∧b B

[∧bR]

Γ, A, B ` ∆

Γ, A ∧r B ` ∆
[∧rL]

Γ ` ∆, A Γ ` ∆, B
Γ ` ∆, A ∧r B

[∧rR]

then it is easy to show that, for any formulas A and B, A ∧b B ≡ A ∧r B. This means that
all the symbols for classical conjunction belong to the same equivalence class. Hence, we
can choose to use as the conjunction’s canonical form any particular color, and provability is
not affected by this choice. However, the same behavior does not hold with the linear logic
exponentials. In fact, suppose we have red !r, ?r and blue !b, ?b sets of exponentials with the
standard linear logic rules:

` ?rΓ, F
` ?rΓ, !r F

[!r]
` Γ, F
` Γ, ?rF

[D?r]
` ?bΓ, F
` ?bΓ, !b F

[!b]
` Γ, F
` Γ, ?bF

[D?b]

We cannot show that !r F ≡ !b F nor ?rF ≡ ?bF. This opens the possibility of defining
classes of exponentials, called subexponentials [24]. In this way, it is possible to build proof
systems containing as many exponential-like operators, (!l , ?l) as one needs: they may or
may not allow contraction and weakening, and are organized in a pre-order (�) specifying
the entailment relation between these operators.

Formally, a proof system for linear logic with subexponentials, called SELLΣ, is specified
by a subexponential signature.

Definition 2.1
A subexponential signature is a tuple Σ = 〈I,�,U〉, where I is the set of labels for subexpo-
nentials, U ⊆ I, specifying which subexponentials allow for weakening and contraction and
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� is a preorder relation2 among the elements of I upwardly closed with respect to the setU,
that is, if x ≺ y and x ∈ U, then y ∈ U.3

For a given a subexponential signature Σ = 〈I,�,U〉, the proof system SELLΣ contains the
same introduction rules as in linear logic for all connectives, except the exponentials. These
are specified by the subexponential signature, Σ, as follows:4

` C,∆
` ?xC,∆

[D, if x ∈ I]
` ?yC, ?yC,∆
` ?yC,∆

[C, if y ∈ U] ` ∆

` ?zC,∆
[W, if z ∈ U]

The first rule, called dereliction, can be applied to any subexponential, while contraction and
weakening only to subexponentials that appear in the setU. The promotion rule is given by
the following inference rule:

` ?x1C1, . . . , ?xnCn,C
` ?x1C1, . . . , ?xnCn, !aC

[!a]

where a � xi for all i = 1, . . . , n. The promotion rule will play an important role here,
namely, to specify the structural restrictions of encoded proof systems. In particular, one can
use a subexponential bang, !c , to check whether there are only some type of formulas in the
context, namely, those that are marked with subexponentials, ?x , such that c � x. If there is
any formula ?yF in the context such that c � y, then !c cannot be introduced.

We classify all the subexponential indices belonging to U as unrestricted or unbounded,
and the remaining indices as restricted or bounded.

Danos et al. showed that SELL admits cut-elimination [7].

Theorem 2.2
For any signature Σ, the cut-rule is admissible in SELLΣ.

2.1 Focusing

First proposed by Andreoli [1] for linear logic, focused proof systems provide the normal
form proofs for cut-free proofs. In this section, we review the focused proof system for
SELL, called SELLF, proposed in [24].

In order to explain SELLF, we first recall some more terminology. We classify as positive
the formulas whose main connective is either ⊗,⊕,∃, the subexponential bang, the unit 1 and
negated atoms (A⊥)5. All other formulas are classified as negative. Figure 1 contains the
focused proof system SELLF that is a rather straightforward generalization of Andreoli’s
original system. There are two kinds of arrows in this proof system. Sequents with the ⇓
belong to the positive phase and introduce the logical connective of the “focused” formula
(the one to the right of the arrow): building proofs of such sequents may require non-invertible
proof steps to be taken. Sequents with the ⇑ belong to the negative phase and decompose the
formulas on their right in such a way that only invertible inference rules are applied. The

2A preorder relation is a binary relation that is reflexive and transitive.
3This last condition on the pre-order is necessary to prove that SELLΣ admits cut-elimination see [7]. Moreover, it is possible to separate the set of

labels into two sub-sets denoting the subexponential labels that allow contraction and weakening respectively. We opted to use a single setU, as here we
only use subexponentials that have none of these structural properties or both. See [23] for more details.

4Whenever it is clear from the context, we will elide the subexponential signature Σ.
5In the original presentation of SELLF [24], one is allowed to assign the polarity of literals. Here for simplicity, we assume a fixed polarity, where

negated atoms have always positive polarity.
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structural rules D1,Dl,R ⇑, and R ⇓ and the promotion rule make the transition between a
negative and a positive phase.

Similar to the usual presentation of linear logic, there is a pair of contexts to the left of ⇑
and ⇓ of sequents, written here as K : Γ. The second context, Γ, collects the formulas whose
main connective is not a question-mark, behaving as the bounded context in linear logic.
But differently from linear logic, where the first context is a set of formulas whose main
connective is a question-mark, we generalizeK to be an indexed context, which is a mapping
from each index in the set I (for some given and fixed subexponential signature) to a finite
multiset of formulas, in order to accommodate for more than one subexponential in SELLF.
In Andreoli’s focused system for linear logic, the index set contains a single subexponential,
∞, and K[∞] contains the set of unbounded formulas. Figure 2 contains different operations
used in such indexed contexts. For example, the operation (K1 ⊗K2), used in the tensor rule,
specifies the resulting indexed context obtained by merging two contexts K1 and K2.

One of the main features of focusing is to allow the composition of a collection of inference
rules of the same polarity into a “macro-rule.” Consider, for example, the formula N1 ⊕

N2 ⊕ N3, where all N1,N2, and N3 are negative formulas. Once focused on, the only way to
introduce such a formula is by using a “macro-rule” of the form:

` K : Γ ⇑ Ni

` K : Γ ⇓ N1 ⊕ N2 ⊕ N3

where i ∈ {1, 2, 3}. In this paper, we will encode proof systems in SELLF in such a way that
the “macro-rules” available using our specifications match exactly the inference rules of the
encoded system.

This paper will make great use of the promotion rule, !l , in order to specify the structural
restrictions of a proof system. In particular, this rule determines two different operations
when seen from the conclusion to premise. The first one arises by its side condition: a bang
can be introduced only if the linear contexts that are not greater to l are all empty. This
operation is similar to the promotion rule in plain linear logic: a bang can be introduced only
if the linear context is empty. The second operation is specified by using the operation K ≤l:
in the premise of the promotion rule all unbounded contexts that are not greater than l are
erased. Notice that such operation is not available in plain linear logic.

Nigam in [23] proved that SELLF is sound and complete with respect to SELL.

Theorem 2.3
For any subexponential signature Σ, SELLFΣ is sound and complete with respect to SELLΣ.

Finally, to improve readability, we will often show explicitly the formulas appearing in the
image of the indexed context, K , of a sequent. For example, if the set of subexponential
indices is {x1, . . . , xn}, then the following negative sequent

` Θ1
:
x1 Θ2

:
x2 · · ·Θn

:
xn Γ ⇑ L

denotes the SELLF sequent ` K : Γ ⇑ L, such that K[xi] = Θi for all 1 ≤ i ≤ n. Note that
each separator “:” is now annotaded with a subexponential index. We will also assume the
existence of a maximal unbounded subexponential called ∞, which is greater than all other
subexponentials. This subexponential is used to mark the linear logic specification of proof
systems explained in the next section.
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Negative Phase

` K : Γ ⇑ L, A ` K : Γ ⇑ L, B
` K : Γ ⇑ L, ANB

[N]
` K : Γ ⇑ L, A, B
` K : Γ ⇑ L, AOB

[O]
` K : Γ ⇑ L,>

[>]

` K : Γ ⇑ L
` K : Γ ⇑ L,⊥

[⊥]
` K : Γ ⇑ L, A{c/x}
` K : Γ ⇑ L,∀x.A

[∀]
` K +l A : Γ ⇑ L
` K : Γ ⇑ L, ?lA

[?l]

Positive Phase

` K : Γ ⇓ Ai

` K : Γ ⇓ A1 ⊕ A2
[⊕i]

` K1 : Γ ⇓ A ` K2 : ∆ ⇓ B
` K1 ⊗ K2 : Γ,∆ ⇓ A ⊗ B

[⊗, given (K1 = K2)|U]

` K : · ⇓ 1
[1, given K[I \ U] = ∅]

` K : Γ ⇓ A{t/x}
` K : Γ ⇓ ∃x.A

[∃]

` K ≤l: · ⇑ A
` K : · ⇓!lA

[!l, given K[{x | l � x ∧ x < U}] = ∅]

Initial, Reaction and Decision Rules

` K : Γ ⇓ A⊥t
[I, given At ∈ (Γ ∪ K[I]) and (Γ ∪ K[I \ U]) ⊆ {At}]

` K +l P : Γ ⇓ P
` K +l P : Γ ⇑ ·

[Dl, given l ∈ U]
` K : Γ ⇓ P
` K +l P : Γ ⇑ ·

[Dl, given l < U]

` K : Γ ⇓ P
` K : Γ, P ⇑ ·

[D1]
` K : Γ ⇑ N
` K : Γ ⇓ N

[R ⇓]
` K : Γ, S ⇑ L
` K : Γ ⇑ L, S

[R ⇑]

Fig. 1: Focused linear logic system with subexponentials. We assume that all atoms are clas-
sified as negative polarity formulas and their negations as positive polarity formulas. Here, L
is a list of formulas, Γ is a multi-set of positive formulas and literals, At is an atomic formula,
P is not an atomic formula, S is a literal or a positive formula and N is a negative formula.

• (K1 ⊗ K2)[i] =

{
K1[i] ∪ K2[i] if i < U
K1[i] if i ∈ U • K[S] =

⋃
{K[i] | i ∈ S}

• (K +l A)[i] =

{
K[i] ∪ {A} if i = l
K[i] otherwise • K ≤i [l] =

{
K[l] if i � l
∅ if i � l

• (K1 ?K2) |S is true if and only if (K1[j] ?K2[j]) for all j ∈ S

Fig. 2: Specification of operations on contexts. Here, i ∈ I, j ∈ S, S ⊆ I, and the binary
connective ? ∈ {=,⊂,⊆}.
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3 Encoding Proof Systems in SELLF

3.1 Encoding Sequents

Similar as in Church’s simple type theory [5], we assume that linear logic propositions have
type o and that the object-logic quantifiers have type (term → form) → form, where term
and form are respectively the types for an object-logic term and for object-logic formulas.
Moreover, following [30, 31, 25], we encode a sequent in SELLF by using two meta-level
atoms b·c and d·e of type form → o. These meta-level atoms are used to mark, respec-
tively, formulas appearing on the left and on the right of sequents. For example, the formu-
las appearing in the sequent B1, . . . , Bn ` C1, . . . ,Cm are specified by the meta-level atoms:
bB1c, · · · , bBnc, dC1e, · · · , dCme. Both atoms are naturally generalized to sets and multisets of
fomulas, i.e. bΓc = {bFc|F ∈ Γ} and d∆e = {dFe|F ∈ ∆}

Given such a collection of meta-level atoms, it remains to decide where exactly these atoms
are going to appear in the meta-level sequents. When using linear logic without subexponen-
tials, the number of possibilities is quite limited. As the sequents of linear logic without
subexponentials (` Θ : Γ) have only two contexts, namely an unbounded context (Θ) (which
is treated as a set of formulas) and a bounded context (Γ) (which is treated as a multiset of
formulas), there are only two options: a meta-level formula either belongs to one context or
to the other.

The use of subexponentials opens, on the other hand, a wider range of possibilities, as there
is one context for each subexponential index. For instance, we can encode the object-level
sequent above by using two subexponentials: l whose context stores b·c formulas and r whose
context stores d·e formulas. The meta-level encoding of an object-level sequent would in this
case have the following form ` L :∞ bB1c, · · · , bBnc :l dC1e, · · · , dCme :r · ⇑ ·, where L is a
theory specifying the proof system’s introduction rules, which will be explained later. More-
over, if needed, one could further refine such specification and partition meta-level atoms in
more contexts by using more subexponentials. For instance, the focused sequent of focused
proof systems, such as LJQ∗, has an extra context, called stoup, where the focused formula
is. To specify such a sequent, we use an additional subexponential index f , whose context
contains the focused formula. As we show in the next subsection, when we describe how
inference rules are specified, this refinement of linear logic sequents enables the specification
of a number of structural properties of proof systems in an elegant fashion.

Furthermore, in SELLF, subexponential contexts can be configured so as to behave as
sets or multisets. For instance, if we use the subexponentials signature 〈{l, r,∞},�, {l,∞}〉,
with some preorder �, the contexts for l and ∞ are treated as sets, while the context for r is
treated as a multiset. Such situation would be useful for any proof system where the right-
hand-side of its sequent behaves as a multiset of formulas and the left-hand-side behaves
as a set of formulas, e.g., the system LJ for intuitionistic logic. We could, alternatively,
specify the contexts for both l and r to behave as multisets. In this case, l and r are bounded
subexponentials. Such a specification is used when both sides of the object-level sequent
behave as multisets, such as for the system G1m [33] for minimal logic, which has explicit
weakening and contraction rules.

