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Abstract

This work is about eliminating lemmas from constructive proofs. Proofs are represented using
intuitionistic sequent calculus and lemmas are cut inferences. So in the end we are actually
eliminating cuts from intuitionistic sequent calculus proofs. The way we do this is via a method
based on resolution. Why do we want to eliminate lemmas? Because it is important for proof
analysis. Different proofs of the same theorem might give us different insights on the theorem
itself. We use intuitionistic sequent calculus because we are interested in constructive proofs,
which, in principle, give us more information than a non-constructive proof. A constructive
proof can actually provide a concrete algorithm for solving a problem. We use a method based on
resolution inspired by CERES, which is cut-elimination by resolution for classical logic. CERES
can perform better than reductive cut-elimination, complexity-wise speaking, on some types of
proofs. Also, the resulting proof after eliminating the cuts via CERES can be different than
the ones reductive cut-elimination will yield, which means more information for mathematical
proof analysis. Our main goal is to develop a CERES-like method for intuitionistic logic such
that it has the same advantages as CERES for classical logic.

The CERES method, as is, for classical logic cannot be straightforwardly applied to intu-
itionistic calculi. The main difficulty comes from the fact that intuitionistic calculi are often
defined by some structural restriction on the sequent. These restrictions are bound to be violated
when performing some of CERES’ operations and because of this the resulting proof tends to be
classical. We need to modify the method such that it accommodates these restrictions and yields
intuitionistic cut-free proofs. This change can be done in many ways along the steps of CERES,
and several methods were developed.

Our first solution is based on the application of extra inferences to avoid the violations.
This turned out to work only for a subclass of intuitionistic logic. It involves using a new
resolution calculus and redefining the elements of CERES. The second solution works for the
same subclass, but with the original elements of CERES and a simple post-processing of the
final proof.

The third approach required an extensive study of rule permutations in the sequent calculus
for intuitionistic logic LJ. It is based on the observation that if the input proof is of a specific
shape, the final proof can be transformed into an intuitionistic proof by an operation we define.
The rule permutations are necessary to transform the input proof into this shape, and interest-
ingly enough, some unsoundness is allowed. This unsoundness comes from the permutation of
strong quantifier inferences. Usually, these are not allowed for they might generate eigenvariable
violations, but in our case, we can live with the violations and guarantee that they will not occur
on the final proof.

v



The fourth and fifth methods are not methods per se. The former defines a new way to
assemble the final proof in CERES and the latter is a resolution refinement that approximates
CERES to reductive cut-elimination. We conjecture that, by combining these operations we
obtain a cut-elimination method by resolution for intuitionistic logic (without strong quantifiers
in the theorem to be proven).

This thesis summarizes the main results in developing a method of cut-elimination by res-
olution for intuitionistic logic. Besides the methods already mentioned for sub-classes of this
logic, we also discuss the relation between CERES’ operations and intuitionistic logic, and pin-
point exactly where the problem lies. We finish the thesis with a conjecture that such a method
is possible. The proof of which we leave as future work.



Kurzfassung

Diese Arbeit behandelt die Elimination von Lemmata in konstruktiven Beweisen. Beweise wer-
den im ituitionistischen Sequentialkalkül dargestellt, Lemmata durch Gebrauch der Schnittre-
gel. Somit handelt diese Arbeit über Schnittelimination im intuitionistischen Sequentialkalkül.
Die dafür verwendete Methode beruht auf dem Resolutionsprinzip. Warum sollten wir Lemmata
überhaupt eliminieren? Der Grund dafür liegt in der Bedeutung für die Beweisanalyse. Verschie-
dene Beweise des selben Satzes können uns verschiedene Einsichten in den Satz selbst vermit-
teln. Wir verwenden den intuitionistischen Sequentialkalkül weil wir an konstruktiven Beweisen
interessiert sind, welche uns im Prinzip mehr Information liefern können als nicht-konstruktive.
Aus einem konstruktiver Beweis kann auch einen konkreter Algorithmus zur Lösung eines Pro-
blems gewonnen werden. Wir verwenden eine resolutions-basierte Methode inspiriert durch CE-
RES, welches eine Schnitteliminationsmethode für die klassische Logik auf Basis des Resolu-
tionskalküls ist. Auf bestimmten Beweistypen ist CERES der reduktiven Schnitteliminations-
methode in komplexitätstheoretischer Hinsicht überlegen. Auch die durch CERES gewonnenen
Beweise können von denen durch reduktive Methoden erhaltenen verschieden sein, und daher
mehr Information in der mathematischen Beweisanalyse liefern. Die Hauptaufgabe dieser Arbeit
ist es eine CERES-Typ Methode für die intuitionistische Logik zu entwickeln welche die selben
Vorteile bietet wie CERES in der klassischen Logik.

Die CERES-Methode, so wie sie für die klassische Logik definiert ist, kann nicht einfach
auf intuitionistische Kalküle übertragen werden. Das Hauptproblem kommt daher dass intui-
tionistische Kalküle vielfach über strukturelle Einschränkungen der Sequente definiert werden.
Diese Einschränkungen werden typischerweise durch die CERES-Operationen verletzt wodurch
ein nur klassischer Beweis entsteht. Aus diesem Grund muss die Methode modifiziert werden
sodass sie diese Einschränkungen beachtet und ein intuitionistischer Beweis resultiert. Diese
Modifikation (an den Schritten von CERES) kann auf verschiedene Weise geschehen und führt
zur Entwicklung verschiedener neuer Methoden.

Die erste Lösung besteht in der Anwendung zusätzlicher Inferenzen um die Regelverletzun-
gen zu vermeiden. Dieser Ansatz stellte sich für eine Unterklasse intuitionitischer Beweise als
sinnvoll heraus. Hier wird ein neuer Resolutionskalül entwickelt und die einzelnen Phasen von
CERES neu definiert. Die zweite Lösung, welche für die selbe Subklasse gilt, verwendet die
ursprüngliche CERES-Methode und wendet ein Postprocessing auf den resultierenden Beweis
an.

Der dritte Ansatz erforderte eine ausführliche Untersuchung der Regelpermutationen im Se-
quentialkalkül LJ für die intuitionistiche Logik. Der Ansatz beruht auf der Beobachtung, dass
für gewisse Beweisformen der CERES-Beweis durch Postprocessing in einen intuitionistischen
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Beweis transformiert werden kann (mit Transformationen die in dieser Arbeit definiert werden).
Die Regelpermutationen sind dabei nötig um die Beweise in diese Formen überzuführen, wo-
bei interessanterweise auch inkorrekte Beweistransformationen erlaubt sind. Die Inkorrektheit
entsteht dabei durch Permutation starker Quantorenregeln. Diese Inkorrektheit ist natürlich im
Allgemeinen inakzeptabel, in diesem Falle aber harmlos, da gezeigt werden kann dass diese im
Endbeweis wieder verschwinden.

Die vierte und fünfte Methode sind nicht Methoden per se. Die vierte liefert eine neue Me-
thode um den Endbeweis in CERES zusammen zu setzen, die fünfte ist eine Resolutionsver-
feinerung welche mittels CERES die reduktive Schnitteliminationsmethode approximiert. Wir
vermuten dass, durch Kombination von vier und fünf, eine vollständige Schnitteliminationsme-
thode für intuitionistischen Beweise von skolemisierten Sätzen entsteht.

Diese Arbeit fasst die Hauptresultate in der Entwicklung einer resolutions-basierten Metho-
de für die intuitionistische Logik zusammen. Außer den beschriebenen Methoden für Subklassen
der intuitionistischen Logik beschreiben wir auch das Verhalten zwischen CERES-Operationen
und der intuitionistischen Logik, und zeigen auf, wo genau die Probleme liegen. Am Ende der
Arbeit wird die Vermutung definiert, dass (wie oben beschrieben) eine vollständige Methode für
die intuitionistische Logik gewonnen werden kann; der Beweis davon ist Aufgabe zukünftiger
Forschung.
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CHAPTER 1
The Big Picture

“What is your PhD?” This is probably the first thing we get asked when people find out we are
doing a PhD. Unfortunately, this is also the most dreaded question of almost every PhD student
I know. I think it is because we get so involved in the work, and we worry so much about the
details to make something work, that we end up forgetting what that something is. And when
we get asked this question, we can immediately think of a million tiny things that need to be
solved, and that is effectively what we are doing in a daily basis, but that is not the answer the
other person is expecting. They want the big picture.

It is important not to loose track of what is the big picture. We must be able to understand
the purpose of what we are doing and to explain this to other people. Otherwise, how can we
convince funding agencies, employers, relatives and even ourselves of the importance of our
work? This chapter is dedicated to the big picture of my PhD.

1.1 Cut-elimination

Mathematicians are exact and precise people. Maybe because mathematics is an exact and
precise science. Problems need to be well defined, as well as solutions. Theorems need to be
proved. A correct proof is the utmost guarantee that a statement is true, while just one counter-
example is enough to state that a statement is false. We can say that mathematics revolves around
theorems and its proofs. This work is about proofs.

Proofs can be seen as mathematical objects themselves. Like any decent mathematical ob-
ject, there are some operations that can be performed with them. The problem with proofs is that
they are generally presented to people not as mathematical objects, but as a text in natural lan-
guage proving stuff about other mathematical objects. So it can be a bit hard to convince them
that we can work with proofs as we work with natural numbers, real numbers, graphs, trees, etc.
But take my word for it, they are also mathematical objects.

Have you ever thought how hard it would be to multiply one hundred and twenty three by
forty four? This looks much easier:

1
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Defining operations to a text might be a bit hard, so we have a formal language to represent
these proofs. This language is logic. We present it in Chapter 2.

So what can we do with proofs? Well, lots of things! We can for example develop computer
programs that will try to prove statements (semi-)automatically or that will check if a proof is
correct [1, 2]. We can compare proofs and identify common structures that might become new
mathematical concepts [29]. We can transform them in a systematic way and have new insights
from a different proof of a theorem [7]. We can develop ways of finding counter-examples of a
theorem from a failed proof [26]. We can extract algorithms from it [32]. Just to cite a few. The
research field that deals with formal proofs is called proof theory.

This work concerns proof transformation. More specifically, we try to develop an operation
that will eliminate the use of lemmas in a proof. Lemmas are helper statements that are used to
prove something. Suppose for example that you want to prove (x+ y)2 = x2 + 2xy + y2. You
can use the definition of exponentiation and do the following:

(x+ y)(x+ y) = xx+ xy + yx+ yy

Again using the definition of exponentiation, we obtain x2 and y2. Now we can use the fact
that multiplication is commutative as a lemma, and get 2xy. Formally, we would have to prove
that multiplication is commutative, and then carry on the proof of our main theorem.

The thing about lemmas is that they can be anything. They don’t even need to be within
the same theory of the theorem you are proving. We can, for example, prove something about
number theory using lemmas of topology [3]. Math can be tricky. By removing the lemmas of
a proof, we guarantee that this proof will be “pure”, meaning that it will use statements only of
the theory we are working with. Although the “lemmaless” proofs can be much longer, they can
also be conceptually simpler.

In the formal language we are using, lemmas corresponds to structures called cuts. There-
fore, cut-elimination will stand for lemma elimination.

1.2 Intuitionistic logic

We said before that, in order to define operations on proofs, we must represent them using a
formal language. In our case, this language is logic. But this is less exact than it sounds. There
are in fact hundreds of logics scattered around, so we have to pick one. We choose intuitionistic
logic.

“Why?”, you ask. Because intuitionistic proofs are special. Well, actually, constructive
proofs are special, and intuitionistic logic has a nice constructive flavor. One can argue that there
are better logics to deal with constructivism, but intuitionistic logic is one that has a solid math-
ematical justification and it makes sense to choose a more established and well-founded logic.
Although not the best constructive logic, the motivation for intuitionistic logic was Brouwer’s
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philosophy of intuitionism, in which a proposition is valid only if it can be constructed from a
set of axioms. This is the definition of constructivism itself.

But why is constructiveness so important? In general, constructive proofs are more informa-
tive than non-constructive proofs. Take for example the triangle inequality theorem:

Theorem 1. Let a, b and c be the lenghts of the sides of an arbitrary triangle such that c is the
length of the side opposite to the biggest angle. Then c < a+ b.

There is a non-constructive and a constructive proof for that.

Non-constructive Proof. Assume that c ≥ a + b. We know that a, b, c > 0, since these are
lengths of a triangle’s sides. Then we can square both sides:

c2 ≥ a2 + 2ab+ b2 > a2 + b2

From the transitivity of the operators, we conclude that c2 > a2 + b2.
But note that the Pythagorean theorem states that, for right triangles, c2 = a2 + b2, where c

is the hypotenuse, i.e., the side opposite to the biggest angle.
By assuming the contrary of the theorem, we reached a contradiction, therefore the theorem

holds.

Constructive Proof. Suppose we have the following triangle:

Then we know that c = x+ y. Using the trigonometric functions we can compute:

x = a cosα

y = b cosβ

We also know that 0o < α, β < 90o, therefore 0 < cosα, cosβ < 1 and a cosα < a and
b cosβ < b. Using the equation we obtain:

c = x+ y = a cosα+ b cosβ < a+ b

We can conclude then that the inequality holds.
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Note how different these proofs are. Although the constructive one seems a bit more com-
plicated, it proves the inequality by actually showing how to compute the value for c, and then
concluding that it holds. That’s the kind of information we like about constructive proofs. From
the non-constructive one, we simply know that the theorem holds, and nothing more.

Intuitionistic logic is an attempt to formalize this constructivism in a deductive system. An-
other reason why we choose this logic is the Curry-Howard isomorphism, which relates math-
ematical proofs to computer programs. In principle, we could extract algorithms from proofs
of statements. In our example, we can use the constructive proof to obtain an algorithm that
computes c in a triangle.

So there. We want to eliminate lemmas from constructive proofs. From now on we start
going into the details. We will show the formal language with which we represent proofs, then
we present a well-known method for eliminating these lemmas in this formalism (Chapter 2).
Then we go on to present another method to eliminate lemmas, on which our solution is based
(Chapter 3). The following chapters are dedicated to studying proof transformations inspired by
that of Chapter 3 which can work for a fragment of intuitionistic logic.

You might notice that nothing more will look constructive or like a proof at all, but let’s try
to keep the big picture in mind.
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CHAPTER 2
Logic

In order to facilitate, and possibly automate, the analysis of proofs, it is necessary to represent
them using a formal language. We are aware that using this language does not necessarily make
proofs more readable for humans, but it is essential for automation. In our case, we will use the
language of first-order logic.

2.1 Basic concepts

We start introducing basic concepts of logic. These are the building blocks of formal proofs.
Propositions (statements or theories) are represented using formulas, steps of reasoning are rep-
resented with inference rules and proofs are a set of structured inferences. We will explain each
of these elements now.

Formulas

The definition of formulas in first-order logic depends on the signature of the theory being
considered. This signature is simply a set of symbols and their roles. First of all, there is a set of
constant symbols, usually represented by lowercase letters from the beginning of the alphabet,
such as a, b and c. There is also a set of function symbols, which need to be specified with their
arities. These are represented by lowercase letters such as f , g and h. Variable symbols use
letters from the end of the alphabet, like x, y and z. Finally, there is a set of relation symbols
and their respective arities, represented by uppercase letters.

The most basic elements of a formula are terms.

Definition 1 (Term). A term is defined as follows:

• Any variable is a term.

• Any constant is a term.
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• If f is an n-ary function symbol, and t1, ..., tn are terms, then f(t1, ..., tn) is a term.

Since we are working on first-order logic, all terms have type ι, meaning that they are of one
simple elementary type, and not composed type such as ι→ ι. That said, ι could be instantiated
as any type, e.g., natural number, real number, fruits, animals, etc.

Using the terms, we can construct formulas.

Definition 2 (Formula). A formula is defined as follows:

• If R is an n-ary relation symbol and t1, ..., tn are terms, then R(t1, ..., tn) is a formula
(also called atomic formula).

• If F is a formula and x is a variable symbol, then ∀x.Fx and ∃x.Fx are formulas.

• If F is a formula, then ¬F is a formula.

• If F1 and F2 are formulas, then F1 ∧ F2, F1 ∨ F2 and F1 → F2 are formulas.

Each connective ∀, ∃,¬,∧,∨,→ takes its usual meaning, i.e., universal quantification, exis-
tential quantification, negation, conjunction, disjunction and implication, respectively.

Note that the only difference between function and relation symbols is that function symbols
are applied to a tuple of terms of type ι forming an expression of type ι, while relation symbols
are applied to tuples of terms of type ι but form an expression of type o (i.e. true or false).

In general, we will construct formulas using uppercase letters which are simply placeholders
for other formulas (possibly more complex).

Given a formula, it will be useful in the future to classify its sub-formulas as positive or
negative occurrences. For that we define the polarity of sub-formulas.

Definition 3 (polarity in a formula). Let F be a formula and F ′ a sub-formula of F . Then we
can define the polarity of F ′ in F , i.e., F ′ can be positive or negative in F , according to the
following criteria:

• If F ≡ F ′, then F ′ is positive in F .

• If F ≡ A ∧B or F ≡ A ∨B or F ≡ ∀x.A or F ≡ ∃x.A and F ′ is positive (negative) in
A or B, then F ′ is positive (negative) in F .

• If F ≡ A→ B and F ′ is positive (negative) in B, then F ′ is positive (negative) in F .

• If F ≡ A→ B and F ′ is positive (negative) in A, then F ′ is negative (positive) in F .

• If F ≡ ¬A and F ′ is positive (negative) in A, then F ′ is negative (positive) in F .

Another important concept that will be mentioned frequently is that of strong and week
quantifiers.
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Definition 4 (Strong and weak quantifiers). Let F be a formula. If ∀x occurs positively (neg-
atively) in F , then ∀x is called a strong (weak) quantifier. If ∃x occurs positively (negatively)
in F , then ∃x is called a weak (strong) quantifier. Let A1, ..., An ` B1, ..., Bm be a sequent.
A quantifier is called strong (weak) on this sequent if it is strong (weak) on the corresponding
formula A1 ∧ ... ∧An → B1 ∨ ... ∨Bm.

Using formulas we can represent propositions such as “the sum of even numbers is an even
number”:

∀x.∀y.(even(x) ∧ even(y)→ even(x+ y))

The signature of the theory in which this formula is being considered would need to have x
and y as variable symbols, + as a binary function symbol and even as a unary relational symbol.
Moreover, we could infer that ι, the type of terms, is the type of integers.

Sequents

Now that we can represent propositions using formulas, we need something to represent that
from a set of propositions other propositions can be derived (or proven). This is the role of
sequents.

Definition 5. A sequent is of the form Γ ` ∆, where Γ and ∆ are multi-sets of formulas. We say
that Γ is the antecedent while ∆ is the succedent.

Intuitively, it denotes that the conjunction of the formulas in Γ entails (or implies, repre-
sented by the symbol `) the disjunction of the formulas in ∆. This means that a sequent:

A1, ..., An ` B1, ..., Bm

where Ai and Bi are formulas, can actually be represented by the formula:

A1 ∧ ... ∧An → B1 ∨ ... ∨Bm
Why use sequents then? Because sequents (and not formulas) are used to specify deduction

steps that compose a proof in sequent calculus, which is presented next.
Analogous to the formula case, we can also define polarity of formulas within a sequent.

Definition 6 (polarity in a sequent). Let S = A1, ..., An ` B1, ..., Bm be a sequent. A formula
is said be positive (negative) in S if it is positive (negative) in the corresponding formula: A1 ∧
... ∧An → B1 ∨ ... ∨Bm.

Sequent Calculus

Sequent calculus is a deduction system in which proofs can be represented. The system is a set
of inference rules that operate on sequents. An example of such a rule is:

Γ ` ∆, A Γ ` ∆, B

Γ ` ∆, A ∧B
∧r
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Bottom-up this rule can be read as: in order to prove A∧B we need to prove A and we need
to prove B. Alternatively, we can read this rule top-down as: if we could prove A and we could
prove B, then we can certainly assume A ∧B.

Γ and ∆ are called the left and right contexts respectively. The sequent below the horizontal
line is called the conclusion and the sequents above the horizontal line are the premises. In
principle a sequent calculus rule can have any number of premises, but the systems used in this
work have only 0-, 1- or 2-premise rules. Moreover, A→ B is referred to as the main formula,
while A and B in the premises are auxiliary formulas.

In these rules, it is always the case that a proof of the premises implies in a proof of the
conclusion. Additionally, for some rules, the converse also holds, meaning that a proof of the
conclusion implies in a proof of the premises. We call these bidirectional rules invertible, while
the others are non-invertible.

Most of the rules in a sequent calculus system are what we call logical rules, meaning that
they operate on a formula and its sub-formulas, like the ∧r rule presented previously. But there
are also structural rules, like contraction (copies a formula - bottom-up), weakening (erases a
formula - bottom-up) and the famous cut (which will be explained soon with more details). Here
are left contraction, left weakening and the cut:

Γ, A,A ` ∆

Γ, A ` ∆
cl

Γ ` ∆
Γ, A ` ∆

wl
Γ ` ∆, A A,Γ ` ∆

Γ ` ∆
cut

The other type of rule in sequent calculus systems is the axiom, which is a 0-premise rule:

A ` A

Observe that the 2-premise, or binary, rules presented (∧r and cut) have the same left and
right contexts in the premises and conclusion. This is because they are additive rules. We can
also specify them as multiplicative rules:

Γ ` ∆, A Γ′ ` ∆′, B

Γ,Γ′ ` ∆,∆′, A ∧B
∧r

Γ ` ∆, A A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
cut

Note that in multiplicative rules the contexts from the conclusion are split among the premises.
When the structural rules of weakening and contraction are available in the calculus, it does not
matter if we use additive or multiplicative rules. In this work, we use mostly multiplicative
calculi.

Depending on which rules are available in a sequent calculus systems, some formulas are
derivable (meaning that they can be proved) while others are not. So naturally, different logics
have different sequent calculus systems. Of course the relation is not one to one. There are sets
of rules that do not represent any logic, while there are different sets of rules that represent the
same logic.
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Proofs

So we have formulas that represent propositions, they can be organized in sequents to which
rules of a sequent calculus are applied. How does this make a proof?

A proof of a sequent Γ ` ∆ in a sequent calculus S is a tree composed by rules of S having
Γ ` ∆ as the root, or end-sequent, and axioms as the leaves. In general, this “tree” is upside-
down of the usual way trees are represented in computer science. Here’s a proof of a simple
statement:

even(2) ` even(2) even(4) ` even(4)

even(2), even(4) ` even(2) ∧ even(4)
∧r

even(2 + 4) ` even(2 + 4)

even(2), even(4), even(2) ∧ even(4)→ even(2 + 4) ` even(2 + 4)
→l

even(2), even(4),∀y.(even(2) ∧ even(y)→ even(2 + y)) ` even(2 + 4)
∀l

even(2), even(4),∀x.∀y.(even(x) ∧ even(y)→ even(x+ y)) ` even(2 + 4)
∀l

Sometimes we will use a double line to indicate that more than one inference rule was
applied.

One thing I learned in the past years is that people read proofs differently. Some read them
bottom-up, others read them top-down, and it is often unclear to refer to an inference application
“before” or “after” another. I also learned that both directions have their merits, and in this thesis
there are some situations in which one or the other makes sense. I try to make it always clear in
which direction I am working.

2.2 Logics

Earlier I said that different sequent calculus systems correspond to different logics. Yes, logics,
in plural. You’d think that a logic is what is logical, it is correct reasoning, so how can there be
more than one? Well, first of all, you might have found out by now that there’s no such thing
as the correct reasoning. Secondly, the logic as we learn in school (ands and ors operations,
negations, etc.) is not the logic our brains reasons with. There is research in this direction
though [31], they try to find what is the brain’s logic basically.

A logic can be defined in many ways. And “what is a logic” can be a very philosophical
question. Since I did not study philosophy, I apologize to the philosophers in advance, and
define a logic as I think suits best for this work.

Since a logic can be represented by different sequent calculi, this is obviously not a good
way to define it. At the same time, it is not all that bad. But in this work there are different
calculi for the same logic, so it is not a reasonable definition. First of all, a logic has a set of
operators. All the logics we are dealing with in this work use the operators: ∧, ∨, ¬,→, ∀ and
∃. When we work with formulas that do not contain the quantifiers ∀ and ∃, we say that we
are in propositional logic. If the quantifiers are present, we call it predicate logic. Then there
is a meaning for each of those operators, what we call semantics. The semantics might seem
clear to you now, but there are subtle differences which result in different logics. Apart from the
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operators, a logic has also a set of truth values, which can be two, three, finitely or even infinitely
many. In our case, we have two truth values: true and false.

Given a signature and these operators, we can construct well-defined formulas in a logic.
Depending on the semantics of the operators, the interpretation given to each symbol and the
domain considered, these formulas might be satisfiable, valid or neither. We say that the in-
terpretation of the symbols and the domain compose a model. A formula is satisfiable if it is
evaluated to true in at least one model, and it is valid if it is evaluated to true in every model.
Take for example the formula:

∀x.(A(x)→ B(x))

If we interpretA(x) as x is natural andB(x) as x is an integer and take Z as the domain, then
the formula is of course true (considering the most natural semantics of ∀ and→). Therefore,
the formula is satisfiable. If, on the other hand, we interpret A(x) as x is an integer and B(x) as
x is natural, then the formula will be false if we consider the domain Z. We can conclude then
that it is not valid.

In contrast to that, the formula ∀x.(A(x) → A(x)) is valid. Note that this will be true
independently of how we interpret A(x) and which domain we choose. We will define a logic
as the set of valid formulas. Moreover, this set should be closed under consequence, i.e., if
A1, ..., An are valid formulas and they entail another formula B, then B must also be valid.

In this work we will use two logics: classical and intuitionistic. We can say that the set
of valid first-order formulas in intuitionistic logic is a subset of valid first-order formulas in
classical logic. The same holds for proofs. In the next sessions we define each logic in detail.

2.3 Classical Logic

Classical logic is probably the logic that non-logicians have in mind when I say that I work with
logic. Its sequent calculus, called LK, is depicted in Figure 2.1 and every valid formula has a
proof using these rules. Classical logic can be seen as the logic of stable truth, in the sense that
every sentence is always either true or false. One evidence of this is the fact that the principle of
excluded middle holds in this logic. This is a proof of this principle in the sequent calculus LK:

A ` A
` A,¬A

¬r

` A,A ∨ ¬A
∨r2

` A ∨ ¬A,A ∨ ¬A
∨r1

` A ∨ ¬A
cr

The operators of classical logic have a most natural semantics, which use exactly their natural
language counterparts. In order to describe the semantics of logics, we will use the satisfiability
relation �. The expressionM � F denotes that F is evaluated to true in modelM (remember
that a model is simply an interpretation I of the symbols and a domain D). Then the semantics
of classical logic can be stated as:
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A ` A [I]
Γ1 ` ∆1, P Γ2, P ` ∆2

Γ1,Γ2 ` ∆1,∆2
[Cut]

Γ ` ∆, P

Γ,¬P ` ∆
[¬l]

Γ, P ` ∆

Γ ` ∆,¬P [¬r]

Pi,Γ ` ∆

P1 ∧ P2,Γ ` ∆
[∧li]

Γ1 ` ∆1, P Γ2 ` ∆2, Q

Γ1,Γ2 ` ∆1,∆2, P ∧Q
[∧r]

P,Γ1 ` ∆1 Q,Γ2 ` ∆2

P ∨Q,Γ1,Γ2 ` ∆1,∆2
[∨l]

Γ ` ∆, Pi
Γ ` ∆, P1 ∨ P2

[∨ri]

Γ1 ` ∆1, P Q,Γ2 ` ∆2

P → Q,Γ1,Γ2 ` ∆1,∆2
[→l]

Γ, P ` ∆, Q

Γ ` ∆, P → Q
[→r]

P{x← α},Γ ` ∆

∃x.P,Γ ` ∆
[∃l]

Γ ` ∆, P{x← t}
Γ ` ∆,∃x.P [∃r]

P{x← t},Γ ` ∆

∀x.P,Γ ` ∆
[∀l]

Γ ` ∆, P{x← α}
Γ ` ∆,∀x.P [∀r]

P, P,Γ ` ∆

P,Γ ` ∆
[Cl]

Γ ` ∆, P, P

Γ ` ∆, P
[Cr]

Γ ` ∆
P,Γ ` ∆

[Wl]
Γ ` ∆

Γ ` ∆, P
[Wr]

Figure 2.1: LK: Sequent calculus for classical logic. It is assumed that α is a variable not
contained in P , Γ or ∆, t does not contain variables bound in P and i ∈ {1, 2}.

M � ¬F iff it is not the case thatM � F
M � F1 ∧ F2 iffM � F1 andM � F2

M � F1 ∨ F2 iffM � F1 orM � F2

M � F1 → F2 iff ifM � F1 thenM � F2

M � ∀x.F (x) iff for every d ∈ D thenM � F [x← d]

M � ∃x.F (x) iff there exists a d ∈ D such thatM � F [x← d]

A formula F is valid in classical logic if it is satisfied by every model, i.e., for all M,
M � F . Observe that F [x← d] stands for interpreting x with d in F .

For untrained eyes, this might seem a lot of formalism for something very simple (almost
stupid). But I hope you will be convinced otherwise when the semantics of intuitionistic logic is
presented. A very small change in the interpretation of these symbols turn out to make a huge
difference.

Note that the semantic description of the operators of a logic might not be unique.
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2.4 Intuitionistic Logic

If classical logic can be seen as the logic of stable truth, intuitionistic logic can be seen as the
logic of stable proof. In this logic, a sentence is only considered to be valid if there is a proof
of it, and we cannot emphasize enough that a lack of proof of the negation of a sentence is not
a proof of the sentence. As you may suspect, the principle of excluded middle does not hold in
intuitionistic logic, and you will not be able to prove it with either calculi presented here (Figures
2.2 and 2.3). For this reason, intuitionistic logic has some interesting properties.

If one wants an intuitionistic proof of a disjunction of factsA1∨ ...∨An, then this proof will
indicate exactly which disjunct(s) is(are) true. This is called the disjunctive property. Also, from
an intuitionistic proof (without ∨l) of an existential statement, such as ∃x.P (x), one can obtain
a term a for which P (a) holds. This is called the witness property. Although every intuitionistic
proof is also a classical proof, these properties of course do not always hold in classical logic.
For this reason, intuitionistic logic is often referred to as a constructive logic1. This constructive
flavor is useful in a number of situations, for example, when we want not only to find whether
something has a solution but also what is the solution and how to obtain it. In the book “A Course
in Constructive Algebra”, by Mines, Richman and Ruitenburg, there is a nice comparison of the
two worlds:

The classical view of mathematics is essentially descriptive: we try to describe the
facts about a static mathematical universe. Thus, for example, we report that every
polynomial of odd degree has a root, and that there is a digit that occurs infinitely
often in the decimal expansion of π. In opposition to this is the constructive view of
mathematics, which focuses the attention to the dynamic interaction of the individ-
ual with the mathematical universe; in the words of Hao Wang, it is a mathematics
of doing, rather then a mathematics of being. The constructive mathematician must
show how to construct a root of a polynomial of odd degree, and how to find a digit
that occurs infinitely many often in the decimal expansion of π.

The change from classical to intuitionistic truth can be observed on the Brouwer-Heyting-
Kolmogorov intepretation, which states what is intended to be a proof of a formula:

F1 ∧ F2 : is a pair 〈p1, p2〉, where p1 is a proof of F1 and p2 is a proof of F2

F1 ∨ F2 : is a proof p of either F1 or F2 (with an indication as to which conjunct p proves)

F1 → F2 : is a function that transforms a proof of F1 into a proof of F2

¬F : interpreted as F → ⊥
∀x.F : is a function that converts any element a of the domain into a proof of F (a)

∃x.F : is an element a of the domain and a proof p of F (a)

atomic F : the interpretation of primitive propositions is assumed to be known from the context

⊥ : there is no proof of absurdity

1But this is disputable

12



We can observe, using this interpretation, how the logical connectives are independent in
intuitionistic logic. In classical logic, A∨B is equivalent to ¬(¬A∧¬B), hence the validity of
DeMorgan’s rules. Using the BHK-interpretation, A∨B indicates either a proof of A or a proof
of B, while ¬(¬A ∧ ¬B) indicates a function capable of transforming a pair of proofs of ¬A
and ¬B into a proof of a contradiction. Since these formulas have different interpretations, we
can expect that the DeMorgan rules are no longer valid in intuitionistic logic.

Note an interesting thing about this interpretation: ∀ and → (and consequently ¬) are in-
terpreted as functions. This already hints to a connection between intuitionistic logic and com-
putation which is formalized by the Curry-Howard isomorphism. Also known as the proofs-
as-programs interpretation, it describes the relationship between computer programs and math-
ematical proofs. This relationship relies heavily on type theory, developed by Russel on the
beginning of the 20th century.

In the Curry-Howard isomorphism, proofs are seen as programs and formulas are interpreted
as types, while the logical connectives are operations between types (e.g., → is the functional
type, as expected, ∧ is the product type, such as that of pairs, tuples or lists, and∨ is the sum type,
in which the conjuncts are eliminated via pattern matching). Using this interpretation, interesting
connections were found. Relevant to this work is the correspondence between intuitionistic
natural deduction and simply typed λ-calculus, which is a computation model. This is what
makes intuitionistic logic so interesting for computer science.

As we mentioned before, the semantics of intuitionistic logic is slightly different from the
classical one. We present here the Kripke semantics, also called possible world semantics, which
is based on the existence of worlds containing models that can satisfy formulas. These worlds
are connected via an accessibility relation denoted by �. Let’s say that w and v are worlds, then
w � v means that v can be reached from w. We can see these worlds and relations as a directed
graph. This graph will be a Kripke structure if it satisfies some properties. First of all, the set of
worlds plus the accessibility relation must be a partially ordered set, i.e., the relation � has the
following properties:

w � w (reflexivity)

w � v and v � w then w = v (antisymmetry)

w � v and v � u then w � u (transitivity)

Moreover, the structure should be monotone on the domain available and on the truth value
assignment. Let Dw denote the domain of the model in world w. Then:

w � v ⇒ Dw ⊆ Dv
w � v ∧ w � F ⇒ v � F

This characteristic can be interpreted as an ever growing knowledge. Every step further in
the graph, the information you have is at least what you had in the previous state, possibly more.

Now, given the Kripke structure, we define the Kripke semantics for intuitionistic logic:
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w � F1 ∧ F2 iff w � F1 and w � F2

w � F1 ∨ F2 iff w � F1 or w � F2

w � F1 → F2 iff for every v such that w � v, if v � F1 then v � F2

w � ¬F iff there is no v, w � v, such that v � F

w � ∀x.F (x) iff for every v, w � v, and every d ∈ Dv then v � F (d)

w � ∃x.F (x) iff there exists a d ∈ D such that w � F (d)

Observe that the semantics of →, ¬ and ∀ depends not only on this world, but on all the
followings.

A formula F is valid in intuitionistic logic if and only if it is satisfied in every world of every
possible Kripke structure. On the other hand, to show that a formula is not valid, we need only
to show a Kripke structure in which it is not satisfied in every world.

As a deductive system for intuitionistic logic, we will use two different sequent calculi. One
of them, probably the most well-known sequent calculus for this logic, is called LJ. If you
compare this to LK, you will see that they are very similar. In fact, LJ is basically LK with
the restriction that the consequent of the sequent can have at most one formula. This calculus is
depicted in Figure 2.2.

For some reasons that we will point out later on, we will also use what is called a multi-
conclusion calculus for intuitionistic logic. This is depicted in Figure 2.3. You can notice that
LJ’ is somewhere between LK and LJ, with some rules having multiple formulas on the right
while other only allow the main formula, namely→r, ¬r and ∀r.

As mentioned before, the principle of excluded middle, A∨¬A, is not valid in intuitionistic
logic. You can check that it is not derivable in either of the calculi presented.

2.5 Cut-elimination

An important proof transformation for proof analysis is the elimination of unnecessary lemmas
for obtaining potentially simpler (or at least more direct) proofs. When a mathematical proof is
formalized in the sequent calculus LK, LJ or LJ’, the application of lemmas correspond to cuts.

Throughout this document we will use the following configurations of the cut rule:

Γ ` ∆, A A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
cut

or
Γ ` A A,Γ′ ` C

Γ,Γ′ ` C cut

Note that it has no main formula.
Cut-elimination is the procedure of removing the cut rules, and therefore, removing interme-

diate lemmas. A proof without cuts has the subformula property: all formulas on the proof are
(instances of) subformulas of end-sequent formulas. Consequently, cut-free proofs of a theorem
will use only the theorem’s theory itself.
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A ` A [I]
Γ1 ` P Γ2, P ` C

Γ1,Γ2 ` C
[Cut]

Γ ` P
Γ,¬P ` [¬l]

Γ, P `
Γ ` ¬P [¬r]

Pi,Γ ` C
P1 ∧ P2,Γ ` C

[∧li]
Γ ` P Γ ` Q

Γ ` P ∧Q [∧r]

P,Γ ` C Q,Γ ` C
P ∨Q,Γ ` C [∨l]

Γ ` Pi
Γ ` P1 ∨ P2

[∨ri]

Γ1 ` P Q,Γ2 ` C
P → Q,Γ1,Γ2 ` C

[→l]
Γ, P ` Q

Γ ` P → Q
[→r]

P{x← α},Γ ` C
∃x.P,Γ ` C [∃l]

Γ ` P{x← t}
Γ ` ∃x.P [∃r]

P{x← t},Γ ` C
∀x.P,Γ ` C [∀l]

Γ ` P{x← α}
Γ ` ∀x.P [∀r]

P, P,Γ ` C
P,Γ ` C [Cl]

Γ ` C
P,Γ ` C [Wl]

Γ `
Γ ` P [Wr]

Figure 2.2: LJ: Sequent calculus for intuitionistic logic. It is assumed that α is a variable not
contained in P , Γ or C and t does not contain variables bound in P . Also, C stands for one
formula or the empty set.

The main result on cut-elimination - the Hauptsatz - was proven by Gentzen [15, 16] in
1935. It states that the cut rule is admissible in LK and LJ. This means that every proof with
cuts can be transformed into a cut-free proof. Gentzen’s proof of the Hauptsatz actually contains
an algorithm for removing the cuts from a proof. The method and some of its variants are often
referred to as reductive cut-elimination, because they are based on local proof-rewriting rules
that gradually reduce the complexity of the cut formula until reaching atomic cuts, which can be
completely removed. The rewriting rules for the systems LK and LJ are listed in the Appendix
A and we distinguish three types:

Definition 7 (Elimination rule). We call elimination rules the rewriting operation that removes
a cut because one of the auxiliary formulas was weakened or used in an axiom (see example in
Figure 2.6).

Definition 8 (Rank reduction). We call rank reduction the rewriting operation that permutes the
cut rule over other rules in a proof (see example in Figure 2.5).

Definition 9 (Grade reduction). We call grade reduction the rewriting operation that transforms
a cut on a formula into a cut (or cuts) on simpler formulas, i.e. formulas with less connectives
(see example in Figure 2.4).
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Γ ` A,∆ Γ′, B ` ∆′

Γ,Γ′, A→ B ` ∆,∆′
→l

Γ, A ` B
Γ ` A→ B,∆

→r

Γ, A,B ` ∆

Γ, A ∧B ` ∆
∧l

Γ ` A,∆ Γ′ ` B,∆′

Γ,Γ′ ` A ∧B,∆,∆′
∧r

Γ, A ` ∆ Γ′, B ` ∆′

Γ,Γ′, A ∨B ` ∆,∆′
∨l

Γ ` A,B,∆
Γ ` A ∨B,∆

∨r

Γ, A{t/x} ` ∆

Γ,∀xA ` ∆
∀l

Γ ` A{c/x}
Γ ` ∆,∀xA ∀r

Γ, A{c/x} ` ∆

Γ,∃xA ` ∆
∃l

Γ ` ∆, A{t/x}
Γ ` ∆,∃xA ∃r

Γ ` A,∆
Γ,¬A ` ∆

¬l
Γ, A `

Γ ` ¬A,∆
¬r

A ` A init
Γ ` B,∆ Γ′, B ` ∆′

Γ,Γ′ ` ∆,∆′
cut

Γ, A,A ` ∆

Γ, A ` ∆
cl

Γ ` A,A,∆
Γ ` A,∆

cr

Γ ` ∆
Γ, A ` ∆

wl
Γ ` ∆

Γ ` A,∆
wr

Figure 2.3: The multi-conclusion intuitionistic sequent calculus, LJ’, with multiplicative rules.

ϕ1

Γ1 ` P
ϕ2

Γ2, Q ` A
Γ, P → Q ` A

→l

ϕ3

A,Γ′ ` ∆

Γ, P → Q,Γ′ ` ∆
cut

 

ϕ1

Γ1 ` P

ϕ2

Γ2, Q ` A

ϕ3

A,Γ′ ` ∆

Γ2, Q,Γ
′ ` ∆

cut

Γ, P → Q,Γ′ ` ∆,∆′
→l

Figure 2.4: Rewriting rule that permutes a cut over a→l inference.

Using the rewriting rules, reductive cut-elimination methods perform the following opera-
tions iteratively:

• Permute the cut rule until it becomes principal (the inferences immediately above the cut
are those that operate on the cut-formula) using rank reduction rules.

• Reduce the complexity of this cut using grade reduction rules.

• Remove the cut using elimination rules.

This is based on local operations, and since there is no unique normal form for proofs,
different cut-free proofs can be obtained if the rewriting is done in a different order.
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ϕ1

Γ ` A1

ϕ2

Γ′ ` A2

Γ,Γ′ ` A1 ∧A2

∧r

ϕ3

Ai,Γ
′′ ` ∆

A1 ∧A2,Γ
′′ ` ∆

∧li

Γ,Γ′,Γ′′ ` ∆
cut

 

ϕ1

Γ ` A1

ϕ2

Γ′ ` A2

ϕ3

Ai,Γ
′′ ` ∆

A1, A2,Γ
′′ ` ∆

wl

A1,Γ
′,Γ′′ ` ∆

cut

Γ,Γ′,Γ′′ ` ∆
cut

Figure 2.5: Rewriting rule that reduces the complexity of the cut in a proof.

A ` A
ϕ

A,Γ ` ∆

Γ, A ` ∆
cut

 

ϕ

A,Γ ` ∆

Figure 2.6: Rewriting rule that eliminates an atomic cut.

If we are interested in eliminating cuts from proofs, we need to make sure that the cut is
actually “eliminable”, i.e., admissible in the calculi we are working with. Gentzen’s Hauptsatz
tells us this is the case for LK and LJ. But we are also working with another calculus: LJ’.

Theorem 2. The cut rule is admissible in LJ’.

The proof of cut-elimination for LJ’ is not exactly like the one for the other calculi. Since
the rules vary in single and multiple conclusion, some permutations are not possible, and this
can be a bit tricky. In order to prove the theorem, we use some lemmas.

First of all, we need to state when the permutations of the cut work and when they don’t.
This concerns rank reduction rules.

Lemma 1. The cut rule permutes over all rules on the left branch.

Lemma 2. The cut rule permute over all rules on the right branch except→r, ∀r and ¬r.

We will also need to deal with permutations of other rules.

Lemma 3. Every rule permutes over invertible rules.

Using these lemmas we can prove cut-elimination for LJ’.

Proof. By Lemma 1 we conclude that it is always possible to make the cut principal on the left
branch. If the rule operating on it is an axiom or weakening, the cut can be removed and we are
done. If, on the other hand, this rule is a logical rule, we need to make the cut principal also on
the right to apply one of the grade reduction rules.

From Lemma 2 we know that it is not always possible to permute the cut on the right branch.
Assume we’ve reached a→r, ∀r or ¬r on the right side. Now we have to distinguish on what
cut-formula we have.
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If this cut formula has →, ¬ or ∀ as the topmost connective, then the context of the left
branch is empty (given that the cut is principal on the left). In this case, the cut can be permuted
over the rule on the right, like it is done in LJ.

If the cut formula has ∨, ∧ or ∃ as its main connective, then the rule operating on the cut
formula on the right branch will be ∨l, ∧l or ∃l. But these rules are invertible. By Lemma 3, we
can guarantee that it is possible to push this rule down the proof until it reaches the cut, making
it principal on both sides.

Using these operations, we can always reduce the complexity of the cut formula until even-
tually eliminating it completely. Thus, the cut rule is admissible in LJ’.
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CHAPTER 3
The CERES method

The method CERES [10] (cut elimination by resolution) is an alternative to reductive cut-
elimination, and it is proven to have a non-elementary speed up over the latter. CERES was
first developed for first order classical logic, and then extended to second and higher order
logic [18, 19]. It has also been adapted to multi-valued logics [11] and Gödel logic [5]. The
method has been implemented1 and applied successfully to proofs of moderate size, such as the
tape proof [6] and the lattice proof [20], in fully automatic mode. Also, Fürstenberg’s proof of
the infinitude of primes was successfully transformed, semi-automatically, into Euclid’s argu-
ment of prime construction using CERES [7].

In contrast to reductive methods, which remove each cut step by step, the CERES method
removes all cuts simultaneously. It performs global operations in the proof, extracting relevant
data which are later joined in a new proof containing only atomic cuts2. The advantage of this
approach is its non-elementary speed-up over reductive methods.

3.1 CERES in drawings

Let ϕ be an LK proof of a sequent S. Then, the method consists of:

1. Skolemizing ϕ.

The method requires that the end-sequent contains no occurrence of ∀ on the right and
∃ on the left (because of the eigenvariable condition associated with the rules for these
connectives). In order to achieve this, the proof needs to be skolemized, which means that
eigenvariables are replaced by skolem terms. After obtaining the final proof, this operation
is reversed, resulting in a proof of the original end-sequent.

1http://code.google.com/p/gapt/
2The presence of atomic cuts is not a problem, since the complexity of removing those is considerably smaller

than that of removing arbitrary cuts.
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2. Constructing the characteristic clause set CL(ϕ).

Whenever a cut rule is applied, a new formula is introduced in the proof (bottom-up in-
terpretation). This cut formula is then decomposed, and some of the atoms which came
from this formula go into leaves of the proof. Figure 3.1 illustrates this situation. Consider
that the yellow triangle is ϕ. Each red trace represents a cut (on its vertices) and the cut
ancestors used trough out the proof. These cut ancestors may end up in axioms3 Ci ◦ Si,
where Ci is the part of the sequent composed of cut ancestors and Si is the part of the
sequent composed of end-sequent ancestors. The characteristic clause set contains these4

Ci.

Figure 3.1: ϕ with cut and cut-ancestor highlighted.

3. Constructing a projection πi for each Ci ∈ CL(ϕ).

Considering that each Ci is a subsequent of one or more axioms of the proof, it is possible
to rebuild the proof from those axioms using only the rules that operate on end-sequent
ancestors, thus leaving the atoms that came from cut-formulas unchanged. This will result
in a proof of S ◦ Ci, where S is the end-sequent of ϕ (one may need to apply some
weakenings to get S). This proof is the projection πi of Ci and it is shown in Figure 3.2.

Figure 3.2: Projection of clause Ci from the clause set.

4. Finding a resolution refutation R of CL(ϕ).

A crucial property of the characteristic clause set is that it is refutable. This means that
there is a resolution refutation of this set of clauses, which is just a derivation of the empty
sequent (`) from the clauses of the characteristic clause set. The resolution refutation is
represented in Figure 3.3, and each Ci might be used zero or more times.

3(Γ ` ∆) ◦ (Γ′ ` ∆′) = Γ,Γ′ ` ∆,∆′
4Please keep in mind that these are combined in a particular way, and one Ci might come from several leaves.
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Figure 3.3: Resolution refutation of the characteristic clause set.

5. Merging the projections πi and the resolution refutation R.

The last step consists of merging the previous elements. The projection for each Ci will
be put immediately above the leaf of the resolution refutation that used the same Ci, the
proper substitutions will be made and the end-sequent is merged down this branch until the
root. After plugging in all the projections, a proof of S with only atomic cuts is obtained.
Note that each resolution step is translated into an atomic cut, and the other rules of the
resolution calculus are also rules in LK. Figure 3.4 represents the final proof with only
atomic cuts, which in fact only occur in the lower triangle.

Figure 3.4: Final proof with atomic cuts obtained after merging the projections with the resolu-
tion refutation.

The CERES method, as it is, can in fact be applied to LJ proofs. The problem is that the final
proof obtained, with only atomic cuts, is often an LK proof, which is an undesirable effect. This
happens mainly because of the transformations of removing some rules to build the projections
and the merging of elements (projections and resolution refutation) to obtain the final proof,
which results on some sequents having more than one formula on the right side.

3.2 CERES in details

Now that you have a general idea of what the CERES method is, let’s explain it in detail.
For proof skolemization we refer the reader to [9] (Proposition 4.2), but the procedure con-

sists basically on skolemizing the end-sequent and transforming the proof by removing the
strong-quantifier inferences. The reason why skolemization is needed will be clear in the ex-
ample we use throughout this section.

Let ϕ be the following proof, in which cut-formulas and its ancestors are colored in green:
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Pα ` Pα
¬Pα, Pα `

¬l

¬Pα ` ¬Pα
¬r

Qα ` Qα
¬Pα ∨Qα ` ¬Pα,Qα

∨l

¬Pα ∨Qα ` ¬Pα ∨Qα,¬Pα ∨Qα ∨r × 2

¬Pα ∨Qα ` ¬Pα ∨Qα
cr

∀x.(¬Px ∨Qx) ` ¬Pα ∨Qα ∀l

∀x.(¬Px ∨Qx) ` ∃y.(¬Pα ∨Qy)
∃r

∀x.(¬Px ∨Qx) ` ∀x.∃y.(¬Px ∨Qy)
∀r

Pa ` Pa
¬Pa, Pa `

¬l

¬Pa ` ¬Pa
¬r

Qβ ` Qβ
¬Pa ∨Qβ ` ¬Pa,Qβ

∨l

¬Pa ∨Qβ ` ¬Pa ∨Qβ,¬Pa ∨Qβ ∨r × 2

¬Pa ∨Qβ ` ¬Pa ∨Qβ
cr

¬Pa ∨Qβ ` ∃x.∃y.(¬Px ∨Qy)
∃r × 2

∃y.(¬Pa ∨Qy) ` ∃x.∃y.(¬Px ∨Qy)
∃l

∀x.∃y.(¬Px ∨Qy) ` ∃x.∃y.(¬Px ∨Qy)
∀l

∀x.(¬Px ∨Qx) ` ∃x.∃y.(¬Px ∨Qy)
cut

We start thus with the extraction of the clause set.

Definition 10 (Clause-set). The clause set is built recursively from the leaves of the proof until
the end sequent. Let ν be a sequent in this proof. Then:

• If ν is an axiom, thenCL(ν) contains the sub-sequent of ν composed only of cut ancestors.

• If ν is the result of the application of a unary rule on a sequent µ, then CL(ν) = CL(µ)

• If ν is the result of the application of a binary rule on sequents µ1 and µ2, then we
distinguish two cases:

– If the rule is applied to ancestors of the cut formula, then CL(ν) = CL(µ1) ∪
CL(µ2)

– If the rule is applied to ancestors of the end sequent, then CL(ν) = CL(µ1) ×
CL(µ2)

Where5:

CL(µ1)× CL(µ2) = {C ◦D|C ∈ CL(µ1), D ∈ CL(µ2)

The clause set of ϕ is:

({Pα `} × {` Qα}) ∪ {` Pa} ∪ {Qβ `}

Which reduces to:

CL(ϕ) = {Pα ` Qα ; ` Pa ; Qβ `}

Alternatively, we can work with a clause-set struct.

5The operation ◦ represents the merging of sequents, i.e., (Γ ` ∆) ◦ (Γ′ ` ∆′) = Γ,Γ′ ` ∆,∆′.
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Definition 11 (Clause-set struct). The clause set struct is built analogously to a clause set, except
that instead of applying the operators ∪ and ×, we use ⊕ and ⊗ respectively.

The clause-set struct of ϕ, in a tree representation, is:

⊕

⊕

` PaQβ `

⊗

Pα `` Qα

Projections are derivations built for each of the clauses in the clause set. Intuitively, projec-
tions are derivations from the axioms from where the clause was collected until the end sequent
considering only the rules applied to end sequent ancestors.

Definition 12 (Projection). Let C be a clause which contains atoms from the axiom set A. Let
ξ be an inference on the path between the end sequent and axioms A. We define the projection
π(C) as the derivation built recursively from the axioms A:

• If ξ is an axiom, the derivation is ξ itself.

• If ξ is a unary rule:

– If ξ operates on a cut ancestor, the derivation does not change.

– If ξ operates on an end sequent ancestor, the derivation will be increased by the
application of this rule.

• If ξ is a binary rule:

– If ξ operates on a cut ancestor, then each branch generated different clauses (observe
how clauses are built). In this case, two derivations will be generated, one for each
branch, without applying ξ. These derivations will have the same rules applied from
this sequent down, but the sequents will have different cut ancestor formulas.

– If ξ operates on an end sequent ancestor, the derivation will be increased by the
application of this rule.

In each step, it might be necessary to weaken the auxiliary formulas of an inference. More-
over, if all formulas of the end-sequent are not present after constructing the projection, they are
weakened as well.

Note that cut-ancestors (from the clause) are just dragged down in the sequent, without
changes.

The clause set of ϕ has three clauses. Consequently, there are three projections:
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π(` Pa)

Pa ` Pa
` Pa,¬Pa

¬r

` Pa,¬Pa ∨Qβ
∨r

` Pa,∃x.∃y.(¬Px ∨Qy)
∃r × 2

∀x.(¬Px ∨Qx) ` Pa,∃x.∃y.(¬Px ∨Qy)
wl

π(Qβ `)

Qβ ` Qβ
Qβ ` ¬Pa ∨Qβ

∨r

Qβ ` ∃x.∃y.(¬Px ∨Qy)
∃r × 2

∀x.(¬Px ∨Qx), Qβ ` ∃x.∃y.(¬Px ∨Qy)
wl

π(Pα ` Qα)

Pα ` Pα
¬Pα, Pα `

¬l
Qα ` Qα

¬Pα ∨Qα,Pα ` Qα
∨l

∀x.(¬Px ∨Qx), Pα ` Qα ∀l

∀x.(¬Px ∨Qx), Pα ` Qα,∃x.∃y.(¬Px ∨Qy)
wr

On the derivation π(Pα ` Qα) we can illustrate why proofs need to be skolemized. Imagine
that, instead of ∀l, we needed to apply a ∀r inference at this point. Now, ∀r has the side condition
that the variable used to instantiate the formula need to be an eigenvariable, i.e., a fresh variable
different from the ones already occurring in the sequent. Although it would be ok in the input
proof, this might cause problems in the projections (because no inferences are applied to cut-
ancestors). So the variable α, which in the input proof was introduced after (above) ∀r, is now
present in the sequent. That would require the we instantiate the formula with another variable,
but in this case, the sequent would not be provable. That’s why we require that the input proof
has no strong-quantifier inferences.

O-projections avoid the application of some weakenings and allow the end-sequent to con-
tain only a subset of formulas of the input proof’s end-sequent.

Definition 13 (O-projections). O-projections are constructed like regular projections (Definition
12), except that no weakenings are added in the end to obtain all the formulas of the input proof’s
end-sequent.

The o-projections of ϕ are the following:

π(` Pa)

Pa ` Pa
` Pa,¬Pa

¬r

` Pa,¬Pa ∨Qβ
∨r

` Pa,∃x.∃y.(¬Px ∨Qy)
∃r × 2

π(Qβ `)

Qβ ` Qβ
Qβ ` ¬Pa ∨Qβ

∨r

Qβ ` ∃x.∃y.(¬Px ∨Qy)
∃r × 2
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∆ ` Γ, A ∆′, A′ ` Γ′

∆σ,∆′σ ` Γ, σΓ′σ
R

∆, A,A′ ` Γ

∆σ,Aσ ` Γσ
Cl

∆ ` Γ, A,A′

∆σ ` Γσ,Aσ
Cr

Figure 3.5: Resolution calculus

π(Pα ` Qα)

Pα ` Pα
¬Pα, Pα `

¬l
Qα ` Qα

¬Pα ∨Qα,Pα ` Qα
∨l

∀x.(¬Px ∨Qx), Pα ` Qα ∀l

For the next step in the CERES method, we need to compute a resolution refutation of the
clause set. The resolution calculus is depicted in Figure 3.5 and a resolution refutation is simply
the derivation of the empty clause from the clauses in the set.

In the case of ϕ, we can obtain the following refutation:

` Pa Pα ` Qα
` Qa R{α← a}

Qβ `
` R{β ← a}

In order to use this refutation for a sequent calculus proof, we need to ground it. This means
we get a resolution refutation where the resolution inferences involve no unification.

` Pa Pa ` Qa
` Qa R

Qa `
` R

We need still to remember the substitutions used, so that we can use them to instantiate the
variables in the projections. To get a final proof, we need to plug the projections on top of their
respective clauses in the refutations. When a unification was involved, as in the case of the
clauses Pα ` Qα and Qβ `, we use an instantiation of the projections, i.e., in this case we use
π(Pα ` Qα){α← a} and π(Qβ){β ← a}.

The final proof is referred to as a ACNF, for atomic cut normal f orm. Note that, however,
there is not a unique normal form, since it will depend on the resolution refutation used.

The ACNF forϕ, considering the resolution refutation shown before and using o-projections,
is:
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Pa ` Pa
` Pa,¬Pa

¬r

` Pa,¬Pa ∨Qβ
∨r

` Pa,∃x.∃y.(¬Px ∨Qy)
∃r × 2

Pa ` Pa
¬Pa, Pa `

¬l
Qα ` Qα

¬Pa ∨Qa, Pa ` Qa
∨l

∀x.(¬Px ∨Qx), Pa ` Qa ∀l

∀x.(¬Px ∨Qx) ` Qa,∃x.∃y.(¬Px ∨Qy)
cut

Qa ` Qa
Qa ` ¬Pa ∨Qa

∨r

Qa ` ∃x.∃y.(¬Px ∨Qy)
∃r × 2

∀x.(¬Px ∨Qx) ` ∃x.∃y.(¬Px ∨Qy),∃x.∃y.(¬Px ∨Qy)
cut

∀x.(¬Px ∨Qx) ` ∃x.∃y.(¬Px ∨Qy)
cr

Note that there are now two atomic cuts, one on Pa and another on Qa. Eliminating these
is fairly easy and can be done in linear time.

The main goal of this work was to develop a CERES-like method for intuitionistic logic, in
the sense that all cuts are eliminated at once and a resolution refutation is used as a helper to find
the necessary atomic cuts.
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CHAPTER 4
The problem

In this Chapter we describe the problems in applying CERES to intuitionistic proofs and some
possible solutions. Unfortunately, we could not yet define a method such that it encompasses
full intuitionistic logic, but we hope that the analysis presented here will convince the reader
that this is not a trivial problem. We also hope that the insights obtained by the partial solutions
contribute to the development of a CERES variant that will work for full intuitionistic logic (see
Chapter 10).

Let’s start by defining properly the system with which we will be working. In Chapter 2 we
presented two calculi for intuitionistic logic, namely LJ and LJ’. We also noted that all rules
of LJ are particular cases of LJ’ rules. Although we are aware that LJ is the calculus that
comes to mind when intuitionistic logic is mentioned, we will allow resulting proofs to be in
LJ’. There are three reasons for that: (1) every LJ-proof is an LJ’-proof, trivially, and every
LJ’-proof can be translated into an LJ proof using ∨l rules [33]; (2) the CERES method relies
on a sequent merging operation ◦, which would constantly violate the structural restriction of LJ
(the sequents may have at most one formula on the right side) but would pose less problems for
LJ’; and (3) CERES uses resolution on atoms, which can be easily translated to an LJ’-proof,
analogously to the classical case. The input proof is still in LJ though. The only restriction we
make to these proofs is that they are skolemized, i.e., there are no strong-quantifier inferences
(∀r and ∃l) on end-sequent ancestors. The reason for working with skolemized proofs in the
intuitionistic case is the same as for the classical case: eigenvariable violations. Now, we know
of course that skolemization for intuitionistic logic is not as simple as for classical logic, but
there are some methods developed [8], [17], [25]. Moreover, developing a CERES method for
non-skolemized proofs would be a major problem on its own, so we decided to live with this
small restriction. Therefore our aim is to analyse the CERES method and possible variations
applied to a (skolemized) LJ-proof, the result of this operation being an LJ or LJ’-proof.
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4.1 What is the problem?

What happens when CERES is applied to an intuitionistic proof? First of all, let’s remember the
steps of the CERES method:

1. Computation of the clause set.

2. Resolution refutation of the clause set.

3. Construction of the projections.

4. Merging of projections and resolution refutation (final proof with only atomic cuts).

Now we’ll analyse, for each step, what is the result when an LJ-proof is given as input.

Clause set The clause set of an intuitionistic proof will be the same as in the classical case,
i.e., composed by atomic sequents possibly having more than one atom on the right. Note that
this would be a structural violation for LJ, but in LJ’ the sequents are ok.

Resolution The rules of the resolution calculus can be applied unchanged to the clauses in
the clause set. Resolution and factoring rules will later be translated, respectively, into cuts and
contractions for the final proof. Considering that cuts and contractions impose no structural
restrictions in LJ’, resolution can be used with no concerns. Observe again that using LJ and its
single conclusion sequents here would be quite a problem.

Projections Projections seem to be the biggest of our problems. During their construction, cut
ancestors are just “dragged” down without changes. This is no problem in the classical calculus
LK, but remember that, as much multi-conclusion as LJ’ can be, it still has a few restrictive
rules that require the right formula to be alone. Namely,→r, ¬r and ∀r:

Γ, A ` B
Γ ` A→ B

→r
Γ, A `
Γ ` ¬A

¬r
Γ ` A{c/x}

Γ ` ∀xA ∀r

When a cut ancestor on the right side has to be merged with a sequent of such a rule, we
have a problem. Of course that, when working with skolemized proofs with cuts only on atoms,
inferences ∀r do not occur, but still the other two rules are problematic.

Projections can obviously be built for intuitionistic proofs, the problem is that they might not
be intuitionistic themselves. Since these are part of the final proof, classical projections mean
classical proof, which is an undesirable effect of the method.

If you are not yet convinced that allowing the final proof to be in a multi-conclusion calculus
is better for our problem, take a look at Table 4.1.

The attentive reader might have observed that structural restrictions on sequents is the major
issue here. Why not use a calculus for intuitionistic logic that imposes no such restriction then?
Are there such calculi? Well, of course there are.
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LJ LJ’
Clause set 8 4

Projections 8 8

Resolution 8 4

Table 4.1: Elements of CERES for different intuitionistic calculi.

4.2 Trying other calculi

The labelled calculus attempt

Labelled deductive systems were formalized by Dov Gabbay [14]. Following his ideas, Sara
Negri and Roy Dyckhoff developed a labelled calculus for intuitionistic logic [13], which hap-
pens to be multi-conclusion (in all rules). In this calculus each formula is given a label, which
can be interpreted as a world in the Kripke semantics. There is also a predicate ≤ that operate
on these labels, and this can be interpreted as the accessibility relation among worlds. Take for
example the rule for→r:

x ≤ y, y : A,Γ ` ∆, y : B

Γ ` ∆, x : A→ B
→r

Now remember the Kripke semantics for A→ B: A→ B is true in the world x if for every
world y accessible from x, A true in y implies that B is true in y. The universal quantification
over y is captured in the inference rule by that fact that y is a fresh label. The problem in applying
CERES to such a calculus is exactly the “freshness” requirement of some labels. These rules
then have the same effect as strong quantifier rules, and “eigenvariable” violations occur exactly
on those labels. Now, we have agreed already that the problem with strong quantifiers would
not be a topic of this thesis, so we decided not to pursue this direction further. It is worth noting
though, that if a method is ever developed in which strong quantifiers do not cause problems,
such method can be used also in the labelled calculus for intuitionistic logic.

The decorated sequent calculus attempt

Another less popular, but also interesting, approach is the decorated sequent calculus for intu-
itionistic logic [12]. A decorated sequent has the form:

A1(n1), ..., Ak(nk) ` B1/S1, ..., Bm/Sm

Where Ai and Bj are formulas, ni is a natural number and Sj is a set of natural numbers.
Each ni is the index of formula Ai, and ni 6= nj for i 6= j. Each Sj is the dependency set
of formula Bj . Intuitively, the set Sj contains the indices of the antecedent formulas that Bj
depends on. Naturally there are restrictions on the indices for some rules. Naturally these
restrictions were violated when the CERES method was applied to decorated proofs. It was an
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interesting idea, but unfortunately we got no new insights from it. Being such an unconventional
calculus, with harder manipulation because of the indices, we decided to abandon the idea.

It is curious to observe that the rule for→r invariably causes problems in the calculi consid-
ered. This seems, on the one hand, a bit odd since the properties of IL are due to disjunctions
and existential quantifiers. But it is according to the Kripke semantics and BHK interpretation,
where implication (and universal quantifier) is indeed a particular case.

In both these approaches, we considered that the output proof would be in the same calculus
as the input proof. Had we wanted to have an LJ-proof as output, another non-trivial problem
would have to be solved, namely, the translation of labelled and decorated sequent calculus
proofs into LJ. As of today, there are no methods developed for such translation.

4.3 Back to LJ

So let’s get back to the original idea with the multi-conclusion calculus LJ’. We’ve seen that
the main problem is the violation of →r and ¬r on the projections1. These can occur in two
situations. The first one is when cuts occur above these inferences in the input proof2:

...
Γ, F `

...
Γ′, A ` B,F

Γ,Γ′, A ` B cut

Γ,Γ′ ` A→ B
→r projection−−−−−−−→

...
Γ′, A ` B,F ′

Γ′ ` A→ B,F ′
→r

In this example, F ′ is an atomic ancestor of F , which does not cause problems in the input
proof. But when the projections are built, inferences operating on cut ancestors, and thus the
cut itself, are not applied, leaving possibly some of its atomic ancestors on the right side at the
application point of→r.

The second situation in which violations might occur is when cut ancestors shift sides during
a proof above→r and ¬r inferences:

...
Γ, A ` P

...
Γ′, Q ` B

Γ,Γ′, P → Q,A ` B
→l

Γ,Γ′, P → Q ` A→ B
→r projection−−−−−−−→

...
Γ, A ` P ′

Γ, A ` P ′, B
wr

Γ ` A→ B,P ′
→r

In this example, P → Q is a cut ancestor which occurs on the left side when the inference
→r is applied. But when the→l inference is applied to this formula (bottom-up), the ancestor
P is shifted to the right side. When the projection for the left branch is built, considering no
more shiftings happened, there might be cut ancestors P ′ on the right side, thus violating the
application of→r.

You can observe how this violation occurs in a real proof on Example 1.

1Remember that, being the input proof skolemized, there are no ∀r inferences in the projections.
2We will use green for cut ancestors in an intuitionistic proof and red for cut ancestors which make the proof

classical.
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Example 1. Let ϕ be the proof:

A ` A
A,¬A `

¬l

¬A ` ¬A
¬r

A ` A
B,A ` A

wl

¬A,B,A `
¬l

¬A,B ` ¬A
¬r

¬A ` B → ¬A
→r

¬A ` B → ¬A cut

We will compute its projections and see why they are no longer intuitionistic proofs. The
clause set of ϕ is very simple: CL(ϕ) = {A `; ` A}. The projections for each of these clauses
are:

A ` A
A,¬A `

¬l

A,¬A ` B → ¬A
wr

A ` A
A,B ` A

wl

B ` A,¬A
¬r

` A,B → ¬A
→r

¬A ` A,B → ¬A
wl

The left projection is ok, but the right projection contains two inferences, namely →r and
¬r, which are no longer intuitionistic. In this particular case, the violation happened because
the cut ancestor A changed sides on the original proof by a negation rule.

You might have observed that not every application of →r and ¬r will cause problems.
Some of them might be actually fine. Now we define precisely which are the inferences that will
be problematic.