3.2 Encoding Inference Rules

The inference rules of a system are specified using monopoles and bipoles [19]. These con-
cepts are generalized next.
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Definition 3.1
A monopole formula is a SELLF formula that is built up from atoms and occurrences of the
negative connectives, with the restriction that, for any label t, ?t has atomic scope and that all
atomic formulas, A, are necessarily under the scope of a subexponential question-mark, ?tA.
A bipole is a formula built from monopoles and negated atoms using only positive connec-
tives, with the additional restriction that !s, s ∈ I, can only be applied to a monopole. We
shall also insist that a bipole is either a negated atom or has a top-level positive connective.6

The last restriction on bipoles forces them to be different from monopoles: bipoles are
always positive formulas. Using the linear logic distributive properties, monopoles are equiv-
alent to formulas of the form

∀x1 . . .∀xp[&i=1,...,n O j=1,...,mi ?ti,j Ai, j],

where Ai, j is an atomic formula and ti, j ∈ I. Similarly, bipoles can be rewritten as formulas of
the form

∃x1 . . .∃xp[⊕i=1,...,n ⊗ j=1,...,mi Ci, j],

where Ci, j are either negated atoms, monopole formulas, or the result of applying !s to a
monopole formula to some s ∈ I.

Throughout this paper, the following invariant holds: the linear context to the left of the
⇑ and ⇓ on SELLF sequents is empty7. This invariant derives from the focusing discipline
and from the definition of bipoles above, namely, from the fact that all atomic formulas are
under the scope of a ?t. This is illustrated by the derivation below. In particular, according to
the focusing discipline, a bipole is necessarily introduced by such a derivation containing a
single alternation of phases. We call these derivations bipole-derivations.

· · ·

· · ·

` K ′i : · ⇑ ·

` Ki <s: · ⇑O j=1,...,mi ?ti,j Ai, j
[mi × (O, ?t)]

· · ·

` Ki <s: · ⇑ ∀x1 . . .∀xp[&i=1,...,n O j=1,...,mi ?ti,j Ai, j]
[p × ∀, n ×&]

` Ki : · ⇓ !s∀x1 . . .∀xp[&i=1,...,n O j=1,...,mi ?li,j Ai, j]
[!s]

· · ·

` K ′ : · ⇓ ∃x1 . . .∃xt[⊕i=1,...,k ⊗ j=1,...,qi Ci, j]
[t × ∃, k × ⊕, qi × ⊗]

` K : · ⇑ ·
[D]

Notice that the derivation above contains a single positive and a single negative trunk. More-
over, if the connective !s is not present, then the rule !s is replaced by the rule R ⇓.

It turns out that one can match exactly the shape of a bipole-derivation with the shape
of the inference rule the bipole encodes. Consider, for example, the following bipole F =

∃A∃B.[bA ⊃ Bc⊥ ⊗ (!l?rdAe ⊗ ?lbBc)] encoding the ⊃ left-introduction rule for intuitionistic
logic, assuming the signature 〈{l, r,∞}, {l ≺ ∞, r ≺ ∞}, {l,∞}〉. The only way to introduce F in
SELLF is by using a bipole-derivation of the following form, where F ∈ L:

` L
:
∞ bΓc, bA ⊃ Bc

:
l dAe :

r · ⇑ · ` L
:
∞ bΓc, bA ⊃ Bc, bBc

:
l dGe :

r · ⇑ ·

` L
:
∞ bΓc, bA ⊃ Bc

:
l dGe :

r · ⇓ F

` L
:
∞ bΓc, bA ⊃ Bc

:
l dGe :

r · ⇑ ·

6Notice that our definition of monopole and bipole is more restrictive than the definition given by Andreoli [1].
7That is, the context Γ in ` K : Γ ⇑ · and in ` K : Γ ⇓ F is empty.



An Extended Framework for Specifying and Reasoning about Proof Systems 9

The bipole-derivation above corresponds exactly to the left implication introduction rule for
intuitionistic logic rule:

Γ, A ⊃ B −→ A Γ, A ⊃ B, B −→ G
Γ, A ⊃ B −→ G

Nigam and Miller in [25] classify this adequacy as being on the level of derivations. Notice
the role of !l in the derivation above. In order to introduce it, it must be the case that the
context of subexponential r is empty. That is, the formula dGe is necessarily moved to the
right branch. All the proof systems that we encode in this paper (in Section 4) have this level
of adequacy.

Subexponentials greatly increase the expressiveness of the framework allowing a number
of structural properties of rules to be expressed. One can, e.g., specify rules where (1) for-
mulas in one or more contexts must be erased in the premise as well as rules that (2) require
the presence of some formula in the context. We informally illustrate these applications of
subexponentials.

For the first type of structural restriction, consider the following inference rule of the multi-
conclusion system for intuitionistic logic:

Γ, A −→ B
Γ −→ ∆, A ⊃ B

[⊃R]

Here, the set of formulas ∆ has to be erased in the premise. This inference rule can be
specified as the bipole F = ∃A∃B.dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe), using the subexponential
signature 〈{l, r,∞}, {l ≺ ∞, r ≺ ∞}, {l, r,∞}〉 where all contexts behave like sets. A bipole-
derivation introducing this formula has necessarily the following shape, where F ∈ L:

` L
:
∞ bΓc

:
l d∆, A ⊃ Be :

r · ⇓ dA ⊃ Be⊥
[I]

` L
:
∞ bΓ, Ac

:
l dBe :

r · ⇑

` L
:
∞ bΓc

:
l ·

:
r · ⇑ ?lbAc O ?rdBe

[O, ?r , ?l]

` L
:
∞ bΓc

:
l d∆, A ⊃ Be :

r · ⇓ !l(?lbAc O ?rdBe)
[!l]

` L
:
∞ bΓc

:
l d∆, A ⊃ Be :

r · ⇓ dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe)
[⊗]

` L
:
∞ bΓc

:
l d∆, A ⊃ Be :

r · ⇑
[D∞, 2 × ∃]

Notice the role of the !l in the derivation above. It specifies that all formulas in the context of
the subexponential r, i.e., the formulas d∆, A ⊃ Be, should be weakened, hence corresponding
exactly to the ⊃R rule above.

In the example above, we showed how to specify systems where a single context should be
erased. It is possible to generalize this idea to erasing any number of contexts: as before, this
is done by specifying the pre-order � accordingly.

In some cases, however, we may also make use of logical equivalences and “dummy”
indexes whose contexts will not store any formulas, but are just used to specify the structural
restrictions of inference rules. For example, in the following rule of the system S4 for modal
logic, the contexts Γ′ and ∆′ are both erased

�Γ ` A, �∆
�Γ,Γ′ ` �A, �∆,∆′

[�R]

In order to specify this rule, we use the following set of subexponential indexes {l, r,�l, �r, e,∞},
where all indexes are unbounded. The contexts for l and r store formulas in the left and
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right-hand side, while the context for �l and �r store formulas whose main connective is a di-
amond and box on the left and on the right-hand side, respectively. For instance, the sequent
�Γ,Γ′, �Γ′′ ` �∆,∆′, �∆′′ is encoded as ` Θ

:
∞ b�Γc

:
�l bΓ

′, �Γ′′c
:
l d�∆,∆′e :

r d�∆′′e
:
�r · ⇑ ·,

where Θ is the theory specifying the inference rules of the system. The following clauses,
classified as structural clauses (see Definition 3.2), specify the relation among object-logic
formulas whose main connective is a � and a � and the context of the indexes �l and �r.

(�S ) b�Ac⊥ ⊗ ?�l b�Ac and (�S ) d�Ae⊥ ⊗ ?�r d�Ae

From these clauses we obtain the equivalences8 ∀A.b�Ac ≡ ?�l b�Ac and ∀A.d�Ae ≡ ?�r d�Ae.
That is, any formula of the form b�Ac can be placed in the context of �l and any formula of
the form d�Ae in the context of �r. Furthermore, we specify e as follows: e ≺ �l, e ≺ �r,
and e ≺ ∞ and e is unrelated to the remaining subexponentials. Hence, the connective !e can
play a similar role for the specification of the rule �R as the !l in the specification of the ⊃R

rule above. In particular, to introduce !e , all contexts but �l, �r and ∞ have to be erased. It is
easy to check that this operation is exactly the one needed for specifying the modal logic rule
above. In Section 4, we show this specification in detail.

In combination to the use of bounded subexponentials, whose contexts behave as multi-
sets, subexponentials can also be used to check whether a formula is present in the sequent.
These type of requirement also often appears in inference rules, such as the one below for
intuitionistic lax logic [10]:

F,Γ −→ ©G
©F,Γ −→ ©G

[©L]

The connective © on the left can be introduced only if the main connective of the formula
on the right is also a ©. To specify this rule, we use the following subexponentials indexes:
{l, r, ◦r,∞}, where l and ∞ are unbounded, while r and ◦r are bounded. Moreover, r ≺ ◦r,
◦r ≺ l, and ◦r, l ≺ ∞. Similarly as in the modal logic example above, a formula dHe is stored
in the context of the subexponential ◦r only if H’s main connective is ©, i.e., H = ©H′

for some H′. This is also accomplished by using an analogous logical equivalence, namely,
∀A.d©Ae ≡ ?◦r d©Ae, which is obtained by using the clause (©S ) in Figure 13. It is then easy
to check that the formula ∃F.b©Fc⊥ ⊗ !◦r bFc specifies the rule above. In particular, the !◦r is
used to check whether the formula on the right has © as main connective: if this is the case,
then some formula of the form d©Ge will be in the context ◦r, while the context for r will be
empty. Notice, that this specification does not mention any side-formulas of the sequent, not
even the formula appearing on the right-hand-side of the sequent. As we argue later, the use
of such declarative specifications will help us reason about proof systems.

3.3 Adding Labels and Relations

Labelled proof systems have been proposed in [21] in order to syntactically capture the
Kripke semantics of modal logics and to obtain contraction and cut-free sequent calculus
for some of these logics. But it has also been used in hybrid and temporal logics. As the
name suggests, formulas F in these proof systems are annotated with labels l, written l : F.
Moreover, labelled proof systems may also specify a relation R among these labels, which
can be used in inference rules. The following is an example of a rule in a labelled proof

8F ≡ G denotes the formula (F O G⊥) ⊗ (F⊥ O G).
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xRx,Γ⇒ ∆

Γ⇒ ∆
[Ref]

xRz, xRy, yRz,Γ⇒ ∆

xRy, yRz,Γ⇒ ∆
[Trans]

yRx, xRy,Γ⇒ ∆

xRy,Γ⇒ ∆
[Sym]

yRz, xRy, xRz,Γ⇒ ∆

xRy, xRz,Γ⇒ ∆
[Eucl]

Fig. 3. Rules for the relation R

system:
xRy,Γ⇒ ∆, y : A

Γ⇒ ∆, x : �A
[�r]

where the label y does not appear in Γ nor in ∆. The semantic of � is the following: if �F
is true in a world x, then F is true in every world y that is accessible from x. If we interpret
the labels as worlds and R as the accessibility relation, it is easy to see that the rule above
specifies exactly the intended semantic.

It is also possible to specify the properties of the relation R. For instance, the following
rule specifies that R is symmetric.

yRx, xRy,Γ⇒ ∆

xRy,Γ⇒ ∆
[Sym]

The rules in Figure 3 specify other properties, such as transitivity, reflexivity and euclidean-
ness9 of R.

As investigated by Negri in [21], a basic labelled proof system plus a subset of the rules in
Figure 3 result in proof systems for different modal logics, such as T, 4, B, S4, TB and S5.
This illustrates the power of labelled proof systems.

While labelled formulas can be encoded as shown previously, using the b·c and d·e meta-
level atoms (e.g., bl : Fc and dl : Fe), the encoding of relations require some extra machinery.
In particular, relations are not encoded as object-logic formulas with the b·c and d·e, as they
are not really formulas. Relations are specified by logical theories in the meta-logic. For the
example above, the relation R is specified by the logical formulas:

(Ref) ∃x.[R(x, x)⊥]
(Sym) ∃x∃y.[R(x, y)⊥ ⊗ ?RR(y, x)]
(Trans) ∃x∃y∃z.[R(x, y)⊥ ⊗ R(y, z)⊥ ⊗ ?RR(x, z)]
(Eucl) ∃x∃y∃z.[R(x, y)⊥ ⊗ R(x, z)⊥ ⊗ ?RR(y, z)]

where R(·, ·) is a meta-level atomic formula. From a simple inspection, it is easy to see that
each clause corresponds to one of the relations’ properties shown in Figure 3.

Also, in order not to mix relations and object-logic formulas, we define an unbounded
subexponential index R that is unrelated to all other indexes, which will store all R(·, ·) for-
mulas as well as the theories specifying the properties of the relation. Whenever we want to
check whether a formula R(a, b) follows from the existing relations and its theory, R, we use
a !R as follows:

` ·
:
∞ R,R(a1, b1), . . . ,R(an, bn)

:
R ·

:
1 · · ·

:
m−1 ·

:
m: · ⇑ R(a, b)⊥

` L
:
∞ R,R(a1, b1), . . . ,R(an, bn)

:
R T1

:
1 · · ·

:
m−1 Tm

:
m: · ⇓ !RR(a, b)⊥

[!R]

9Meaning that R is an Euclidian relation.
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Notice that in the premise, the formula R(a, b)⊥ should be provable using only the set of
formulas R,R(a1, b1), . . . ,R(an, bn), that is, it should be provable only using the relations
until then constructed and the theory R specifying its properties.

Finally, as with the right introduction for � shown above, new relations may be created.
Whenever this is needed, the new relation predicate should be added to the context of the
subexponential R by using a formula of the form ?R(R(a, b)).

3.4 Canonical Proof System Theories

The definition below classifies clauses into three different categories, namely the identity rules
(Cut and Init rules), introduction rules, and structural rules, following usual terminology in
proof theory literature [33].