Definition 14 (Critical inferences). Let ξ be a →r, ¬r or ∀r inference on an end-sequent an-
cestor in an LJ-proof. We say that ξ is a critical inference if the clause set computed in the
derivation of the conclusion of ξ from the axioms has one or more positive atoms.

Intuitively, a critical inference is one that will be classical in at least one projection. Note
that this does not mean that it will be classical in every projection. Observe also that the positive
atoms will be exactly the “extra” formulas when the inference is performed in a projection.

We say that a critical rule occur in its intuitionistic form if the context on the right side of
the sequent is empty3:

Γ, A ` B
Γ ` A→ B

→r
Γ, A `
Γ ` ¬A

¬r
Γ ` A[x/α]

Γ ` ∀x.Ax ∀r

Otherwise, we say that it occurs on its classical form:

3What is this ∀r rule doing there? I know we don’t use it on the projections, but I am listing it for completeness
purposes.
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Γ, A ` B,∆
Γ ` A→ B,∆

→K
r

Γ, A ` ∆

Γ ` ¬A,∆ ¬Kr
Γ ` A[x/α],∆

Γ ` ∀x.Ax,∆ ∀Kr

Although we call this the classical form, these rules are not the same as the ones for LK.
They have the particularity that ∆ contains only atomic cut ancestors.

Lemma 4. If a critical inference occurs in its classical form in a projection, then the formulas
in ∆ are all atomic cut ancestors.

Proof. We can safely assume that this inference occurred in its intuitionistic form in the input
proof, since this is an LJ proof. When the projections are being built, the inferences applied
to end-sequent ancestors remain the same, thus these formulas are exactly as they occur on the
input proof. The only different formulas in the sequent are the atomic cut ancestors, which can
potentially occur on the right side when, in the original proof, they occurred on the left, or not
occurred at all.

Definition 15 (†-rules). We define as †-rules the following

Γ, A ` B,∆
Γ ` A→ B,∆

→†r
Γ, A ` ∆

Γ ` ¬A,∆ ¬†r
Γ ` A[x/α],∆

Γ ` ∀x.Ax,∆ ∀†r

Where ∆ consists of atomic cut ancestors.

Therefore, the result of applying CERES to an LJ-proof might be a classical proof only
because of †-inferences. Now all we have to do is find a way to transform †-inferences into
intuitionistic inferences.

4.4 “Trivial” classes

Before thinking about this transformation, though, we ask ourselves whether there are classes
of LJ-proofs such that the application of CERES yields LJ’-proofs. The answer is of course
positive.

For one thing, we can consider the class of skolemized proofs in which there is no occurrence
of the inferences →r and ¬r on end-sequent ancestors. We can still relax this restriction, but
there are some interesting observations about this class of proofs. If the rules→r, ¬r and ∀r are
not used on end-sequent ancestors, cut-free LK- and LJ’-proofs are undistinguishable. In fact,
even when atomic cuts are used, the proofs will be the same in both calculi. In this fragment,
classical and intuitionistic logics coincide after cut-elimination, and any cut-elimination method
will yield an LJ’-proof, regardless whether the inferences operating on the cut formulas were
classical or not. We can formally characterize this class of proofs by a syntactical restriction on
the end sequent.

Definition 16 (KJ-sequent). A sequent S is called a KJ-sequent if every formula whose main
connective is→, ∀ and ¬ is negative in S (Definition 6).
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Definition 17 (LJK). We define LJK as the class of LK- or LJ’-proofs such that the end sequent
is a KJ-sequent.

Theorem 3. The CERES method applied to an LJK-proof yields an LJ’-proof.

But as mentioned before, we can loosen this restriction. On Section 4.1 we observed that
not every→r and ¬r causes problems, only the critical ones (Definition 14). Thus we can allow
these inferences to occur, as long as they are not critical. Unfortunately we could not yet find
a syntactic restriction on the end-sequent that would characterize this class of proofs, since it
depends also on the cut formulas and inferences applied to them.

Theorem 4. If a proof contains no critical inferences, then the CERES method yields an LJ’-
proof.

4.5 Decidable atoms

You might be wondering by now why don’t we just apply some negation inferences to change
the side of the bothering atomic cut ancestors. Well, it is not that simple, and this is in fact a big
part of iCERES, the first method we present. In Chapter 6 we discuss what can be solved using
resolution on negated atoms. For now, let’s assume we apply a negation inference only to the
atom that is violating a critical rule. If this is done in Example 1, its clause set would then be
CL(ϕ) = {A `; ¬A `} and the projections become:

A ` A
A,¬A `

¬l

A,¬A ` B → ¬A
wr

A ` A
A,¬A `

¬l

A,B¬A `
wl

B,¬A ` ¬A
¬r

¬A ` B → ¬A
→r

¬A,¬A ` B → ¬A
wl

Which is cool, because now they are intuitionistic. Note though that resolution does not
really work for the clause set. Unless we can resolve A ` with ¬A `. When can we do this?
We can do this if A ∨ ¬A holds. Now, we know very well this is not the case in general for
intuitionistic logic, but in this setting we need the principle of excluded middle to hold only for
atomic A. So when we deal with theories in which atomic formulas and grounded predicates are
decidable (such as intuitionistic arithmetic for example, where we have to decide on equalities),
we can use this “degenerated” resolution rule:

Γ, A ` ∆ Γ′,¬A ` ∆′

Γ,Γ′ ` ∆,∆′

Which is replaced in the final proof by:
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` A,¬A Γ′,¬A ` ∆′

Γ′ ` ∆′, A
cut

Γ, A ` ∆

Γ,Γ′ ` ∆,∆′
cut

Note that the leftmost premise of this derivation can only be proved if A ∨ ¬A is decidable,
for atomic A.

One important observation is that, when a proof is skolemized, atoms which were previoulsy
decidable might no longer have this property. Take for example (2+2 = 4)∨(2+2 6= 4). Easy to
decide which one is true, right? But with skolemization we might have (2+c = 4)∨(2+c 6= 4).
Not so easy now. Nevertheless, this is likely to cause no problem for the CERES method, since
at no point we need to actually make this decision. We already know which are the axioms from
the input proof.

Being able to run the CERES method in arithmetic gives us a huge range of possible proofs
to work with.
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CHAPTER 5
The limits

Before going into the possible solutions on having a CERES-like method for intuitionistic logic,
we will make clear what are our limits. You should remember now that the CERES method
relies heavily on a resolution refutation. Not only that, it can be any resolution refutation. In this
chapter we show that we can’t have such liberty in intuitionistic logic.

We present here two proofs, one in propositional and another in predicate intuitionistic logic.
We try to apply the CERES method to both of them and show that, by using the clause set and
refutations as defined before, it is impossible to obtain intuitionistic proofs.

5.1 Intuitionistic propositional logic

So, let’s try to apply CERES to the following LJ proof, in which the cut formulas and cut
ancestors are marked in green:

P ` P
P ` P ∨ ¬P

∨r

P ` P
P ,¬P `

¬l

¬P ` ¬P
¬r

¬P ` P ∨ ¬P
∨r

P ∨ ¬P ` P ∨ ¬P
∨l

P ` P
¬P , P `

¬l

¬P ` ¬P
¬r

¬P ,¬¬P `
¬l

¬P ,¬¬P ` P
wr

¬P ` ¬¬P → P
→r

P ` P
P ,¬¬P ` P

wl

P ` ¬¬P → P
→r

P ∨ ¬P ` ¬¬P → P
∨l

P ∨ ¬P ` ¬¬P → P
cut

First of all, we need to extract a clause set from this proof. This is the following:

CL = {` P ; P `}

In fact, if you observe closely, you will see that the cut ancestors from the left branch of
the cut were not considered. This is because they would result in the following tautological
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clause: P ` P , and in resolution, tautological clauses can be ignored. Remember this. It will be
important.

Now, there is only one possible resolution refutation of such a simple clause set. It is this
one:

` P P `
` R

The next step is to construct the projections of the clauses. We will use o-projections to
facilitate the analysis. The only difference to the regular projections is the lack of a weakening
of the right side formula P ∨ ¬P in the end.

π(` P )

P ` P
` P ,¬P ¬

†
r

¬¬P ` P
¬l

¬¬P ` P , P
wr

` P ,¬¬P → P
→†r

π(P `)

P ` P
P ,¬¬P ` P

wl

P ` ¬¬P → P
→r

Note the presence of †-inferences on one of the projections. This makes it a classical deriva-
tion.

We can put the projections and resolution together into this final (classical) proof:

P ` P
` P ,¬P ¬

†
r

¬¬P ` P
¬l

¬¬P ` P , P
wr

` P ,¬¬P → P
→†r

P ` P
P ,¬¬P ` P

wl

P ` ¬¬P → P
→r

` ¬¬P → P,¬¬P → P
cut

` ¬¬P → P
cr

P ∨ ¬P ` ¬¬P → P
wl

The proof is classical, but we were aiming for an intuitionistic one. Can we transform this
proof into an intuitionistic proof (in LJ or LJ’)? Well, the end-sequent is certainly intuitionistic,
since our input proof is in LJ. But the very next sequent, after weakening the left side formula, is
not! You can try as much as you want, but you won’t find an intuitionistic proof of ` ¬¬P → P .
If the full projections are used, the effect is not so obvious, but it is the same. The left formula
P ∨ ¬P would be weakened in the projections and not used in the proof of ¬¬P ` P at all.

So you see, after applying CERES we got a proof with atomic cuts, but of a classical formula.
This is, and always will be, a classical proof.

36



5.2 Intuitionistic predicate logic

Let’s show now that the same happens in predicate intuitionistic logic. For that we use the
following proof:

Pfα ` Pfα
Pα ` Pα
¬Pα, Pα `

¬l

Pfα→ Pα,¬Pα, Pfα `
→l

∀y.(Pfy → Py),¬Pα, Pfα ` ∀l

∀y.(Pfy → Py),¬Pα ` ¬Pfα
¬r

∀y.(Pfy → Py) ` ¬Pα→ ¬Pfα
→r

∀y.(Pfy → Py) ` ∀y.(¬Py → ¬Pfy)
∀r

Pt ` Pt
¬Pt, P t `

¬l

¬Pt ` ¬Pt
¬r

Pft ` Pft
¬Pft, Pft `

¬l

¬Pft ` ¬Pft
¬r

¬Pt→ ¬Pft,¬Pt ` ¬Pft
→l

¬Pt→ ¬Pft ` ¬Pt→ ¬Pft
→r

¬Pt→ ¬Pft ` ∃y.(¬Py → ¬Pfy)
∃r

∀y.(¬Py → ¬Pfy) ` ∃y.(¬Py → ¬Pfy)
∀l

∀y.(Pfy → Py) ` ∃y.(¬Py → ¬Pfy)
cut

Observe this proof makes no use of the ∨l rule. The LJ fragment without ∨l is considered a
bit special because Herbrand’s theorem (or midsequent theorem) holds in it [33]. This theorem
also holds for full LK. Because of this, there was always an intuition that CERES would work,
without changing much, in LJ without ∨l. Unfortunately, this example shows us the contrary.

The characteristic clause set of this proof is the following:

CL = {Pfα ` Pα ; Pt ` ; ` Pft}

Which can be refuted by using only two out of the three clauses:

` Pft
P t `
Pft ` t← ft

` R

Now we construct the o-projections of the clauses involved in the resolution, already instan-
tiating t to ft in one of them.

π(` Pft)

Pft ` Pft
` Pft,¬Pft ¬

†
r

¬Pt ` Pft,¬Pft
wl

` Pft,¬Pt→ ¬Pft →
†
r

` Pft,∃y.(¬Py → ¬Pfy)
∃r

π(Pt `)[t← ft]

Pft,` Pft
Pft,¬Pft `

¬l

Pft,¬Pft ` ¬Pfft
wr

Pft ` ¬Pft→ ¬Pfft
→r

Pft ` ∃y.(¬Py → ¬Pfy)
∃r

Putting the pieces together into an ACNF:
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Pft ` Pft
` Pft,¬Pft ¬

†
r

¬Pt ` Pft,¬Pft
wl

` Pft,¬Pt→ ¬Pft →
†
r

` Pft,∃y.(¬Py → ¬Pfy)
∃r

Pft,` Pft
Pft,¬Pft `

¬l

Pft,¬Pft ` ¬Pfft
wr

Pft ` ¬Pft→ ¬Pfft
→r

Pft ` ∃y.(¬Py → ¬Pfy)
∃r

` ∃y.(¬Py → ¬Pfy),∃y.(¬Py → ¬Pfy)
cut

` ∃y.(¬Py → ¬Pfy)
cr

∀y.(Pfy → Py) ` ∃y.(¬Py → ¬Pfy)
wl

And voilà! We have the same problem as in the propositional case. The sequent ` ∃y.(¬Py →
¬Pfy) is not provable in intuitionistic logic.

5.3 Conclusion

Now what? Should we loose our hopes? Not just yet. During the next chapters of this thesis
we will try to work around this limitation. In Chapter 6 we use a different resolution calculus
that involves resolution on negated atoms. This method will work for a subclass of intuitionis-
tic logic. Chapter 7 presents an alternative method, covering the same subclass, but using the
negative resolution refinement. Chapters 8 and 9 show operations that can be used in the final
classical ACNF to transform this into an intuitionistic proof when possible. Finally, Chapter 10
presents a resolution refinement which can possibly be used to obtain ACNF’s that can always
be transformed into intuitionistic proofs by some of the previous operations.

Now starts the hard work!
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CHAPTER 6
iCERES

We have already seen what the problem is in applying the CERES method to LJ’- or LJ-proofs:
atomic cut ancestors on the right side of the sequent violate the structural restriction of some
inference rules. So why not move this atom from the right to the left? How can this be done?
Well, negating it!

In this Chapter we describe the very first approach for developing a CERES-like method
to intuitionistic logic [24]. It is based on shifting all atomic cut ancestors that appear on the
right side of the sequent to the left. We call this method iCERES. For this we must redefine the
concepts of clause set and projections, as well as extend the resolution calculus for resolving
negated atoms. Please keep in mind that this method is developed to have as input and output
LJ-proofs, i.e., single-conclusion sequents. In the end we discuss how it can be adapted to a
multi-conclusion setting, and the problems that arise there.

We will also describe another method that works for the same class of proofs and involves
less changes in the original CERES. It works with the regular clause set and projections, and the
same resolution calculus, although a refinement is used.

6.1 iCERES

We’ll start by redefining clauses, the clause set and projections. The clauses now can contain
literals, i.e., atoms or negated atoms, all with negative polarity (they only occur on the left side
of the sequent). The clause set is now composed of these new clauses, and we redefine how to
extract it from an LJ-proof. The projections are basically the same, with the only difference that
they will sometimes contain an extra ¬l rule applied to a cut ancestor.

Definition 18 (Intuitionistic Clause). An intuitionistic clause is a sequent composed only of
atoms or negated atoms on the left side and at most one atom or negated atom on the right.

Definition 19 (Intuitionistic Clause Set with Negations). The intuitionistic characteristic clause
set is built analogously to the usual characteristic clause set, except that all the formulas on the
right hand side are negated and added to the left hand side:
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• If ν is an axiom, then CLI(ν) is the set containing the sub-sequent composed only of
the formulas that are cut-ancestors, such that all the formulas that would appear on the
right-hand side are negated and added to the left-hand side.

• If ν is the result of the application of a unary rule on µ, then CLI(ν) = CLI(µ)

• If ν is the result of the application of a binary rule on µ1 and µ2, we have to distinguish
two cases:

– If the rule is applied to ancestors of a cut formula, then CLI(ν) = CLI(µ1) ∪
CLI(µ2).

– If the rule is applied to ancestors of the end-sequent, then CLI(ν) = CLI(µ1) ×
CLI(µ2).

Although we defined the intuitionistic clauses having at most one literal on the right side,
the intuitionistic clause set, as defined, will contain only clauses with no literals on the right.

Now, it is very very important for the method that this different clause set is still unsatisfiable.
Let’s make sure of that.

Theorem 5 (Refutability of the Intuitionistic Clause Set). The intuitionistic clause set is LJ-
refutable.

Proof. Let ϕ be an LJ proof and CLI(ϕ) be its intuitionistic clause set built according to Def-
inition 19 and CL(ϕ) be its classical clause set obtained by the classical version of CERES.
For each clause Ci = Ai1, ..., A

i
ni
` Bi

1, ..., B
i
mi

of the classical clause set, we build the closed
formula Fi = ∀x.¬(Ai1 ∧ ... ∧Aini

∧ ¬Bi
1 ∧ ... ∧ ¬Bi

mi
).

We know that there is an LK-refutation ψ of CL(ϕ):

C1

... ...

Ck
...

`

By merging each formula Fi to its corresponding clause Ci and propagating it down the
refutation, we obtain an LK proof ψ1 from the formulas Fi, Ai1, ..., A

i
ni
` Bi

1, ..., B
i
mi

of the
end-sequent F1, ..., Fk `:

ϕ1

F1 ◦ C1

... ...

ϕk
Fk ◦ Ck

...
F1, ..., Fk `

Where each ϕi is a derivation of Fi ◦ Ci from tautological axioms. We can transform the
proof ψ1 into a proof ψ2 of ` ¬(F1 ∧ ... ∧ Fk):
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ψ1

F1, ..., Fk `
F1 ∧ ... ∧ Fk `

∧l × (k − 1)

` ¬(F1 ∧ ... ∧ Fk)
¬r

Since the axioms of this proof are tautological, we can transform this into an LJ proof ψ3

via the following negative translation [22]:

A → ¬¬A∗
A∗ → A (if A is an atom)

(¬A)∗ → ¬A∗ (if A is an atom)
(A�B)∗ → (A∗�B∗),� ∈ {∧,∨,⇒}
(∃x.A)∗ → ∃x.A∗
(∀x.A)∗ → ∀x.¬¬A∗

The end-sequent of ψ3 is ` ¬(F̃1 ∧ ... ∧ F̃k), where each F̃i is the negative translation of
Fi. Note that ` ¬¬¬A is LJ-equivalent to ` ¬A, so there is still only one negation on this
end-sequent.

From the proof ψ3, we can construct the proof ψ4:

ψ3

` ¬(F̃1 ∧ ... ∧ F̃k)

Ξ1

` F̃1 ...

Ξn
` F̃k

` F̃1 ∧ ... ∧ F̃k
∧r × k

¬(F̃1 ∧ ... ∧ F̃k) `
¬l

` cut

Note that the end-sequent of each derivation Ξi is of the form:

` ¬¬∀x1....¬¬∀xr.¬¬¬(Ai1 ∧ ... ∧Aini
∧ ¬Bi

1 ∧ ... ∧ ¬Bi
mi

)

And each Ξi is:

Ai1, ..., A
i
ni
,¬Bi1, ...,¬Bimi

`

Ai1 ∧ ... ∧Aini
∧ ¬Bi1 ∧ ... ∧ ¬Bimi

`
∧l × (ni +mi − 1)

` ¬¬¬(Ai1 ∧ ... ∧Aini
∧ ¬Bi1 ∧ ... ∧ ¬Bimi

)
¬r,¬l,¬r

...
` ¬¬∀x2....¬¬∀xr.¬¬¬(Ai1 ∧ ... ∧Aini

∧ ¬Bi1 ∧ ... ∧ ¬Bimi
)
∀r,¬l,¬r

` ¬¬∀x1....¬¬∀xr.¬¬¬(Ai1 ∧ ... ∧Aini
∧ ¬Bi1 ∧ ... ∧ ¬Bimi

)
∀r,¬l,¬r

So, we obtain an LJ-refutation of the clauses Ai1, ..., A
i
ni
,¬Bi

1, ...,¬Bi
mi
` for every i,

which are exactly the elements of CLI(ϕ).
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Ok, the intuitionistic clause set is refutable, but we don’t really want to go through all this
trouble for constructing a refutation every time, right? So we’ll define our own new resolu-
tion calculus for that, one able to deal with negated atoms, containing negation rules and with
sequents with at most one formula on the right.

Definition 20 (R¬). The R¬ calculus is a resolution calculus with the following rules:

Γ ` A Γ′, A′ ` ∆

Γσ,Γ′σ ` ∆σ
R

Γ ` ¬A Γ′,¬A′ ` ∆

Γσ,Γ′σ ` ∆σ
R¬

A,A′ ` ∆

Aσ ` ∆σ
C

¬A,¬A′ ` ∆

¬Aσ ` ∆σ
C¬

Γ, A `
Γ ` ¬A

¬r Γ ` A
Γ,¬A `

¬l

Where ∆ is a multi-set with at most one formula and σ is the most general unifier of A and A′.

Given this resolution calculus, is it the case that we can actually find a resolution refutation
of a set of intuitionistic clauses with it? Yes, it is. To prove this we need to show that every
LJ-refutation (i.e., LJ-proofs having ` as the end-sequent) of intuitionistic clauses S can be
transformed into a refutation of the same (or instances of) S with rules corresponding to the
rules of R¬. Let’s do that step by step.

First step is to show that, in a refutation, we can restrict the cuts to cuts on atoms and negated
atoms.

Lemma 5. If ϕ is an LJ-refutation of a set of intuitionistic clauses (Definition 18) S and ϕ′ is a
normal form of ϕ with respect to reductive cut-elimination, then any cut-formula in ϕ′ is either
an atom or a negated atom.

Proof. Assume, for the sake of contradiction, that ϕ′ contains a cut whose cut-formula F is
neither an atom nor a negated atom. Since the axioms of ϕ′ contain only atoms or negated atoms,
it must be the case that the left and right occurrences of F in this cut are introduced, respectively,
by inferences ρl and ρr occurring somewhere in ϕ′. Two cases can be distinguished:

1. Both ρl and ρr occur immediately above the cut: in this case, either a grade reduction rule
(see Definition 9) can be applied, if both ρl and ρr are logical inferences, or an elimination
rule over weakening (see Definition 7), if at least one of them is a weakening.

2. At least one of ρl and ρr does not occur immediately above the cut: in this case, a rank
reduction rule (see Definition 8) can be applied.

In both cases, the assumption contradicts the fact that ϕ′ is in normal form. Therefore, it
must be the case that all cut-formulas in ϕ′ are either atoms or negated atoms.

Now that the cut formulas are restricted, we show that the actual inference rule we need are
only ¬l, ¬r, cut and cl.
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Lemma 6. If ϕ is an LJ-refutation of a set of intuitionistic clauses S and ϕ′ is a normal form of
ϕ with respect to reductive cut-elimination, then the only inference rules used in ϕ′ are ¬l, ¬r,
cut and left contraction.

Proof. Assume, for the sake of contradiction, that there is an inference ρ in ϕ′ that is neither a
¬l, nor a ¬r, nor a cut inference, nor a left contraction, and let F be its main formula. Since ϕ′ is
an LJ-refutation, its end-sequent is empty. Hence, F must be the ancestor of a cut-formula, and
since F is neither an atom nor a negated atom, its descendant cut-formula is also neither an atom
nor a negated atom. However, this contradicts Lemma 5, according to which any cut-formula in
ϕ′ must be either an atom or a negated atom. Therefore, inferences that are neither ¬l, nor ¬r,
nor cut, nor left contraction cannot occur in ϕ′.

All logical inferences that are neither ¬l nor ¬r disappear when ϕ is rewritten to ϕ′ due to
grade reduction rules. This is exemplified below for the conjunction case:

ϕ1

Γ1 ` A
ϕ2

Γ2 ` B
Γ1,Γ2 ` A ∧B

∧r

ϕ3

Γ3, A,B ` ∆

Γ3, A ∧B ` ∆
∧l

Γ1,Γ2,Γ3 ` ∆
cut ⇒

ϕ1

Γ1 ` A

ϕ2

Γ2 ` B
ϕ3

Γ3, A,B ` ∆

Γ2,Γ3, A ` ∆
cut

Γ1,Γ2,Γ3 ` ∆
cut

The same cannot be done with negation inferences. Observe that, as usual, the grade reduc-
tion for negation requires the cut-formulas to be introduced by ¬l and ¬r:

ϕ1

Γ1, A `
Γ1 ` ¬A

¬r

ϕ2

Γ2 ` A
Γ2,¬A `

¬l

Γ1,Γ2 `
cut ⇒

ϕ1

Γ1, A `
ϕ2

Γ2 ` A
Γ1,Γ2 `

cut

However, since the intuitionistic clause can have negated atoms, it may be the case that, (at
least) one of the cut-formulas was directly introduced by an axiom, as shown in the example
proof below:

ϕ1

Γ1, A `
Γ1 ` ¬A

¬r
Γ2,¬A `

Γ1,Γ2 `
cut

In such cases, the grade reduction rule for negation cannot be applied, and hence the negation
inference and the cut with a negated atomic formula remain.

So far we have shown that an LJ-refutation can be reduced to one with cuts only on literals
and inferences ¬l, ¬r, cut and cl. But do the axioms remain the same? The next lemma proves
that these transformations to normal form alter the axioms only by substituting some variables.

Lemma 7. If ϕ is an LJ-refutation of an unsatisfiable set of intuitionistic clauses S and ϕ′ is a
normal form of ϕ with respect to reductive cut-elimination, then the axioms of ϕ′ are instances
of the clauses of S.
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Proof. On applying the rewriting rules for cut-elimination, the initial sequents are not altered,
except for the quantifier grade reduction rules, shown below:

ϕ1

Γ1 ` F (α)

Γ1 ` ∀x.F (x)
∀r

ϕ2

Γ2, F (t) ` ∆

Γ2,∀x.F (x) ` ∆
∀l

Γ1,Γ2 ` ∆
cut ⇒

ϕ1{α← t}
Γ1 ` F (t)

ϕ2

Γ2, F (t) ` ∆

Γ1,Γ2 ` ∆
cut

ϕ1

Γ1 ` F (t)

Γ1 ` ∃x.F (x)
∃r

ϕ2

Γ2, F (α) ` ∆

Γ2,∃x.F (x) ` ∆
∃l

Γ1,Γ2 ` ∆
cut ⇒

ϕ1

Γ1 ` F (t)

ϕ2{α← t}
Γ2, F (t) ` ∆

Γ1,Γ2 ` ∆
cut

In order to eliminate the quantifier of the cut formula, the instantiated version of the formulas
must be used. But this imposes no problem, since we can apply the substitution σ = {α ← t}
on the proof.

If X is an axiom clause in ϕ2, X{α ← t} will be an axiom clause in ϕ2{α ← t}. Finally,
ϕ′ will have axioms that are, in fact, instances of the clauses in S .

Now what? After all these transformations, the axioms did not remain the same. They are
actually instances of the original axioms. Can we get them back? Yes, the “lifting” lemma
shows that. Intuitively, this lemma guarantees that if there is a resolution of instantiated terms,
it is possible to transform (“lift”) this into a resolution of the same terms with variables and a
substitution.

Definition 21. Let X and Y be clauses, then X ≤s Y if and only if there exists a substitution
Θ with XΘ = Y .

Lemma 8 (Lifting). Let C and D be clauses with C ≤s C ′ and D ≤s D′. Assume that C ′ and
D′ have a R¬-resolvent E′. Then, there exists a R¬-resolvent E of C and D such that E ≤s E′.

The proof of Lemma 8 is analogous to the one for the ordinary resolution calculus and will
not be described here [23].

There, now we are ready to prove the completeness of our resolution calculus.

Theorem 6 (Completeness of R¬). Let S be an LJ-refutable set of intuitionistic clauses. Then
S is R¬-refutable.

Proof. Let ϕ be an LJ-refutation of S . By applying Gentzen’s proof-rewriting rules for cut-
elimination exhaustively, ϕ is rewritten to a normal form ϕ′, whose existence is guaranteed by
the fact that Gentzen’s proof-rewriting system is terminating (see Gentzen’s Hauptsatz [15,16]).
By Lemmas 5 and 6, ϕ′ has only ¬l, ¬r, cut and left contraction inferences. As these inference
rules correspond, respectively, to the rules ¬l, ¬r, {R,R¬} and {C,C¬} (without unification)
of the R¬ calculus, ϕ′ can be immediately converted to a ground R¬-refutation δ. By Lemma 7,
the axioms of ϕ′ and hence also of δ are instances of the clauses in S. Therefore, by the lifting
lemma (Lemma 8), δ can be lifted into an R¬-refutation δ∗ of S .
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In fact, due to the way the intuitionistic clause set is constructed, all the clauses have no for-
mula on the right hand side. This means that the rule ¬l can be dropped from R¬ and the clause
sets used in our scenario will still be refutable. Also, the resolution rule on non-negated atoms
could also be eliminated in our case, since we could always replace any (non-negated) resolu-
tion by negation inferences and negated resolution. But we will keep it to make the resolutions
shorter.

That was a lot of work! But now we have a clause set and a way to refute it. We only need
the projections and we are (more or less) done.

Definition 22 (Intuitionistic Projection). An intuitionistic projection is built analogously to a
usual projection, except that all the cut ancestors on the right side are negated and added to the
left side.

Let ϕ be a proof in LJ and C ∈ CLI(ϕ). Then the LJ-proof ϕ(C) is called an intuitionistic
projection and it is build inductively on the number of inferences of ϕ. Let ν be a node in ϕ and
ϕν(C) the projection for clause C until node ν:

1. ν is a leaf: then ϕν(C) is the derivation consisting of applying a negation rule (¬l) to the
atoms which are cut-ancestors in order to shift them from the right to the left side (if there
is a cut-ancestor on the right).

2. ν is the result of a unary rule ξ applied to µ:

2.a. ξ operates on a cut ancestor: ϕν(C) = ϕµ(C)

2.b. ξ operates on an end sequent ancestor: ϕν(C) is ϕµ(C) plus the application of ξ to
its end-sequent

3. ν is the result of a binary rule ξ applied to µ1 and µ2:

3.a. ξ operates on a cut ancestor: ϕν(C) is ϕµi(C) (i depends on which branch C is
coming from) plus some weakenings to obtain formulas that were used in the other
branch.

3.b. ξ operates on an end sequent ancestor: ϕν(C) is the result of applying ξ to the
end-sequents of ϕµ1(C) and ϕµ2(C).

I am sure you must be wondering now (at least I am!) why is it not a problem to merge
branches of the proof in step 3.b. Because, you see, if these branches have a formula on the
right, and the rule merging them is applied to formulas on the left, the conclusion sequent will
have two formulas on the right. Since we are working still in LJ, this is not nice. Fortunately,
we can guarantee that this never happens, exactly because the input is an LJ proof. You see,
LJ does not have contraction of the right formula, right? More or less. The only case the right
formula is duplicated is when a ∨l inference is applied (remember this is purely multiplicative
LJ). Anyway, when the projections are being built and a binary inference needs to be applied,
it is applied to premises that contain, at most, all the formulas in the premises of the original
inference in the input proof. I mean, suppose ξ is a binary inference, and the its occurrence in
the input proof is on the left and its occurrence in a projection is on the right:
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Γ2 ` ∆2 Γ3 ` ∆3

Γ1 ` ∆1
ξ

Γ′2,Γc1 ` ∆′2 Γ′3,Γc2 ` ∆′3
Γ′1,Γc1,Γc2 ` ∆′1

ξ

Then we know (by the definition of projections) that Γ′i ⊆ Γi and ∆′i ⊆ ∆i for i ∈ {1, 2, 3}.
Γc1 and Γc2 contains the atomic cut ancestors for the clause set. Since this rule application was
valid on the left, it is certainly valid on the right.

So we have an LJ-refutation and LJ-projections. Sweet! All that is left is to put these
things together. Now comes the problem. You didn’t think it would be that easy, right? The
problem arises because of the right-side formula of the input proof’s end-sequent. Let’s call it
R. So, R will be in the end-sequent of each of the projections, because that’s how projections
are (built). Imagine now that each LJ-projection corresponding to a clause set will be put on
top of the LJ-resolution refutation. More specifically, it will replace the axiom of the refutation
that corresponds to its clause set. Then we will have not only the literals there, but a lot of other
formulas as well, belonging to the end-sequent. We’ve seen how this construction goes (Chapter
3), these formulas are merely copied from premise to conclusion in each rule of the resolution
refutation. See where I’m getting? If the formulaR occurred in more than one projection, at one
point there will be a sequent with more than one copy of R! These extra copies of formulas are
usually contracted in the end, so that the original end-sequent is obtained. Indeed it also occurs
with formulas on the left, but this is not a problem in LJ. The copying of R, which is on the
right, is a problem.

What about the multi-conclusion calculus LJ’? You ask yourself. We will get there, let’s try
to define this for LJ first.

We cannot guarantee that R will occur in only one projection. One the one hand, it might
have suffered an implicit contraction via the ∨l rule. On the other hand, binary inferences
operating on end-sequent ancestors generate redundant clause sets, since the operation ⊗ is the
Cartesian product of clauses. So, the branch that used R, even if only one, might be used in
several projections. It’s a shame, but we need to restrict the class of LJ-proofs we can deal with
this method.

Definition 23 (LJ−). LJ− is the set of LJ proofs of end-sequents with no formula on the right
side and no strong quantifiers.

No formula on the right side in the end-sequent means no problem.
Note that this condition can actually be satisfied simply by applying a ¬l inference rule at the

bottom of any proof containing a formula on the right side. Then this formula will occur negated
on the left side and the method can thus be applied. This transformation actually represents
proofs by contradiction: suppose we want to prove Γ ` F . A proof by contradiction will assume
that F is false and show that this does not hold, i.e., show Γ,¬F `.

Now, one might wonder whether this is a “trivial” class of proofs, i.e., a class in which
intuitionistic and classical provability coincide. For non-skolemized proofs, the class is not
trivial. Take for example the sequent ¬∃x.∀y.(Px → Py) `, which is classicaly provable but
not intuitionistically. For skolemized proofs, though, the class is trivial, i.e., every skolemized
sequent Γ ` which is classicaly provable is also intuitionistically provable. This would mean
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that we could apply classical CERES to remove the cuts of this proof, but notice that it could
result on a classical proof, which is not the aim here. Therefore, this remains an interesting class.
Other interesting remarks on LJ− can be found in Chapter 11, Section 11.2.

With the restriction on the input proofs, we can define a method that results in an intuition-
istic proof.

Definition 24 (NACNF). A proof is said to be in negated atomic cut normal form (NACNF)
when all the cuts are on atoms or negated atoms.

Definition 25 (iCERES). Let ϕ be a proof in LJ of a sequent S, CLI(ϕ) its intuitionistic clause
set (Definition 19) and π1, ..., πn the intuitionistic projections (Definition 22) of the clauses of
CLI(ϕ). By Theorems 5 and 6, there exists a grounded refutation ϕ∗ of CLI(ϕ). We define
iCERES as the procedure of computing the elements CLI(ϕ), π1, ..., πn, and ϕ∗ from ϕ and
then merging (instances of) π1, ..., πn with ϕ∗ in the following way:

LetCi be the clause of a leaf in ϕ∗. Then, Ci is replaced by the projection πi (with the proper
substitution of variables), which is actually a derivation of Ci ◦ S. Moreover, the formulas of S
are propagated down the refutation.

Theorem 7. Let ϕ be a proof in LJ− (Definition 23). Then iCERES, applied to ϕ, produces an
intuitionistic negated atomic cut normal form.

Proof. From Definition 25, we can observe that the result of applying iCERES to an LJ-proof
consists of the resolution refutation in R¬ merged with the projections. These last elements
have no cuts and are derivations in LJ by definition. The refutation has resolution rules on
atoms and negated atoms, which will be the cuts on the final proof. Since the projections have
no formula on the right side of their end sequents, and the resolution sequents have no more than
one formula on the right side of each sequent, the final proof is an LJ-proof of an end-sequent
equal to the one of ϕ up to some contractions on the left.

It is true that we can transform every LJ-proof into an LJ−-proof, so why can’t we define
the method for full LJ? The problem is that the end-sequent of the final proof is Γ,¬F `, and
not the original Γ ` F . So the proof we obtain in the end is a proof of something else (very
similar indeed, but not the same) and it is not trivial to transform that into a proof of Γ ` F .

Example

Let’s see this method working! We will apply it to the following LJ− proof1:

1Which is also an LJK proof, but we will use to illustrate the method.
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Pα? ` Pα
I

Pfα ` Pfα I
Pf2α ` Pf2α?

I

Pfα, Pfα→ Pf2α ` Pf2α?
→l

Pα?, Pα→ Pfα, Pfα→ Pf2α ` Pf2α?
→l

Pα?, ∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` Pf2α?
∀l

∀x.(Px→ Pfx), ∀x.(Px→ Pfx) ` (Pα→ Pf2α)?
→r

∀x.(Px→ Pfx) ` (Pα→ Pf2α)?
cl

∀x.(Px→ Pfx) ` ∀x.(Px→ Pf2x)?
∀r

Pa ` Pa?
I

Pf2a? ` Pf2a?
I

Pf4a? ` Pf4a
I

Pf2a?, (Pf2a→ Pf4a)? ` Pf4a
→l

Pa, (Pa→ Pf2a)?, (Pf2a→ Pf4a)? ` Pf4a
→l

Pa, ∀x.(Px→ Pf2x)?, ∀x.(Px→ Pf2x)? ` Pf4a
∀l

Pa, ∀x.(Px→ Pf2x)? ` Pf4a
cl

Pa, ∀x.(Px→ Pf2x)? ` ∃z.Pf4z
∃r

Pa, ∀x.(Px→ Pfx) ` ∃z.Pf4z
cut

Pa, ∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

Note that the cut formulas and cut ancestors are superscribed with ?. By removing the infer-
ences applied to end-sequent ancestors and merging the branches as was described on Definition
19, the intuitionistic clause set obtained is:

CLI(ϕ) = {Pα,¬Pf2α ` ; ¬Pa ` ; Pf4a `}

As was proved previously, there is a resolution refutation of this clause set on R¬:

Pα,¬Pf2α `
¬Pf2α ` ¬Pα

¬r
¬Pa `

¬Pf2a `
R¬{α← a}

Pf4a `
` ¬Pf4a

¬r
Pα,¬Pf2α `

Pf2a `
R¬{α← f2a}

` ¬Pf2a
¬r

` R¬

The projections of the three clauses of CLI are:

π1[α] :

Pα ` Pα I
Pfα ` Pfα I

Pf2α ` Pf2α I

¬Pf2α, Pf2α `
¬l

Pfα,¬Pf2α, Pfα→ Pf2α `
→l

Pα,¬Pf2α, Pα→ Pfα, Pfα→ Pf2α `
→l

Pα,¬Pf2α,∀x.(Px→ Pfx),∀x.(Px→ Pfx) `
∀l × 2

Pα,¬Pf2α,∀x.(Px→ Pfx) `
cl

Pα,¬Pf2α, Pa, ∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

Pα,¬Pf2α, Pa, ∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l
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π2 :

Pa ` Pa I

¬Pa, Pa `
¬l

¬Pa, Pa, ∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

¬Pa, Pa, ∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

π3 :

Pf4a ` Pf4a I

Pf4a ` ∃z.Pf4z
∃r

Pf4a, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

Pf4a, Pa,∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

By merging the appropriate instances of the projections on the resolution refutation, we
obtain the final proof, depicted in Figure 6.1. The projections are colored accordingly. The
projection π1 used on the left side had α replaced with a and the one used on the right side had
α replaced with f2a. Note that this proof is in NACNF, containing only cuts on atoms or negated
atoms, and it is still a proof in LJ.
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Pa ` Pa I
Pfa ` Pfa I

Pf2a ` Pf2a
I

¬Pf2a, Pf2a `
¬l

Pfa,¬Pf2a, Pfa→ Pf2a `
→l

Pa,¬Pf2a, Pa→ Pfa, Pfa→ Pf2a `
→l

Pa,¬Pf2a,∀x.(Px→ Pfx), ∀x.(Px→ Pfx) `
∀l × 2

Pa,¬Pf2a,∀x.(Px→ Pfx) `
cl

Pa,¬Pf2a, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

Pa,¬Pf2a, Pa,∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

¬Pf2a, Pa,∀x.(Px→ Pfx),¬∃z.Pf4z ` ¬Pa
¬r

Pa ` Pa I

¬Pa, Pa `
¬l

¬Pa, Pa, ∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

¬Pa, Pa, ∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

¬Pf2a, Pa, Pa, ∀x.(Px→ Pfx), ∀x.(Px→ Pfx),¬∃z.Pf4z,¬∃z.Pf4z `
cut

Pf4a ` Pf4a
I

Pf4a ` ∃z.Pf4z
∃r

Pf4a, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

Pf4a, Pa,∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

Pa,∀x.(Px→ Pfx),¬∃z.Pf4z ` ¬Pf4a
¬r

Pf2a ` Pf2a
I

Pf3a ` Pf3a
I

Pf4a ` Pf4a
I

¬Pf4a, Pf4a `
¬l

Pf3a,¬Pf4a, Pf3a→ Pf4a `
→l

Pf2a,¬Pf4a, Pf2a→ Pf3a, Pf3a→ Pf4a `
→l

Pf2a,¬Pf4a,∀x.(Px→ Pfx), ∀x.(Px→ Pfx) `
∀l × 2

Pf2a,¬Pf4a, ∀x.(Px→ Pfx) `
cl

Pf2a,¬Pf4a, Pa,∀x.(Px→ Pfx) ` ∃z.Pf4z
w × 2

Pf2a,¬Pf4a, Pa,∀x.(Px→ Pfx),¬∃z.Pf4z `
¬l

Pf2a, Pa, Pa, ∀x.(Px→ Pfx),∀x.(Px→ Pfx),¬∃z.Pf4z,¬∃z.Pf4z `
cut

Pa, Pa, ∀x.(Px→ Pfx), ∀x.(Px→ Pfx),¬∃z.Pf4z,¬∃z.Pf4z ` ¬Pf2a
¬r

Pa, Pa, Pa, Pa,∀x.(Px→ Pfx), ∀x.(Px→ Pfx),∀x.(Px→ Pfx), ∀x.(Px→ Pfx),¬∃z.Pf4z,¬∃z.Pf4z,¬∃z.Pf4z,¬∃z.Pf4z `
cut

Pa, ∀x.(Px→ Pfx),¬∃z.Pf4z `
c× 9

Figure 6.1: Final proof after applying the method to an LJ-proof of an end-sequent with no formula on the right.
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Trying to extend iCERES

Section 4 of [24] mentions a possible way for fixing NACNF’s obtained when iCERES is ap-
plied to proofs whose end-sequents have a formula on the right. At the time, we believed that
reductively eliminating the atomic cuts would yield an LJ proof. What happened there? We
found a counter example.

Let ϕ be the proof:

A ` A
¬A,A `

¬l

¬A ` ¬A
¬r

¬A,¬¬A `
¬l

A ` A
A,¬A `

¬l

A ` B,¬¬A
¬r

¬A,A ` B cut

¬A ` A→ B
→r

C ` C C ` C
C ` C cut

¬A,C ` (A→ B) ∧ C
∧r

Then the intuitionistic characteristic clause set of ϕ is:

CLI(ϕ) = {A,¬C `; A,C `; ¬A,¬C `; C,¬A `}

And a possible R¬ refutation is the following:

A,C `
A ` ¬C

¬r
A,¬C `

A,A ` R

A `
cl

` ¬A
¬r

C,¬A `
¬A ` ¬C

¬r ¬A,¬C `
¬A,¬A ` R

¬A `
cr

` R

The intuitionistic projections for each of these clauses are:

π(A,¬C `) :

A ` A
¬A,A `

¬l

¬A,A,A ` B w∗

¬A,A ` A→ B
→r

C ` C
C,¬C `

¬l

C,¬C ` C
wr

¬A,C,A,¬C ` (A→ B) ∧ C
∧r

π(A,C `) :

A ` A
¬A,A `

¬l

¬A,A,A ` B w∗

¬A,A ` A→ B
→r

C ` C
¬A,A,C ` (A→ B) ∧ C

∧r

¬A,C,A,C ` (A→ B) ∧ C
wl
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π(¬A,¬C `) :

A ` A
¬A,A `

¬l

¬A,A ` B
wr

¬A ` A→ B
→r

C ` C
C,¬C `

¬l

C,¬C ` C
wr

C,¬A,¬C ` (A→ B) ∧ C
∧r

¬A,C,¬A,¬C ` (A→ B) ∧ C
wl

π(C,¬A `) :

A ` A
¬A,A `

¬l

¬A,A ` B
wr

¬A ` A→ B
→r

C ` C
C,¬A ` (A→ B) ∧ C

∧r

¬A,C,C,¬A ` (A→ B) ∧ C
wl, wl

The ACNF is the following proof:

ϕl ϕr
¬A,¬A,¬A,¬A,C,C,C,C ` (A→ B) ∧ C, (A→ B) ∧ C, (A→ B) ∧ C, (A→ B) ∧ C cut

¬A,C ` (A→ B) ∧ C c∗

Where ϕl is:

A ` A
¬A,A `

¬l

¬A,A,A ` B w∗

¬A,A ` A→ B
→r

C ` C
¬A,A,C ` (A→ B) ∧ C

∧r

¬A,C,A,C ` (A→ B) ∧ C
wl

¬A,C,A ` (A→ B) ∧ C,¬C ¬
†
r

A ` A
¬A,A `

¬l

¬A,A,A ` B w∗

¬A,A ` A→ B
→r

C ` C
C,¬C `

¬l

C,¬C ` C
wr

¬A,C,A,¬C ` (A→ B) ∧ C
∧r

¬A,¬A,C,C,A,A ` (A→ B) ∧ C, (A→ B) ∧ C cut

¬A,¬A,C,C,A ` (A→ B) ∧ C, (A→ B) ∧ C
cl

¬A,¬A,C,C ` (A→ B) ∧ C, (A→ B) ∧ C,¬A ¬
†
r

and ϕr is:

A ` A
¬A,A `

¬l

¬A,A ` B
wr

¬A ` A→ B
→r

C ` C
C,¬A ` (A→ B) ∧ C

∧r

¬A,C,C,¬A ` (A→ B) ∧ C
wl, wl

¬A,C,¬A ` (A→ B) ∧ C,¬C ¬
†
r

A ` A
¬A,A `

¬l

¬A,A ` B
wr

¬A ` A→ B
→r

C ` C
C,¬C `

¬l

C,¬C ` C
wr

C,¬A,¬C ` (A→ B) ∧ C
∧r

¬A,C,¬A,¬C ` (A→ B) ∧ C
wl

¬A,¬A,C,C,¬A,¬A ` (A→ B) ∧ C, (A→ B) ∧ C cut

¬A,¬A,C,C,¬A ` (A→ B) ∧ C, (A→ B) ∧ C
cr
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If you try reductively eliminating the cuts in this proof (belive me, I tried), you will see that
the cuts on C will go away with no problems, but eliminating the cut on A will result on the
following situation:

...
¬A,¬A,C ` (A→ B) ∧ C, (A→ B) ∧ C,¬A ¬

†
r

...
¬A,A ` B
¬A ` A→ B

→r

¬A,¬A,C ` (A→ B) ∧ C, (A→ B) ∧ C,A→ B
cut

And we already know, by Lemma 2, that this permutation is not possible. The resulting
proof without cuts will have violations in the→r inferences and, therefore, will be classical.

Summary

iCERES:

• Input: LJ proof with cuts (end-sequent has no formula on the right)

• Output: LJ proof with literal cuts

• Resolution: R¬

In LJ’

I am sure you are wondering now what happens if we use LJ’, since there multiple formulas on
the right side are allowed. Well, there are two ways of “using” LJ’: (1) the input and output are
LJ’ proofs or (2) the input is an LJ-proof and the output is an LJ’-proof. But both cases present
the same problem.

When the end-sequent of the input proof contains one (or more) formula(s) on the right, it
is unavoidable that multiple-succedent sequents appear on the construction of the NACNF. In
principle this would not be an issue if we allow the output to be an LJ’-proof, but if you think a
little about it, remember that the resolution proof contains negation inferences. It can contain, in
particular ¬r inferences. And remember also that this is one of the single-conclusion inferences
in LJ’. So there, we cannot unrestrictedly allow multiple conclusion sequents in the NACNF.
Unless no ¬r inferences occur, i.e., unless there are no negated atoms in the clause set, i.e.,
unless there were no structural violations of the atoms in the projections, but then, well, then we
can just apply CERES.
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CHAPTER 7
Negative resolution CERES

From Chapter 6 we saw that negating atoms turned out not to be the greatest of ideas. In ei-
ther case, LJ or LJ’, having negation rules, specially ¬r, in the resolution part of the (N)ACNF
causes problems. In Chapter 4 we showed that the resolution part, with only cuts and contrac-
tions, is fine if we consider a multi-conclusion calculus. The problem with not negating the
atoms is on the projections.

The method presented now is based on a simple intuition: if the formulas violating the LJ’
inferences are atomic cut ancestors, what happens when we actually get rid of these atomic cuts?
Of course the proof cannot be fixed that easily, but it will work for the same class of proofs as
iCERES with the advantage that the regular resolution calculus can be used.

7.1 Counter-example

Since I already gave up the ending, let’s go ahead and show an example that reductive cut-
elimination does not work to transform †-inferences into intuitionistic inferences. Conveniently,
this is the same proof as used before to show how reductive cut-elimination fails in the attempt
to extend iCERES.

Let ϕ be the proof:

A ` A
¬A,A `

¬l

¬A ` ¬A
¬r

¬A,¬¬A `
¬l

A ` A
A,¬A `

¬l

A ` B,¬¬A
¬r

¬A,A ` B cut

¬A ` A→ B
→r

C ` C C ` C
C ` C cut

¬A,C ` (A→ B) ∧ C
∧r

Then the characteristic clause set of ϕ is:
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CL(ϕ) = {A ` C; A,C `; ` A,C; C ` A}

And (one of) its refutation:

` A,C C ` A
` A,A R

` A
cr

A,C ` A ` C
A,A ` R

A `
cl

` R

The projections for each of these clauses are:

π(A ` C) :

A ` A
¬A,A `

¬l

¬A,A,A ` B w∗

¬A,A ` A→ B
→r

C ` C
C ` C,C

wr

¬A,C,A ` (A→ B) ∧ C,C
∧r

π(A,C `) :

A ` A
¬A,A `

¬l

¬A,A,A ` B w∗

¬A,A ` A→ B
→r

C ` C
¬A,A,C ` (A→ B) ∧ C

∧r

¬A,C,A,C ` (A→ B) ∧ C
wl

π(` A,C) :

A ` A
A ` B,A

wr

` A→ B,A
→†r

C ` C
C ` C,C

wr

C ` A,C, (A→ B) ∧ C
∧r

¬A,C ` A,C, (A→ B) ∧ C
wl

π(C ` A) :

A ` A
A ` A,B

wr

` A,A→ B
→†r C ` C

C ` A, (A→ B) ∧ C
∧r

¬A,C,C ` A, (A→ B) ∧ C
wl, wl

Note that there are→†r inferences in the final proof:

A ` A
A ` B,A

wr

` A→ B,A
→†r

C ` C
C ` C,C

wr

C ` A,C, (A→ B) ∧ C
∧r

¬A,C ` A,C, (A→ B) ∧ C
wl

A ` A
A ` A,B

wr

` A,A→ B
→†r C ` C

C ` A, (A→ B) ∧ C
∧r

¬A,C,C ` A, (A→ B) ∧ C
wl, wl

¬A,¬A,C,C ` A,A, (A→ B) ∧ C, (A→ B) ∧ C cut

¬A,¬A,C,C ` A, (A→ B) ∧ C, (A→ B) ∧ C
cr

ϕi

¬A,¬A,¬A,¬A,C,C,C,C ` (A→ B) ∧ C, (A→ B) ∧ C, (A→ B) ∧ C, (A→ B) ∧ C cut

¬A,C ` (A→ B) ∧ C
c∗
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Where ϕi is:

A ` A
¬A,A `

¬l

¬A,A,A ` B w∗

¬A,A ` A→ B
→r

C ` C
¬A,A,C ` (A→ B) ∧ C

∧r

¬A,C,A,C ` (A→ B) ∧ C
wl

A ` A
¬A,A `

¬l

¬A,A,A ` B w∗

¬A,A ` A→ B
→r

C ` C
C ` C,C

wr

¬A,C,A ` (A→ B) ∧ C,C
∧r

¬A,¬A,C,C,A,A ` (A→ B) ∧ C, (A→ B) ∧ C cut

¬A,¬A,C,C,A ` (A→ B) ∧ C, (A→ B) ∧ C
cl

Note that the problem is only with the cut on A, which is the lower most. So what happens
when we try to eliminate this atomic cut using reductive cut-elimination? Well, long story short,
after applying some rank reduction rules, we get to the following point (I am just showing the
interesting part of the proof):

A ` A
A ` B,A

wr

` A→ B,A
→†r ϕi

¬A,¬A,C ` (A→ B) ∧ C, (A→ B) ∧ C,A→ B
cut

...

And it is finally time to permute the cut over the→†r inference. “Will it fix the proof? What
happens then?”, you ask eagerly. This happens:

A ` A
A ` B,A

wr
ϕi

¬A,¬A,C,A ` (A→ B) ∧ C, (A→ B) ∧ C,B cut

¬A,¬A,C ` (A→ B) ∧ C, (A→ B) ∧ C,A→ B
→K
r

...

Ah now that’s a shame. Not only did it not fix the proof, but it made it worse! The→K
r rule

now is actually classical, since the extra formulas on the right are not cut ancestors anymore, but
end-sequent ancestors. We certainly didn’t want that.

7.2 Analysis

When does it work then? Let’s analyse abstractly what happened in this example. After per-
forming the rank reduction rules with the cut containing one of the violating atoms, we get to
the following point:
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Γ, P ` ∆, Q,A

Γ ` ∆, P → Q,A
→†r Γ′, A ` ∆′

Γ,Γ′ ` ∆,∆′, P → Q
cut

Remember that, this being a †-inference, ∆ contains other atomic cut ancestors, but ∆′

contains arbitrary formulas. When we try to apply→†r before cutting, these formulas in ∆′ will
make this inference no longer a † one a classical one, thus resulting in an LK proof.

But if ∆′ is empty, we can safely permute the cut over→†r and reduce the number of extra
atomic cut-ancestors on the right side by one. Look:

Γ, P ` ∆, Q,A

Γ ` ∆, P → Q,A
→†r Γ′, A `

Γ,Γ′ ` ∆, P → Q
cut

 

Γ, P ` ∆, Q,A Γ′, A `
Γ,Γ′, P ` ∆, Q

cut

Γ,Γ′ ` ∆, P → Q
→†r

If we can permute the other cuts on atoms in ∆ over→†r in this way, we will eventually get
to a point where there will be no extra formula on the right, and the proof will be again in LJ.
But can we always permute the cut? No.

Theorem 8. A cut rule in LJ’ permutes over every rule on its left and right branches, except
†-rules (with or without a right context).

Proof. Since all rules which are not †-rules are the same as in LK, the permutation holds. The
problem with †-rules is that they require the right context to contain only atomic cut ancestors.
When such permutation is done:

Γ ` ∆, A

A,Γ′, P ` ∆′, Q

A,Γ′ ` ∆′, P → Q
→†r

Γ,Γ′ ` ∆,∆′, P → Q
cut

 

Γ ` ∆, A A,Γ′, P ` ∆′, Q

Γ,Γ′, P ` ∆,∆′, Q
cut

Γ,Γ′ ` ∆,∆′, P → Q
→?
r

Γ, P ` ∆, Q,A

Γ ` ∆, P → Q,A
→†r A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′, P → Q
cut

 

Γ, P ` ∆, Q,A A,Γ′ ` ∆′

Γ,Γ′, P ` ∆,∆′, Q
cut

Γ,Γ′ ` ∆,∆′, P → Q
→?
r

It might be the case that the right context ∆,∆′ contains other formulas. Note that this
happens independently of whether the †-inference is on the left or right branch.

The non-permutation of cut over †-inferences on the left branch is not really a problem, since
we only need to permute it up until this point. And then, being ∆′ empty, we can permute the cut
over the †-inference, reducing the number of atomic cut-ancestors on its right context by one.

The non-permutation over these inferences on the right, though, is a problem. In order to
fix the proof using the operation shown before, the cut must have as a premise a sequent with
an empty right side. Now, how do you get to that? Since we cannot freely permute the cut
until reaching such a sequent (if it exists), we will require that the end-sequent of a projection
contains no end-sequent ancestors (of the input proof) on the right side.

58



Given the projections as in Definition 12, the only case in which its end-sequent contains
only atomic cut ancestors on the right is if the end-sequent of the input proof contains no formula
on the right. This is exactly the same class for which iCERES (Definition 25) works. Using LJ−
proofs gives us a chance of not having end-sequent ancestors on the right side of the sequent.
What about cut ancestors? We can guarantee that they will not occur on the right side if we use
a refinement of resolution called negative resolution. For this we define the following:

Definition 26 (Negative clause). A clause is negative if it contains atoms only on the left side of
its sequent representation.

Definition 27 (Negative projection). A projection of a negative clause is called a negative pro-
jection.

One important thing to note about negative projections is that they don’t have †-inferences
with formulas in the right context. Therefore these projections are intuitionistic by definition.

Theorem 9. All †-inferences occurring in negative projections have an empty right context.

Proof. The proof is obvious from Lemma 4 and the definition of negative projections.

Now we can explain what negative resolution is all about.

Definition 28 (Negative resolution). A resolution refutation is called negative if every resolution
rule is applied to at least one negative clause.

It is known that negative resolution is complete [23]. Therefore:

Theorem 10. If a clause set is refutable, then it contains at least one negative clause.

Proof. Assume that there is no negative clause. Then there exists an obvious model satisfy-
ing the clause set, in which every atom is interpreted as true (remember that ? ` T is valid).
Therefore, the clause set is not refutable, which is a contradiction.

Lemma 9. If CERES is applied to an LJ− proof using negative resolution, then †-inferences
can be transformed into intuitionistic inferences by permuting the atomic cuts as in the rank
reduction rules (Definition 8).

Proof. The proof is an induction on the number of atomic cut ancestors in the right context of
each †-inference.

Let ρ be a †-inference occurring in the proof with right context ∆† = ∆, A, |∆†| = n.
Assume without loss of generality that there are no other †-inferences between ρ and the cut on
A. Then by Theorem 8 the cut on A can be permuted until ρ.

If n = 0, then this †-inference is already on its intuitionistic form and nothing needs to be
done1.

Induction hypothesis: if n = k, then the proof can be fixed.

1Also note that in this case there are no other †-inferences with formulas on the right context somewhere above.
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Let n = k+1. Given that negative resolution was used, the other premise of the cut contains
no formulas on the right side. Therefore, the following operation can be performed:

Γ, P ` Q,∆, A
Γ ` P → Q,∆, A

→†r Γ′, A `
Γ,Γ′ ` ∆, P → Q

cut
 

Γ, P ` ∆, Q,A Γ′, A `
Γ,Γ′, P ` ∆, Q

cut

Γ,Γ′ ` ∆, P → Q
→†r

The resulting proof has n = k and thus we can apply the induction hypothesis.

Theorem 11 (Rank reducing). Let ϕ be the ACNF resulting from applying CERES with negative
resolution to an LJ− proof. Then eliminating the atomic cuts from ϕ using rank-reduction rules
yields an LJ’ proof.

Proof. The result follows from Lemma 9 and the fact that, if classical inferences occur in the
ACNF, then they are †-inferences.

Why can’t we just require that negative projections have no formulas on the right side? This
seems to make the method more general, right? Well, we thought so for a very long (too long!)
time. But there is a simple counter argument for that. Suppose this is your negative resolution:

` A
A ` B B `

A ` R

` R

This contains only one negative clause, namely B `, and consequently one negative projec-
tion. So with this relaxed requirement, the projection (or o-projection, Definition 13) of B `
should have no formulas on the right, but we cannot say anything about the others. Now, suppose
there is a critical rule in the projection of ` A. Of course that this is resolved with a negative
clause, but this then can have end-sequent ancestors on the right coming from the projection of
A ` B. In this case, we cannot guarantee the emptiness of the right hand side of the sequent
A ` in the ACNF. See the problem?

Another worthwhile observation is that it seems the same result could be obtained by using
regular resolution, instead of a refinement, but the proof of Theorem 11 would become consid-
erably more complicated.

Summary

Rank reducing CERES:

• Input: LJ proof with cuts (end-sequent has no formulas on the right)

• Output: LJ’ proof with atomic cuts

• Resolution: negative refinement
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CHAPTER 8
Merging CERES

In the last chapter we saw that it is not possible to permute the cut over †-inferences. This
was a problem in particular for the right branch of the cut. Remember that the last method
presented relied on the fact that one of premises of the cut inference, the right premise, had
the format A,Γ `, i.e., it contained no formulas on the right side. In order to achieve that, we
had to require that the end-sequent of the input proof had no formulas on the right side. If the
sequent A,Γ ` was not the end-sequent, but some other sequent in the middle of the projection,
we cannot guarantee that the cut could be permuted until this sequent, exactly because there
could be †-inferences on the way (even if these inferences have an empty right context). While
investigating this situation, we came across some interesting idea which resulted in the method
we present now.

8.1 Merging rules

Suppose we want to eliminate violations in †-inferences on the left branch of the cut. We saw in
last chapter that it is possible to permute the cut over rules in the left branch until a †-inference.
On the right branch, though, we needed to find a sequent such as A,Γ `. If this was not the
end-sequent and we needed to permute the cut over some rules to get to it, we might encounter
a †-inference on the way that would not allow this permutation anymore. Then we would have
something like this:

Γ, P ` ∆, Q,A

Γ ` ∆, P → Q,A
→†r

A,Γ′, R ` ∆′, S

A,Γ′ ` ∆′, R→ S
→†r

Γ,Γ′ ` ∆, P → Q,∆′, R→ S
cut

Of course, if we use negative resolution, ∆′ would be empty, but that’s not really helpful.
We still cannot permute the cut over the inference on the right branch. So what can we do?

Now, remember the way projections are built. They are composed of inferences on end-
sequent ancestors that come from the input proof. This means that many projections have a
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common set of such inferences. Copies of the same formula can be derived by many projections,
and they are contracted afterwards in the ACNF. What if these two †-inferences are instances of
the same inference of the input proof? Then the derivation is actually1:

Γ, P ` ∆, Q,A

Γ ` ∆, P → Q,A
→†r

A,Γ′, P ` ∆′, Q

A,Γ′ ` ∆′, P → Q
→†r

Γ,Γ′ ` ∆, P → Q,∆′, P → Q
cut

Γ,Γ′ ` ∆,∆′, P → Q
cr

Now we can do something! This derivation can be rewritten to:

Γ, P ` ∆, Q,A A,Γ′, P ` ∆′, Q

Γ,Γ′, P, P ` ∆,∆′, Q,Q
cut

Γ,Γ′, P ` ∆,∆′, Q
c∗

Γ,Γ′ ` ∆,∆′, P → Q
→†r

What happened there? We transformed the application of two †-inferences with right con-
texts ∆, ∆′ and A into an application of one †-inference with context ∆ and ∆′. Looks good.
We call this transformation merging.

Definition 29 (Merging).

Γ, A ` C,∆
Γ ` ¬A,C,∆

¬r
C,Γ′, A ` ∆′

C,Γ′ ` ¬A,∆′
¬r

Γ,Γ′ ` ¬A,¬A,∆,∆′ cut
 

Γ, A ` C,∆ C,Γ′, A ` ∆′

Γ,Γ′, A,A ` ∆,∆′
cut

Γ,Γ′, A ` ∆,∆′
cl

Γ,Γ′ ` ¬A,∆,∆′
¬r

Γ,Γ′ ` ¬A,¬A,∆,∆′
wr

Γ, A ` B,C,∆
Γ ` A→ B,C,∆

→r
C,Γ′, A ` B,∆′

C,Γ′ ` A→ B,∆′
→r

Γ,Γ′ ` A→ B,A→ B,∆,∆′
cut

 

Γ, A ` B,C,∆ C,Γ′, A ` B,∆′

Γ,Γ′, A,A ` B,B,∆,∆′ cut

Γ,Γ′, A ` B,∆,∆′ c∗

Γ,Γ′ ` A→ B,∆,∆′
→r

Γ,Γ′ ` A→ B,A→ B,∆,∆′
wr

Note that ∆ and ∆′ are sets of atomic cut ancestors.

Now let’s see how we get there. First of all, there should be applications of this †-inference
in both projections. How can an inference occur on two or more projections? I’ll show you. Let
ρ be a binary rule operating on a cut ancestor in the input proof (ρ can actually be the cut itself):

ϕ1

Γ′ ` ∆′
ϕ2

Γ′′ ` ∆′′

Γ ` ∆
ρ

1Keep in mind that structural rules can be permuted over any rule, and therefore we can reach the situation where
we contract P → Q right below the cut.
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The clause sets CL(ϕ1) and CL(ϕ2) are combined using ⊕, i.e., the union of the clauses.
Each of these clauses will have a corresponding projection. Now, everything below ρ will be a
common part of every such projection. This means, in fact, that:

Theorem 12. Let ρ be a rule operating on an end-sequent ancestor in the input proof. If ρ
occurs below the lower-most cut, then there will be an instance of it in every projection.

In particular, if the critical inferences occur below the lower most cut, they will occur in every
projection. Note that, for this to hold, we need to use the regular projections, as in Definition 12,
and cannot use o-projections (Definition 13). Interesting, right? If the critical inferences occur
in every projection, we can always perform the merging, and we can eventually fix the proof.
Here’s how:

Theorem 13. If the critical inferences occur in all projections, then the final ACNF can be
transformed from classical to intuitionistic by permutation of cuts and the merging operation.

Proof. Lets consider the following induction measures:

k : number of critical inferences in the input proof.

mi : number of occurrences of the †-inference i in the ACNF.

nij : number of atoms violating occurrence j of †-inference i.

We know the following:

• If k = 0 then mi = 0 and nij = 0, and the ACNF is intuitionistic.

• If nij is 0, then mi is decreased by 1.

• If mi is 0, then k is decreased by 1.

The cut rule can be permuted over every rule in LJ, therefore, we can always permute the
cut up until two applications of the same critical rule are reached. At this point, the merging
operation is performed and we have two possible situations:

• If ∆′ is empty, then the operation reduces nij by one.

• If ∆′ is not empty, then the operation reduces mi by one.

Now let’s worry about how we make these critical inferences occur in every projection.
From Theorem 12 we conclude that if we want an inference to occur in every projection, then
this inference must occur below the cut in the input proof. If this is not already the case, can
we transform the input proof so it is? Maybe. In order to do that we need to permute the
critical inferences (and all subsequent rules operating on successors of its main formula) down
the (input) proof until they are all below the cut. We analysed the permutations of all rules in
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LJ, and the results are summarized in Table 8.2. The actual permutations are listed in Appendix
B.

Table 8.2 can be interpreted as follows: the status of position (i, j) corresponds to the per-
mutation of rule i down rule j. Possible statuses are shown in Table 8.1.

4 permutation is ok
4∗ permutation is ok as long as i is applied to both premises of j.
8 permutation is not possible
◦ the case does not occur in LJ
? the permutation makes no sense.
ev a violation of eigenvariable conditions might occur.

Table 8.1: Status of permutations

Lines that are grey indicate cases that will not occur in our specific input proofs, but they
were also analysed for the sake of completeness. Note that all permutations identified in this
table are in accordance with Kleene’s analysis [21]. The difference in results is due to the fact
that we consider structural rules as any regular rule.