Definition 3.2
i. In its most general form, the clause specifying the cut rule has the form to the left, while

the clause specifying the initial rule has the form to the right:

Cut = ∃A.!a?bbAc ⊗ !c?ddAe and Init = ∃A.bAc⊥ ⊗ dAe⊥

where a, c are subexponentials that may or may not appear depending on the structural
restrictions imposed by the proof system.

ii. The structural rules are specified by clauses of the form below, where i, j ∈ I:

∃A.[bAc⊥ ⊗ (?ibAc O · · · O ?ibAc)︸                    ︷︷                    ︸
n

] or ∃A.[dAe⊥ ⊗ (?jdAe O · · · O ?jdAe︸                   ︷︷                   ︸
n

)].

Moreover, we classify a structural rule as contextual if n = 1.
iii. Finally, an introduction clause is a closed bipole formula of the form

∃x1 . . .∃xn[(q(�(x1, . . . , xn)))⊥ ⊗ B ⊗ R]

where � is an object-level connective of arity n (n ≥ 0) and q ∈ {b·c, d·e}. Furthermore, B
does not contain negated atoms and an atom occurring in B is either of the form p(xi) or
p(xi(y)) where p ∈ {b·c, d·e} and 1 ≤ i ≤ n. In the first case, xi has type obj while in the
second case xi has type d → obj and y is a variable (of type d) quantified (universally or
existentially) in B (in particular, y is not in {x1, . . . , xn}). Finally, when encoding labelled
proof systems, R is either the formula !RR(x, y)⊥ or ?RR(x, y) or the formula 1 if no
relation is mentioned.

In the remainder of this paper, we restrict our discussion to the so called canonical sys-
tems [3].

Definition 3.3
A canonical clause is an introduction clause restricted so that, for every pair of atoms of the
form bT c and dS e in a body, the head variable of T differs from the head variable of S . A
canonical proof system theory is a set X of formulas such that (i) the Init and Cut clauses are
members of X; (ii) structural clauses may be members of X; and (iii) all other clauses in X
are canonical introduction clauses.

Remark: In the definition above of bipoles all atoms are under the scope of a question-mark
?l . However, as discussed in [30], another definition also works where bipoles do not contain
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any question-mark, but the theory contains contextual structural rules which specify which
context a formula belongs to. For instance, the contextual structural rule

∃A.bAc ⊗ ?lbAc

specifies that all meta-level atoms of the form bAc also belong to the context of the subexpo-
nential l. One advantage of the latter approach is that the bipole theories become more mod-
ular, as one just needs to rewrite the contextual structural rules, when one needs to change
the specification. On the other hand, adding more clauses turns the adequacy theorems more
complicated as one has to consider more cases. Since we want to stick to the adequacy on the
level of derivations [25], we chose to include question-marks in the definition of bipoles.

4 Examples of Proof Systems encoded in SELLF
This section contains the specification of a number of proof systems that do not seem possible
to be encoded in linear logic without the use of subexponentials or without mentioning side-
formulas explicitly. In our specifications, we assume all free variables to be existentially
quantified. Moreover, all the encodings below have the strongest level of adequacy, namely
adequacy on the level of derivations [25].

Finally some of the systems, namely mLJ and S4, are the variants of the corresponding
systems, where the structural rules are incorporated into the introduction rules and where the
principal formula is always contracted in the premises.

4.1 G1m

The system G1m [33] (Figure 4) for minimal logic contains explicit rules for weakening
and contraction of formulas appearing on the left-hand-side of sequents. The encoding of
this system illustrates how to use subexponentials to specify proof systems whose sequents
contain two or more linear contexts. Here, in particular, both the left and the right-hand-side
of G1m sequents are treated as multisets of formulas.

We specify G1m by using the following subexponential signature: 〈{∞, l, r}, {r ≺ l ≺
∞}, {∞}〉. The subexponentials l and r allow neither contraction nor weakening. Their con-
texts will store, respectively, object-logic formulas appearing on the left and on the right of
the sequent. The theory LG1m, depicted in Figure 5, specifies G1m’s intriduction rules in
SELLF. This theory is stored in the context of ∞. Thus, a G1m sequent of the form Γ ` C is
encoded as the SELLF sequent ` LG1m

:
∞ bΓc

:
l dCe :

r · ⇑ ·.
Each clause in LG1m corresponds to one introduction rule of G1m. To obtain such strong

correspondence, we need to capture precisely the structural restrictions in the system. In
particular, the use of the !l in the clauses (⊃L), specifying the rule ⊃L, and (Cut), specifying
the Cut rule, is necessary. It forces that the side-formula, C, appearing in the right-hand-
side of their conclusion is moved to the correct premise. This is illustrated by the following
derivation:

` LG1m
:
∞ bΓ1c

:
l dAe :

r · ⇑

` LG1m
:
∞ bΓ1c

:
l ·

:
r · ⇓ !l?rdAe

[!l , ?r ]
` LG1m

:
∞ bΓ2, Ac

:
l dCe :

r · ⇑

` LG1m
:
∞ bΓ2c

:
l dCe :

r · ⇓ ?lbAc
[R⇓, ?l]

` LG1m
:
∞ bΓ1,Γ2c

:
l dCe :

r · ⇓ !l?rdAe ⊗ ?lbAc
[⊗]

` LG1m
:
∞ bΓ1,Γ2c

:
l dCe :

r · ⇑
[D∞,∃]
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Γ1 −→ A Γ2, B −→ C
Γ1,Γ2, A ⊃ B −→ C

[⊃ L]
Γ, A −→ B

Γ −→ A ⊃ B
[⊃ R]

Γ, A, B −→ C
Γ, A ∧ B −→ C

[∧L]

Γ1 −→ A Γ2 −→ B
Γ1,Γ2 −→ A ∧ B

[∧R]
Γ, A{t/x} −→ C
Γ,∀x A −→ C

[∀L]
Γ −→ A{c/x}
Γ −→ ∀x A

[∀R]

Γ, A{c/x} −→ C
Γ,∃x A −→ C

[∃L]
Γ −→ A{t/x}
Γ −→ ∃x A

[∃R]
Γ, A −→ C Γ, B −→ C

Γ, A ∨ B −→ C
[∨L]

Γ −→ Ai

Γ −→ A1 ∨ A2
[∨iR] Γ −→ C

Γ, A −→ C
[WL]

Γ, A, A −→ C
Γ, A −→ C

[CL]

A −→ A [Init]
Γ1 −→ A Γ2, A −→ C

Γ1,Γ2 −→ C
[Cut]

Fig. 4. The sequent calculus system G1m for minimal logic.

(⊃L) bA ⊃ Bc⊥ ⊗ (!l?rdAe ⊗ ?lbBc) (⊃R) dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe)
(∧L) bA ∧ Bc⊥ ⊗ (?lbAc O ?lbBc) (∧R) dA ∧ Be⊥ ⊗ (!l?rdAe ⊗ !l?rdBe)
(∨L) bA ∨ Bc⊥ ⊗ (?lbAc& ?lbBc) (∨R) dA ∨ Be⊥ ⊗ (!l?rdAe ⊕ !l?rdBe)
(∀L) b∀Bc⊥ ⊗ ?lbBxc (∀R) d∀Be⊥ ⊗ !l∀x?rdBxe
(∃L) b∃Bc⊥ ⊗ ∀x?lbBxc (∃R) d∃Be⊥ ⊗ !l?rdBxe
(Init) bBc⊥ ⊗ dBe⊥ (Cut) !l?rdBe ⊗ ?lbBc
(CL) bBc⊥ ⊗ (?lbBc O ?lbBc) (WL) bBc⊥ ⊗ ⊥

Fig. 5. The theory, LG1m, for G1m.

When introducing the tensor, the formula dCe cannot go to the left branch because, in that
case, the r context would not be empty and therefore the !l could not be introduced. Hence,
the only way to introduce the formula (Cut) in LG1m is with a derivation as the one above.

In contrast, it does not seem possible to encode G1m in linear logic (without subexpo-
nentials) with such a strong correspondence. The sequents of the dyadic version of linear
logic [1] have only two contexts, one for the unbounded formulas and another for the linear
formulas. Hence, in linear logic, all linear meta-level atoms would appear in the same con-
text illustrated by the sequent ` Θ : bΓc, dCe. Furthermore, using the linear logic ! enforces
that not only dCe, but all linear formulas in this sequent, namely bΓc and dCe, are moved to a
different branch. Therefore, one cannot capture, as done by using the subexponential bang !l ,
that only dCe is necessarily moved to a different branch as specified in the G1m rules ⊃L and
Cut.

Finally, as the derivation above illustrates, the !ls appearing in the specification of G1m’s
introduction rules specify the structural restriction that G1m’s sequents contain exactly one
formula on their right-hand-side. This allows us to specify these introduction rules without
explicitly mentioning any side-formulas in the sequent, such as, the formula C in the Cut rule.
As we show in Section 5, the use of such declarative specifications allow for simple proofs
about the object-level systems, such as the proof that it admits cut-elimination.

Repeating this exercise for each inference rule, we establish the following adequacy result
in the same lines as done in the encoding of proof systems in our previous work [25].
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Γ, A ⊃ B −→ A,∆ Γ, A ⊃ B, B −→ ∆

Γ, A ⊃ B −→ ∆
[⊃L]

Γ, A −→ B
Γ −→ A ⊃ B,∆

[⊃R]

Γ, A ∧ B, A, B −→ ∆

Γ, A ∧ B −→ ∆
[∧L]

Γ −→ A ∧ B, A,∆ Γ −→ A ∧ B, B,∆
Γ −→ A ∧ B,∆

[∧R]

Γ, A ∨ B, A,−→ ∆ Γ, A ∨ B, B −→ ∆

Γ, A ∨ B −→ ∆
[∨L]

Γ −→ A ∨ B, A, B,∆
Γ −→ A ∨ B,∆

[∨R]

Γ,∀x A, A{t/x} −→ ∆

Γ,∀x A −→ ∆
[∀L]

Γ −→ A{c/x}
Γ −→ ∆,∀x A

[∀R]

Γ,∃x A, A{c/x} −→ ∆

Γ,∃x A −→ ∆
[∃L]

Γ −→ ∆,∃x A, A{t/x}
Γ −→ ∆,∃x A

[∃R]

Γ, A −→ A,∆
[Init]

Γ −→ B,∆ Γ, B −→ ∆

Γ −→ ∆
[Cut]

Γ,⊥ −→ ∆
[⊥L]

Fig. 6. The multi-conclusion intuitionistic sequent calculus, mLJ, with additive rules.

(⊃L) bA ⊃ Bc⊥ ⊗ (?rdAe ⊗ ?lbBc) (⊃R) dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe)
(∧L) bA ∧ Bc⊥ ⊗ (?lbAc O ?lbBc) (∧R) dA ∧ Be⊥ ⊗ (?rdAe ⊗ ?rdBe)
(∨L) bA ∨ Bc⊥ ⊗ (?lbAc ⊗ ?lbBc) (∨R) dA ∨ Be⊥ ⊗ (?rdAe O ?rdBe)
(∀L) b∀Bc⊥ ⊗ ?lbBxc (∀R) d∀Be⊥ ⊗ !l∀x?rdBxe
(∃L) b∃Bc⊥ ⊗ ∀x?lbBxc (∃R) d∃Be⊥ ⊗ ?rdBxe
(⊥L) b⊥c⊥

(Init) bBc⊥ ⊗ dBe⊥ (Cut) ?lbBc ⊗ ?rdBe
(Pos) bBc⊥ ⊗ ?lbBc (Neg) dBe⊥ ⊗ ?rdBe

Fig. 7. Theory Lmlj for the multi-conclusion intuitionistic logic system mLJ.

Proposition 4.1
Let Γ∪{C} be a set of object logic formulas, and let the subexponentials, l and r, be specified

by the signature 〈{∞, l, r}, {r ≺ l ≺ ∞}, {∞}〉. Then the sequent ` LG1m
:
∞ bΓc

:
l dCe :

r · ⇑ is
provable in SELLF if and only if the sequent Γ −→ C is provable in G1m.

4.2 mLJ
We now encode in SELLF the multi-conclusion sequent calculus mLJ for intuitionistic logic
depicted in Figure 6. Its encoding illustrates the use of subexponentials to specify rules
requiring some formulas to be weakened. In particular, the mLJ’s rules ⊃R and ∀R require
that the formulas ∆ appearing in their conclusions are weakened in their premises.

Formally, the theoryLmlj is formed by the clauses shown in Figure 7. This theory specifies
mLJ’s rules by using the subexponential signature 〈{∞, l, r}; {l ≺ ∞, r ≺ ∞}; {∞, l, r}〉. As
before with the encoding of G1m, we make use of two subexponentials l and r to store,
respectively, meta-level atoms b·c and d·e, but now we allow both contraction and weakening
to these subexponential indices. As described in Section 3.2, the use of !l in the clauses (⊃R)
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Γ, A ⊃ B→ A; · Γ, A ⊃ B, B ` ∆

Γ, A ⊃ B ` ∆
[⊃L]

Γ, A ` B
Γ→ A ⊃ B; ∆

[⊃R]

Γ, A ∨ B, A ` ∆ Γ, A ∨ B, B ` ∆

Γ, A ∨ B ` ∆
[∨L]

Γ ` A, B,∆
Γ→ A ∨ B; ∆

[∨R]

Γ, A ∧ B, A, B ` ∆

Γ, A ∧ B ` ∆
[∧L]

Γ→ A; ∆ Γ→ B; ∆

Γ→ A ∧ B; ∆
[∧R]

Γ, A→ A; ∆
[Init]

Γ→ C; ∆

Γ ` C,∆
[D]

Γ,⊥ ` ∆
[⊥L]

Fig. 8: The the cut-free fragment of the focused multi-conclusion system for intuitionistic
logic - LJQ∗.