· →l →r ∧l ∧r ∨l ∨r ∀l ∀r ∃l ∃r ¬l ¬r wl wr cl cut

→l 4 8 4 4 8 4 4 4 4 4 4 8 4 4 ? 4

→r 4 ◦ 4 ◦ 4 ◦ 4 ◦ 4 ◦ ◦ ◦ 4 ◦ 4 4

∧l 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

∧r 4 ◦ 4 ◦ 4∗ ◦ 4 ◦ 4 ◦ ◦ ◦ 4 ◦ ? 4

∨l 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ? 4

∨r 4 ◦ 4 ◦ 8 ◦ 4 ◦ 4 ◦ ◦ ◦ 4 ◦ 4 4

∀l 4 4 4 4 4 4 4 ev ev 4 4 4 4 4 4 4

∀r 4 ◦ 4 ◦ 4∗ ◦ 4 ◦ 4 ◦ ◦ ◦ 4 ◦ 4 4

∃l 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

∃r 4 ◦ 4 ◦ 8 ◦ 4 ◦ ev ◦ ◦ ◦ 4 ◦ 4 4

¬l 4 ◦ 4 ◦ 4 ◦ 4 ◦ 4 ◦ ◦ 8 4 8 4 4

¬r 4 ◦ 4 ◦ 4 ◦ 4 ◦ 4 ◦ ◦ ◦ 4 ◦ 4 4

wl 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

wr 4 ◦ 4 ◦ 4∗ ◦ 4 ◦ 4 ◦ ◦ ◦ 4 ◦ 4 4

cl 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

cut 4 8 4 4 8 4 4 4 4 4 4 8 4 4 8 4

Table 8.2: Permutation of rules in LJ

As you can see from the table, most of the times the rules can be permuted. But most of the
times is not good enough. Let’s discuss some of the cases which are not ok.
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We will explain first the ? case. It occurs only when permuting inferences down a contrac-
tion. In particular, binary inferences. The problem occurs when the contracted formulas go each
to one branch of the binary rule. Take ∧r as an example:

ϕ1

Γ, P ` A

ϕ2

Γ′, P ` B
Γ,Γ′, P, P ` A ∧B

∧r

Γ,Γ′, P ` A ∧B
cl

If we try to apply ∧r before cl (bottom-up), we would have to contract P , which is exactly
what is done right now. So the permutation really makes no sense.

If a critical inference operates on an ancestor of A ∧ B, then the contraction in P will have
to be permuted down as well. This is not a problem in principle, since cl permutes down every
rule (see Table 8.2), but issues might occur if P is an ancestor of a more complex formula or if
P is a cut ancestor.

The case 4∗ indicates that a permutation is possible only if the upper inference is applied
to both premises of the lower inference. This was presented already in Lemma 8 of [21]. Note
that this case only occurs when permuting right inferences down ∨l and it is related to the fact
that the right formula suffers an auto-contraction when ∨l is applied. When the upper inference
is not applied to both premises, it is reasonable to assume that this configuration can be reached
by permuting the rules. Note that this upper inference might be ∧r, ∀r (which actually will not
occur in skolemized proofs) or wr, and all these rules permute down the others, so in principle
they can be brought to the premise of ∨l.

There is not a lot to say about cases 8 and ◦. The first ones are the cases that break our
solution, unfortunately, and the second are cases that are not possible in LJ because they would
require more than one formula on the right side of the sequent.

Case ev is interesting. In general, these permutations are not allowed because of eigenvari-
able violations. Look for example the proof of ∀x.Px ` ∀x.Px:

Pα ` Pα
∀x.Px ` Pα ∀l
∀x.Px ` ∀x.Px ∀r  

Pα ` Pα
Pα ` ∀x.Px ∀r wrong!

∀x.Px ` ∀x.Px ∀l

If we apply ∀l first (bottom-up), and instantiate x with α, then the application of ∀r becomes
unsound, since α is no longer a fresh variable. Interestingly enough, we can allow that in our
case. Note that eigenvariable violations only occur in strong quantifier rules, i.e., ∀r and ∃l.
Since we work with skolemized proofs, these rules, if they occur, are restricted to cut ancestors.
Therefore, when building the projections, they will not be applied and no violations occur. For
this reason we will allow this local and temporary unsoundness, if this means we can transform
the proof into one in which all critical inferences occur below the cuts.

So far we know that, if all critical inferences in the input proof can be permuted below
all cuts, then we can fix the ACNF using the merging operation. We have also analysed the
permutation of rules to understand when this is possible and when it isn’t. We concluded that
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some permutations, although unsound, may be allowed. But how does this method work exactly?
Obviously the projections have to be computed from the transformed (possibly unsound) proof.
You might wonder if we can use the clause set from the original proof, and the answer is no. In
what follows we will describe the clause set before and after permuting the critical inferences
and show that while in some cases the original resolution refutation can be used, in others it
cannot. From this we will conclude that permuting the rules is unavoidable if we want to fix the
ACNF using merging.

Remember the definition of clause set (Definition 10). The structure of the clause set is de-
termined solely by binary rule applications. This means that permuting unary rules will change
absolutely nothing in the clause set, which considerably reduces the number of cases we need
to analyse. We could identify 9 schemas of structural change of the clause set, according to the
permutation performed, which we define now.

Definition 30 (τi(�1,�2)). We define τ1(�1,�2), ..., τ9(�1,�2) as the transformations suf-
fered by the clause set struct (Definition 11) of a proof upon permuting binary inferences. The
parameters �1 and �2 are either ⊗ or ⊕, depending on whether the binary inference operates
in an end-sequent or cut ancestor, respectively. We will fix �1 to correspond to the application
of the upper rule, which will be permuted down. The transformations are:

τ1(�1,�2) :

�2

CL(ϕ3)�1

CL(ϕ2)CL(ϕ1)

 �1

�2

CL(ϕ3)CL(ϕ2)

CL(ϕ1)

τ2(�1,�2) :

�2

CL(ϕ3)�1

CL(ϕ2)CL(ϕ1)

 �1

CL(ϕ2)�2

CL(ϕ3)CL(ϕ1)

τ3(�1,�2) :

�2

CL(ϕ3)�1

CL(ϕ2)CL(ϕ1)

 �1

�2

CL(ϕ3)CL(ϕ2)

�2

CL(ϕ3)CL(ϕ1)

τ4(�1,�2) :
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�2

�1

CL(ϕ3)CL(ϕ2)

CL(ϕ1)

 �1

CL(ϕ3)�2

CL(ϕ2)CL(ϕ1)

τ5(�1,�2) :

�2

�1

CL(ϕ3)CL(ϕ2)

CL(ϕ1)

 �1

�2

CL(ϕ3)CL(ϕ1)

CL(ϕ2)

τ6(�1,�2) :

�2

�1

CL(ϕ3)CL(ϕ2)

CL(ϕ1)

 �1

�2

CL(ϕ3)CL(ϕ1)

�2

CL(ϕ2)CL(ϕ1)

τ7(�1,�2) :

�2

�1

CL(ϕ4)CL(ϕ3)

�1

CL(ϕ2)CL(ϕ1)

 �1

CL(ϕ4)�2

CL(ϕ3)CL(ϕ1)

τ8(�1,�2) :

�2

�1

CL(ϕ4)CL(ϕ3)

�1

CL(ϕ2)CL(ϕ1)

 �1

�2

CL(ϕ4)CL(ϕ2)

CL(ϕ1)

τ9(�1,�2) :

�2

�1

CL(ϕ4)CL(ϕ3)

�1

CL(ϕ2)CL(ϕ1)

 �1

�2

CL(ϕ4)CL(ϕ2)

�2

CL(ϕ3)CL(ϕ1)
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Cb Ca
τ1(⊗,⊗) (C1 ⊗ C2)⊗ C3 C1 ⊗ (C2 ⊗ C3)

τ2(⊗,⊗) (C1 ⊗ C2)⊗ C3 (C1 ⊗ C3)⊗ C2

τ3(⊗,⊗) (C1 ⊗ C2)⊗ C3 (C1 ⊗ C3)⊗ (C2 ⊗ C3)

τ4(⊗,⊗) C1 ⊗ (C2 ⊗ C3) (C1 ⊗ C2)⊗ C3

τ5(⊗,⊗) C1 ⊗ (C2 ⊗ C3) C2 ⊗ (C1 ⊗ C3)

τ6(⊗,⊗) C1 ⊗ (C2 ⊗ C3) (C1 ⊗ C2)⊗ (C1 ⊗ C3)

τ7(⊗,⊗) (C1 ⊗ C2)⊗ (C3 ⊗ C4) (C1 ⊗ C3)⊗ C4

τ8(⊗,⊗) (C1 ⊗ C2)⊗ (C3 ⊗ C4) C1 ⊗ (C2 ⊗ C4)

τ9(⊗,⊗) (C1 ⊗ C2)⊗ (C3 ⊗ C4) (C1 ⊗ C3)⊗ (C2 ⊗ C4)

Table 8.3: Transformations τi(⊗,⊗)

Since in our particular case the inference we wish to permute down operates on an end-
sequent ancestor, we can safely consider �1 = ⊗. Therefore we need only to analyse �2 = ⊗
and �2 = ⊕. Tables 8.3 and 8.4 summarizes the operations for each possible �2, respectively.
We use a linear representation of the clause set struct and already normalize it (i.e., distribute ⊗
over⊕). For readability purposes, we denote CL(ϕi) as Ci. Also, we use Cb to denote the clause
set before the permutation and Ca to denote it afterwards.

Let’s look carefully what happens to the clause set under each of these transformations.
We’ll start with τi(⊗,⊗) (Table 8.3). Given that⊗ is associative and symmetric, transformations
τ1(⊗,⊗), τ2(⊗,⊗), τ4(⊗,⊗), τ5(⊗,⊗) and τ9(⊗,⊗) will not alter the clause set. Therefore, in
this case, the refutation of Cb could be used to construct the ACNF, while using the projections
computed from the transformed proof.

Transformations τ3(⊗,⊗) and τ6(⊗,⊗) are analogous: they will require a branch of the
proof to be copied and used twice, thus generating a redundancy on the clause set. Nevertheless,
the same clauses will still be available, modulo the contraction of a few atoms. This is easier to
see if we use the properties of ⊗ and rewrite Ca for both cases, respectively:

τ3(⊗,⊗) (C1 ⊗ C2)⊗ C3 (C1 ⊗ C2)⊗ (C3 ⊗ C3)

τ6(⊗,⊗) C1 ⊗ (C2 ⊗ C3) (C1 ⊗ C1)⊗ (C2 ⊗ C3)

Although the clause set of the transformed proof might be exponentially larger, we can use
the resolution refutation of Cb and use a subset of the clauses in Ca to compute the necessary
projections, possibly with contractions of atomic cut ancestors.

The transformations τ7(⊗,⊗) and τ8(⊗,⊗) are more interesting. They actually get rid of
one branch of the proof, reducing the redundancy of the clause set. The clauses of Ca subsume
those of Cb (i.e., the former clauses are subsets of literals of the latter clauses), and because
of that a resolution refutation using clauses from Cb can be transformed into another one using
clause from Ca [23].
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Cb Ca
τ1(⊗,⊕) (C1 ⊗ C2)⊕ C3 (C1 ⊗ C2)⊕ (C1 ⊗ C3)

τ2(⊗,⊕) (C1 ⊗ C2)⊕ C3 (C1 ⊗ C2)⊕ (C2 ⊗ C3)

τ3(⊗,⊕) (C1 ⊗ C2)⊕ C3 (C1 ⊗ C2)⊕ (C1 ⊗ C3)⊕ (C2 ⊗ C3)⊕ (C3 ⊗ C3)

τ4(⊗,⊕) C1 ⊕ (C2 ⊗ C3) (C1 ⊗ C3)⊕ (C2 ⊗ C3)

τ5(⊗,⊕) C1 ⊕ (C2 ⊗ C3) (C1 ⊗ C2)⊕ (C2 ⊗ C3)

τ6(⊗,⊕) C1 ⊕ (C2 ⊗ C3) (C1 ⊗ C1)⊕ (C1 ⊗ C3)⊕ (C1 ⊗ C2)⊕ (C2 ⊗ C3)

τ7(⊗,⊕) (C1 ⊗ C2)⊕ (C3 ⊗ C4) (C1 ⊗ C4)⊕ (C3 ⊗ C4)

τ8(⊗,⊕) (C1 ⊗ C2)⊕ (C3 ⊗ C4) (C1 ⊗ C2)⊕ (C1 ⊗ C4)

τ9(⊗,⊕) (C1 ⊗ C2)⊕ (C3 ⊗ C4) (C1 ⊗ C2)⊕ (C2 ⊗ C3)⊕ (C1 ⊗ C4)⊕ (C3 ⊗ C4)

Table 8.4: Transformations τi(⊗,⊕)

So we conclude that, if �2 is ⊗, then we can use the resolution refutation of the input proof,
and the projections of the (possibly unsound) intermediary proof, in which the critical rules were
permuted down. Unfortunately this does not hold if �2 is ⊕.

Interestingly enough, in cases τ1(⊗,⊕) to τ6(⊗,⊕) and τ9(⊗,⊕) the clauses in the original
clause set, Cb, subsume those in Ca. This is the exact contrary of cases τ7(⊗,⊗) and τ8(⊗,⊗),
and it means we could use the refutation of Ca with the clauses of Cb, but that’s not really what
we are after, right? Cases τ7(⊗,⊕) and τ8(⊗,⊕) are even more strange, since the clause sets
before and after the permutation are not comparable.

Because of these cases, we cannot say that the original clause set (and refutation) can be
used. We can conclude that, if we want to fix the proof by merging, then all the rules need to
be permuted below all the cuts, and the CERES method will be applied to this new transformed
proof.

Complexitywise, this is not the best transformation, as you might have noticed. Although
there are a some cases in which the clause set is actually simplified (e.g., τ7(⊗,⊗) and τ8(⊗,⊗)),
in others it is made bigger and more redundant (e.g., τ3(⊗,⊕) and τ6(⊗,⊕)). Because of these
“bad” cases, the transformed proof can be, on the worst case, exponentially larger than the
original one.

Example

We give now a (simple) example on how this method would work. Let ϕ be the proof:

A ` A
A,¬A `

¬l

¬A ` ¬A
¬r

A ` A
B,A ` A

wl

¬A,B,A `
¬l

¬A,B ` ¬A
¬r

¬A ` B → ¬A
→r

¬A ` B → ¬A cut
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The original clause set and projections are:

{A ` ; ` A}

A ` A
A,¬A `

¬l

A,¬A ` B → ¬A
wr

A ` A
A,B ` A

wl

B ` A,¬A ¬
†
r

` A,B → ¬A →
†
r

¬A ` A,B → ¬A
wl

Note that the †-inferences occur in only one of the projections, meaning that we cannot fix
the ACNF by merging. So we permute the critical inferences below the cut and we have a new
proof:

A ` A
A,¬A `

¬l

¬A ` ¬A
¬r

A ` A
B,A ` A

wl

¬A,B,A `
¬l

¬A,B,A ` cut

¬A,B ` ¬A
¬r

¬A ` B → ¬A
→r

Since this involved only permutations of unary rules, the clause set remains unchanged. But
the projections now are:

A ` A
A,¬A `

¬l

A,¬A,B,A ` w∗

A,¬A,B ` ¬A
¬r

A,¬A ` B → ¬A
→r

A ` A
A,B ` A

wl

B ` A,¬A ¬
†
r

` A,B → ¬A →
†
r

¬A ` A,B → ¬A
wl

Using the simple resolution refutation of the clause set, we obtain the (still violated) ACNF:

A ` A
A,¬A `

¬l

A,¬A,B,A ` w∗

A,¬A,B ` ¬A
¬r

A,¬A ` B → ¬A
→r

A ` A
A,B ` A

wl

B ` A,¬A ¬
†
r

` A,B → ¬A →
†
r

¬A ` A,B → ¬A
wl

¬A,¬A ` B → ¬A,B → ¬A cut

¬A ` B → ¬A c∗

But by permuting the cut up and using the merging operation, we get a nice intuitionistic
proof. First we merge→r:
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A ` A
A,¬A `

¬l

A,¬A,B,A ` w∗

A,¬A,B ` ¬A
¬r

A ` A
A,B ` A

wl

B ` A,¬A ¬
†
r

¬A,B,B ` ¬A,¬A cut

¬A,B ` ¬A c∗

¬A ` B → ¬A
→r

¬A ` B → ¬A,B → ¬A
wr

¬A,¬A ` B → ¬A,B → ¬A
wl

¬A ` B → ¬A c∗

Then we merge ¬r:

A ` A
A,¬A `

¬l

A,¬A,B,A ` w∗
A ` A
A,B ` A

wl

¬A,B,B,A,A ` cut

¬A,B,B,A `
cl

¬A,B,B ` ¬A
¬r

¬A,B,B ` ¬A,¬A
wr

¬A,B ` ¬A c∗

¬A ` B → ¬A
→r

¬A ` B → ¬A,B → ¬A
wr

¬A,¬A ` B → ¬A,B → ¬A
wl

¬A ` B → ¬A c∗

Ok, not so nice, I admit. But it becomes nicer if the redundant structural rules are eliminated
(which can be done in linear time, by the way).

Classes

So far we know that if we can permute all critical rules below the cut, the ACNF can be trans-
formed into an intuitionistic proof by merging. But when exactly can we permute these rules?
Table 8.2 gives us an idea.

The rules in the lines of the table are all applied to end-sequent ancestors. If we consider
proofs in which there are no→l, ¬l and ∧r applied to end-sequent ancestors, then we can always
fix the ACNF. This gives us a syntactic characterization of (a part of) the proofs which can be
dealt with using the merging method.

Summary

Merging CERES:
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• Input: LJ proof with cuts (such that critical inferences can be permuted below all cuts)

• Output: LJ’ proof with atomic cuts

• Resolution: normal on the clause set of the transformed proof
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CHAPTER 9
Joining CERES

In the past chapters we tried to work with Gentzen’s rank reduction rules to eliminate the atomic
cuts that introduce violating atoms. What if there is another way to eliminate atomic cuts that
does not involve rank reduction? In this chapter we explore such possibility.

9.1 Joining

Let’s explain the idea behind joining. The CERES method collects atomic cut ancestors from
the proof, right? Actually, it collects atomic cut ancestors that occur in axioms. Then these are
organized in a clause set that happens to be refutable. In the refutation of the clause set, these
atoms are resolved. Let’s say an atom A? was resolved between clauses C1 and C2 from the
clause set. This means that the input proof had a cut which had A? as an ancestor. Moreover,
there were axioms A ` A? and A? ` A. For the CERES method we also need to build projec-
tions for each of the clauses, and in particular, for C1 and C2. These projections will contain
the axioms A ` A? and A? ` A, and the A?s will be dragged down until the end-sequent of
the projections where they are finally cut. Now, instead of cutting these A?s in the end-sequent,
this new method will join the branches in which A? occurs, from the axiom down, getting to
an end-sequent S which contains the formulas from both end-sequents of the projections. After
this is done to every atom that is resolved in the resolution refutation, the end-sequent S will be
the end-sequent of the input proof, modulo some contractions. How do we join things? We will
explain everything formally now.

First of all, let’s define which are the paths we need to join.

Definition 31 (Inference path). Let π be a projection andA? an atomic cut ancestor occurring in
π. We define the inference path P(π,A?) as the sequence of inferences from the axiom in which
A? occurs until the end-sequent. We define the length of the path |P(π,A?)| as the number of
inferences occuring in it.

Of course that different inference paths might contain instances of the same input proof
inference. When two inferences ρ1 and ρ2 in different projections are the same input proof
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inference, we say that ρ1 and ρ2 are a match. The matching inferences of two projections must
occur in the same relative order to each other.

Theorem 14. Let A? be an atomic cut ancestor occurring in projections π1 and π2, and P1 =
P(π1, A

?) and P2 = P(π2, A
?). Then the matching rules in P1 and P2 occur in the same

relative order in each path. Moreover, they occur in the same order as in the input proof.

Proof. Trivial from how the projections are constructed.

What happens during a join is the combination of two inference paths into one, such that the
matching inferences are applied only once. When matching critical inferences are merged, as
shown in the last chapter, the result can be an inference with less violations, and ultimately an
intuitionistic inference.

Definition 32 (Joining). Let A? be an atomic cut ancestor occurring in projections π1 and π2

with opposite polarity such that it is resolved in the resolution refutation, and P1 = P(π1, A
?)

and P2 = P(π2, A
?). We define the joining π1 onA π2 inductively on (|P1|, |P2|). Whenever A

is clear from the context, we omit it in the symbol on.

We will not deal with the cases in which |P1| = 0 or |P2| = 0. This means that A? does not
occur in one or both projections and therefore it makes no sense to join them. Our base case is
then (1, 1) (case 0), when the paths contain only the axioms. Their join is trivial:

A ` A? on A? ` A = A ` A (0.0)

Now we look at the cases where |P1| or |P2| is bigger than 1. In the following derivations,
we consider that ϕ1 ∈ P1 and ϕ2 ∈ P2, while ϕ′1 and ϕ′2 are derivations not contained in P1

and P2, respectively. Moreover ρ1 and ρ2 are the last (lower-most) inferences in P1 and P2, also
respectively, and whenever these are matching inferences, they are both denoted by ρ.

If |P1| = 1 and |P2| = k > 1 (case 1):

A ` A? on
ϕ2

S2
ρ2

=

(
A ` A? on ϕ2

)
S

ρ2
(1.1)

A ` A? on
ϕ2 ϕ′2
S2

ρ2
=

(
A ` A? on ϕ2

)
ϕ′2

S
ρ2

(1.2)

A ` A? on
ϕ′2 ϕ2

S2
ρ2

=

ϕ′2

(
A ` A? on ϕ2

)
S

ρ2
(1.3)

The new join operates on paths of length (1, k − 1), therefore we can apply the induction
hypothesis.

If |P1| = k > 1 and |P2| = 1 (case 2), the cases are analogous:
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ϕ1

S1
ρ1 on A? ` A =

(
A? ` A on ϕ1

)
S

ρ1
(2.1)

ϕ1 ϕ′1
S1

ρ1 on A? ` A =

(
A? ` A on ϕ1

)
ϕ′1

S
ρ1

(2.2)

ϕ′1 ϕ1

S1
ρ1 on A? ` A =

ϕ′1

(
A? ` A on ϕ1

)
S

ρ1
(2.3)

This time the induction hypothesis is applied to (k − 1, 1).

If |P1| = j > 1 and |P2| = k > 1 (case 3), we need to distinguish a few cases.

If ρ1 and ρ2 are matching inferences (case 3.1), then we can apply only one instance of it:

ϕ1

S1
ρ

on
ϕ2

S2
ρ

=

(
ϕ1 on ϕ2

)
S

ρ
(3.1.1)

ϕ1 ϕ′1
S1

ρ
on

ϕ2 ϕ′2
S2

ρ
=

(
ϕ1 on ϕ2

)
ϕ′1

S
ρ

(3.1.2)

ϕ′1 ϕ1

S1
ρ

on
ϕ′2 ϕ2

S2
ρ

=

ϕ′1

(
ϕ1 on ϕ2

)
S

ρ
(3.1.3)

ϕ1 ϕ′1
S1

ρ
on

ϕ′2 ϕ2

S2
ρ

=

ϕ′2 ϕ′1
S

ρ
(3.1.4)

ϕ′1 ϕ1

S1
ρ

on
ϕ2 ϕ′2
S2

ρ
=

ϕ′1 ϕ′2
S

ρ
(3.1.5)

The new joins are on paths of length (j−1, k−1) (except on the last two cases, in which there
will be no more joins defined), therefore the induction hypothesis holds. It is worth noting that
the last four cases might require some weakenings to obtain formulas occurring in the branches
that were not used. Also, the choice of ϕ′1 on the second and third cases is arbitrary, ϕ′2 could
be used just as well.

If ρ1 has a match in P2 but this is not ρ2 (case 3.2), then we can apply only ρ2 and keep ρ1

until reaching its match. In the following cases, ρ1 could be a unary or binary inference. The
join is then defined as:
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ϕ1

S1
ρ1 on

ϕ2

S2
ρ2

=

(ϕ1

S1
ρ1 on ϕ2

)
S

ρ2
(3.2.1)

ϕ1

S1
ρ1 on

ϕ2 ϕ′2
S2

ρ2
=

(ϕ1

S1
ρ1 on ϕ2

)
ϕ′2

S
ρ2

(3.2.2)

ϕ1

S1
ρ1 on

ϕ′2 ϕ2

S2
ρ2

=

ϕ′2

(ϕ1

S1
ρ1 on ϕ2

)
S

ρ2
(3.2.3)

The new join is on paths of length (j, k − 1).

If ρ2 has a matching inference in P1 but this is not ρ2 (case 3.3), the cases are analogous as
the previous ones:

ϕ1

S1
ρ1 on

ϕ2

S2
ρ2

=

(
ϕ1 on

ϕ2

S2
ρ2
)

S
ρ1

(3.3.1)

ϕ1 ϕ′1
S1

ρ1 on
ϕ2

S2
ρ2

=

(
ϕ1 on

ϕ2

S2
ρ2
)

ϕ′1

S
ρ1

(3.3.2)

ϕ′1 ϕ1

S1
ρ1 on

ϕ2

S2
ρ2

=

ϕ′1

(
ϕ1 on

ϕ2

S2
ρ2
)

S
ρ1

(3.3.3)

This time the new join is on paths of length (j − 1, k).

If neither ρ1 nor ρ2 have matching inferences in P2 and P1 respectively (case 3.4), then both
inferences need to be applied in some order. This order is not clear from the beginning, and
some backtracking might be necessary to find the correct one.
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ϕ1

S1
ρ1 on

ϕ2

S2
ρ2

=

(
ϕ1 on ϕ2

)
S

ρ1

S′
ρ2

(3.4.1)

ϕ1 ϕ′1
S1

ρ1 on
ϕ2

S2
ρ2

=

(
ϕ1 on ϕ2

)
ϕ′1

S
ρ1

S′
ρ2

(3.4.2)

ϕ′1 ϕ1

S1
ρ1 on

ϕ2

S2
ρ2

=

ϕ′1

(
ϕ1 on ϕ2

)
S

ρ1

S′
ρ2

(3.4.3)

ϕ1

S1
ρ1 on

ϕ2 ϕ′2
S2

ρ2
=

(
ϕ1 on ϕ2

)
S

ρ1
ϕ′2

S′
ρ2

(3.4.4)

ϕ1

S1
ρ1 on

ϕ′2 ϕ2

S2
ρ2

=

ϕ′2

(
ϕ1 on ϕ2

)
S

ρ1

S′
ρ2

(3.4.5)

ϕ1 ϕ′1
S1

ρ1 on
ϕ2 ϕ′2
S2

ρ2
=

(
ϕ1 on ϕ2

)
ϕ′1

S
ρ1

ϕ′2
S′

ρ2
(3.4.6)

ϕ1 ϕ′1
S1

ρ1 on
ϕ′2 ϕ2

S2
ρ2

=

ϕ′2

(
ϕ1 on ϕ2

)
ϕ′1

S
ρ1

S′
ρ2

(3.4.7)

ϕ′1 ϕ1

S1
ρ1 on

ϕ2 ϕ′2
S2

ρ2
=

ϕ′1

(
ϕ1 on ϕ2

)
S

ρ1
ϕ′2

S′
ρ2

(3.4.8)

ϕ′1 ϕ1

S1
ρ1 on

ϕ′2 ϕ2

S2
ρ2

=

ϕ′2

ϕ′1

(
ϕ1 on ϕ2

)
S

ρ1

S′
ρ2

(3.4.9)

The new join is on paths of length (j − 1, k − 1).
One last (very!) important observation is regarding weakenings, which must be skipped

under certain conditions. Whenever ρ1, ρ2 or ρ is a weakening, we must check the end-sequent
of the current join. If the weakened formula is already present (the same end-sequent ancestor as
in the original proof), then the weakening should not be applied. Otherwise it should be applied.
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We realize the method does not make clear what is the proper inference order application. In
some cases it does not matter the order, the only difference is that one final proof will be more
redundant then the other. In other cases, the algorithm works with one ordering but not with
another. There is some search involved to find out the correct order.

As a side remark, we note that although the definition seems to be constructing the join
bottom-up, this is just for induction purposes. In our examples we find it easier to construct
them top-down, by first joining the corresponding axioms and taking down from there.

For this method it is worth using o-projections (Definition 13), since this avoids unnecessary
weakenings.

Example

Before analyzing what happens to the critical inferences during the join, let’s show an example
of joining in a proof to make this clearer. The proof, admittedly, has no critical rules, but it is
a non-trivial case of joining. Let ϕ be the following proof with 2 cuts. The cuts are colored in
green and blue to differentiate the atoms in the clause set.

A ` A
A ` A ∨ C

∨r C ` C
C ` A ∨ C

∨r
A ∨ C ` A ∨ C

∨l

A ` A
A ` A ∨ C

∨r C ` C
C ` A ∨ C

∨r
A ∨ C ` A ∨ C

∨l

B ` B A ` A
B,A ` B ∧A

∧r

B ∧A ` B ∧A
∧l

A ∨ C, (A ∨ C)→ (B ∧A) ` B ∧A
→l

B ` B A ` A
B,A ` B ∧A

∧r

B ∧A ` B ∧A
∧l

A ∨ C, (A ∨ C)→ (B ∧A) ` B ∧A cut

(A ∨ C)→ (B ∧A), A ∨ C ` B ∧A cut

Its clause set is:

CL(ϕ) = {` A,C ; B,A ` ; A ` B ; C ` B ; C ` A}
The o-projections are:

π(` A,C) :

A ` A C ` C
A ∨ C ` A,C

∨l

π(B,A `) :

B ` B A ` A
B,A ` B ∧A

∧r

π(A ` B) :

A ` A
A ` A ∨ C

∨r

B ` B
B,A ` B

wl

B ∧A ` B
∧l

(A ∨ C)→ (B ∧A), A ` B
→l
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π(C ` B) :

C ` C
C ` A ∨ C

∨r

B ` B
B,A ` B

wl

B ∧A ` B
∧l

(A ∨ C)→ (B ∧A), C ` B
→l

π(C ` A) :

C ` C
C ` A ∨ C

∨r

A ` A
B,A ` A

wl

B ∧A ` A
∧l

(A ∨ C)→ (B ∧A), C ` A
→l

Suppose we want to use the following resolution refutation to guide the joins1:

` A,C

C ` A

C ` A A ` B
C ` B R

B,A `
C,A ` R

C,C ` R

C `
cl

` A R

` A,C
C ` A A ` B

C ` B R

` A,B R
A ` B

` B,B R

` B
cr

B,A `
A ` R

` R

This means that we need to join projections π(C ` A) with π(A ` B), via atom A. The
result is:

C ` C
C ` A ∨ C

∨r

B ` B
B,A ` B

wl

B ∧A ` B
∧l

(A ∨ C)→ (B ∧A), C ` B
→l

Note that the branches with A, which were actually being joined, disappeared. This corre-
sponds to case (3.1.5).

This resulting derivation has to be joined with π(B,A `) via atom B. There is some liberty
for choosing which inference is applied first, we show here two possible results of this join:

C ` C
C ` A ∨ C

∨r

B ` B
B,A ` B

wl

B ∧A ` B
∧l

(A ∨ C)→ (B ∧A), C ` B
→l

A ` A
(A ∨ C)→ (B ∧A), C,A ` B ∧A

∧r

C ` C
C ` A ∨ C

∨r

B ` B A ` A
B,A ` B ∧A

∧r

B,A,A ` B ∧A
wl

B ∧A,A ` B ∧A
∧l

(A ∨ C)→ (B ∧A), C,A ` B ∧A
→l

Our analysis indicates that using the right derivation is better in our case, since it duplicates
less branches in the proof. The difference is mainly on the order of application of→l and ∧r,

1This is complicated on purpose.
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the two binary rules. Observe also that wl still needs to be applied in this case, because the A
occurring in the sequent is a cut ancestor.

We choose then the right derivation and join it with π(C ` A) via A, resulting in:

C ` C
C ` A ∨ C

∨r

B ` B A ` A
B,A ` B ∧A

∧r

B ∧A ` B ∧A
∧l

(A ∨ C)→ (B ∧A), C ` B ∧A
→l

Interesting things happened in this step. First of all, the wl was skipped, since A was avail-
able as the correct end-sequent ancestor. Second of all, there is only one occurrence of C in the
end-sequent of this derivation. If you look carefully at the resolution refutation that is guiding
us, you will see that there are two C’s, but this is not the result of the join, since one of the
branches from which one C came from was not used. In general, we can say that the induced
clause resulting from a join subsumes the resolvent of the two original clauses. We will soon
explain about this subsumption property. Before that, let’s finish the joins for this proof, it’s a
good learning exercise.

Next step is to join the last derivation with π(` A,C). We will refer to the result as ϕ`A:

A ` A C ` C
A ∨ C ` A,C

∨l

A ∨ C ` A,A ∨ C
∨r

B ` B A ` A
B,A ` B ∧A

∧r

B ∧A ` B ∧A
∧l

A ∨ C, (A ∨ C)→ (B ∧A) ` B ∧A,A
→l

Now let’s deal with the other branch of the resolution refutation. First we join π(C ` A)
with π(A ` B) via A:

C ` C
C ` A ∨ C

∨r

B ` B
B,A ` B

wl

B ∧A ` B
∧l

(A ∨ C)→ (B ∧A), C ` B
→l

This is again case (3.1.5), in which the joining branch itself is discarded. We now join this
with π(` A,C) via C:

A ` A
C ` C

C ` A ∨ C
∨r

A ∨ C ` A,A ∨ C
∨l

B ` B
B,A ` B

wl

B ∧A ` B
∧l

A ∨ C, (A ∨ C)→ (B ∧A) ` A,B
→l

When joining these branches one curious thing happens. At first it seems arbitrary if we
apply ∨l before ∨r or the other way around on the left branch, but once we get to the next join
we can only continue if we apply ∨r before (above) ∨l. If the wrong order is used, there will be
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one extra atom in the derivation. Don’t believe me? Ok, here we go. Imagine that, top-down,
the rules in the A branch of the derivation above are {∨l,∨r,→l}. The next step is to join this
branch with π(A ` B). The first rule in the projection branch is ∨r, which has a match in the
current derivation. So we need to apply ∨l first (top-down) to get to the matching inference,
which results in the following derivation:

A ` A C ` C
A ∨ C ` A,C

∨l

A ∨ C ` A,A ∨ C
∨r

See the extra A there? We need to be careful with that.
So let’s say we use the correct order, the join can be performed with no problems, and

the same effect of non-duplication occurs as before. Although the resolvent of this resolution
has two B’s, the joined derivation has only one. As a plus, we don’t have to worry about this
contraction. We will skip this step and show already the join with π(B,A), which we call ϕA`:

A ` A
A ` A ∨ C

∨r
C ` C

A ∨ C ` A ∨ C
∨l

B ` B A ` A
B,A ` B ∧A

∧r

B,A,A ` B ∧A
wl

B ∧A,A ` B ∧A
∧l

A ∨ C, (A ∨ C)→ (B ∧A), A ` B ∧A
→l

Final step! We must join ϕ`A with ϕA` via A, of course. We will start by applying ∧r:

B ` B A ` A
B,A ` B ∧A

∧r

Now there is a weakening of A on the left. Do we need this? There is an A already there,
but we do need the weakening. If you observe, the A which is present is an ancestor of A ∨ C,
so not the same weakened A. But alas! We don’t need this branch after all. This is case (3.1.4),
in which the joined branch is discarded. Well, it was a good example for the weakening anyway.
The final proof is then:

A ` A
A ` A ∨ C

∨r
C ` C

A ∨ C ` A ∨ C
∨l

B ` B A ` A
B,A ` B ∧A

∧r

B ∧A ` B ∧A
∧l

A ∨ C, (A ∨ C)→ (B ∧A) ` B ∧A
→l

Subsumption

Now let’s discuss the subsumption property. You might have noticed that, when doing the join
operation, some branches of the proof can disappear. These branches might contain some atomic
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cut ancestor, which are not necessarily the one on which the join is guided. Can we spare these
atoms? Turns out we can, because the new clause subsumes the original one.

Definition 33 (Subsumption). A clause C1 subsumes a clause C2, written C1 ≤ C2, if there
exists a substitution σ such that the literals in C1σ are a subset of the literals in C2.

In the case of joining, there is no need for a substitution σ.

Theorem 15. Let C1 and C2 be two clauses resolved in the resolution refutation via an atom
A and Cr its resolvent. Let ϕ be π(C1) onA π(C2) and Ci be the clause composed of the cut
ancestors in ϕ’s end-sequent. Then Ci ≤ Cr.

Proof. From the definition of projections, we know that every literal occurring in Cr is in an
axiom of π(C1) or π(C2). When these projections are joined, as in Definition 32, some axioms
might not be used anymore simply because a branch of the projection was not used. Therefore,
the literals appearing in Ci will be only a subset of those appearing in Cr.

Because of the subsumption principle [23], we know that if C ′ ≤ C, then C can be replaced
by C ′ in a resolution refutation. Therefore the simpler clauses obtained by joining can still be
used in a new (and possibly simpler) resolution refutation that will guide future joins.

Quantifiers

One (more) thing we need to be careful about when joining derivations is with quantifier rules.
Since we are working with skolemized proofs, there will be no strong quantifiers, which means
that we don’t need to worry about eigenvariable violations. But we do need to worry when
matching inferences are quantifier inferences. If they use the same term in the substitution, we
can apply one quantifier with no problem. What if they use different terms?

Suppose two weak quantifiers are matching inferences. This means that they are occurrence
of the same inference in the input proof. In the original proof, this quantifier might have been
instantiated with a term t which has an eigenvariable from a strong quantifier applied to a cut-
ancestor or not.

If t does not contain an eigenvariable, then its occurrence in every projections will be the
same, and the rules can be merged in one.

If, on the other hand, t does contain an eigenvariable, then this might have been instanti-
ated to different terms, resulting from the unifications during resolution refutation. In this case,
the week quantifier inference needs to be applied twice and the main formula contracted. Ob-
serve that this does not pose a problem for LJ’ because week quantifier inferences do not have
structural restrictions.

Critical inferences

But will this join always result in an intuitionistic proof? Suppose ρ is a violated instance of a
critical inference in a projection. Eventually the branch to which ρ belongs will be joined (if not,
then it’s not used in the final proof and we don’t care about this inference anyway. This could
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happen if there was some subsumed clause, for example.). During joining, a few things might
occur:

• The branch where ρ is might disappear. In this case we don’t have to worry about anything,
since the violated inference will vanish completely.

• ρ has a matching inference, say ρ′, on the other branch. Suppose ρ is violated by n
atoms and ρ′ is violated by n′ atoms. The join operation is for sure in an atom A that
violated both ρ and ρ′. The new ρ∗ inference, in the result of the join, will be violated by
n+n′− 2, worst case scenario. Considering that, after all the joins, these violating atoms
will no longer occur, our intuition tells us that there will be no more violations.

• ρ has no matching inference. In this case, it might be crucial the order in which ρ is
applied. As we’ve seen on the previous example, the ordering might determine whether
some matching inference will occur or not on the next join, and for critical rules it is very
important that matching inferences are found. On the other hand, ρ needs to be applied
anyway. Of course the violating atom A will no longer occur, but we need (can we?) to
make sure that there are no other formulas on the right side (ancestors of end-sequent).
Again in this case the order of rule applications plays a major role.

In fact, in the general case we cannot always fix the critical inferences. If we take the
propositional proof from Chapter 5, we see that, no matter how the join is performed, the final
proof is still classical. On the next chapter we try to work around this.
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CHAPTER 10
Indexing CERES

Remember I said, a long time ago, in Chapter 5, that ignoring the tautologies from the clause set
was important? Well, for intuitionistic logic, not ignoring them is what is important. It turns out
we will need to use all the clauses for a resolution refutation if we want to transform the final
ACNF into an intuitionistic proof.

10.1 Indexing

In his thesis [28], Bruno Woltzenlogel Paleo discussed resolution refinements that would re-
duce the distance between the normal forms generated by the CERES method and the normal
forms generated by reductive cut-elimination methods. By restricting the way resolutions are
constructed, he argued, CERES would involve less proof search and be closer to a “genuine”
proof-transformation. His examples show that, already in classical logic, there are normal forms
generated by CERES which cannot be generated by reductive cut-elimination. The refinements
aim to bring these normal forms together.

In intuitionistic logic the situation is even more serious. Observe that the ACNF generated
by CERES has the characteristic that all cuts and possibly some contractions occur below all
logical inferences. Now, intuitionistic proofs with atomic cuts cannot always be transformed
into such format. Since there is less liberty on the order of inferences, it is not always the case
that the cuts can be permuted down all logical inferences. This is a first indication that the ACNF
will eventually turn out classical.

Since we know reductive cut-elimination is possible in the intuitionistic calculi LJ and LJ’,
we will use one of the resolution refinements defined in Bruno’s1 thesis [28] in hope that this
will generate ACNF’s which can be enventually transformed into intuitionistic proofs.

The refinement we will use is called “atomic cut-linkage” ( [28], page 154, definition 6.2.3).
Its main idea is to restrict the resolution refutation in a way that the pairs of resolved atoms are
exactly those atoms which would be cut had a reductive cut-elimination method been used. To

1In Brazil, we usually refer to people on a first-name basis. I and Bruno are both Brazilians.
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enforce this, we will use indices for atoms occuring in cut-ancestors and make sure that only
atoms with the same index are resolved in the resolution refutation. First of all, we define how
to index these atoms in the input proof.

Definition 34 (Atom indexing). Let ϕ be a proof with cuts and F the auxiliary formula of a
cut inference. For each atomic sub-formula of F we assign an index i different from the indices
used in all other cuts of ϕ. It is important to note that the atomic sub-formulas of two auxiliary
formulas of the same cut, on both premises, will have the same index.

In the proof below, the atom indexing is represented by superscripts on the green atoms,
which are the cut ancestors.

P ` P 1

P ` P 1 ∨ ¬P
∨r

P 2 ` P
P 2,¬P `

¬l

¬P ` ¬P 2
¬r

¬P ` P 1 ∨ ¬P 2
∨r

P ∨ ¬P ` P 1 ∨ ¬P 2
∨l

P ` P 2

¬P 2, P `
¬l

¬P 2 ` ¬P
¬r

¬P 2,¬¬P `
¬l

¬P 2,¬¬P ` P
wr

¬P 2 ` ¬¬P → P
→r

P 1 ` P
P 1,¬¬P ` P

wl

P 1 ` ¬¬P → P
→r

P 1 ∨ ¬P 2 ` ¬¬P → P
∨l

P ∨ ¬P ` ¬¬P → P
cut

Given the indexing, we define a resolution refinement that will take these indices into account
and only allows atoms with the same index to be resolved, which we will call indexed resolution.
Observe that, if we perform reductive cut-elimination until having only atomic cuts in a proof,
these will be cuts exactly on atoms with the same index. The completeness of this resolution
refinement then comes for free.

Note, though, that the completeness is only possible because we have clause sets coming
from a proof with cuts. It makes no sense to consider the refinement in a general setting of
resolution.

If we now consider the indices as part of the language (part of the atomic predicate, for
example), we can use the same resolution calculus to find a refutation of the clause set, and the
condition that only atoms with the same index are resolved will be fulfilled. The clause set of
our example proof, thus, is the following:

CL = {P 2 ` P 1 ; P 1 ` ; ` P 2}

Now, if you remember correctly, had we not used indices, the clause P 2 ` P 1 would not be
part of the clause set, since it would be a tautology. But now it needs to be considered. Even
more so because, had we only P 1 ` and ` P 2, the clause set would not be refutable. In the new
language, P 1 6= P 2. We get then a different resolution refutation:

` P 2

P 2 ` P 1 P 1 `
P 2 ` R

` R
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And we need to compute the o-projections of the three clauses:

π(` P 2)

P ` P 2

` P 2,¬P
¬†r

¬¬P ` P 2
¬l

¬¬P ` P 2, P
wr

` P 2,¬¬P → P
→†r

π(P 1 `)

P 1 ` P
P 1,¬¬P ` P

wl

P 1 ` ¬¬P → P
→r

π(P 2 ` P 1)

P ` P 1

P 2 ` P
¬P, P 2 `

¬r

¬P, P 2 ` P 1
wr

P ∨ ¬P, P 2 ` P 1
∨l

The use of this resolution refinement changes nothing on the projections. They still contain
some †-inference. What changes then? Well, with a different resolution refutation, the ACNF
changes:

P ` P 2

` P 2,¬P
¬†r

¬¬P ` P 2
¬l

¬¬P ` P 2, P
wr

` P 2,¬¬P → P
→†r

P ` P 1

P 2 ` P
¬P, P 2 `

¬r

¬P, P 2 ` P 1
wr

P ∨ ¬P, P 2 ` P 1
∨l

P 1 ` P
P 1,¬¬P ` P

wl

P 1 ` ¬¬P → P
→r

P ∨ ¬P, P 2 ` ¬¬P → P
cut

P ∨ ¬P ` ¬¬P → P,¬¬P → P
cut

P ∨ ¬P ` ¬¬P → P
cr

It is still classical though. But observe that this ACNF does not have the undesirable effect
of an intuitionistically invalid sequent before the cut.

In order to get an intuitionistic proof, we will not try to fix this ACNF, but join the projections
using the method of Chapter 9. The resolution refutation that will guide the join will be the
indexed one, since using the other simpler refutation will not result in an intuitionistic proof.

The result of joining the projections π(P 2 ` P 1) and π(P 1 `) is2 the following:

2This is just one possible result for the joining.
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P ` P

P 2 ` P
¬P, P 2 `

¬r

¬P, P 2 ` P
wr

P ∨ ¬P, P 2 ` P
∨l

P ∨ ¬P, P 2,¬¬P ` P
wl

P ∨ ¬P, P 2 ` ¬¬P → P
→r

And by joining this derivation with the projection π(` P 2) we get the following intuitionistic
proof:

P ` P

P ` P
¬P, P `

¬l

¬P ` ¬P
¬r

¬P,¬¬P `
¬l

¬P,¬¬P ` P
wr

P ∨ ¬P,¬¬P ` P
∨l

P ∨ ¬P ` ¬¬P → P
→r

Predicate Logic

Remember the predicate proof in Chapter 5? Using this resolution refinement plus joining also
works for it. Let’s show that.

The proof with atom indexing is the following:

Pfα2 ` Pfα
Pα ` Pα1

¬Pα1, Pα `
¬l

Pfα→ Pα,¬Pα1, Pfα2 `
→l

∀y.(Pfy → Py),¬Pα1, Pfα2 `
∀l

∀y.(Pfy → Py),¬Pα1 ` ¬Pfα2
¬r

∀y.(Pfy → Py) ` ¬Pα1 → ¬Pfα2
→r

∀y.(Pfy → Py) ` ∀y.(¬Py1 → ¬Pfy2)
∀r

Pt1 ` Pt
¬Pt, P t1 `

¬l

¬Pt ` ¬Pt1
¬r

Pft ` Pft2

¬Pft2, Pft `
¬l

¬Pft2 ` ¬Pft
¬r

¬Pt1 → ¬Pft2,¬Pt ` ¬Pft
→l

¬Pt1 → ¬Pft2 ` ¬Pt→ ¬Pft
→r

¬Pt1 → ¬Pft2 ` ∃y.(¬Py → ¬Pfy)
∃r

∀y.(¬Py1 → ¬Pfy2) ` ∃y.(¬Py → ¬Pfy)
∀l

∀y.(Pfy → Py) ` ∃y.(¬Py → ¬Pfy cut

The clause set with the indices indicated is:

CL = {Pfα2 ` Pα1 ; Pt1 ` ; ` Pft2}
Observe that, using these indices, the resolution that we had before, i.e.:

` Pft2
Pt1 `
Pft1 `

t← ft

` R
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is not an indexed resolution, since there are two atoms, one with index 1 and the other with
index 2, being resolved. The indexed resolution refutation for this clause set is:

` Pft2
Pfα2 ` Pα1

Pft2 ` Pt1
α← t

` Pt1 R
Pt1 `

` R

The o-projections are almost the same, differing on the instantiation of Pt. In order to use
the indexed resolution we need also the projection of the clause Pfα ` Pα with α instantiated
to t.

π(` Pft2)

Pft ` Pft2

` Pft2,¬Pft
¬†r

¬Pt ` Pft2,¬Pft
wl

` Pft2,¬Pt→ ¬Pft
→†r

` Pft2,∃y.(¬Py → ¬Pfy)
∃r

π(Pt1 `)

Pt1,` Pt
Pt1,¬Pt `

¬l

Pt1,¬Pt ` ¬Pft
wr

Pt1 ` ¬Pt→ ¬Pft
→r

Pt1 ` ∃y.(¬Py → ¬Pfy)
∃r

π(Pfα2 ` Pα1)[α← t]

Pft2 ` Pft P t ` Pt1

Pft→ Pt, Pft2 ` Pt1
→l

∀y.(Pfy → Py), Pft2 ` Pt1
∀l

Now, instead of constructing an ACNF, we will join these projections using the indexed
refutation as a guidance. We first join π(` Pft2) with π(Pfα ` Pα)[α← t]:

Pft ` Pft P t ` Pt1

Pft→ Pt, Pft ` Pt1
→l

Pft→ Pt ` Pt1,¬Pft
¬r

Pft→ Pt,¬Pt ` Pt1,¬Pft
wl

Pft→ Pt ` Pt1,¬Pt→ ¬Pft
→†r

Pft→ Pt ` Pt1,∃y.(¬Py → ¬Pfy)
∃r

∀y.(Pfy → Py) ` Pt1,∃y.(¬Py → ¬Pfy)
∀l

And now we join this derivation with π(Pt1 `) to get the following intuitionistic proof:
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Pft ` Pft
P t ` Pt
Pt,¬Pt `

¬l

Pft→ Pt,¬Pt, Pft `
→l

Pft→ Pt,¬Pt ` ¬Pft
¬r

Pft→ Pt ` ¬Pt→ ¬Pft
→r

Pft→ Pt ` ∃y.(¬Py → ¬Pfy)
∃r

∀y.(Pfy → Py) ` ∃y.(¬Py → ¬Pfy)
∀l

10.2 Conjecture

So it seems that this method works. What did we do? We take the proof with cuts, annotate its
atomic cut ancestors with the atom indexing, compute the clause set, refute the clause set using
indexed resolution, compute the projections and join them according to the refutation. Are we
absolutely 100% sure that this method works for every intuitionistic proof? No. That’s why we
have a conjecture, and not a theorem, here.

Conjecture 1. Let ϕ be a skolemized LJ proof with cuts. Then, the computation of the following
steps:

• Compute the atom indexing of ϕ.

• Extract the characteristic clause set.

• Find a resolution refutationR using indexed resolution.

• Compute the projections.

• Join the projections (Definition 32) usingR to guide the joining order.

yields an intuitionistic proof.
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CHAPTER 11
Complexity analysis

One advantage of the CERES method over other reductive cut-elimination methods is the speed-
up obtained by the former over the later. Speed-up of what? Of the space in memory needed to
remove the cuts by both methods. Note that this is different from the size of the final (cut-free
or ACNF) proof. In fact, for the example in which we show this speed-up, the final proof using
both methods would be the same. The difference is on the steps in between, where reductive
cut-elimination will take a non-elementary amount of space while CERES will not.

We were wondering whether the same results would apply for intuitionistic logic and, it turns
out, it does! The proof in which the speed-up is shown is actually intuitionistic and belongs to
one of the “trivial” classes, in which classical and intuitionistic provability coincide. This means
that classical CERES can be applied to these proofs, and the speed-up still holds. We show
this in Section 11.1. The changes proposed to the method throughout this thesis do not seem to
interfere on this speed-up result, but a more careful analysis is left for the future.

Another interesting complexity issue is the comparison of sizes between classical and intu-
itionistic proofs. This is related with LJ−, the class of proofs for which the method of Chapter
6 works. We discuss this in detail here, in Section 11.2.

11.1 Complexity of CERES

We introduce now the “power tower”1 of 2’s function, which is a non-elementary function:

20 = 1

2n+1 = 22n

For those unfamiliar with it, it is very bad. Really. Worse than exponential, a lot worse.
Unfortunately, cut-elimination’s space complexity is a power tower of 2’s. And this holds for any

1Also called tetration.
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cut-elimination method. This follows from two independent results [27, 30] and an explanation
can be found here: [4], Corollary 4.3.1.

If the worst case complexity scenario is bad for any method, all we can do is compare them
in specific cases. Here we show a proof sequence for which CERES is better than Gentzen’s
reductive cut-elimination. But first we need to make things more precise.

By Gentzen’s cut-elimination I mean reductive cut-elimination (using the rewriting rules in
Appendix A) following the strategy of removing the upper-most cuts first.

To explain better/worse we need to define a complexity measure. For this example we will
deal with space complexity, meaning the space in memory needed to solve a problem. We could
also have chosen time complexity, since in Gentzen’s cut-elimination algorithm is also O(2n) in
the number of steps. But for CERES we would need to analyze time complexity of resolution.
To try and keep things simpler, we will reason only on space complexity, which we can measure
just by measuring the biggest proof obtained during reductive cut-elimination and CERES’s
ACNF size.

The results here were proven in [4] in a slightly different way. Nevertheless, we repeat them
since it applies for intuitionistic CERES on the class LJK (Definition 17).

One thing you should know (that I will not explain here) is the Statman’s proof sequence.
We will denote a proof in this sequence as γn and its end-sequent as ∆n ` Dn, where Dn is
one formula. You don’t really have to know what it is exactly, but an important property is that
eliminating the cuts in theses proofs causes them to blow up in size. The resulting cut-free proof
(in fact, any resulting cut-free proof) is non-elementary in size with respect to the size of the
input proof γn. Also, they are intuitionistic. Keep this in mind.

Let ϕ be the following proof with cuts:

A ` A
γn

∆n ` Dn

A,∆n ` A ∧Dn
∧r

A ` A A ` A
A,A→ A ` A

→l

A ∧Dn, A→ A ` A
∧l

A,∆n, A→ A ` A cut

When using Gentzen’s strategy for removing cuts, we start by the upper-most cuts, i.e., those
in the Statman proof. As was mentioned before, this blows up the size of the proof, until the
very end, when the cut on A ∧ Dn is eliminated and then that huge non-elementary chunk of
proof disappears. Still, we need the non-elementary amount of space to hold intermediary steps
in this reductive cut-elimination.

Now, what happens when we apply CERES? Well, we first compute the clause set, which is:

CL(ϕ) = {` A} ∪ CL(γn) ∪ {A `}
= {` A ; A `} ∪ CL(γn)

Oh, look at that! We don’t need the clauses coming for the Statman proof to get a resolution
refutation. Which means we don’t really need to officially eliminate the cuts from γn in the first
place, since this refutation already indicates we won’t need this part of the proof.
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` A A `
` R

By computing the projections and putting it together with the resolution refutation we get
the following ACNF, which is obviously elementary in size with respect to ϕ.

A ` A
A ` A A ` A
A,A→ A ` A

→l

A,A→ A ` A cut

A,∆n, A→ A ` A
wl

So by skipping intermediary steps, CERES takes much less space than Gentzen’s reductive
cut-elimination in this case. And note that all the proofs are intuitionistic, and fall in the trivial
class defined previously.

Now, this is one example, and you might be wondering whether there is not another proof
such that CERES will take a non-elementary amount of space while Gentzen’s method will take
only elementary space. The answer is no. CERES will be, on the worst case, as bad as Gentzen’s
method, but never worse. This is also proven in [4], Theorem 6.10.3.

11.2 Complexity of LJ−

In Chapter 6 we discussed briefly about classical and intuitionistic provability of the class LJ−.
Now we will elaborate on that.

First of all, we show that classical proofs can be much shorter than intuitionistic proofs.
In fact, there exists a sequence of sequents Sn such that classical proofs of Sn are recursively
bounded while intuitionistic proofs of Sn have no recursive bound. To see this, we first need to
remember that the set of intuitionistic proofs is a subset of the set of classical proofs. This fact
alone already indicates that intuitionistic proofs cannot be smaller then classical proofs, since
they are classical themselves. Secondly, we show that proofs cannot have a recursive bound in
general.

Theorem 16. For every recursive function f , there exists a sequence of first order sequents Sfn
with minimal size proofs ϕn such that the size of ϕn is bigger than f(n) for infinitely many n’s.

Proof. We prove this by contradiction. Assume that there exists a recursive function f such that
it bounds every proof sequence ϕn of every sequence of sequents Sn. With this bound, we have
a decision procedure for the logic, which is simply to search for a proof of Sn whose size is at
most f(n). Since we know that first order logic is undecidable, we reach a contradiction and
conclude that the theorem is true.

Observe that this theorem is valid for both classical and intuitionstic first order logic.
Now we show that classical logic can have a speed-up over intuitionistic logic. Take one

of such sequences of sequents Sn such that the smallest LJ proofs of this sequence are not
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recursively bounded (Theorem 16 guarantees that they exist). Say that Sn = Γn ` Fn. Now
take a sequence S ′n which is Γn ` Fn ∨ (A ∨ ¬A), i.e., a modified Sn. Since A ∨ ¬A is
not provable in intuitionistic logic, an LJ proof will have to discard this part of the sequent by
applying an ∨r rule and go on with the non-recursively bounded proofs of Γn ` Fn. On the
other hand, a classical proof of such sequents can in fact get rid of Γn and Fn and prove only
A ∨ ¬A, obtaining a proof sequence which is basically linear on n.

This is how much more verbose intuitionistic logic can be. So, in principle, intuitionistic
proofs can be super-recursively abbreviated using classical proofs, and classical proofs are, in
the worst case, as bad as intuitionistic ones, but never worse.

The interesting thing is that this does not hold for the class of skolemized LJ− proofs!
In fact, we can show that, by using CERES with negative resolution (Chapter 7), we obtain
recursively bounded intuitionistic proofs from recursively bounded classical proofs of Γ `.

Let’s show how this works on an example first. Let ϕ be the following classical proof:

Pfa ` Pfa
Pa, Pfa ` Pfa, Pffa w

Pa ` Pfa, Pfa→ Pffa
→r

` Pa→ Pfa, Pfa→ Pffa
→r

` ∃x.(Px→ Pfx),∃x.(Px→ Pfx)
∃r

` ∃x.(Px→ Pfx)
cr

¬∃x.(Px→ Pfx) `
¬l

Using ϕ we can construct Ξ which proves the same end-sequent but has a full intuitionistic
proof on the right branch of the cut:

ϕ
¬∃x.(Px→ Pfx) `
` ¬¬∃x.(Px→ Pfx)

¬r

Pα ` Pα Pfα ` Pfα
Pα→ Pfα, Pα ` Pfα

→l

Pα→ Pfα ` Pα→ Pfα
→r

Pα→ Pfα ` ∃x.(Px→ Pfx)
∃r

∃x.(Px→ Pfx) ` ∃x.(Px→ Pfx)
∃l

¬∃x.(Px→ Pfx),∃x.(Px→ Pfx) `
¬l

¬∃x.(Px→ Pfx) ` ¬∃x.(Px→ Pfx)
¬r

¬∃x.(Px→ Pfx),¬¬∃x.(Px→ Pfx) `
¬l

¬∃x.(Px→ Pfx) ` cut

This is a proof with cut, so we can apply the CERES method to eliminate it. But let’s
not apply classical CERES. Although the proof is classical, we choose to apply CERES with
negative resolution. The clause set extracted is the following:

CL(Ξ) = {Pfa ` Pfa ; ` Pα ; Pfα `}

Of course we can get rid of the tautology Pfa ` Pfa. The refutation is then very simple:
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` Pα
` Pfa α← fa

Pfα `
Pfa ` α← a

` R

And the projections come only from the intuitionistic side of the proof (which is very con-
venient):

π(` Pα)

Pα ` Pα
Pα ` Pα, Pfα

wr

` Pα, Pα→ Pfα
→†r

` Pα,∃x.(Px→ Pfx)
∃r

¬∃x.(Px→ Pfx) ` Pα
¬l

π(Pfα `)

Pfα ` Pfα
Pfα, Pα ` Pfα

wl

Pfα ` Pα→ Pfα
→r

Pfα ` ∃x.(Px→ Pfx)
∃r

Pfα,¬∃x.(Px→ Pfx) `
¬l

Notice that there is a †-inference in one of the projections, but we have already seen how this
can be fixed. The ACNF is the following:

Pfa ` Pfa
Pfa ` Pfa, Pffa

wr

` Pfa, Pfa→ Pffa
→†r

` Pfa,∃x.(Px→ Pfx)
∃r

¬∃x.(Px→ Pfx) ` Pfa
¬l

Pfa ` Pfa
Pfa, Pa ` Pfa

wl

Pfa ` Pa→ Pfa
→r

Pfa ` ∃x.(Px→ Pfx)
∃r

Pfa,¬∃x.(Px→ Pfx) `
¬l

¬∃x.(Px→ Pfx),¬∃x.(Px→ Pfx) ` cut

¬∃x.(Px→ Pfx) `
cl

And after reductive cut elimination of the atomic cut we have a nice intuitionistic proof!

Pfa ` Pfa
Pfa, Pa ` Pfa

wl

Pfa ` Pa→ Pfa
→r

Pfa ` ∃x.(Px→ Pfx)
∃r

¬∃x.(Px→ Pfx), Pfa `
¬l

¬∃x.(Px→ Pfx), Pfa ` Pffa
wr

¬∃x.(Px→ Pfx) ` Pfa→ Pffa
→r

¬∃x.(Px→ Pfx) ` ∃x.(Px→ Pfx)
∃r

¬∃x.(Px→ Pfx),¬∃x.(Px→ Pfx) `
¬l

¬∃x.(Px→ Pfx) `
cl
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From this we can devise a method to obtain intuitionistic proofs from classical proofs of
sequents of the type Γ `. Moreover, we guarantee that these intuitionistic proofs are recursively
bounded.

Theorem 17. For every sequence of sequents Sn of the form Γ `, if the classical proofs of Sn
are recursively bounded, then so are the intuitionistic proofs.

Proof. In order to prove the theorem we will define a (primitive recursive) transformation of
classical proofs of such sequents into intuitionistic ones. Let S be an arbitrary sequentA1, ..., Ak `
and let ϕc be a classical proof of S . Then we can construct Ξ:

ϕc
A1, ..., Ak `

A1 ∧ ... ∧Ak `
∧l

` ¬(A1 ∧ ... ∧Ak)
¬r ϕi

¬(A1 ∧ ... ∧Ak), A1, ..., Ak `
A1, ..., Ak `

cut

We can safely assume that ϕi is an intuitionistic proof which is linear on the size of the
formulas A1, ..., Ak and, thus, recursively bounded.

The bounded intuitionistic proof of S will be obtained as the result of applying CERES with
negative resolution (Chapter 7) to Ξ. The complexity of this transformation is that of reductive
cut-elimination, i.e., non-elementary but primitive recursive. Observe that the classical part of
this proof contains only cut ancestors. This means that all clauses in the characteristic clause
set coming from ϕc will be tautologies. These tautologies can be eliminated from the clause
set and will not be used for the resolution refutation. As a consequence, the projections that
will assemble the ACNF will be all from ϕi, i.e., intuitionistic with some possible violations.
These violations can be eliminated via reductive cut-elimination of atomic cuts in the ACNF,
as indicated by the method. This final step is of at most exponential complexity, and therefore
primitive recursive.

We can conclude then that there exists a primitive recursive function f such that, for every
sequence of proofs ϕn of sequents Γn `, we can obtain a sequence of intuitionistic proofs ϕ′n
whose size is bounded by f .
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CHAPTER 12
Conclusion

You have reached the end. Congratulations! I am afraid few people will come this far. Let’s
review what happened then (and if you are one of those people that just jump to the conclusion,
maybe you will become curious and go back to read something).

12.1 Wrapping up

The main goal of this work was to develop a method to eliminate lemmas from constructive
proofs. We explained in Chapter 1 why we use intuitionistic logic for constructive proofs and
how lemmas are cuts in sequent calculi. Chapter 2 was an introduction to the formalism used,
and there we also show an existing method for eliminating cuts, namely, Gentzen’s reductive cut-
elimination. Then we go on explaining CERES, a cut-elimination method based on resolution
which is developed for classical logic (among others). Our main aim was to try and develop a
CERES-like method for intuitionistic logic.

Although it seems we have not reached the main result, we believe Conjecture 1 can be
proved. On the way there, though, there were many interesting insights. One key observation
is that we cannot use unrestricted resolution like it is done for classical logic. This is illustrated
by the examples in Chapter 5. Therefore, although the practical problem lies mainly on the
projections, we cannot expect to transform the classical ACNF into intuitionistic by using any
resolution refutation.

Given this limitation, Chapters 6, 7 and 8 present some alternatives.
The subclasses of intuitionistic logic covered by the methods presented in Chapters 6 and

7 are the same, but they use different approaches. In iCERES a new resolution calculus is
defined which involves resolving negative atoms as well. On top of that, atomic cut ancestors
are shifted to the left side of the sequent using negation inferences. This makes projections
intuitionistic and with the new resolution calculus a final intuitionistic ACNF can be assembled
without problems. Negative resolution CERES, on the other hand, shows that, by using the
negative resolution refinement, the final classical ACNF can be made intuitionistic once the
atomic cuts are eliminated reductively.
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iCERES has the obvious advantage that no post processing is needed, but new elements
and calculus have to be defined. Negative resolution CERES needs a post processing, but the
elements used are well-known and fewer modifications on the classical CERES are needed.

The method in Chapter 8, merging CERES, is more esoteric. It studies shapes of input proofs
on which the CERES method can be applied unchanged, and a post processing can transform the
ACNF from classical into intuitionistic. It turns out that the inferences must occur in a particular
order, so we studied extensively the permutation of inferences in LJ and, when it is possible to
permute the rules and reach this order, merging CERES yields an intuitionistic proof. Because
the method depends on inference ordering, it is hard to describe the class on which it works
syntactically.

Chapter 9, joining CERES, presents a different approach. Instead of constructing the ACNF,
the projections are joined via what would be the atomic cut ancestors in a final proof. One can
think that they are joined like zippers, with these atoms disappearing in the process. The joining
procedure defined in this chapter, is an interesting proof transformation, that can possibly be
used for other purposes. There is still, nevertheless, a great deal of non-determinism in joining,
and backtracking would be probably necessary if this is to be implemented.

Even using the joining procedure, we cannot obtain a CERES-like method if we don’t re-
strict the resolution refutation. In Chapter 10 we suggest how this can be worked around. The
indexing CERES uses a resolution refinement defined previously which approximates CERES to
a reductive cut-elimination method. We conjecture that, by using indexed resolution and joining,
we obtain a cut-elimination method by resolution for intuitionistic logic.

Chapter 11 is dedicated to a study of the complexity of the CERES method. We show that
the speed-up obtained in the classical case also applies to the trivial classes of the intuitionistic
case. In the same chapter, we show a result with respect to the complexity of proofs of sequents
of the shape Γ `.

12.2 What the future holds

Obviously the main immediate future direction of this work is to try to prove Conjecture 1.
There exists already a vague idea on how to do this, but due to time constraints, it will not be
possible to include a proof in this thesis.

A middle term goal is the implementation of the indexed resolution refinement and the join-
ing method, with which experiments on constructive proofs could be run automatically.

It would also be interesting to study how the resulting proofs of the algorithm proposed in
the conjecture are related to the results of reductive cut-elimination methods.

That’s it! Thank you and good night.
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APPENDIX A
Reductive cut-elimination

In this chapter we show the rewriting rules for performing reductive cut-elimination in LK and
LJ. Each of the following sections have three subsections, namely: cut-elimination, rank reduc-
tion and grade reduction.

The cut-elimination section contains the rewriting rules that actually eliminate a cut infer-
ence from a derivation. The rank reduction section presents the rewriting rules that permute the
cut over other inferences in the proof. This is necessary to make the cut principal, in which
case the rewriting rules from section grade reduction can be applied and the complexity of the
cut-formula is reduced (except on the case of contraction).

In all rewriting rules, the cut formula and its ancestors are marked in green.