(Init) bAc⊥ ⊗ dAe⊥ (⊥L) b⊥c⊥

(⊃L) bA ⊃ Bc⊥ ⊗ (!l?f dAe ⊗ !r?lbBc) (⊃R) dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe)
(∨L) bA ∨ Bc⊥ ⊗ (!r?lbAc ⊗ !r?lbBc) (∨R) dA ∨ Be⊥ ⊗ !r (?rdAe O ?rdBe)
(∧L) bA ∧ Bc⊥ ⊗ !r (?lbAc O ?lbBc) (∧R) dA ∧ Be⊥ ⊗ (!r?f dAe ⊗ !r?f dBe)

Fig. 9. The theory Lljq encoding the cut-free fragment of the system LJQ∗.

and (∀R) specifies that the formulas in the context r should be necessarily weakened. This is
illustrated by the following derivation introducing the formula (∀R) in Lmlj:

` Lmlj
:
∞ bΓc

:
l d∆,∀x Ae :

r · ⇓ d∀x Ae⊥
[IR]

` Lmlj
:
∞ bΓc

:
l dAce :

r · ⇑

` Lmlj
:
∞ bΓc

:
l ·

:
r · ⇑ ∀x?rdAxe

[∀, ?r ]

` Lmlj
:
∞ bΓc

:
l d∆,∀x Ae :

r · ⇓ !l∀x?rdAxe
[!l]

` Lmlj
:
∞ bΓc

:
l d∆,∀x Ae :

r · ⇓ d∀Ae⊥ ⊗ !l∀x?rdAxe
[⊗]

` Lmlj
:
∞ bΓc

:
l d∆,∀x Ae :

r · ⇑
[D∞,∃]

Since l � r, all formulas in the context r should be weakened in the premise of the promotion
rule. The derivation above also illustrates how one can specify fresh values with the use of
the universal quantifier. As in mLJ, the eigenvariable c cannot appear in ∆ nor Γ.

The following result is proved by induction on the height of focused proofs.

Proposition 4.2
Let Γ ∪ ∆ be a set of object-logic formulas, and let the subexponentials l and r be specified

by the signature 〈{∞, l, r}; {l ≺ ∞, r ≺ ∞}; {∞, l, r}}〉. Then the sequent ` Lmlj
:
∞ bΓc

:
l d∆e :

r · ⇑

is provable in SELLF if and only if the sequent Γ −→ ∆ is provable in mLJ.

4.3 LJQ∗

The systems in the previous sections always required two contexts. There are systems, how-
ever, that require more than two contexts to be specified, such as the focused multi-conclusion
system for intuitionistic logic LJQ∗ depicted in Figure 8. This system is a variant of the sys-
tem proposed by Herbelin [14, page 78] and it was used by Dyckhoff & Lengrand in [8].
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LJQ∗ has two types of sequents: unfocused sequents of the form Γ ` ∆ and focused sequents
of the form Γ → A; ∆ where the formula A, in the stoup, is focused on. Proofs are restricted
as follows: the logical right introduction rules introduce only focused sequents, while the
left introduction rules introduce only unfocused sequents. In this Section, we encode only
its cut-free fragment. Later in Section 5, we elaborate on the challenges of encoding its cut
rules.

We use the theory Lljq depicted in Figure 9 to specify the system LJQ∗ in SELLF together
with the signature 〈{f , l, r,∞}; {r ≺ l ≺ ∞}; {l, r,∞}〉. Besides the subexponential ∞, we make
use of three subexponentials: the first two, l and r, are as before, used to encode, respectively,
the left and the right-hand-side of object-logic sequents, while the third subexponential, f , is
new and used to encode the stoup of object-logic focused sequents. A LJQ∗ sequent of the
form Γ ` ∆ is encoded in SELLF as the sequent ` Lljq

:
∞ bΓc

:
l d∆e :

r ·
:
f · ⇑ ·, while a LJQ∗

sequent of the form Γ→ A; ∆ is encoded by the sequent ` Lljq
:
∞ bΓc

:
l d∆e :

r dAe
:
f · ⇑ ·.

Notice that, differently from the previous encoding, the subexponentials r and l are related
in the pre-order and moreover contraction and weakening are not available only to f . As
before, the restrictions to sequents imposed by the focusing discipline are encoded implicitly
by the use of subexponentials. The specification is such that positive rules can only be applied
to the focused formula and that negative rules can only be applied when the stoup is empty.

To illustrate the fact that negative rules are only applicable when the stoup is empty, con-
sider the following derivation introducing the clause (∧L), where Γ′ is the set Γ ∪ {A ∧ B}:

` Lljq
:
∞ bΓ′c

:
l d∆e :

r ·
:
f · ⇓ bA ∧ Bc⊥

[IL]
` Lljq

:
∞ bΓ′, A, Bc

:
l d∆e :

r ·
:
f · ⇑

` Lljq
:
∞ bΓ′c

:
l d∆e :

r ·
:
f · ⇓ !r (?lbAc O ?lbBc)

[!r ,O, 2 × ?l]

` Lljq
:
∞ bΓ′c

:
l d∆e :

r ·
:
f · ⇓ bA ∧ Bc⊥ ⊗ !r (?lbAc O ?lbBc)

[⊗]

` Lljq
:
∞ bΓ′c

:
l d∆e :

r ·
:
f · ⇑ ·

[D∞, 2 × ∃]

Since r � f , the context f must be empty in order to introduce the !r in the right branch. On
the other hand, since r ≺ l, the l context is left untouched in the premise of this derivation,
thus specifying precisely the ∧L introduction rule.

The following proposition can be proved by induction on the height of focused proofs.
Proposition 4.3
Let Γ ∪ ∆ ∪ {C} be a set of object logic formulas, and let the subexponentials l, r and f be

specified by the signature 〈{f , l, r,∞}{r ≺ l ≺ ∞}; {l, r,∞}〉. Then the sequent ` Lljq
:
l bΓc :

r

d∆e
:
f · : · ⇑ is provable in SELLF if and only if the sequent Γ ` ∆ is provable in LJQ∗.

4.4 Modal Logic S4

We encode next the proof system for classical modal logic S4 depicted in Figure 10. The
encoding of this system illustrates the use of logical equivalences and “dummy” subexponen-
tials to encode the structural properties of systems. In particular, the rules �R and �L are the
interesting ones. In order to introduce a � on the right, the formulas on the left whose main
connective is not � (Γ′) and the formulas on the right whose main connective is not � (∆′) are
weakened.

Consider the following subexponential signature and the theory LS4 depicted in Figure 11:

〈{l, r,�L, �R, e,∞}, {r ≺ �R ≺ ∞, l ≺ �L ≺ ∞, e ≺ �R, e ≺ �L}, {l, r,�L, �R, e,∞}〉.
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A, B, A ∧ B,Γ ` ∆

A ∧ B,Γ ` ∆
[∧L]

Γ ` ∆, A ∧ B, A Γ ` ∆, A ∧ B, B
Γ ` ∆, A ∧ B

[∧R]

Γ, A⇒ B ` A,∆ Γ, A⇒ B, B ` ∆

Γ, A⇒ B ` ∆
[⇒L]

Γ, A ` B, A⇒ B,∆
Γ ` A⇒ B,∆

[⇒R]

Γ,�A, A ` ∆

Γ,�A ` ∆
[�L]

�Γ ` A, �∆
�Γ,Γ′ ` �A, �∆,∆′

[�R]

�Γ, A ` �∆
�Γ,Γ′, �A ` �∆,∆′

[�L]
Γ ` ∆, �A, A
Γ ` ∆, �A

[�R]

Γ, A ` ∆, A
[Init]

Γ ` ∆, A Γ, A ` ∆

Γ ` ∆
[Cut]

Fig. 10. The additive version of the proof system for classical modal logic S4.

(∧L) bA ∧ Bc⊥ ⊗ (?lbAc O ?lbBc) (∧R) dA ∧ Be⊥ ⊗ (?rdAe ⊗ ?rdBe)
(⇒L) bA⇒ Bc⊥ ⊗ (?rdAe ⊗ ?lbBc) (⇒R) dA⇒ Be⊥ ⊗ (?lbAc O ?rdBe)
(�L) b�Ac⊥ ⊗ ?lbAc (�R) d�Ae⊥ ⊗ !e?rdAe
(�L) b�Ac⊥ ⊗ !e?lbAc (�R) d�Ae⊥ ⊗ ?rdAe
(Init) bAc⊥ ⊗ dAe⊥ (Cut) ?lbAc ⊗ ?rdAe
(�S ) b�Ac⊥ ⊗ ?�Lb�Ac (�S ) d�Ae⊥ ⊗ ?�Rd�Ae

Fig. 11. Figure with the theory LS4 encoding the system S4

As with the other systems that we encoded, the context of the subexponential l and r will
contain formulas of the form bAc and dAe, respectively. However, the contexts of the subex-
ponentials �L and �R will contain formulas only formulas of the form b�Ac and d�Ae, respec-
tively, that is, formulas containing object-logic formulas whose main connective is � and �.
This is specified by from the following equivalences derived from the structural clauses (�S )
and (�S ) in LS4:

∀A.(b�Ac ≡ ?�Lb�Ac) and ∀A.(d�Ae ≡ ?�Rd�Ae).

Thus, a sequent in S4 of the form �Γ,Γ′, �Γ′′ ` �∆,∆′,�∆′′ is encoded in SELLF by the
sequent ` LS4

:
∞ b�Γc

:
�L bΓ

′, �Γ′′c
:
l d�∆e

:
�R d∆

′,�∆′′e :
r ·

:
e · ⇑ ·. Notice that the context of

the index e is empty. It is a “dummy” index that is not used to mark formulas, but to specify
the structural properties of rules. In particular, the connective !e can be used to erase the
context of the subexponentials l and r, as illustrated by its introduction rule shown below:

` LS4
:
∞ b�Γc

:
�L ·

:
l d�∆e

:
�R ·

:
r ·

:
e · ⇑ F

` LS4
:
∞ b�Γc

:
�L bΓ

′, �Γ′′c
:
l d�∆e

:
�R d∆

′,�∆′′e :
r ·

:
e · ⇓ !eF

[!e]

As e is not related to the indexes l and r in the preorder �, the contexts for l and r must be
empty in the premise of the rule above, i.e., the formulas in these contexts must be weakened.
These are exactly the restrictions needed for encoding the rules �L and �R in S4, specified by
the clauses (�L) and (�R) containing !e . For instance, the bipole derivation introducing the
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formula (�R) has necessarily the following shape:

` K ⇓ d�Ae⊥
[IR]

` LS4
:
∞ b�Γc

:
�L ·

:
l d�∆e

:
�R dAe :

r ·
:
e · ⇑ ·

` LS4
:
∞ b�Γc

:
�L ·

:
l d�∆e

:
�R ·

:
r ·

:
e · ⇑ ?rdAe

` LS4
:
∞ b�Γc

:
�L bΓ

′, �Γ′′c
:
l d�∆e

:
�R d∆

′,�∆′′,�Ae :
r ·

:
e · ⇓ !e?rdAe

[!e]

` LS4
:
∞ b�Γc

:
�L bΓ

′, �Γ′′c
:
l d�∆e

:
�R d∆

′,�∆′′,�Ae :
r ·

:
e · ⇓ d�Ae⊥ ⊗ !e?rdAe

[⊗]

` LS4
:
∞ b�Γc

:
�L bΓ

′, �Γ′′c
:
l d�∆e

:
�R d∆

′,�∆′′,�Ae :
r ·

:
e · ⇑ ·

[D∞,∃]

where K is ` LS4
:
∞ b�Γc

:
�L bΓ

′, �Γ′′c
:
l d�∆e

:
�R d∆

′,�∆′′,�Ae :
r ·

:
e ·. As one can easily

check, the derivation above corresponds exactly to S4’s rule �R.
The following proposition can be proved by induction on the height of focused proofs.

Proposition 4.4
Let Γ ∪ Γ′ ∪ Γ′′ ∪ ∆ ∪ ∆′ ∪ ∆′′ be a set of object logic formulas, and let the subexponentials
l, r, �L, �R, e, and ∞ be specified by the signature

〈{l, r,�L, �R, e,∞}, {r ≺ �R ≺ ∞, l ≺ �L ≺ ∞, e ≺ �R, e ≺ �L}, {l, r,�L, �R, e,∞}〉.

Then the sequent ` LS4
:
∞ b�Γc

:
�L bΓ

′, �Γ′′c
:
l d�∆e

:
�R d∆

′,�∆′′e :
r ·

:
e · ⇑ · is provable in

SELLF if and only if the sequent �Γ,Γ′, �Γ′′ ` �∆,∆′,�∆′′ is provable in S4.

As a final remark, it is also possible to encode the proof system for intuitionistic S4, which
only allows for at most one formula to be at the right-hand-side of sequents. The encoding is
similar to the the encoding above for classical logic with the difference that it contains extra
subexponential bangs for specifying this restriction on sequents, similar to what was done
in our encoding of G1m. Formally, the encoding is based on the following subexponential
signature with two dummy subexponentials el and er , where the former behaves as the one
used in the encoding of classical logic, while the latter additionally checks that the context to
the right-hand-side of sequents is empty:

〈{l, r,�L, �R, el , er ,∞}, {r ≺ �R ≺ ∞, l ≺ �L ≺ ∞, el ≺ �R, el ≺ �L, er ≺ �L}, {l,�L,∞}〉.

For instance, the introduction rule �R shown below is specified by the clause ∃A.[d�Ae⊥ ⊗
!er ?rdAe].