A.1 Rewriting rules for LK

Cut-elimination

Over axiom inferences:

A ` A
ϕ

A,Γ ` ∆

Γ, A ` ∆
cut

 

ϕ

A,Γ ` ∆

ϕ

Γ ` ∆, A A ` A
Γ ` ∆, A

cut
 

ϕ

Γ ` ∆, A

Over weakening:

ϕ1

Γ ` ∆
Γ ` ∆, A

wr
ϕ2

A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
cut

 

ϕ1

Γ ` ∆

Γ,Γ′ ` ∆,∆′
w∗r , w

∗
l
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ϕ1

Γ ` ∆, A

ϕ2

Γ′ ` ∆′

A,Γ′ ` ∆′
wl

Γ,Γ′ ` ∆,∆′
cut

 

ϕ2

Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
w∗r , w

∗
l

Rank reduction

Over unary inferences:

ϕ1

Γ∗ ` ∆∗, A

Γ ` ∆, A
ρ

ϕ2

A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
cut

 

ϕ1

Γ∗ ` ∆∗, A

ϕ2

A,Γ′ ` ∆′

Γ∗,Γ′ ` ∆∗,∆′
cut

Γ,Γ′ ` ∆,∆′
ρ

ϕ1

Γ ` ∆, A

ϕ2

A,Γ′∗ ` ∆′∗

A,Γ′ ` ∆′
ρ

Γ,Γ′ ` ∆,∆′
cut

 

ϕ1

Γ ` ∆, A

ϕ2

A,Γ′∗ ` ∆′∗

Γ,Γ′∗ ` ∆,∆′∗
cut

Γ,Γ′ ` ∆,∆′
ρ

Over binary inferences:

ϕ1

Γ1 ` ∆1, A

ϕ2

Γ2 ` ∆2

Γ ` ∆, A
ρ

ϕ3

A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
cut

 

ϕ1

Γ1 ` ∆1, A

ϕ3

A,Γ′ ` ∆′

Γ1,Γ
′ ` ∆1,∆

′ cut
ϕ2

Γ2 ` ∆2

Γ,Γ′ ` ∆,∆′
ρ

ϕ1

Γ1 ` ∆1

ϕ2

Γ2 ` ∆2, A

Γ ` ∆, A
ρ

ϕ3

A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
cut

 

ϕ1

Γ1 ` ∆1

ϕ2

Γ2 ` ∆2, A

ϕ3

A,Γ′ ` ∆′

Γ2,Γ
′ ` ∆2,∆

′ cut

Γ,Γ′ ` ∆,∆′
ρ

ϕ1

Γ ` ∆, A

ϕ2

A,Γ′1 ` ∆′1

ϕ3

Γ′2 ` ∆′2
A,Γ′ ` ∆′

ρ

Γ,Γ′ ` ∆,∆′
cut

 

ϕ1

Γ ` ∆, A

ϕ2

A,Γ′1 ` ∆′1
Γ,Γ′1 ` ∆,∆′1

cut
ϕ3

Γ′2 ` ∆′2
Γ,Γ′ ` ∆,∆′

ρ

ϕ1

Γ ` ∆, A

ϕ2

Γ′1 ` ∆′1

ϕ3

A,Γ′2 ` ∆′2
A,Γ′ ` ∆′

ρ

Γ,Γ′ ` ∆,∆′
cut

 

ϕ2

Γ′1 ` ∆′1

ϕ1

Γ ` ∆, A

ϕ3

A,Γ′2 ` ∆′2
Γ,Γ′2 ` ∆,∆′2

cut

Γ,Γ′ ` ∆,∆′
ρ
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Grade reduction

Of a cut on an ∧-formula:

ϕ1

Γ ` ∆, A1

ϕ2

Γ′ ` ∆′, A2

Γ,Γ′ ` ∆,∆′, A1 ∧A2

∧r

ϕ3

Ai,Γ
′′ ` ∆′′

A1 ∧A2,Γ
′′ ` ∆′′

∧li

Γ,Γ′,Γ′′ ` ∆,∆′,∆′′
cut

 

ϕ1

Γ ` ∆, A1

ϕ2

Γ′ ` ∆′, A2

ϕ3

Ai,Γ
′′ ` ∆′′

A1, A2,Γ
′′ ` ∆′′

wl

A1,Γ
′,Γ′′ ` ∆′,∆′′

cut

Γ,Γ′,Γ′′ ` ∆,∆′,∆′′
cut

Of a cut on an ∨-formula:

ϕ1

Γ ` ∆, Ai
Γ ` ∆, A1 ∨A2

∨ri

ϕ2

A1,Γ
′ ` ∆′

ϕ3

A2,Γ
′′ ` ∆′′

A1 ∨A2,Γ
′,Γ′′ ` ∆′,∆′′

∨l

Γ,Γ′,Γ′′ ` ∆,∆′,∆′′
cut

 

ϕ1

Γ ` ∆, Ai
Γ ` ∆, A1, A2

wr
ϕ3

A2,Γ
′′ ` ∆′′

Γ,Γ′′ ` ∆,∆′′, A1
cut

ϕ2

A1,Γ
′ ` ∆′

Γ,Γ′,Γ′′ ` ∆,∆′,∆′′
cut

Of a cut on an→-formula:

ϕ1

Γ, A ` ∆, B

Γ ` ∆, A→ B
→r

ϕ2

Γ′ ` ∆′, A

ϕ3

B,Γ′′ ` ∆′′

A→ B,Γ′,Γ′′ ` ∆′,∆′′
→l

Γ,Γ′,Γ′′ ` ∆,∆′,∆′′
cut

 

ϕ2

Γ′ ` ∆′, A

ϕ1

A,Γ ` ∆, B

ϕ3

B,Γ′′ ` ∆′′

A,Γ,Γ′′ ` ∆,∆′′
cut

Γ,Γ′,Γ′′ ` ∆,∆′,∆′′
cut

Of a cut on an ¬-formula:

ϕ1

Γ, A ` ∆

Γ ` ∆,¬A
¬r

ϕ2

Γ′ ` ∆′, A

¬A,Γ′ ` ∆′
¬l

Γ,Γ′ ` ∆,∆′
cut

 

ϕ2

Γ′ ` ∆′, A

ϕ1

A,Γ ` ∆

Γ,Γ′ ` ∆,∆′
cut

Of a cut on an ∃-formula:

ϕ1

Γ ` ∆, A[x/t]

Γ ` ∆,∃x.Ax ∃r

ϕ2

A[x/α],Γ′ ` ∆′

∃x.Ax,Γ′ ` ∆′
∃l

Γ,Γ′ ` ∆,∆′
cut

 

ϕ1

Γ ` ∆, A[x/t]

ϕ2[α/t]

A[x/t],Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
cut

Of a cut on an ∀-formula:
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ϕ1

Γ ` ∆, A[x/α]

Γ ` ∆,∀x.Ax ∀r

ϕ2

A[x/t],Γ′ ` ∆′

∀x.Ax,Γ′ ` ∆′
∀l

Γ,Γ′ ` ∆,∆′
cut

 

ϕ1[α/t]

Γ ` ∆, A[x/t]

ϕ2

A[x/t],Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
cut

Of a cut on a contracted formula:

ϕ1

Γ,` ∆, A,A

Γ ` ∆, A
cr

ϕ2

A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
cut

 

ϕ1

Γ,` ∆, A,A

ϕ2

A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′, A
cut

ϕ2

A,Γ′ ` ∆′

Γ,Γ′,Γ′ ` ∆,∆′,∆′
cut

Γ,Γ′ ` ∆,∆′
c∗l , c

∗
r

ϕ1

Γ,` ∆, A

ϕ2

A,A,Γ′ ` ∆′

A,Γ′ ` ∆′
cl

Γ,Γ′ ` ∆,∆′
cut

 

ϕ1

Γ,` ∆, A

ϕ1

Γ,` ∆, A

ϕ2

A,A,Γ′ ` ∆′

A,Γ,Γ′ ` ∆,∆′
cut

Γ,Γ,Γ′ ` ∆,∆,∆′
cut

Γ,Γ′ ` ∆,∆′
c∗l , c

∗
r

A.2 Rewriting rules for LJ

In all rewriting rules for LJ, ∆ is at most one formula.

Cut-elimination

Over axiom inferences:

A ` A
ϕ

A,Γ ` ∆

Γ, A ` ∆
cut

 

ϕ

A,Γ ` ∆

ϕ

Γ ` A A ` A
Γ ` A cut

 

ϕ

Γ ` A

Over weakening:
ϕ1

Γ `
Γ ` A

wr
ϕ2

A,Γ′ ` ∆

Γ,Γ′ ` ∆
cut

 

ϕ1

Γ `
Γ,Γ′ ` ∆

w∗r , w
∗
l
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ϕ1

Γ ` A

ϕ2

Γ′ ` ∆
A,Γ′ ` ∆

wl

Γ,Γ′ ` ∆
cut

 

ϕ2

Γ′ ` ∆

Γ,Γ′ ` ∆
w∗r , w

∗
l

Rank reduction

Over unary inferences:

ϕ1

Γ∗ ` A
Γ ` A

ρ
ϕ2

A,Γ′ ` ∆

Γ,Γ′ ` ∆
cut

 

ϕ1

Γ∗ ` A

ϕ2

A,Γ′ ` ∆

Γ∗,Γ′ ` ∆
cut

Γ,Γ′ ` ∆
ρ

ϕ1

Γ ` A

ϕ2

A,Γ′∗ ` ∆∗

A,Γ′ ` ∆
ρ

Γ,Γ′ ` ∆
cut

 

ϕ1

Γ ` A

ϕ2

A,Γ′∗ ` ∆∗

Γ,Γ′∗ ` ∆∗
cut

Γ,Γ′ ` ∆
ρ

Over binary inferences:

ϕ1

Γ1, P ` A
ϕ2

Γ2, Q ` A
Γ, P ∨Q ` A

∨l
ϕ3

A,Γ′ ` ∆

Γ, P ∨Q,Γ′ ` ∆
cut

 

ϕ1

Γ1, P ` A

ϕ3

A,Γ′ ` ∆′

Γ1, P,Γ
′ ` ∆

cut

ϕ2

Γ2, Q ` A

ϕ3

A,Γ′ ` ∆′

Γ2, Q,Γ
′ ` ∆

cut

Γ, P ∨Q,Γ′,Γ′ ` ∆
∨l

Γ, P ∨Q,Γ′ ` ∆
cl

ϕ1

Γ1 ` P
ϕ2

Γ2, Q ` A
Γ, P → Q ` A

→l

ϕ3

A,Γ′ ` ∆

Γ, P → Q,Γ′ ` ∆
cut

 

ϕ1

Γ1 ` P

ϕ2

Γ2, Q ` A

ϕ3

A,Γ′ ` ∆

Γ2, Q,Γ
′ ` ∆

cut

Γ, P → Q,Γ′ ` ∆,∆′
→l

ϕ1

Γ ` A

ϕ2

A,Γ′1 ` ∆1

ϕ3

Γ′2 ` ∆2

A,Γ′ ` ∆
ρ

Γ,Γ′ ` ∆
cut

 

ϕ1

Γ ` A

ϕ2

A,Γ′1 ` ∆1

Γ,Γ′1 ` ∆1
cut

ϕ3

Γ′2 ` ∆2

Γ,Γ′ ` ∆
ρ

ϕ1

Γ ` A

ϕ2

Γ′1 ` ∆1

ϕ3

A,Γ′2 ` ∆2

A,Γ′ ` ∆
ρ

Γ,Γ′ ` ∆
cut

 

ϕ2

Γ′1 ` ∆1

ϕ1

Γ ` A

ϕ3

A,Γ′2 ` ∆2

Γ,Γ′2 ` ∆2
cut

Γ,Γ′ ` ∆
ρ
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Grade reduction

Of a cut on an ∧-formula:

ϕ1

Γ ` A1

ϕ2

Γ′ ` A2

Γ,Γ′ ` A1 ∧A2

∧r

ϕ3

Ai,Γ
′′ ` ∆

A1 ∧A2,Γ
′′ ` ∆

∧li

Γ,Γ′,Γ′′ ` ∆
cut

 

ϕ1

Γ ` A1

ϕ2

Γ′ ` A2

ϕ3

Ai,Γ
′′ ` ∆

A1, A2,Γ
′′ ` ∆

wl

A1,Γ
′,Γ′′ ` ∆

cut

Γ,Γ′,Γ′′ ` ∆
cut

Of a cut on an ∨-formula:

ϕ1

Γ ` A1

Γ ` A1 ∨A2
∨r1

ϕ2

A1,Γ
′ ` ∆

ϕ3

A2,Γ
′′ ` ∆

A1 ∨A2,Γ
′,Γ′′ ` ∆

∨l

Γ,Γ′,Γ′′ ` ∆
cut

 

ϕ1

Γ ` A1

ϕ2

A1,Γ
′ ` ∆

A1,Γ
′,Γ′′ ` ∆

wr

Γ,Γ′,Γ′′ ` ∆
cut

ϕ1

Γ ` A2

Γ ` A1 ∨A2
∨r2

ϕ2

A1,Γ
′ ` ∆

ϕ3

A2,Γ
′′ ` ∆

A1 ∨A2,Γ
′,Γ′′ ` ∆

∨l

Γ,Γ′,Γ′′ ` ∆
cut

 

ϕ1

Γ ` A2

ϕ3

A2,Γ
′′ ` ∆

A2,Γ
′,Γ′′ ` ∆

wr

Γ,Γ′,Γ′′ ` ∆
cut

Of a cut on an→-formula:

ϕ1

Γ, A ` B
Γ ` A→ B

→r

ϕ2

Γ′ ` A

ϕ3

B,Γ′′ ` ∆

A→ B,Γ′,Γ′′ ` ∆
→l

Γ,Γ′,Γ′′ ` ∆
cut

 

ϕ2

Γ′ ` A

ϕ1

A,Γ ` B

ϕ3

B,Γ′′ ` ∆

A,Γ,Γ′′ ` ∆
cut

Γ,Γ′,Γ′′ ` ∆
cut

Of a cut on an ¬-formula:

ϕ1

Γ, A `
Γ ` ¬A

¬r

ϕ2

Γ′ ` A
¬A,Γ′ `

¬l

Γ,Γ′ ` cut
 

ϕ2

Γ′ ` A
ϕ1

A,Γ `
Γ,Γ′ ` cut

Of a cut on an ∃-formula:

ϕ1

Γ ` A[x/t]

Γ ` ∃x.Ax ∃r

ϕ2

A[x/α],Γ′ ` ∆

∃x.Ax,Γ′ ` ∆
∃l

Γ,Γ′ ` ∆
cut

 

ϕ1

Γ ` A[x/t]

ϕ2[α/t]

A[x/t],Γ′ ` ∆

Γ,Γ′ ` ∆
cut

104



Of a cut on an ∀-formula:

ϕ1

Γ ` A[x/α]

Γ ` ∀x.Ax ∀r

ϕ2

A[x/t],Γ′ ` ∆

∀x.Ax,Γ′ ` ∆
∀l

Γ,Γ′ ` ∆
cut

 

ϕ1[α/t]

Γ ` A[x/t]

ϕ2

A[x/t],Γ′ ` ∆

Γ,Γ′ ` ∆
cut

Of a cut on a contracted formula:

ϕ1

Γ,` A

ϕ2

A,A,Γ′ ` ∆

A,Γ′ ` ∆
cl

Γ,Γ′ ` ∆
cut

 

ϕ1

Γ,` A

ϕ1

Γ,` A

ϕ2

A,A,Γ′ ` ∆

A,Γ,Γ′ ` ∆
cut

Γ,Γ,Γ′ ` ∆
cut

Γ,Γ′ ` ∆
c∗l
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APPENDIX B
Permutation of rules in LJ

This Appendix shows the possible permutations of LJ rules down a proof. I used the purely
multiplicative version of LJ. Of course, not all cases are possible. The cases in which this fails
do not have a derivation on the right hand side, instead, there is a “?”. The rule which is supposed
to be permuted down is always applied to a formula whose formula variables are A and B. It is
important to note that this is invariably an end-sequent ancestor. The bottom rule is applied to
a formula with formula variables P and Q, which could be an end-sequent or cut ancestor. The
sequents are represented as multi-sets of formulas (i.e. the order does not matter).

The order in which the rules are presented is: →l,→r, ∧l, ∧r, ∨l, ∨r, ∀l, ∀r, ∃l, ∃r, ¬l, ¬r,
wl, wr, cl, cut.

B.1 Permutation of→l down

→l

ϕ1

Γ ` A

ϕ2

Γ′, B ` P
Γ,Γ′, A→ B ` P

→l

ϕ3

Γ′′, Q ` F
Γ,Γ′,Γ′′, A→ B,P → Q ` F

→l
 

ϕ1

Γ ` A

ϕ2

Γ′, B ` P

ϕ3

Γ′′, Q ` F
Γ′,Γ′′, P → Q,B ` F

→l

Γ,Γ′,Γ′′, A→ B,P → Q ` F
→l

ϕ1

Γ,` P

ϕ2

Γ′, Q ` A

ϕ3

Γ′′, B ` F
Γ′,Γ′′, A→ B,Q ` F

→l

Γ,Γ′,Γ′′, A→ B,P → Q ` F
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, Q ` A
Γ,Γ′, P → Q,` A

→l

ϕ3

Γ′′, B ` F
Γ,Γ′,Γ′′, A→ B,P → Q ` F

→l

ϕ1

Γ,` P

ϕ2

Γ′ ` A

ϕ3

Γ′′, Q,B ` F
Γ′,Γ′′, A→ B,Q ` F

→l

Γ,Γ′,Γ′′, A→ B,P → Q ` F
→l

 

ϕ2

Γ′ ` A

ϕ1

Γ ` P

ϕ3

Γ′, Q,B ` F
Γ,Γ′′, P → Q,B ` F

→l

Γ,Γ′,Γ′′, A→ B,P → Q ` F
→l
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→r

ϕ1

Γ, P ` A

ϕ2

Γ′, B ` Q
Γ,Γ′, A→ B,P ` Q

→l

Γ,Γ′, A→ B ` P → Q
→r

 ?

ϕ1

Γ ` A

ϕ2

Γ′, P,B ` Q
Γ,Γ′, A→ B,P ` Q

→l

Γ,Γ′, A→ B ` P → Q
→r

 

ϕ1

Γ ` A

ϕ2

Γ′, B, P ` Q
Γ′, B ` P → Q

→r

Γ,Γ′, A→ B ` P → Q
→l

∧l
ϕ1

Γ, Q ` A

ϕ2

Γ′, B ` F
Γ,Γ′, A→ B,Q ` F

→l

Γ,Γ′, P ∧Q,A→ B ` F
∧l

 

ϕ1

Γ, Q ` A
Γ, P ∧Q ` A

∧l
ϕ2

Γ′, B ` F
Γ,Γ′, P ∧Q,A→ B ` F

→l

ϕ1

Γ ` A

ϕ2

Γ′, Q,B ` F
Γ,Γ′, A→ B,Q ` F

→l

Γ,Γ′, P ∧Q,A→ B ` F
∧l

 

ϕ1

Γ ` A

ϕ2

Γ′, B,Q ` F
Γ′, P ∧Q,B ` F

∧l

Γ,Γ, P ∧Q,A→ B ` F
→l

ϕ1

Γ ` A

ϕ2

Γ′, P,B ` F
Γ,Γ′, A→ B,P ` F

→l

Γ,Γ′, P ∧Q,A→ B ` F
∧l

 

ϕ1

Γ ` A

ϕ2

Γ′, B, P ` F
Γ′, P ∧Q,B ` F

∧l

Γ,Γ, P ∧Q,A→ B ` F
→l

ϕ1

Γ, P ` A

ϕ2

Γ′, B ` F
Γ,Γ′, A→ B,P ` F

→l

Γ,Γ′, P ∧Q,A→ B ` F
∧l

 

ϕ1

Γ, P ` A
Γ, P ∧Q ` A

∧l
ϕ2

Γ′, B ` F
Γ,Γ′, P ∧Q,A→ B ` F

→l
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∧r

ϕ1

Γ ` P

ϕ2

Γ′ ` A

ϕ3

Γ′′, B ` Q
Γ′,Γ′′, A→ B ` Q

→l

Γ,Γ′,Γ′′, A→ B ` P ∧Q
∧r

 

ϕ2

Γ′ ` A

ϕ1

Γ ` P

ϕ3

Γ′′, B ` Q
Γ,Γ′′, B ` P ∧Q

∧r

Γ,Γ′,Γ′′, A→ B ` P ∧Q
→l

ϕ1

Γ ` A

ϕ2

Γ′, B ` P
Γ,Γ′, A→ B ` P

→l

ϕ3

Γ′′ ` Q
Γ,Γ′,Γ′′, A→ B ` P ∧Q

∧r
 

ϕ1

Γ ` A

ϕ2

Γ′, B ` P

ϕ3

Γ′′ ` Q
Γ′,Γ′′, B ` P ∧Q

∧r

Γ,Γ′,Γ′′, A→ B ` P ∧Q
→l

∨l

ϕ1

Γ, P ` F

ϕ2

Γ′ ` A

ϕ3

Γ′′, Q,B ` F
Γ′,Γ′′, A→ B,Q ` F

→l

Γ,Γ′,Γ′′, A→ B,P ∨Q ` F
∨l

 

ϕ2

Γ′ ` A

ϕ1

Γ, P ` F

ϕ3

Γ′′, B,Q ` F
Γ,Γ′′, P ∨Q,B ` F

∨l

Γ,Γ′,Γ′′, P ∨Q,A→ B ` F
→l

ϕ1

Γ, P ` F

ϕ2

Γ′, Q ` A

ϕ3

Γ′′, B ` F
Γ′,Γ′′, A→ B,Q ` F

→l

Γ,Γ′,Γ′′, A→ B,P ∨Q ` F
∨l

 ?

ϕ1

Γ ` A

ϕ2

Γ′, P,B ` F
Γ,Γ′, A→ B,P ` F

→l

ϕ3

Γ′′, Q ` F
Γ,Γ′,Γ′′, A→ B,P ∨Q ` F

∨l
 

ϕ1

Γ ` A

ϕ2

Γ′, B, P ` F

ϕ3

Γ′′, Q ` F
Γ′,Γ′′, P ∨Q,B ` F

∨l

Γ,Γ′,Γ′′, P ∨Q,A→ B ` F
→l

ϕ1

Γ, P ` A

ϕ2

Γ′, B ` F
Γ,Γ′, A→ B,P ` F

→l

ϕ3

Γ′′, Q ` F
Γ,Γ′,Γ′′, A→ B,P ∨Q ` F

∨l
 ?

∨r
ϕ1

Γ ` A

ϕ2

Γ′, B ` Q
Γ,Γ′, A→ B ` Q

→l

Γ,Γ′, A→ B ` P ∨Q
∨r

 

ϕ1

Γ ` A

ϕ2

Γ′, B ` Q
Γ′, B ` P ∨Q

∨r

Γ,Γ′, A→ B ` P ∨Q
→l
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ϕ1

Γ ` A

ϕ2

Γ′, B ` P
Γ,Γ′, A→ B ` P

→l

Γ,Γ′, A→ B ` P ∨Q
∨r

 

ϕ1

Γ ` A

ϕ2

Γ′, B ` P
Γ′, B ` P ∨Q

∨r

Γ,Γ′, A→ B ` P ∨Q
→l

∀l
ϕ1

Γ ` A

ϕ2

Γ′, P [x/t], B ` F
Γ,Γ′, A→ B,P [x/t] ` F

→l

Γ,Γ′, ∀x.Px,A→ B ` F
∀l

 

ϕ1

Γ ` A

ϕ2

Γ′, B, P [x/t] ` F
Γ′, ∀x.Px,B ` F

∀l

Γ,Γ′, ∀x.Px,A→ B ` F
→l

ϕ1

Γ, P [x/t] ` A

ϕ2

Γ′, B ` F
Γ,Γ′, A→ B,P [x/t] ` F

→l

Γ,Γ′, ∀x.Px,A→ B ` F
∀l

 

ϕ1

Γ, P [x/t] ` A
Γ,∀x.Px,` A

∀l
ϕ2

Γ′, B ` F
Γ,Γ′, ∀x.Px,A→ B ` F

→l

∀r
ϕ1

Γ ` A

ϕ2

Γ′, B ` P [x/α]

Γ,Γ, A→ B ` P [x/α]
→l

Γ,Γ′, A→ B ` ∀x.Px
∀r

 

ϕ1

Γ ` A

ϕ2

Γ′, B ` P [x/α]

Γ′, B ` ∀x.Px
∀r

Γ,Γ′, A→ B ` ∀x.Px
→l

∃l
ϕ1

Γ ` A

ϕ2

Γ′, P [x/α], B ` F
Γ,Γ′, A→ B,P [x/α] ` F

→l

Γ,Γ′,∃x.Px,A→ B ` F
∃l

 

ϕ1

Γ ` A

ϕ2

Γ′, B, P [x/α] ` F
Γ′,∃x.Px,B ` F

∃l

Γ,Γ′,∃x.Px,A→ B ` F
→l

ϕ1

Γ, P [x/α] ` A

ϕ2

Γ′, B ` F
Γ,Γ′, A→ B,P [x/α] ` F

→l

Γ,Γ′, ∃x.Px,A→ B ` F
∃l

 

ϕ1

Γ, P [x/α] ` A
Γ, ∃x.Px ` A

∃l
ϕ2

Γ′, B ` F
Γ,Γ′, ∃x.Px,A→ B ` F

→l
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∃r
ϕ1

Γ ` A

ϕ2

Γ′, B ` P [x/t]

Γ,Γ′, A→ B ` P [x/t]
→l

Γ,Γ′, A→ B ` ∃x.Px
∃r

 

ϕ1

Γ ` A

ϕ2

Γ′, B ` P [x/t]

Γ′, B ` ∃x.Px
∃r

Γ,Γ′, A→ B ` ∃x.Px
→l

¬l
ϕ1

Γ ` A

ϕ2

Γ′, B ` P
Γ,Γ′, A→ B ` P

→l

Γ,Γ′, A→ B,¬P `
¬l

 

ϕ1

Γ ` A

ϕ2

Γ′, B ` P
Γ′,¬P,B `

¬l

Γ,Γ′,¬P,A→ B `
→l

¬r
ϕ1

Γ ` A

ϕ2

Γ′, P,B `
Γ,Γ′, A→ B,P `

→l

Γ,Γ′, A→ B ` ¬P
¬r

 

ϕ1

Γ ` A

ϕ2

Γ, B, P `
Γ′, B ` ¬P

¬r

Γ,Γ′, A→ B ` ¬P
→l

ϕ1

Γ, P ` A

ϕ2

Γ′, B `
Γ,Γ′, A→ B,P `

→l

Γ,Γ′, A→ B ` ¬P
¬r

 ?

wl
ϕ1

Γ ` A

ϕ2

Γ′, B ` F
Γ,Γ′, A→ B ` F

→l

Γ,Γ′, A→ B,P ` F
wl

 

ϕ1

Γ ` A
Γ, P ` A

wl

ϕ2

Γ′, B ` F
Γ,Γ′, A→ B,P ` F

→l

wr
ϕ1

Γ ` A

ϕ2

Γ′, B `
Γ,Γ′, A→ B `

→l

Γ,Γ′, A→ B ` P
wr

 

ϕ1

Γ ` A

ϕ2

Γ′, B `
Γ′, B ` P

wr

Γ,Γ′, A→ B ` P
→l
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cl
ϕ1

Γ, P, P ` A

ϕ2

Γ′, B ` F
Γ,Γ′, A→ B,P, P ` F

→l

Γ,Γ′, A→ B,P ` F
cl

 

ϕ1

Γ, P, P ` A
Γ, P ` A

cl

ϕ2

Γ′, B ` F
Γ,Γ′, A→ B,P ` F

→l

ϕ1

Γ ` A

ϕ2

Γ′, P, P,B ` F
Γ,Γ′, A→ B,P, P ` F

→l

Γ,Γ′, A→ B,P ` F
cl

 

ϕ1

Γ ` A

ϕ2

Γ′, B, P, P ` F
Γ′, P,B ` F

cl

Γ,Γ′, A→ B,P ` F
→l

ϕ1

Γ, P ` A

ϕ2

Γ′, P,B ` F
Γ,Γ′, A→ B,P, P ` F

→l

Γ,Γ′, A→ B,P ` F
cl

 adding another contraction makes no sense

cut
ϕ1

Γ ` A

ϕ2

Γ′, B ` P
Γ,Γ′, A→ B ` P

→l

ϕ3

Γ′′, P ` F
Γ,Γ′,Γ′′, A→ B ` F

cut
 

ϕ1

Γ ` A

ϕ2

Γ′, B ` P

ϕ3

Γ′′, P ` F
Γ′,Γ′′, B ` F

cut

Γ,Γ′,Γ′′, A→ B ` F
→l

ϕ1

Γ ` P

ϕ2

Γ′, P ` A

ϕ3

Γ′′, B ` F
Γ′,Γ′′, A→ B,P ` F

→l

Γ,Γ′,Γ′′, A→ B ` F
cut

 

ϕ1

Γ ` P

ϕ2

Γ′′, P ` A
Γ,Γ′ ` A

cut
ϕ3

Γ′′, B ` F
Γ,Γ′,Γ′′, A→ B ` F

→l

ϕ1

Γ ` P

ϕ2

Γ′ ` A

ϕ3

Γ′′, P,B ` F
Γ′,Γ′′, A→ B,P ` F

→l

Γ,Γ′,Γ′′, A→ B ` F
cut

 

ϕ2

Γ′ ` A

ϕ1

Γ ` P

ϕ3

Γ′′, B, P ` F
Γ,Γ′′, B ` F

cut

Γ,Γ′,Γ′′, A→ B ` F
→l

B.2 Permutation of→r down

→l

ϕ1

Γ ` P

ϕ2

Γ′, Q,A ` B
Γ′, Q ` A→ B

→r

Γ,Γ′, P → Q ` A→ B
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, A,Q ` B
Γ,Γ′, P → Q,A ` B

→l

Γ,Γ′, P → Q ` A→ B
→r
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→r

N/A

∧l
ϕ1

Γ, Q,A ` B
Γ, Q ` A→ B

→r

Γ, P ∧Q ` A→ B
∧l

 

ϕ1

Γ, A,Q ` B
Γ, P ∧Q,A ` B

∧l

Γ, P ∧Q ` A→ B
→r

ϕ1

Γ, P,A ` B
Γ, P ` A→ B

→r

Γ, P ∧Q ` A→ B
∧l

 

ϕ1

Γ, A, P ` B
Γ, P ∧Q,A ` B

∧l

Γ, P ∧Q ` A→ B
→r

∧r
N/A

∨l

ϕ1

Γ, P,A ` B
Γ, P ` A→ B

→r

ϕ2

Γ′, Q,A ` B
Γ′, Q ` A→ B

→r

Γ,Γ, P ∨Q ` A→ B
∨l

 

ϕ1

Γ, A, P ` B

ϕ2

Γ′, A,Q ` B
Γ,Γ′, P ∨Q,A,A ` B

∨l

Γ,Γ′, P ∨Q,A ` B
cl

Γ,Γ′, P ∨Q ` A→ B
→r

∨r
N/A

∀l
ϕ1

Γ, P [x/t], A ` B
Γ, P [x/t] ` A→ B

→r

Γ,∀x.Px ` A→ B
∀l  

ϕ1

Γ, A, P [x/t] ` B
Γ,∀x.Px,A ` B

∀l

Γ, ∀x.Px ` A→ B
→r

∀r
N/A
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∃l
ϕ1

Γ, P [x/α], A ` B
Γ, P [x/α] ` A→ B

→r

Γ,∃x.Px ` A→ B
∃l  

ϕ1

Γ, A, P [x/α] ` B
Γ, ∃x.Px,A ` B

∃l

Γ, ∃x.Px ` A→ B
→r

∃r
N/A

¬l
N/A

¬r
N/A

wl
ϕ1

Γ, A ` B
Γ ` A→ B

→r

Γ, P ` A→ B
wl

 

ϕ1

Γ, A ` B
Γ, P,A ` B

wl

Γ, P ` A→ B
→r

wr

N/A

cl
ϕ1

Γ, P, P,A ` B
Γ, P, P ` A→ B

→r

Γ, P ` A→ B
cl

 

ϕ1

Γ, A, P, P ` B
Γ, P,A ` B

cl

Γ, P ` A→ B
→r

cut

ϕ1

Γ ` P

ϕ2

Γ′, P,A ` B
Γ′, P ` A→ B

→r

Γ,Γ′ ` A→ B
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, P,A ` B
Γ,Γ′, A ` B

cut

Γ,Γ′ ` A→ B
→r
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B.3 Permutation of ∧l down

→l

ϕ1

Γ ` P

ϕ2

Γ′, Q,B ` F
Γ′, A ∧B,Q ` F

∧l

Γ,Γ′, A ∧B,P → Q ` F
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, B,Q ` F
Γ,Γ′, P → Q,B ` F

→l

Γ,Γ′, A ∧B,P → Q ` F
∧l

ϕ1

Γ ` P

ϕ2

Γ′, Q,A ` F
Γ′, A ∧B,Q ` F

∧l

Γ,Γ′, A ∧B,P → Q ` F
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, A,Q ` F
Γ,Γ′, P → Q,A ` F

→l

Γ,Γ′, A ∧B,P → Q ` F
∧l

ϕ1

Γ, B ` P
Γ, A ∧B ` P

∧l
ϕ2

Γ′, Q ` F
Γ,Γ′, A ∧B,P → Q ` F

→l
 

ϕ1

Γ, B ` P

ϕ2

Γ′, Q ` F
Γ,Γ′, P → Q,B ` F

→l

Γ,Γ′, A ∧B,P → Q ` F
∧l

ϕ1

Γ, A ` P
Γ, A ∧B ` P

∧l
ϕ2

Γ′, Q ` F
Γ,Γ′, A ∧B,P → Q ` F

→l
 

ϕ1

Γ, A ` P

ϕ2

Γ′, Q ` F
Γ,Γ′, P → Q,A ` F

→l

Γ,Γ′, A ∧B,P → Q ` F
∧l

→r

ϕ1

Γ, P,B ` Q
Γ, A ∧B,P ` Q

∧l

Γ, A ∧B ` P → Q
→r

 

ϕ1

Γ, B, P ` Q
Γ, B ` P → Q

→r

Γ, A ∧B ` P → Q
∧l

ϕ1

Γ, P,A ` Q
Γ, A ∧B,P ` Q

∧l

Γ, A ∧B ` P → Q
→r

 

ϕ1

Γ, A, P ` Q
Γ, A ` P → Q

→r

Γ, A ∧B ` P → Q
∧l

∧l
ϕ1

Γ, P,A ` F
Γ, A ∧B,P ` F

∧l

Γ, A ∧B,P ∧Q ` F
∧l

 