�Γ −→ A
�Γ,Γ′ −→ �A

4.5 Lax Logic

Our next example is the encoding of the proof system for minimal Lax logic depicted in
Figure 12. Its encoding illustrates the use of subexponentials to specify that a formula can
only be introduced if a side-formula is present in the premise. An example of such a rule is
the introduction rule for © on the left. To introduce it on the left, the main connective of the
formula on the right-hand-side must also be a©. As we detailed next, we use subexponentials
to perform such a check, without mentioning the formula on the right-hand-side, as described
at the end of Section 3.2.

Consider the following signature 〈{l, r, ◦r,∞}; {r ≺ ◦r ≺ l ≺ ∞}; {l,∞}〉. We will interpret
an object-logic sequent of the forms Γ −→ H and Γ −→ ©G as the meta-level sequents,
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Γ, A ∧ B, A, B −→ C
Γ, A ∧ B −→ C

[∧L] Γ −→ A Γ −→ B
Γ −→ A ∧ B

[∧R]

Γ, A ∨ B, A −→ C Γ, A ∨ B, B −→ C
Γ, A ∨ B −→ C

[∨L]
Γ −→ Ai

Γ −→ A1 ∨ A2
[∨Ri]

Γ, A ⊃ B −→ A Γ, A ⊃ B, B −→ C
Γ, A ⊃ B −→ C

[⊃ L]
Γ, A −→ B

Γ −→ A ⊃ B
[⊃ R]

Γ,©A, A −→ ©B
Γ,©A −→ ©B

[©L] Γ −→ A
Γ −→ ©A

[©R]

Γ, A −→ A
[Init]

Γ −→ A Γ, A −→ C
Γ −→ C

[Cut]

Fig. 12. The additive version of the proof system for minimal lax logics – Lax.

(∧l) bA ∧ Bc⊥ ⊗ (?lbAc O ?lbBc) (∧r) dA ∧ Be⊥ ⊗ (!l?rdAe ⊗ !l?rdBe)
(∨l) bA ∨ Bc⊥ ⊗ (?lbAc& ?lbBc) (∨r) dA ∨ Be⊥ ⊗ (!l?rdAe ⊕ !l?rdBe)
(⊃l) bA ⊃ Bc⊥ ⊗ (!l?rdAe ⊗ ?lbBc) (⊃r) dA ⊃ Be⊥ ⊗ !l(?lbAc O !l?rdBe)
(©L) b©Ac⊥ ⊗ !◦r ?lbAc (©R) d©Ae⊥ ⊗ !l?rdAe
(I) bAc⊥ ⊗ dAe⊥ (Cut) ?lbAc ⊗ !l?rdAe
(©S ) d©Ae⊥ ⊗ ?◦r d©Ae

Fig. 13. The theory LLax encoding the system Lax

respectively, ` LLax
:
∞ bΓc

:
l ·

:
◦r dHe :

r · ⇑ · and ` LLax
:
∞ bΓc

:
l d©Ge :

◦r ·
:
r · ⇑ ·. That

is, the context of the index l will contain all the formulas on the left-hand-side, while the
formula to the right-hand side will either be in the context of r or the context of ◦r. However,
only object-level formulas whose main connective is © can be in the context of ◦r. The
encoding of the proof system Lax is given in Figure 13. As in the specification of S4, this is
accomplished by using the following equivalence derived from the structural clause (©S ):

∀A.d©Ae ≡ ?◦r d©Ae.

That is, one can move whenever needed a meta-level formula d©Ae to the context of ◦r.
In the specification LLax, the clause (©L) is the most interesting one specifying the cor-

responding rule of the proof system. The !◦r specifies the restriction that the formula on the
right must be marked with a©. This is illustrated by the following derivation:

` LLax
:
∞ bΓ,©Ac

:
l ·

:
◦r ·

:
r · ⇓ b©Ac⊥

[I]

` LLax
:
∞ bΓ,©A, Ac

:
l d©Be :

◦r ·
:
r · ⇑ ·

` LLax
:
∞ bΓ,©Ac

:
l d©Be :

◦r ·
:
r · ⇑ ?lbAc

[?l]

` LLax
:
∞ bΓ,©Ac

:
l d©Be :

◦r ·
:
r · ⇓ !◦r ?lbAc

[!◦r ]

` LLax
:
∞ bΓ,©Ac

:
l d©Be :

◦r ·
:
r · ⇓ b©Ac⊥ ⊗ !◦r ?lbAc

[⊗]

` LLax
:
∞ bΓ,©Ac

:
l d©Be :

◦r ·
:
r · ⇑ ·

[D∞,∃]

Notice that due to the !◦r , the context of r must be empty. That is, the formula d©Be must be
in the context of ◦r, or in other words the main connective of the object-logic formula to the
right-hand-side is necessarily a©.
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Notice as well that since r ≺ ◦r, the clause (©R) is admissible in the theory. That is,
a formula can move from the context of ◦r to the context of r. With respect to the proof
system Lax this formula specifies exactly the rule ©R, introducing the connective © on the
right. Therefore, in order to obtain a stronger level of adequacy, namely on the level of
derivations [25], we mention it explicitly in the encoding.

The following proposition is proved by induction on the height of derivations.

Proposition 4.5
Let Γ∪{C} be a set of object logic formulas, and let the subexponentials l,r and ◦r be specified

by the signature 〈{l, r, ◦r,∞}; {r ≺ ◦r ≺ l ≺ ∞}; {l,∞}〉. Then the sequent ` LLax
:
∞ bΓc

:
l ·

:
◦r

dCe :
r · ⇑ · is provable in SELLF if and only if the sequent Γ −→ C is provable in Lax and

the sequent ` LLax
:
∞ bΓc

:
l d©Ce :

◦r ·
:
r · ⇑ · is provable in SELLF if and only if the sequent

Γ −→ ©C is provable in Lax.

4.6 System G3K

For our last example, we illustrate the use of relations, R(·, ·), in the meta-level. We encode,
in particular, the labelled proof system G3K proposed by Negri in [21], which is depicted
in Figure 14. This is a powerful proof system that can be used for different modal logics,
namely T, 4, B, S4, TB, S5, by simply specifying the properties of the relation R.

In order to encode this proof system, we specify one relation predicate R(·, ·) and use the
two unbounded subexponential indexes l and r, whose contexts will store b·c and d·e atoms,
respectively. As explained in Section 3.3, the relation predicate R also comes with its own
unbounded subexponential index R. Thus, a G3K sequent of the form a1Rb1, . . . , anRbn,Γ⇒
∆ is encoded as the SELLF sequent

` LG3k
:
∞ R,R(a1, b1), . . . ,R(an, bn)

:
R bΓc

:
l d∆e :

r · ⇑ ·.

where R ⊆ {(Ref), (Sym), (Trans), (Eucl)} is the theory, described in Section 3.3, specifying
the relation R and LG3k is the theory specifying G3K’s inference rules. The theory for G3K,
LG3k, is depicted in Figure 15.

It is easy to check that the theory LG3k encodes adequately the proof system G3K in the
level of derivations. For instance, the introduction rule for �l is specified by the corresponding
clause in LG3k, as illustrated by the derivation below:

Ξ

` ·
:
∞ R

:
R ·

:
l ·

:
r · ⇑ R(a, b)⊥

` LG3k
:
∞ R

:
R ba : �A,Γc

:
l d∆e

:
r · ⇓ !RR(a, b)⊥

[!R]
` LG3k

:
∞ R

:
R ba : �A, b : A,Γc

:
l d∆e

:
r · ⇑ ·

` LG3k
:
∞ R

:
R ba : �A,Γc

:
l d∆e

:
r · ⇓ ?lbb : Ac

[R ⇓, ?l]

` LG3k
:
∞ R

:
R ba : �A,Γc

:
l d∆e

:
r · ⇓ (!RR(a, b)⊥ ⊗ ?lbb : Ac)

[⊗]

` LG3k
:
∞ R

:
R ba : �A,Γc

:
l d∆e

:
r · ⇓ ba : �Ac⊥ ⊗ ∃y.(!RR(a, y)⊥ ⊗ ?lby : Ac)

[⊗,∃]

` LG3k
:
∞ R

:
R ba : �A,Γc

:
l d∆e

:
r · ⇑ ·

[D∞,∃]

where Ξ is a derivation containing only an initial rule. Notice that in the left-premise, the
formula R(a, b)⊥ is provable only if it is provable using the formulas in R.

Repeating this exercise with the other introduction rules, we can easily prove the following
proposition:

Proposition 4.6
Let Γ ∪ {∆} be a set of object logic formulas, let R ⊆ {(Ref), (Sym), (Trans), (Eucl)} be a set
of relation clauses, let R′ = {R(a1, b1), . . . ,R(an, bn)} be a set of relations on labels, and let
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x : A,Γ⇒ ∆, x : A
[I]

Γ⇒ ∆, x : A x : A,Γ⇒ ∆

Γ⇒ ∆
[Cut]

x : A, x : B,Γ⇒ ∆

x : ANB,Γ⇒ ∆
[Nl]

Γ⇒ ∆, x : A Γ⇒ ∆, x : B
Γ⇒ ∆, x : ANB

[Nr]

x : A,Γ⇒ ∆ x : B,Γ⇒ ∆

x : A ∨ B,Γ⇒ ∆
[∨l]

Γ⇒ ∆, x : A, x : B
Γ⇒ ∆, x : A ∨ B

[∨r]

Γ⇒ ∆, x : A x : B,Γ⇒ ∆

x : A ⊃ B,Γ⇒ ∆
[⊃l]

x : A,Γ⇒ ∆, x : B
Γ⇒ ∆, x : A ⊃ B

[⊃r]

x : ⊥,Γ⇒ ∆
[⊥l]

y : A, x : �A, xRy,Γ⇒ ∆

x : �A, xRy,Γ⇒ ∆
[�l]

xRy,Γ⇒ ∆, y : A
Γ⇒ ∆, x : �A

[�r]

xRy, y : A,Γ⇒ ∆

x : ♦A,Γ⇒ ∆
[♦l]

xRy,Γ⇒ ∆, x : ♦A, y : A
xRy,Γ⇒ ∆, x : ♦A

[♦r]

Fig. 14. The system G3K.

(&l) bx : A & Bc⊥ ⊗ (?lbx : Ac O ?lbx : Bc) (&r) dx : A & Be⊥ ⊗ (?rdx : Ae ⊗ ?rdx : Be)
(∨l) bx : A ∨ Bc⊥ ⊗ (?lbx : Ac ⊗ ?lbx, Bc) (∨r) dx : A ∨ Be⊥ ⊗ (?rdx : AeO?rdx : Be)
(⊃l) bx : A ⊃ Bc⊥ ⊗ (?rdx : Ae ⊗ ?lbx : Bc) (⊃r) dx : A ⊃ Be⊥ ⊗ (?lbx : AcO?rdx : Be)
(�l) bx : �Ac⊥ ⊗ ∃y.(!RR(x, y)⊥ ⊗ ?lby : Ac) (�r) dx : �Ae⊥ ⊗ ∀y.(?RR(x, y)O?rdy : Ae)
(♦l) bx : ♦Ac⊥ ⊗ ∀y.(?RR(x, y)O ?lby : Ac) (♦r) dx : ♦Ae⊥ ⊗ ∃y.(!RR(x, y)⊥ ⊗ ?rdy : Ae)
(I) bx : Ac⊥ ⊗ dx : Ae⊥ (Cut) ?rdx : Ae ⊗ ?lbx : Ac
(⊥l) bx : ⊥c⊥

Fig. 15. Specification LG3k in SELLF for G3K.

the subexponentials l,r and R be specified by the signature 〈{l, r,R,∞}; {r, l ≺ ∞}; {l, r,R,∞}〉.
Then the sequent ` LG3k

:
∞ R,R(a1, b1), . . . ,R(an, bn)

:
R bΓc

:
l d∆e :

r · ⇑ · is provable in
SELLF if and only if the sequent a1Rb1, . . . , anRbn,Γ ⇒ ∆ is provable in G3K using the
corresponding rules for the relation R.

5 Reasoning about Sequent Calculus
This section presents general and effective criteria for checking whether a proof system en-
coded in SELLF has important proof-theoretic properties, namely, cut-elimination, invert-
ibility of rules, and the completeness of atomic identity rules. Instead of proving each one
of these properties from scratch, we just need to check whether the specification of a proof
system satisfies the corresponding criteria. Moreover, we show that checking such criteria
can be easily automated.
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5.1 Cut-elimination for cut-coherent systems

The rule Cut is often presented as the rule below

Γ1 ` ∆1, A A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
[Cut]

where Γ1,Γ2,∆1,∆2 may be sets or multisets of formulas. The formula A is called the cut-
formula. A proof system is said to have the cut-elimination property when the cut rule is
admissible on this system, i.e., every proof that uses cuts can be transformed into a cut-free
proof. There at least two important consequences of the cut-elimination theorem, namely
the sub-formula property and the consistency of the proof system. Cut-elimination was first
proved by Gentzen [12] for proof systems for classical (LK) and intuitionistic logic (LJ).
Gentzen’s proof strategy has been re-used to prove the cut-elimination of a number of proof
systems. The proof is quite elaborated and it involves a number of cases, thus being exhaus-
tive and error prone. The strategy can be summarized by the following steps:

1. (Reduction to Principal Cuts) Transforming a proof with cuts into a proof with principal
cuts, that is, a cut whose premises are derived by introducing the cut-formula itself. This
is normally shown by permuting inference rules, e.g., permuting the cut-rule over other
introduction rules.

2. (Reduction to Atomic Cuts) Transforming a proof with principal cuts into a proof with
atomic cuts. This is normally shown by reducing a cut with a complex cut-formula into
(possible many) cuts with simpler cut-formulas.

3. (Elimination of Atomic Cuts) Transforming a proof with atomic cuts into a cut-free proof.
This is normally shown by permuting atomic cuts over other introduction rules until it
reaches the leaves and it is erased.

We provide a criterion for each one of the steps above. The step two is not problematic.
In particular, a criterion for reducing principal cuts to atomic cuts was given by Pimentel and
Miller in [19] when encoding systems in linear logic. This criterion easily extends to the use
of SELLF (see Definition 5.6 and Theorem 5.8).

While for specifications in linear logic steps one and three did not cause any problems [19],
for specifications in SELLF they do not work as smoothly. For the step three of eliminating
atomic cuts, however, we could still find a simple criterion for when this step can be per-
formed (see Definition 5.9 and Theorem 5.10). But determining criteria for when it is possi-
ble to transform arbitrary cuts into principal cuts (step one) turned out to be a real challenge.
This is expected as SELLF allows for much more complicated proof systems to be encoded,
such as mLJ and LJQ∗, with the strongest level of adequacy. There are at least three possible
strategies or reductions one can use to perform this transformation:

• (Permute Cut Rules Upwards) As done by Gentzen, one can try to permute cuts over other
introduction rules. The following is an example of such a transformation in G1m:

Γ −→ A
Γ′, A, F −→ G

Γ′, A −→ F ⊃ G
[⊃R]

Γ,Γ′ −→ F ⊃ G
[Cut]

 

Γ −→ A Γ′, A, F −→ G
Γ,Γ′, F −→ G

[Cut]

Γ,Γ′ −→ F ⊃ G
[⊃R]

We identify a criterion for when such permutations are always possible (see Lemma 5.2).
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• (Permute Introduction Rules Downwards) In some cases, it is not possible to permute
the cut over an introduction rule. For instance, in the mLJ derivation to the left, it is not
always possible to permute a cut over an ⊃R, because such a permutation would weaken
the formulas in ∆, which may be needed in the proof of left premise of the cut rule.

S

Γ, A, B, F −→ G
Γ, A ∧ B, F −→ G

[∧L]

Γ, A ∧ B −→ F ⊃ G,∆
[⊃R]

Γ −→ F ⊃ G,∆
[Cut]

 
S

Γ, A, B, F −→ G
Γ, A, B −→ F ⊃ G,∆

[⊃R]

Γ, A ∧ B −→ F ⊃ G,∆
[∧L]

Γ −→ F ⊃ G,∆
[Cut]

The strategy then is to permute downwards the rule introducing the cut-formula (A ∧ B)
on the Cut’s right premise, as illustrated by the derivation to the right. In some cases,
however, the cut-formula might need to be introduced multiple times. For instance, in the
following S4 derivation, the cut cannot permute upwards, but one can still introduce the
cut-formula �A on the right before introducing the formula �F. Only, in this case, the
cut-formula is introduced twice, as illustrated by the derivation to the right.10

S

�Γ,�A, A ` �∆, F
�Γ,�A ` �∆, F

[�L]

�Γ,Γ′,�A ` �∆,∆′,�F
[�R]

�Γ,Γ′ ` �∆,∆′,�F
[Cut]

 

S

�Γ,�A, A ` �∆, F
�Γ,�A ` �∆, F

[�L]

�Γ,Γ′,�A, A ` �∆,∆′,�F
[�R]

�Γ,Γ′,�A ` �∆,∆′,�F
[�L]

�Γ,Γ′ ` �∆,∆′,�F
[Cut]

A similar case also appears in mLJ, e.g., when the cut formula is A ⊃ B. We identify
criteria for when an introduction rule can permute over another introduction rule (see
Lemma 5.4), which handles the cases for mLJ and S4 illustrated above.
• (Transform one Cut into Another Cut) There are systems, such as LJQ∗, which have more

than one cut rule. For instance, LJQ∗ has eight different cut rules, three of them shown
in Example 5.3. In these cases, for permuting a cut of one type over an introduction
rule might involve transforming this cut into another type of cut. As these permutations
involve more elaborated proof transformations, finding criteria that is not ad-hoc to one
system is much more challenging (if not impossible) and we will not provide one here.

We start our discussion of cut-elimination on specified sequent systems by the permutabil-
ity step (step one). For this purpose, we define the notion permutation of clauses and then
establish criteria for permutation of cut and introduction clauses.

Definition 5.1
Given C1 and C2 clauses in a canonical proof system theory X, we say that C1 permutes
over C2 if, given an arbitrary focused proof π of a sequent S ending with a bipole derivation
introducing C2 followed by a bipole derivation introducing C1, then there exists a focused
proof π′ of S ending with a bipole derivation introducing C1 followed by a bipole derivation
introducing C2.

Lemma 5.2 (Criteria cut permutation)
Let X be a canonical proof system theory. A cut clause permutes over an introduction or
structural clause C ∈ X if, for each s, t ∈ I such that !sB appears in C and ?tB′ is a subformula
of the monopole B, one of the following holds:11

10This problem of permuting cuts in the system S4 was emphasized by Stewart and Stouppa in [32] and the complete proof can be found in [17].
11Of course, if the subexponential !s is not present in C, then the restrictions on s don’t apply.
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1. Cut = ∃A.!a?bbAc ⊗ !c?ddAe and either:
i. permutation by vacuously: s � b and b is bounded; or s � d and d is bounded;

ii. permutation to the right: s � a, d and c � t;
iii. permutation to the left: s � b, c and a � t;

2. Cut = ∃A.!a?bbAc ⊗ ?ddAe and either:
i. permutation by vacuously: s � b and b is bounded; or s � d and d is bounded;

ii. permutation to the right: s � a, d;

3. Cut = ∃A.?bbAc ⊗ !c?ddAe and either:
i. permutation by vacuously: s � b and b is bounded; or s � d and d is bounded;

ii. permutation to the left: s � b, c;

4. Cut = ∃A.?bbAc ⊗ ?ddAe and either:
i. permutation by vacuously: s � b and b is bounded; or s � d and d is bounded;

ii. permutation to the right or left: s is the least element of 〈I,�〉.

Proof. Suppose that C is a formula of the shape !s?tB12.

• Case Cut = ∃A.!a?bbAc ⊗ !c?ddAe. Consider the proof:

Ξ1
` K1 ≤a +bbAc : · ⇑ ·

` K1 : · ⇓ !a?bbAc
[!a, ?b]

Ξ′2
` K2 ≤c,s +ddAe +t B : · ⇑ ·

` K2 ≤c +ddAe : · ⇓ !s?tB
[!s , ?t]

` K2 ≤c +ddAe : · ⇑ ·
[D∞]

` K2 : · ⇓ !c?ddAe
[!c , ?d]

` K1 ⊗ K2 : · ⇓ !a?bbAc ⊗ !c?ddAe
[⊗]

` K1 ⊗ K2 : · ⇑
[D∞,∃]

If s � d and d is bounded this case will not happen and the permutation is by vacuously.
Otherwise, if s � d, s � a and c � t, the proof above can be replaced by

Ξ1
` K1 ≤s,a +bbAc : · ⇑ ·

` K1 ≤s: · ⇓ !a?bbAc
[!a, ?b]

Ξ′2
` K2 ≤s,c +tB +d dAe : · ⇑ ·

` K2 ≤s +tB : · ⇓ !c?ddAe
[!c , ?d]

` K1 ⊗ K2 ≤s +tB : · ⇓ !a?bbAc ⊗ !c?ddAe
[⊗]

` K1 ⊗ K2 ≤s +tB : · ⇑ ·
[D∞,∃]

` K1 ⊗ K2 : · ⇓ !s?tB
[!s , ?t]

` K1 ⊗ K2 : · ⇑
[D∞]

Notice that, since s � a, K1 ≤s,a= K1 ≤a. Hence, in this case, the permutation is to the
right. The same reasoning can be done for the left premise.

12In fact, we should consider bipoles D containing subformulas of the form !sC with C a monopole, but we will present only the case where D = !s?tB
for readability purposes.
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• Case Cut = !a?bbBc ⊗ ?ddBe. If s � d and s � a, then the derivation

Ξ1
` K1 ≤a +bbAc : · ⇑ ·

` K1 : · ⇓ !a?bbAc
[!a, ?b]

Ξ′2
` K2 ≤s +ddAe +t B : · ⇑ ·

` K2 +d dAe : · ⇓ !s?tB
[!s , ?t]

` K2 +d dAe : · ⇑ ·
[D∞]

` K2 : · ⇓ ?ddAe
[?d]

` K1 ⊗ K2 : · ⇓ !a?bbAc ⊗ ?ddAe
[⊗]

` K1 ⊗ K2 : · ⇑
[D∞,∃]

can be replaced by

Ξ1
` K1 ≤s,a +bbAc : · ⇑ ·

` K1 ≤s: · ⇓ !a?bbAc
[!a, ?b]

Ξ′2
` K2 ≤s +tB +d dAe : · ⇑ ·
` K2 ≤s +tB : · ⇓ ?ddAe

[?d]

` K1 ⊗ K2 ≤s +tB : · ⇓ !a?bbAc ⊗ ?ddAe
[⊗]

` K1 ⊗ K2 ≤s +tB : · ⇑ ·
[D∞,∃]

` K1 ⊗ K2 : · ⇓ !s?tB
[!s , ?t]

` K1 ⊗ K2 : · ⇑
[D∞]

There is a very interesting observation in this case: the restrictions for permuting the cut
clause over the left premise form a superset of the restrictions for the right premise. In
fact, other the fact that s should be the least element of I, it should also be the case that
a � t. That is, if the permutation is possible at all, it can be always done over the right
premise. Finally, if s � d and d is bounded, then focusing over !s?tB is not possible at all
(the same for the left premise).
• Case Cut = ?bbBc ⊗ !c?ddBe. Analogous to the last case.
• Case Cut = ?bbBc ⊗ ?ddBe. If s is the least element of I, then the derivation

Ξ1
` K1 +b bAc : · ⇑ ·
` K1 : · ⇓ ?bbAc

[?b]

Ξ′2
` K2 ≤s +ddAe +t B : · ⇑ ·

` K2 +d dAe : · ⇓ !s?tB
[!s , ?t]

` K2 +d dAe : · ⇑ ·
[D∞]

` K2 : · ⇓ ?ddAe
[?d]

` K1 ⊗ K2 : · ⇓ ?bbAc ⊗ ?ddAe
[⊗]

` K1 ⊗ K2 : · ⇑
[D∞,∃]

can be replaced by13

Ξ1
` K1 ≤s +bbAc : · ⇑ ·
` K1 ≤s: · ⇓ ?bbAc

[?b]

Ξ′2
` K2 ≤s +tB +d dAe : · ⇑ ·
` K2 ≤s +tB : · ⇓ ?ddAe

[?d]

` K1 ⊗ K2 ≤s +tB : · ⇓ ?bbAc ⊗ ?ddAe
[⊗]

` K1 ⊗ K2 ≤s +tB : · ⇑ ·
[D∞,∃]

` K1 ⊗ K2 : · ⇓ !s?tB
[!s , ?t]

` K1 ⊗ K2 : · ⇑
[D∞]

13Observe that the permutation could be done also on the left premise.
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Example 5.3
Note that, from the systems presented in Section 4, the cuts defined in systems G1m and Lax
permutes over any introduction or structural clause. This means that, for these systems, the
classical argument of permuting cuts up the proof until getting principal cuts works fine.

The cut clause for the mLJ system (CutmLJ = ∃A.?lbAc⊗?rdAe), on the other hand, does not
permute over clauses (⊃R) and (∀R), since !l is present in both clauses but neither r is bounded
(while l � r) nor l is the least element in the signature 〈{∞, l, r}; {l � ∞, r � ∞}; {∞, l, r}〉. This
captures well, at the meta-level, the fact that the cut rule does not permute over the rules (⊃R)
and (∀R) at the object-level.

In the same way, in S4, the cut clause CutS 4 = ∃A.?lbAc ⊗ ?rdAe does not permute over the
clauses (�R) and (�L) since l, r are unbounded and e is not the least element of the signature

〈{l, r,�L, �R, e,∞}, {r � �R � ∞, l � �L � ∞, e � �R, e � �L}, {l, r,�R, �R,∞}〉.

In LJQ∗, three cut rules are admissible14:

Γ1 → A; ∆1 A,Γ2 → B; ∆2

Γ1,Γ2 → B; ∆1,∆2
[Cut1]

Γ1 → A; ∆1 A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
[Cut2]

Γ1 ` ∆1, A A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
[Cut3]

The first rule cannot be encoded in SELLF using only bipoles with the signature presented
in this paper. In fact, we would need to add “dummy” subexponentials for guaranteeing the
presence of focused formulas on the context, more or less the same way done for the Lax
logic. The other cut rules can be specified, respectively, by the clauses

(Cut2) !r?lbAc ⊗ !r?f dAe (Cut3) !r?lbAc ⊗ !r?rdAe.

It is interesting to note that, in Cut2, the permutation to the right is by vacuously with every
clause in the system. And it should be so since, at the object level, the left premise of the
Cut2 rule has a focused right cut formula, which must be principal. Hence the cut rule cannot
permute up in the object level, as the cut clause does not permute over any other clause of the
system. For the permutation to the left, the conditions s � l and s � r and r � t for any clause
of the form !sB(· · · ?tB′) appearing in Lljq, implies that: s = r and t = r, l. Hence the Cut2
clause permutes to the left over (⊃L), (∨L), (∧L) and (∨R) and it does not permute over (⊃R)
and (∧R). As it should be since, at the object level, the premises of the rule (∧R) are focused
and, as already discussed for the system mLJ, the rule (⊃R) erases formulas of the premises,
hence not permuting with the cut rule.

For the Cut3 clause, the argument is similar to the one just presented and Cut3 does not
permute to the right or to the left with (⊃R) and (∧R), permuting over the other introduction
clauses of the system. As said before, the cut-elimination process for LJQ∗ is more involving,
making use of exchange between cuts, and it will not be discussed in more details here.

The following lemma establishes criteria for checking when a clause permutes over another
clause. It captures all the non-trivial permutations for the systems mLJ and S4, that is, all the
cases that are not true by vacuously.

14In fact, there are five admissible cut rules in LJQ∗ , but the other two are derived from those presented here. And it is also worthy to note that there are
three non-admissible cut rules in LJQ∗ .



28 An Extended Framework for Specifying and Reasoning about Proof Systems

Lemma 5.4 (Criteria introduction permutation)
Let X be a canonical system and C1,C2 ∈ X be introduction or structural clauses. Assume
that all subexponentials are unbounded, i.e., I = U. Then C1 permutes over C2 if at least one
of the following is satisfied:

1. If C1 and C2 have no occurrences of subexponential bangs;

2. If C1 has at least one occurrence of a subexponential bang but C2 has no occurrence of
subexponential bang, then for all occurrences of a formula of the form !sB1 in C1 and for
all occurrences of ?t in C2, it is the case that at least one of the following is true:

i. s � t;

ii. if C2 = ∃x1 . . .∃xn[(q(�(x1, . . . , xn)))⊥ ⊗ B], where q ∈ {b·c, d·e}, then the following
equivalence is derivable from the structural rules ofX, where s � v : q(�(x1, . . . , xn))) ≡
?vq(�(x1, . . . , xn))).

3. If C2 has at least one occurrence of a subexponential bang but C1 has no occurrence of
subexponential bang, then, for all occurrences of a formula of the form !sB1 in C2 and for
all occurrences of ?t in C1, either:

i. s � t (in this case, the clause C1 is unnecessary and can be dropped);

ii. s is the least element of I.

4. If both C1 and C2 have at least one occurrence of a subexponential bang, then for each
sk , tk ∈ I, k = {1, 2}, such that !sk Bk appears in Ck and ?tk B′k is a subformula of the
monopole Bk, at least one of the following is true:

i. s2 � t1 and s1 � s2 (in this case, the clause C1 is unnecessary and can be dropped);

ii. s2 is the least element of I and s1 � t2 .

Proof. The assumption that all subexponentials are unbounded eliminates any problems caused
by the splitting of formulas in the context, such as the case of permuting a & over a ⊗. As all
formulas in the context are unbounded, we do not need to split them. Hence, we only have to
analyze the problems due to the subexponentials.

The case when C1 and C2 do not contain subexponential bangs is easy. We show only
the second case, when C1 has a subexponential bang, but C2 does not. The remaining cases
follow similarly. The following piece of derivation illustrates how the permutation is possible.

· · ·

· · ·

· · ·

Ξ
` K ≤s +uB +t A : · ⇑ ·
` K ≤s +uB : · ⇑ ?tA

[?t]
· · ·

` K ≤s +uB : · ⇓ C2

` K ≤s +uB : · ⇑
[D∞]

` K ≤s: · ⇑ ?uB
[?u]

· · ·

` K ≤s: · ⇑ B1

` K : · ⇓ !sB1
[!s]

· · ·

` K : · ⇓ C1

` K : · ⇑
[D∞]

If s � t, we can obtain the proof below where with a decide rule on C2 appearing at the
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bottom15.

· · ·

· · ·

· · ·

Ξ
` K ≤s +tA +u B : · ⇑ ·
` K ≤s +tA : · ⇑ ?uB

[?u]
· · ·

` K ≤s +tA : · ⇑ B1

` K +t A : · ⇓ !sB1
[!s]

· · ·

` K +t A : · ⇓ C1
[D∞]

` K : · ⇑ ?tA
[?t]

· · ·

` K : · ⇓ C2

` K : · ⇑
[D∞]

For when s � t, then the introduction of !s will cause the weakening of the formula A,
However, if q(�(x1, . . . , xn))) ≡ ?vq(�(x1, . . . , xn))), where q(�(x1, . . . , xn))) is the formula
used by C2 and s � v , then there is a derivation where q(�(x1, . . . , xn))) is not weakened by
the introduction of !s . Hence, it is possible to focus on C2 again after focusing on C1 and
recover the formula A.

Observe that this last lemma is much more involved than Lemma 5.2. In fact, the cut clause
is a formula with no negated atomic formulas, and what it roughly does is to split the context
into two and add a left formula in one part and a right formula in the other. When permuting
two introduction clauses, on the other hand, one has to be careful not erasing contexts that
will be necessary for the application of the next clause. For instance, the atomic formulas
needed for introducing the clause C1 can be in a context that will be eventually erased by the
clause C2, hence the permutation cannot happen.

As said before, our main interest on permuting clauses is to be able to consider only object-
level principal cuts. We clarify this concept better now. Let X be a canonical system and Ξ

be a SELLF proof of the sequent ` K1 ⊗ K2 : · ⇑ · ending with an introduction of the Cut
clause. The premise of that decide rule is the conclusion of an [∃] infer rule. Let A be the
substitution term used to instantiate the existential quantifier. We say that this occurrence of
the [D∞] inference rule is an object-level cut with cut formula A. Suppose A = �(B̄) is a
non-atomic object level formula with left and right introduction rules

∃x̄(b�(x̄)c⊥ ⊗ Bl) and ∃x̄(d�(x̄)e⊥ ⊗ Br)

We say that this introduction of the Cut clause is principal if Ξ has the form

Ξ1
` K1 ≤a +bb�(B̄)c : · ⇓ Bl[B̄/x̄]

` K1 ≤a +bb�(B̄)c : · ⇑ ·
[D∞,∃,⊗, I]

` K1 : · ⇓ !a?bb�(B̄)c
[!a, ?b]

Ξ2
` K2 ≤c +dd�(B̄)e : · ⇓ Br[B̄/x̄]

` K2 ≤c +dd�(B̄)e : · ⇑ ·
[D∞,∃,⊗, I]

` K2 : · ⇓ !c?dd�(B̄)e
[!c , ?d]

` K1 ⊗ K2 : · ⇓ !a?bb�(B̄)c ⊗ !c?dd�(B̄)e
[⊗]

` K1 ⊗ K2 : · ⇑
[D∞,∃]

Definition 5.5
Let X be a canonical proof system theory. We say that X is cut-principal if every proof Ξ

of a sequent S of the form ` K : ∆ ⇑ ·, with K[∞] = X, having an introduction of a Cut
15Since s � t, the introduction of !s does not cause the weakening of the formula A.
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clause, can be transformed, using permutations over clauses, into a proof Ξ′ of S where that
introduction of the Cut clause is principal.

Hence, for example, the systems G1m and Lax are cut-principal, since their cut clauses per-
mutes over any other clause of the system. A straightforward case analysis shows that mLJ
and S4 also have this property: when cuts cannot permute up, rules can permute down, mak-
ing the cuts principal.

Once we can transform an introduction of a cut into a principal one, the proof of cut
elimination for logical systems continues by showing how to transform a principal cut into
cuts with “simpler” formulas. This transformation is often based on the fact that systems
have “dual” introduction rules for each connective. In [19], Pimentel and Miller introduced
the concept of cut-coherence for linear logic specifications that captures this notion of duality.
We extend this definition to our setting with subexponentials.

Definition 5.6
Let X be a canonical proof system theory and � an object-level connective of arity n ≥ 0.
Furthermore, let the formulas

∃x̄(b�(x̄)c⊥ ⊗ Bl) and ∃x̄(d�(x̄)e⊥ ⊗ Br)

be the left and right introduction rules for �, where the free variables of Bl and Br are in the
list of variables x̄. The object-level connective � has cut-coherent introduction rules if the
sequent ` K∞ : · ⇑ ∀x̄(B⊥l O B⊥r ) is provable in SELLF, where K∞[∞] = {Cut}, {Cut} is the
set of all cut clauses in X and K∞[i] = ∅ for any other i ∈ I. A canonical proof system theory
is called cut-coherent if all object-level connectives have cut-coherent introduction rules.

Example 5.7
The cut-coherence of the G1m specification is established by proving the following sequents.

(⊃) ` CutG1m
:
∞ ·

:
l ·

:
r ·

:
f · ⇑ ?l!rdAe⊥ O !lbBc⊥, ?l(!lbAc⊥ ⊗ !rdBe⊥)

(∧) ` CutG1m
:
∞ ·

:
l ·

:
r ·

:
f · ⇑ !lbAc⊥ ⊗ !lbBc⊥, ?l!rdAe⊥ O ?l!rdBe⊥

(∨) ` CutG1m
:
∞ ·

:
l ·

:
r ·

:
f · ⇑ !lbAc⊥ ⊕ !lbBc⊥, ?l!rdAe⊥ & ?l!rdBe⊥

(∀) ` CutG1m
:
∞ ·

:
l ·

:
r ·

:
f · ⇑ !lbBxc⊥, ?l∃x.!rdBxe⊥

(∃) ` CutG1m
:
∞ ·

:
l ·

:
r ·

:
f · ⇑ ∃x.!lbBxc⊥, ?l!rdBxe⊥

All these sequents have simple proofs. In general, deciding whether or not canonical systems
are cut-coherent involves a simple algorithm (see Theorem 5.11).

Intuitively, the notion of cut-coherence on the meta-level corresponds to the property of
reducing the complexity of a cut on the object-level. If a connective � is proven to have cut-
coherent introduction rules, then a cut with formula �(x̄) can be replaced by simpler cuts using
the operations of reductive cut-elimination, until atomic cuts are reached. This is proved by
Theorem 5.8.

We need the following definition specifying cuts with atomic cut formulas only.

ACut = ∃A.Cut(A) ⊗ atomic(A)).

The following theorem establishes the condition for when there are reductions from proof
with principal cuts to proofs with atomic cuts.
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Theorem 5.8
Let the disjoint union X ∪ {Cut} be a principal, cut-coherent proof system whose structural
clauses are all contextual. If ` K : · ⇑ · is provable, then ` AK : · ⇑ · is provable where
K[∞] = X ∪ {Cut} and AK[∞] = X ∪ {ACut}.

Proof. (Sketch – see [19] for the detailed proof.) The proof of this theorem follows the usual
line of replacing cuts on general formulas for cuts on atomic formulas for first-order logic,
being careful about the subexponentials. Let Ξ be a proof of the sequent ` K : · ⇑ · ending
with an object-level cut over a cut formula �(B̄) with left and right introduction rules

∃x̄(b�(x̄)c⊥ ⊗ Bl) and ∃x̄(d�(x̄)e⊥ ⊗ Br)

Since X is cut-principal, there exist proofs of ` K1 : · ⇑ Bl and ` K2 : · ⇑ Br, where K =

K1 ⊗K2. Since X is a cut-coherent proof system theory the sequent ` K∞ : · ⇑ ∀x̄(B⊥l O B⊥r )
is provable. Thus, the following three sequents all have cut-free proofs in SELL16:

` K1, Bl[B̄/x̄] ` K2, Br[B̄/x̄] ` ?∞Cut, Bl[B̄/x̄]⊥, Br[B̄/x̄]⊥

By using two instances of SELL cut, we can conclude that17

` K1,K2

has a proof with cut. Applying the cut-elimination process for SELL will yield a cut-free
SELL proof of the same sequent. Observe that the elimination process can only instantiate
eigenvariables of the proof with “simpler” formulas, hence the sizes of object-level cut for-
mulas in the resulting cut-free meta-level proof does not increase. Using the completeness of
SELL in SELLF we know that

` K : · ⇑ ·

has a proof of smaller object-level cuts and the result follows by induction.

The condition that all structural rules are contextual (see Definition 3.2) is necessary as other-
wise known non-trivial cases involving weakening and contraction would arise. Since these
are not solved by the duality of connectives, it is out of the scope of the theorem above.
Despite this limitation, this step of cut-elimination can be proved for wide of range of proof
system. In fact, the only system shown above that has structurual rules that are not contextual
is G1m.

The last step in Gentzen’s cut-elimination strategy is to eliminate atomic cuts by permuting
them upwards. However, as in the transformation of proofs with cuts into proofs with princi-
pal cuts only, the subexponential bangs may disallow that atomic cuts can be eliminated. A
further restriction on cut clauses is needed.

Definition 5.9
Let X be a principal, cut-coherent proof system theory. We say that a cut clause Cut =

∃A.!a?bbAc ⊗ !c?ddAe is weak if for all s, t ∈ I such that ?sb·c, ?td·e appears in X, b � s and
d � t.
X is called weak cut-coherent if, for all Cut ∈ X, Cut is weak.

16By abuse of notation, we will represent the contexts in SELLF and its translation in SELL using the same symbol.
17Reminding that Cut ∈ K[∞].
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Theorem 5.10
Let the disjoint union X ∪ {ACut} be a weak cut-coherent proof system. Let Γo −→ ∆o be an
object-level sequent and ` K : · ⇑ · be its SELLF encoding, where K[∞] = X ∪ {ACut}. If
` K : · ⇑ · is provable, then ` K ′ : · ⇑ · is provable where K ′[∞] = X and K[i] = K ′[i] for
any other i ∈ I.

Proof. The usual proof that permutes an atomic cut up in a proof can be applied here (since
the system is principal). Any occurrence of an instance of [D∞] on the ACut formula can
be moved up in a proof until it can either be dropped entirely or until one of the premises is
proved by an instance of [D∞] on the Init:18

Ξ
` K1 ≤a +bbAc : · ⇑ ·

` K1 : · ⇓ !a?bbAc
[!a, ?b]

` K1
2 : · ⇓ dAe⊥ ` K2

2 : · ⇓ bAc⊥

` K2 ≤c +d : · ⇓ dAe⊥ ⊗ bAc⊥
[⊗]

` K2 ≤c +ddAe : · ⇑ ·
[D∞,∃]

` K2 : · ⇓ !c?ddAe
[!c , ?d]

` K1 ⊗ K2 : · ⇓ !a?bbAc ⊗ !c?ddAe
[⊗]

` K : · ⇑ ·
[D∞,∃]

In that case, there must exist an index s such that bAc ∈ K2
2 [s]. If b � s, then we can

substitute the proof of the conclusion of the cut inference above by the proof Ξ (similar to the
right case). Hence the result holds for weak cut-coherent systems.

The next result states that to check whether or not a proof system encoding is weak cut-
coherent is decidable. See [19] for a similar proof.

Theorem 5.11
Determining whether or not a canonical proof system is weak cut-coherent is decidable. In
particular, determining if the cut clause proves the duality of the introduction rules for a given
connective can be achieved by proof search in SELLF bounded by the depth v + 2 where v is
the maximum number of premise atoms in the bodies of the introduction clauses.

We can develop a general method for checking whether a proof system encoded in SELLF
admits cut-elimination by putting all these results together. The first step is to use Lemma 5.2
to check for which clauses the cut permutes over. Then for each remaining clause, C, check
using Lemma 5.4, the introduction/structural clauses of the system permutes over C. After
this step one is reduced with the non-trivial cases for when the transformation of a proof with
cuts into a proof with atomic cuts only is not straightforward and must be proved individually.
We then check whether the theory is cut-coherent, which from Theorem 5.8, implies that
principal cuts can be reduced to atomic cuts. This check requires bounded proof search as
described in Theorem 5.11. Finally, we check whether atomic cuts can be eliminated by
checking whether the theory is weak cut-coherent. We have implemented this method, as
well as the checking for atomic identities, as detailed in Section 6.

5.2 Atomic Identities

The notion of cut-coherence implies that non-atomic principle cuts can be replaced by simpler
ones. We now consider the dual problem of replacing initial axioms with its atomic version.
The discussion bellow is pretty much similar to the ideas presented in [19].

18Here A is an atomic object level formula.
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Definition 5.12
Let X be a canonical proof system theory and � an object-level connective of arity n ≥ 0.
Furthermore, let the formulas

∃x̄(b�(x̄)c⊥ ⊗ Bl) and ∃x̄(d�(x̄)e⊥ ⊗ Br)

be the left and right introduction rules for �, where the free variables of Bl and Br are in the
list of variables x̄. The object-level connective � has initial-coherent introduction rules if the
sequent ` K∞ : · ⇑ ∀x̄(?∞Bl O ?∞Br) is provable in SELLF, where K∞[∞] = {Init} and
K∞[i] = ∅ for any other i ∈ I. A canonical proof system theory is called initial-coherent if all
object-level connectives have initial-coherent introduction rules.

It is easy to see that determining initial-coherency is simple and that initial coherency
does not imply cut-coherency (and vice-versa). In general, we take both of these coherence
properties together.

Definition 5.13
A cut-coherent theory that is also initial-coherent is called a coherent theory.

Proposition 5.14
Let X be a coherent theory and � an object-level connective of arity n ≥ 0. Furthermore, let
the formulas

∃x̄(b�(x̄)c⊥ ⊗ Bl) and ∃x̄(d�(x̄)e⊥ ⊗ Br)

be the left and right introduction rules for �. Then Br and Bl are dual formulas in SELLF.

Proof. From the definition of cut-coherent, Bl entails Br in a theory containing {Cut}. Simi-
larly, from the definition of initial-coherence, Br entails Bl in a theory containing Init. Thus,
the equivalence Br ≡ Bl is provable in a theory containing {Cut} and Init. Hence Br and Bl

are duals.

Finally, the next theorem states that, in coherent systems, the initial rule can be restricted to
its atomic version. For this theorem, we need to axiomatize the meta-level predicate atomic(·).
This axiomatization can be achieved by collecting into the theory ∆ all formulas of the form
∃x̄ : (atomic(p(x1; :::; xn)))⊥ for every predicate of the object logic.

For the next theorem, we also need the following definition

AInit = ∃A.Init(A) ⊗ atomic(A)).

Theorem 5.15
Given an object level formula B, let Init(B) denote the formula bBc⊥⊗dBe⊥, let ∆ be the theory
that axiomatizes the meta-level predicate atomic(·), X ∪ Init be a coherent proof theory and
K∞ = {X,AInit,∆}. Then the sequent ` K∞ : · ⇑ Init(B) is provable.

5.3 Invertibility of rules

Another property that has been studied in the sequent calculus setting is the invertibility of
rules. We say that a rule is invertible if the provability of the conclusion sequent implies the
provability of all the premises.

This property is of interest to proof search since invertible rules permute down with the
other rules of a proof, reducing hence proof-search non-determinism. In particular, in systems
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(⇒ L) bA⇒ Bc⊥ ⊗ ?rdAe& ?lbBc (⇒ R) dA⇒ Be⊥ ⊗ ?lbAc O ?rdBe
(∧L) bA ∧ Bc⊥ ⊗ ?lbAc O ?lbBc (∧R) dA ∧ Be⊥ ⊗ ?rdAe& ?rdBe
(∨R) dA ∨ Be⊥ ⊗ ?rdAe O ?rdBe (∨L) bA ∨ Bc⊥ ⊗ ?lbAc& ?lbBc

Fig. 16. Specification of G3c.

with only invertible rules, the bottom-up search for a proof can stop as soon as a non provable
sequent is reached.

For example, it is well known that all rules in G3c (see [33]) are invertible. This system
is specified in Figure 16. Observe that the meta level connectives in the bodies are negative.
Therefore, its introduction rule is specified using only invertible focused rules. The following
is a straightforward result, as all the connectives appearing in a monopole are negative.

Theorem 5.16
A monopole introduction clause corresponds to an invertible object level rule.

6 Implementation
We have implemented a tool that takes a SELLF specification of a proof system and checks
automatically whether the proof system admits cut-elimination and whether the system with
atomic initials is complete. Note that this checking ensures sufficient but not necessary condi-
tions, thus a negative answer does not mean that the system doesn’t enjoy the cut-elimination
property. Our tool is implemented in OCaml and there is an online version with some exam-
ples at http://www.logic.at/people/giselle/tatu. The specification of proof sys-
tems is done as described in Section 3. In particular, the clauses specifying a proof system
are separated into four parts: introduction clauses, structural clauses, cut clauses, and the
identity clauses.

The tool also contains the machinery necessary for checking the conditions described in
Section 5. It implements the static analysis described in Lemmas 5.2 and 5.4. As detailed at
the end of Section 5.1, the tool determines cases for when the cut rule can permute over other
introduction rules and for when an introduction rule permutes over another introduction rule.
Whenever some clauses of the encoding does not satisfy such criteria, then it outputs an error
message. Detecting corner cases can be useful for detecting design flaws in the specification
of a proof system. For the systems G1m and Lax, our tool was able to check that indeed
a proof with cuts can be transformed into a proof with principal cuts only. For the other
systems, it identified some permutations by vacuously that it could not prove automatically.
However, these can be easily checked manually.

For checking whether an encoding is cut-coherent, our tool performs bounded proof search,
where the bound is detemined as described in Theorem 5.11. In order to handle the problem of
context splitting during proof search, our tool implements the lazy splitting detailed in [4] for
linear logic. The method easily extends to SELLF. Another difference, however, is that our
system is one-sided classical logic. Therefore, we do not implement the back-chaining style
proof search used in [4], but rather proof search based on the focused discipline described in
Section 2. Furthermore, as previously mentioned, proof search is bounded by the height of
derivations, measured by the number of decide rules. This is enough for checking whether
an encoding is cut-coherent. In a similar fashion, the tool also checks by using bounded
proof search whether the encoded proof system is complete when using atomic initial rules
by checking whether the system is initial coherent (see Definition 5.12). For all the examples
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that we have implemented, our tool checks all the conditions described above in less than a
second.

7 Related Work
The present work has its foundations on the works [25, 19] by Miller, Nigam, and Pimentel,
where plain linear logic was used as the framework for specifying sequent systems, and
reasoning about them. The motivation for the generalization proposed here was based initially
on the fact that there are a number of proof systems that can be encoded SELLF but cannot
be encoded in the same declarative fashion (such as without mentioning side-formulas) in
linear logic without subexponentials. Moreover, the encodings in [19] are only on the level of
proofs and not on the level of derivations [25]. Therefore, proving adequacy in [19] involves
more complicated techniques than the simple proofs by induction on the height of focused
derivations used here. Finally, when trying to deal with the verification using SELLF, we
ended up being able to propose more general conditions for permutation of clauses, which
enabled more general criteria for proving cut-elimination of systems.

It turns out that specification and verification of proof systems is a very important branch of
the proof theory field. In fact, there exists a number of works willing to provide adequate tools
for dealing with systems in a general and yet natural way, making it possible then to use the
rich meta-theory proposed in order to reason about the specifications. For example, Pfenning
proposed a method of proving cut-elimination [28] from specifications in intuitionistic logic.
This method has been applied to a number of proof systems and implemented by using the
theorem prover Twelf [29]. For instance, the encoding of Lax logic and its cut-elimination
proof can be found at http://twelf.org/wiki/Lax_logic. It happens that this procedure
is only semi-automated, in the sense that, for any given proof system, one has to prove all the
permutation lemmas and reductions needed in the cut-elimination from scratch.

In the present paper, we adopted a more uniform approach, establishing general criteria
to the specification for proving properties of the specified systems. Since we are dealing
with classical linear logic (where negation is involutive), our encodings never mention side-
formulas, only the principal formulas of the rules. Such declarative specifications produce
not only clean and natural encodings, but it also allows for easy meta-level reasoning.

Ciabattoni and Terui in [6] have proposed a general method for extracting cut-free sequent
calculus proof systems from Hilbert style proof systems. Their method can be used for a
number of non-trivial logics, including intuitionistic linear logic extended with knotted struc-
tural rules. The main difference to our work is that they do not provide a decision criteria for
when a system falls into their framework. On the other hand, we do not provide means to
encode Hilbert style proof systems. It seems that our methods are complementary and can be
combined, so to enable the specification of Hilbert style proof systems as well as reason over
them. Thus, the challenges of integrating these methods have still to be investigated.

Checking whether a rule permutes over another was also topic of the recent work [15].
As in our approach, Lutovac and Harland investigate syntactic conditions which allow to
check the validity of such permutations. A number of cases of permutations and examples
are provided. A main difference to our approach is that we fixed the specification language,
namely SELLF, to specify inference rules and proof systems, whereas [15] does not make
such commitment. On one hand, we can only reason about systems “specifiable” in SELLF,
but on the other hand, the use a logical framework allows for the construction of a general
tool that can check for permutations automatically. It is not yet clear how one could construct
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a similar tool using the approach in [15]. On the other hand, Nigam, Reis and Lima used [27]
logic programming techniques to check which rule of a proof system specified in SELLF
permute over another rule. This study refines the permutation lemmas we established in this
paper.

8 Conclusions and Future Work
In this paper, we showed that it is possible to specify a number of non-trivial structural proper-
ties by using subexponential connectives. In particular, we demonstrated that it is possible to
specify proof systems whose sequents have multiple contexts that are treated as multisets or
sets. Moreover, it is possible to specify inference rules that require some formulas to be weak-
ened and inference rules that require some side-formula to be present in its conclusion. We
have also introduced the machinery for checking whether encoded proof systems have three
important properties, namely the admissibility of the cut rule, the completeness of atomic
identity rules, and the invertibility of rules. Finally, we have also build an implementation
that automatically checks some of these criteria.

There are a number of directions to follow from this work. One direction would be inves-
tigating the role of the polarity of atomic meta-level formulas in the specification of proof
systems using SELLF. Nigam and Miller [25] showed in a linear logic setting that a number
of proof systems can be faithfully encoded by playing with the polarity of atomic formulas.
Here, we assigned to all atomic formulas a negative polarity, but this choice is not enforced by
the completeness of the focusing strategy (see [20]). In fact, a different (global) assignment
for atoms could be chosen. However, to use such a technique here would imply a change on
the definition of bipoles, as with the current definition polarities would play a very limited
role because all atomic formulas are in the scope of a subexponential question-mark. We are
investigating alternative definitions, so that we can still use subexponentials in a sensible way
and at the same time play with the polarity of atomic formulas.

Another direction to be pursued would be analyzing different classes of systems other
than the canonical ones, such as to handle quasi-canonical systems, e.g., paraconsistent C-
systems [2] or Dyckhoff and Negri’s contraction-free G4ip [9]. It seems possible to en-
code the paraconsistent systems in SELLF with the strongest level of adequacy (adequacy of
derivations), while it seems only possible to encode G4ip with weaker levels of adequacy. In
both cases, however, the encodings are not-canonical and therefore the methods developed
here are not applicable. It would be interesting to develop more flexible conditions for check-
ing whether such systems that are not canonical admit cut-elimination. This task is left to
future work.

Finally, we could apply the notion of coherency in order to build the so called “harmonical
systems” [11]. In fact, harmonicity comes for free in coherent systems, due to Theorems 5.10
and 5.15. Furthermore, since we can also handle labelled systems, one could use all the ma-
chinery developed here in order to prove nice properties on harmonical mathematical systems
such as those containing geometric theories [22].
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