ϕ1

Γ, A, P ` F
Γ, P ∧Q,A ` F

∧l

Γ, A ∧B,P ∧Q ` F
∧l
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ϕ1

Γ, P,B ` F
Γ, A ∧B,P ` F

∧l

Γ, A ∧B,P ∧Q ` F
∧l

 

ϕ1

Γ, B, P ` F
Γ, P ∧Q,B ` F

∧l

Γ, A ∧B,P ∧Q ` F
∧l

ϕ1

Γ, Q,A ` F
Γ, A ∧B,Q ` F

∧l

Γ, A ∧B,P ∧Q ` F
∧l

 

ϕ1

Γ, A,Q ` F
Γ, P ∧Q,A ` F

∧l

Γ, A ∧B,P ∧Q ` F
∧l

ϕ1

Γ, Q,B ` F
Γ, A ∧B,Q ` F

∧l

Γ, A ∧B,P ∧Q ` F
∧l

 

ϕ1

Γ, B,Q ` F
Γ, P ∧Q,B ` F

∧l

Γ, A ∧B,P ∧Q ` F
∧l

∧r

ϕ1

Γ ` P

ϕ2

Γ′, B ` Q
Γ′, A ∧B ` Q

∧l

Γ,Γ′, A ∧B ` P ∧Q
∧r

 

ϕ1

Γ ` P

ϕ2

Γ′, B ` Q
Γ,Γ′, B ` P ∧Q

∧r

Γ,Γ′, A ∧B ` P ∧Q
∧l

ϕ1

Γ ` P

ϕ2

Γ′, A ` Q
Γ′, A ∧B ` Q

∧l

Γ,Γ′, A ∧B ` P ∧Q
∧r

 

ϕ1

Γ ` P

ϕ2

Γ′, A ` Q
Γ,Γ′, A ` P ∧Q

∧r

Γ,Γ′, A ∧B ` P ∧Q
∧l

ϕ1

Γ, B ` P
Γ, A ∧B ` P

∧l
ϕ2

Γ′ ` Q
Γ,Γ′, A ∧B ` P ∧Q

∧r
 

ϕ1

Γ, B ` P

ϕ2

Γ′ ` Q
Γ,Γ′, B ` P ∧Q

∧r

Γ,Γ′, A ∧B ` P ∧Q
∧l

ϕ1

Γ, A ` P
Γ, A ∧B ` P

∧l
ϕ2

Γ′ ` Q
Γ,Γ′, A ∧B ` P ∧Q

∧r
 

ϕ1

Γ, A ` P

ϕ2

Γ′ ` Q
Γ,Γ′, A ` P ∧Q

∧r

Γ,Γ′, A ∧B ` P ∧Q
∧l
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∨l

ϕ1

Γ, P ` F

ϕ2

Γ′, Q,B ` F
Γ′, A ∧B,Q ` F

∧l

Γ,Γ′, A ∧B,P ∨Q ` F
∨l

 

ϕ1

Γ, P ` F

ϕ2

Γ′, B,Q ` F
Γ,Γ′, P ∨Q,B ` F

∨l

Γ,Γ′, A ∧B,P ∨Q ` F
∧l

ϕ1

Γ, P ` F

ϕ2

Γ′, Q,A ` F
Γ′, A ∧B,Q ` F

∧l

Γ,Γ′, A ∧B,P ∨Q ` F
∨l

 

ϕ1

Γ, P ` F

ϕ2

Γ′, A,Q ` F
Γ,Γ′, P ∨Q,A ` F

∨l

Γ,Γ′, A ∧B,P ∨Q ` F
∧l

ϕ1

Γ, P,B ` F
Γ, A ∧B,P ` F

∧l
ϕ2

Γ′, Q ` F
Γ,Γ′, A ∧B,P ∨Q ` F

∨l
 

ϕ1

Γ, B, P ` F

ϕ2

Γ′, Q ` F
Γ,Γ′, P ∨Q,B ` F

∨l

Γ,Γ′, A ∧B,P ∨Q ` F
∧l

ϕ1

Γ, P,A ` F
Γ, A ∧B,P ` F

∧l
ϕ2

Γ′, Q ` F
Γ,Γ′, A ∧B,P ∨Q ` F

∨l
 

ϕ1

Γ, A, P ` F

ϕ2

Γ′, Q ` F
Γ,Γ′, P ∨Q,A ` F

∨l

Γ,Γ′, A ∧B,P ∨Q ` F
∧l

∨r
ϕ1

Γ, B ` Q
Γ, A ∧B ` Q

∧l

Γ, A ∧B ` P ∨Q
∨r

 

ϕ1

Γ, B ` Q
Γ, B ` P ∨Q

∨r

Γ, A ∧B ` P ∨Q
∧l

ϕ1

Γ, B ` P
Γ, A ∧B ` P

∧l

Γ, A ∧B ` P ∨Q
∨r

 

ϕ1

Γ, B ` P
Γ, B ` P ∨Q

∨r

Γ, A ∧B ` P ∨Q
∧l

ϕ1

Γ, A ` Q
Γ, A ∧B ` Q

∧l

Γ, A ∧B ` P ∨Q
∨r

 

ϕ1

Γ, A ` Q
Γ, A ` P ∨Q

∨r

Γ, A ∧B ` P ∨Q
∧l

ϕ1

Γ, A ` P
Γ, A ∧B ` P

∧l

Γ, A ∧B ` P ∨Q
∨r

 

ϕ1

Γ, A ` P
Γ, A ` P ∨Q

∨r

Γ, A ∧B ` P ∨Q
∧l
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∀l
ϕ1

Γ, P [x/t], B ` F
Γ, A ∧B,P [x/t] ` F

∧l

Γ, ∀x.Px,A ∧B ` F
∀l  

ϕ1

Γ, B, P [x/t] ` F
Γ, ∀x.Px,B ` F

∀l

Γ, A ∧B, ∀x.Px ` F
∧l

ϕ1

Γ, P [x/t], A ` F
Γ, A ∧B,P [x/t] ` F

∧l

Γ, ∀x.Px,A ∧B ` F
∀l  

ϕ1

Γ, A, P [x/t] ` F
Γ,∀x.Px,A ` F

∀l

Γ, A ∧B, ∀x.Px ` F
∧l

∀r
ϕ1

Γ, B ` P [x/α]

Γ, A ∧B ` P [x/α]
∧l

Γ, A ∧B ` ∀x.Px ∀r  

Γ, B ` P [x/α]

Γ, B ` ∀x.Px ∀r

Γ, A ∧B ` ∀x.Px
∧l

ϕ1

Γ, A ` P [x/α]

Γ, A ∧B ` P [x/α]
∧l

Γ, A ∧B ` ∀x.Px ∀r  

Γ, A ` P [x/α]

Γ, A ` ∀x.Px ∀r

Γ, A ∧B ` ∀x.Px
∧l

∃l
ϕ1

Γ, P [x/α], B ` F
Γ, A ∧B,P [x/α] ` F

∧l

Γ, ∃x.PxA ∧B ` F
∃l  

ϕ1

Γ, B, P [x/α] ` F
Γ, ∃x.Px,B ` F

∃l

Γ, A ∧B, ∃x.Px ` F
∧l

ϕ1

Γ, P [x/α], A ` F
Γ, A ∧B,P [x/α] ` F

∧l

Γ, ∃x.PxA ∧B ` F
∃l  

ϕ1

Γ, A, P [x/α] ` F
Γ, ∃x.Px,A ` F

∃l

Γ, A ∧B, ∃x.Px ` F
∧l
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∃r
ϕ1

Γ, B ` P [x/t]

Γ, A ∧B ` P [x/t]
∧l

Γ, A ∧B ` ∃x.Px ∃r  

ϕ1

Γ, B ` P [x/t]

Γ, B ` ∃x.Px ∃r

Γ, A ∧B ` ∃x.Px
∧l

ϕ1

Γ, A ` P [x/t]

Γ, A ∧B ` P [x/t]
∧l

Γ, A ∧B ` ∃x.Px ∃r  

ϕ1

Γ, A ` P [x/t]

Γ, A ` ∃x.Px ∃r

Γ, A ∧B ` ∃x.Px
∧l

¬l
ϕ1

Γ, B ` P
Γ, A ∧B ` P

∧l

Γ, A ∧B,¬P `
¬l

 

ϕ1

Γ, B ` P
Γ,¬P,B `

¬l

Γ, A ∧B,¬P `
∧l

ϕ1

Γ, A ` P
Γ, A ∧B ` P

∧l

Γ, A ∧B,¬P `
¬l

 

ϕ1

Γ, A ` P
Γ,¬P,A `

¬l

Γ, A ∧B,¬P `
∧l

¬r
ϕ1

Γ, P,B `
Γ, A ∧B,P `

∧l

Γ, A ∧B ` ¬P
¬r

 

ϕ1

Γ, B, P `
Γ, B ` ¬P

¬r

Γ, A ∧B ` ¬P
∧l

ϕ1

Γ, P,A `
Γ, A ∧B,P `

∧l

Γ, A ∧B ` ¬P
¬r

 

ϕ1

Γ, A, P `
Γ, A ` ¬P

¬r

Γ, A ∧B ` ¬P
∧l

wl
ϕ1

Γ, A ` F
Γ, A ∧B ` F

∧l

Γ, A ∧B,P ` F
wl

 

ϕ1

Γ, A ` F
Γ, A, P ` F

wl

Γ, A ∧B,P ` F
∧l
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ϕ1

Γ, B ` F
Γ, A ∧B ` F

∧l

Γ, A ∧B,P ` F
wl

 

ϕ1

Γ, B ` F
Γ, B, P ` F

wl

Γ, A ∧B,P ` F
∧l

wr
ϕ1

Γ, A `
Γ, A ∧B `

∧l

Γ, A ∧B ` P
wr

 

ϕ1

Γ, A `
Γ, A ` P

wr

Γ, A ∧B ` P
∧l

ϕ1

Γ, B `
Γ, A ∧B `

∧l

Γ, A ∧B ` P
wr

 

ϕ1

Γ, B `
Γ, B ` P

wr

Γ, A ∧B ` P
∧l

cl
ϕ1

Γ, P, P,A ` F
Γ, A ∧B,P, P ` F

∧l

Γ, A ∧B,P ` F
cl

 

ϕ1

Γ, A, P, P ` F
Γ, P,A ` F

cl

Γ, A ∧B,P ` F
∧l

ϕ1

Γ, P, P,B ` F
Γ, A ∧B,P, P ` F

∧l

Γ, A ∧B,P ` F
cl

 

ϕ1

Γ, B, P, P ` F
Γ, P,B ` F

cl

Γ, A ∧B,P ` F
∧l

cut
ϕ1

Γ, A ` P
Γ, A ∧B ` P

∧l
ϕ2

Γ′, P ` F
Γ,Γ′, A ∧B ` F

cut
 

ϕ1

Γ, A ` P

ϕ2

Γ′, P ` F
Γ,Γ′, A ` F

cut

Γ,Γ′, A ∧B ` F
∧l

ϕ1

Γ, B ` P
Γ, A ∧B ` P

∧l
ϕ2

Γ′, P ` F
Γ,Γ′, A ∧B ` F

cut
 

ϕ1

Γ, B ` P

ϕ2

Γ′, P ` F
Γ,Γ′, B ` F

cut

Γ,Γ′, A ∧B ` F
∧l
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ϕ1

Γ ` P

ϕ2

Γ′, P,A ` F
Γ′, A ∧B,P ` F

∧l

Γ,Γ′, A ∧B ` F
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, A, P ` F
Γ,Γ′, A ` F

cut

Γ,Γ′, A ∧B ` F
∧l

ϕ1

Γ ` P

ϕ2

Γ′, P,B ` F
Γ′, A ∧B,P ` F

∧l

Γ,Γ′, A ∧B ` F
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, B, P ` F
Γ,Γ′, B ` F

cut

Γ,Γ′, A ∧B ` F
∧l

B.4 Permutation of ∧r down

→l

ϕ1

Γ ` P

ϕ2

Γ′ ` A

ϕ3

Γ′′, Q ` B
Γ′,Γ′′, Q ` A ∧B

∧r

Γ,Γ′,Γ′′, P → Q ` A ∧B
→l

 

ϕ2

Γ′ ` A

ϕ1

Γ ` P

ϕ3

Γ′′, Q ` B
Γ,Γ′′, P → Q ` B

→l

Γ,Γ′,Γ′′, P → Q ` A ∧B
∧r

ϕ1

Γ ` P

ϕ2

Γ′, Q ` A

ϕ3

Γ′′ ` B
Γ′,Γ′′, Q ` A ∧B

∧r

Γ,Γ′,Γ′′, P → Q ` A ∧B
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, Q ` A
Γ,Γ′, P → Q ` A

→l

ϕ3

Γ′′ ` B
Γ,Γ′,Γ′′, P → Q ` A ∧B

∧r

→r

N/A

∧l
ϕ1

Γ ` A

ϕ2

Γ′, Q ` B
Γ,Γ′, Q ` A ∧B

∧r

Γ,Γ′, P ∧Q ` A ∧B
∧l

 

ϕ1

Γ ` A

ϕ2

Γ′, Q ` B
Γ′, P ∧Q ` B

∧l

Γ,Γ′, P ∧Q ` A ∧B
∧r

ϕ1

Γ, Q ` A

ϕ2

Γ′ ` B
Γ,Γ′, Q ` A ∧B

∧r

Γ,Γ′, P ∧Q ` A ∧B
∧l

 

ϕ1

Γ, Q ` A
Γ, P ∧Q ` A

∧l
ϕ2

Γ′ ` B
Γ,Γ′, P ∧Q ` A ∧B

∧r
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ϕ1

Γ ` A

ϕ2

Γ′, P ` B
Γ,Γ′, P ` A ∧B

∧r

Γ,Γ′, P ∧Q ` A ∧B
∧l

 

ϕ1

Γ ` A

ϕ2

Γ′, P ` B
Γ′, P ∧Q ` B

∧l

Γ,Γ′, P ∧Q ` A ∧B
∧r

ϕ1

Γ, P ` A

ϕ2

Γ′ ` B
Γ,Γ′, P ` A ∧B

∧r

Γ,Γ′, P ∧Q ` A ∧B
∧l

 

ϕ1

Γ, P ` A
Γ, P ∧Q ` A

∧l
ϕ2

Γ′ ` B
Γ,Γ′, P ∧Q ` A ∧B

∧r

∧r
N/A

∨l

ϕ1

Γ ` A

ϕ2

Γ′, P ` B
Γ,Γ′, P ` A ∧B

∧r

ϕ3

Γ′′ ` A

ϕ4

Γ′′′, Q ` B
Γ′′,Γ′′′, Q ` A ∧B

∧r

Γ,Γ′,Γ′′,Γ′′′, P ∨Q ` A ∧B
∨l

 

ϕ1

Γ ` A

ϕ2

Γ′, P ` B

ϕ4

Γ′′′, Q ` B
Γ′,Γ′′′, P ∨Q ` B

∨l

Γ,Γ′,Γ′′′, P ∨Q ` A ∧B
∧r

Γ,Γ′,Γ′′,Γ′′′, P ∨Q ` A ∧B
w∗l

ϕ1

Γ, P ` A

ϕ2

Γ′ ` B
Γ,Γ′, P ` A ∧B

∧r

ϕ3

Γ′′ ` A

ϕ4

Γ′′′, Q ` B
Γ′′,Γ′′′, Q ` A ∧B

∧r

Γ,Γ′,Γ′′,Γ′′′, P ∨Q ` A ∧B
∨l

 

ϕ1

Γ, P ` A

ϕ3

Γ′′ ` A
Γ′′, Q ` A

wl

Γ,Γ′′, P ∨Q ` A
∨l

ϕ2

Γ′ ` B
Γ′, P ` B

wl

ϕ4

Γ′′′, Q ` B
Γ′,Γ′′′, P ∨Q ` B

∨l

Γ,Γ′,Γ′′,Γ′′′, P ∨Q,P ∨Q ` A ∧B
∧r

Γ,Γ′,Γ′′,Γ′′′, P ∨Q ` A ∧B
cl

ϕ1

Γ, P ` A

ϕ2

Γ′ ` B
Γ,Γ′, P ` A ∧B

∧r

ϕ3

Γ′′, Q ` A

ϕ4

Γ′′′ ` B
Γ′′,Γ′′′, Q ` A ∧B

∧r

Γ,Γ′,Γ′′,Γ′′′, P ∨Q ` A ∧B
∨l

 

ϕ1

Γ, P ` A

ϕ3

Γ′′, Q ` A
Γ,Γ′′, P ∨Q ` A

∨l
ϕ4

Γ′′′ ` B
Γ,Γ′′,Γ′′′, P ∨Q ` A ∧B

∧r

Γ,Γ′,Γ′′,Γ′′′, P ∨Q ` A ∧B
w∗l

ϕ1

Γ ` A

ϕ2

Γ′, P ` B
Γ,Γ′, P ` A ∧B

∧r

ϕ3

Γ′′, Q ` A

ϕ4

Γ′′′ ` B
Γ′′,Γ′′′, Q ` A ∧B

∧r

Γ,Γ′,Γ′′,Γ′′′, P ∨Q ` A ∧B
∨l

 

ϕ1

Γ ` A
Γ, P ` A

wl

ϕ3

Γ′′, Q ` A
Γ,Γ′′, P ∨Q ` A

∨l

ϕ2

Γ′, P ` B

ϕ4

Γ′′′ ` B
Γ′′′, Q ` B

wl

Γ′,Γ′′′, P ∨Q ` B
∨l

Γ,Γ′,Γ′′,Γ′′′, P ∨Q,P ∨Q ` A ∧B
∧r

Γ,Γ′,Γ′′,Γ′′′, P ∨Q ` A ∧B
cl
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∨r
N/A

∀l
ϕ1

Γ ` A

ϕ2

Γ′, P [x/t] ` B
Γ,Γ′, P [x/t] ` A ∧B

∧r

Γ,Γ′,∀x.Px ` A ∧B
∀l

 

ϕ1

Γ ` A

ϕ2

Γ′, P [x/t] ` B
Γ′, ∀x.Px ` B

∀l

Γ,Γ′, ∀x.Px ` A ∧B
∧r

ϕ1

Γ, P [x/t] ` A

ϕ2

Γ′ ` B
Γ,Γ′, P [x/t] ` A ∧B

∧r

Γ,Γ′, ∀x.Px ` A ∧B
∀l

 

ϕ1

Γ, P [x/t] ` A
Γ, ∀x.Px ` A

∀l
ϕ2

Γ′ ` B
Γ,Γ′, ∀x.Px ` A ∧B

∧r

∀r
N/A

∃l
ϕ1

Γ ` A

ϕ2

Γ′, P [x/α] ` B
Γ,Γ′, P [x/α] ` A ∧B

∧r

Γ,Γ′, ∃x.Px ` A ∧B
∃l

 

ϕ1

Γ ` A
Γ′, P [x/α] ` B
Γ′,∃x.Px ` B

∃l

Γ,Γ′, ∃x.Px ` A ∧B
∧r

ϕ1

Γ, P [x/α] ` A

ϕ2

Γ′ ` B
Γ,Γ′, P [x/α] ` A ∧B

∧r

Γ,Γ′, ∃x.Px ` A ∧B
∃l

 

ϕ1

Γ, P [x/α] ` A
Γ, ∃x.Px ` A

∃l
ϕ2

Γ′ ` B
Γ,Γ′, ∃x.Px ` A ∧B

∧r

∃r
N/A

¬l
N/A

¬r
N/A
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wl
ϕ1

Γ ` A

ϕ2

Γ′ ` B
Γ,Γ′ ` A ∧B

∧r

Γ,Γ′, P ` A ∧B
wl

 

ϕ1

Γ ` A

ϕ2

Γ′ ` B
Γ′, P ` B

wl

Γ,Γ′, P ` A ∧B
∧r

wr

N/A

cl
ϕ1

Γ, P, P ` A

ϕ2

Γ′ ` B
Γ,Γ′, P, P ` A ∧B

∧r

Γ,Γ′, P ` A ∧B
cl

 

ϕ1

Γ, P, P ` A
Γ, P ` A

cl

ϕ2

Γ′ ` B
Γ,Γ′, P ` A ∧B

∧r

ϕ1

Γ ` A

ϕ2

Γ′, P, P ` B
Γ,Γ′, P, P ` A ∧B

∧r

Γ,Γ′, P ` A ∧B
cl

 

ϕ1

Γ ` A

ϕ2

Γ′, P, P ` B
Γ′, P ` B

cl

Γ,Γ′, P ` A ∧B
∧r

ϕ1

Γ, P ` A

ϕ2

Γ′, P ` B
Γ,Γ′, P, P ` A ∧B

∧r

Γ,Γ′, P ` A ∧B
cl

 ?

cut

ϕ1

Γ ` P

ϕ2

Γ′, P ` A

ϕ3

Γ′′ ` B
Γ′,Γ′′, P ` A ∧B

∧r

Γ,Γ′,Γ′′ ` A ∧B
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, P ` A
Γ,Γ′ ` A

cut
ϕ3

Γ′′ ` B
Γ,Γ′,Γ′′ ` A ∧B

∧r

ϕ1

Γ ` P

ϕ2

Γ′ ` A

ϕ3

Γ′′, P ` B
Γ′,Γ′′, P ` A ∧B

∧r

Γ,Γ′,Γ′′ ` A ∧B
cut

 

ϕ2

Γ′ ` A

ϕ1

Γ ` P

ϕ3

Γ′′, P ` B
Γ,Γ′′ ` B

cut

Γ,Γ′,Γ′′ ` A ∧B
∧r
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B.5 Permutation of ∨l down

→l

ϕ1

Γ ` P

ϕ2

Γ′, Q,A ` F

ϕ3

Γ′′, B ` F
Γ′,Γ′′, A ∨B,Q ` F

∨l

Γ,Γ′,Γ′′, A ∨B,P → Q ` F
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, A,Q ` F
Γ,Γ′, P → Q,A ` F

→l

ϕ3

Γ′′, B ` F
Γ,Γ′,Γ′′, P → Q,A ∨B ` F

∨l

ϕ1

Γ ` P

ϕ2

Γ′, A ` F

ϕ3

Γ′′, Q,B ` F
Γ′,Γ′′, A ∨B,Q ` F

∨l

Γ,Γ′,Γ′′, A ∨B,P → Q ` F
→l

 

ϕ2

Γ′, A ` F

ϕ1

Γ ` P

ϕ3

Γ′′, B,Q ` F
Γ,Γ′′, P → Q,B ` F

→l

Γ,Γ′,Γ′′, P → Q,A ∨B ` F
∨l

ϕ1

Γ, A ` P

ϕ2

Γ′, B ` P
Γ,Γ′, A ∨B ` P

∨l
ϕ3

Γ′′, Q ` F
Γ,Γ′,Γ′′, A ∨B,P → Q ` F

→l
 

ϕ1

Γ, A ` P

ϕ3

Γ′′, Q ` F
Γ,Γ′′, P → Q,A ` F

→l

ϕ2

Γ′, B ` P

ϕ3

Γ′′, Q ` F
Γ′,Γ′′, P → Q,B ` F

→l

Γ,Γ′,Γ′′,Γ′′, P → Q,P → Q,A ∨B ` F
∨l

Γ,Γ′,Γ′′, P → Q,A ∨B ` F
c∗l

→r

ϕ1

Γ, P,A ` Q

ϕ2

Γ′, B ` Q
Γ,Γ′, A ∨B,P ` Q

∨l

Γ,Γ′, A ∨B ` P → Q
→r

 

ϕ1

Γ, A, P ` Q
Γ, A ` P → Q

→r

ϕ2

Γ′, B ` Q
Γ′, B, P ` Q

wl

Γ′, B ` P → Q
→r

Γ,Γ′, A ∨B ` P → Q
∨l

ϕ1

Γ, A ` Q

ϕ2

Γ′, P,B ` Q
Γ,Γ′, A ∨B,P ` Q

∨l

Γ,Γ′, A ∨B ` P → Q
→r

 

ϕ1

Γ, A ` Q
Γ, A, P ` Q

wl

Γ, A ` P → Q
→r

ϕ2

Γ′, B, P ` Q
Γ′, B ` P → Q

→r

Γ,Γ′, A ∨B ` P → Q
∨l

∧l
ϕ1

Γ, Q,A ` F

ϕ2

Γ′, B ` F
Γ,Γ′, A ∨B,Q ` F

∨l

Γ,Γ, P ∧Q,A ∨B ` F
∧l

 

ϕ1

Γ, A,Q ` F
Γ, P ∧Q,A ` F

∧l
ϕ2

Γ′, B ` F
Γ,Γ′, P ∧Q,A ∨B ` F

∨l
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ϕ1

Γ, A ` F

ϕ2

Γ′, Q,B ` F
Γ,Γ′, A ∨B,Q ` F

∨l

Γ,Γ′, P ∧Q,A ∨B ` F
∧l

 

ϕ1

Γ, A ` F

ϕ2

Γ′, B,Q ` F
Γ′, P ∧Q,B ` F

∧l

Γ,Γ′, P ∧Q,A ∨B ` F
∨l

ϕ1

Γ, P,A ` F

ϕ2

Γ′, B ` F
Γ,Γ′, A ∨B,P ` F

∨l

Γ,Γ, P ∧Q,A ∨B ` F
∧l

 

ϕ1

Γ, A, P ` F
Γ, P ∧Q,A ` F

∧l
ϕ2

Γ′, B ` F
Γ,Γ′, P ∧Q,A ∨B ` F

∨l

ϕ1

Γ, A ` F

ϕ2

Γ′, P,B ` F
Γ,Γ′, A ∨B,P ` F

∨l

Γ,Γ′, P ∧Q,A ∨B ` F
∧l

 

ϕ1

Γ, A ` F

ϕ2

Γ′, B, P ` F
Γ′, P ∧Q,B ` F

∧l

Γ,Γ′, P ∧Q,A ∨B ` F
∨l

∧r

ϕ1

Γ ` P

ϕ2

Γ′, A ` Q

ϕ3

Γ′′, B ` Q
Γ′,Γ′′, A ∨B ` Q

∨l

Γ,Γ′,Γ′′, A ∨B ` P ∧Q
∧r

 

ϕ1

Γ ` P

ϕ2

Γ′, A ` Q
Γ,Γ′, A ` P ∧Q

∧r

ϕ1

Γ ` P

ϕ3

Γ′′, B ` Q
Γ,Γ′′, B ` P ∧Q

∧r

Γ,Γ,Γ′,Γ′′, A ∨B ` P ∧Q
∨l

Γ,Γ′,Γ′′, A ∨B ` P ∧Q
c∗l

ϕ1

Γ, A ` P

ϕ2

Γ′, B ` P
Γ,Γ′, A ∨B ` P

∨l
ϕ3

Γ′′ ` Q
Γ,Γ′,Γ′′, A ∨B ` P ∧Q

∧r
 

ϕ1

Γ, A ` P

ϕ3

Γ′′ ` Q
Γ,Γ′′, A ` P ∧Q

∧r

ϕ2

Γ′, B ` P

ϕ3

Γ′′ ` Q
Γ′,Γ′′, B ` P ∧Q

∧r

Γ,Γ′,Γ′′,Γ′′, A ∨B ` P ∧Q
∨l

Γ,Γ′,Γ′′, A ∨B ` P ∧Q
c∗l

∨l
ϕ1

Γ, P,A ` F

ϕ2

Γ′, B ` F
Γ,Γ′, A ∨B,P ` F

∨l
ϕ3

Γ′′, Q ` F
Γ,Γ′,Γ′′, A ∨B,P ∨Q ` F

∨l
 

ϕ1

Γ, A, P ` F

ϕ3

Γ′′, Q ` F
Γ,Γ′′, P ∨Q,A ` F

∨l
ϕ2

Γ′, B ` F
Γ,Γ′,Γ′′, A ∨B,P ∨Q ` F

∨l

ϕ1

Γ, A ` F

ϕ2

Γ′, P,B ` F
Γ,Γ′, A ∨B,P ` F

∨l
ϕ3

Γ′′, Q ` F
Γ,Γ′,Γ′′, A ∨B,P ∨Q ` F

∨l
 

ϕ1

Γ, A ` F

ϕ2

Γ′, B, P ` F

ϕ3

Γ′′, Q ` F
Γ′,Γ′′, P ∨Q,B ` F

∨l

Γ,Γ′,Γ′′, A ∨B,P ∨Q ` F
∨l
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ϕ1

Γ, P ` F

ϕ2

Γ′, Q,A ` F

ϕ3

Γ′′, B ` F
Γ′,Γ′′, A ∨B,Q ` F

∨l

Γ,Γ′,Γ′′, A ∨B,P ∨Q ` F
∨l

 

ϕ1

Γ, P ` F

ϕ2

Γ′, A,Q ` F
Γ,Γ′, P ∨Q,A ` F

∨l
ϕ3

Γ′′, B ` F
Γ,Γ′,Γ′′, A ∨B,P ∨Q ` F

∨l

ϕ1

Γ, P ` F

ϕ2

Γ′, A ` F

ϕ3

Γ′′, Q,B ` F
Γ′,Γ′′, A ∨B,Q ` F

∨l

Γ,Γ′,Γ′′, A ∨B,P ∨Q ` F
∨l

 

ϕ2

Γ′, A ` F

ϕ1

Γ, P ` F

ϕ3

Γ′′, B,Q ` F
Γ,Γ′′, P ∨Q,B ` F

∨l

Γ,Γ′,Γ′′, A ∨B,P ∨Q ` F
∨l

∨r
ϕ1

Γ, A ` Q

ϕ2

Γ′, B ` Q
Γ,Γ′, A ∨B ` Q

∨l

Γ,Γ′, A ∨B ` P ∨Q
∨r

 

ϕ1

Γ, A ` Q
Γ, A ` P ∨Q

∨l

ϕ2

Γ′, B ` Q
Γ′, B ` P ∨Q

∨r

Γ,Γ′, A ∨B ` P ∨Q
∨l

ϕ1

Γ, A ` P

ϕ2

Γ′, B ` P
Γ,Γ′, A ∨B ` P

∨l

Γ,Γ′, A ∨B ` P ∨Q
∨r

 

ϕ1

Γ, A ` P
Γ, A ` P ∨Q

∨l

ϕ2

Γ′, B ` P
Γ′, B ` P ∨Q

∨r

Γ,Γ′, A ∨B ` P ∨Q
∨l

∀l
ϕ1

Γ, P [x/t], A ` F

ϕ2

Γ′, B ` F
Γ,Γ′, A ∨B,P [x/t] ` F

∨l

Γ,Γ′,∀x.Px,A ∨B ` F
∀l

 

ϕ1

Γ, A, P [x/t] ` F
Γ,∀x.Px,A ` F

∀l
ϕ2

Γ′, B ` F
Γ,Γ′,∀x.Px,A ∨B ` F

∨l

ϕ1

Γ, A ` F

ϕ2

Γ, P [x/t], B ` F
Γ,Γ′, A ∨B,P [x/t] ` F

∨l

Γ,Γ′, ∀x.Px,A ∨B ` F
∀l

 

ϕ1

Γ, A ` F

ϕ2

Γ′, B, P [x/t] ` F
Γ′,∀x.Px,B ` F

∀l

Γ,Γ, ∀x.Px,A ∨B ` F
∨l
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∀r
ϕ1

Γ, A ` P [x/α]

ϕ2

Γ′, B ` P [x/α]

Γ,Γ′, A ∨B ` P [x/α]
∨l

Γ,Γ′, A ∨B ` ∀x.Px
∀r

 

ϕ1

Γ, A ` P [x/α]

Γ, A ` ∀x.Px ∀r

ϕ2

Γ′, B ` P [x/α]

Γ′, B ` ∀x.Px
∀r

Γ,Γ′, A ∨B ` ∀x.Px
∨l

∃l
ϕ1

Γ, P [x/α], A ` F

ϕ2

Γ′, B ` F
Γ,Γ′, A ∨B,P [x/α] ` F

∨l

Γ,Γ′, ∃x.Px,A ∨B ` F
∃l

 

ϕ1

Γ, A, P [x/α] ` F
Γ, ∃x.Px,A ` F

∃l
ϕ2

Γ′, B ` F
Γ,Γ′, ∃x.Px,A ∨B ` F

∨l

ϕ1

Γ, A ` F

ϕ2

Γ′, P [x/α], B ` F
Γ,Γ′, A ∨B,P [x/α] ` F

∨l

Γ,Γ′, ∃x.Px,A ∨B ` F
∃l

 

ϕ1

Γ, A ` F

ϕ2

Γ′, B, P [x/α] ` F
Γ′,∃x.Px,B ` F

∃l

Γ,Γ′, ∃x.Px,A ∨B ` F
∨l

∃r
ϕ1

ΓA ` P [x/t]

ϕ2

Γ′, B ` P [x/t]

Γ,Γ′, A ∨B ` P [x/t]
∨l

Γ,Γ′, A ∨B ` ∃x.Px
∃r

 

ϕ1

Γ, A ` P [x/t]

Γ, A ` ∃x.Px ∃r

ϕ2

Γ′, B ` P [x/t]

Γ′, B ` ∃x.Px
∃r

Γ,Γ′, A ∨B ` ∃x.Px
∨l

¬l

ϕ1

Γ, A ` P

ϕ2

Γ, B ` P
Γ,Γ′, A ∨B ` P

∨l

Γ,Γ′, A ∨B,¬P `
¬l

 

ϕ1

Γ, A ` P
Γ,¬P,A `

¬l

ϕ2

Γ′, B ` P
Γ′,¬P,B `

¬l

Γ,Γ′,¬P,¬P,A ∨B `
∨l

Γ,Γ′,¬P,A ∨B `
cl

¬r
ϕ1

Γ, P,A `

ϕ2

Γ′, B `
Γ,Γ′, A ∨B,P `

∨l

Γ,Γ′, A ∨B ` ¬P
¬r

 

ϕ1

Γ, A, P `
Γ, A ` ¬P

¬r

ϕ2

Γ′, B `
Γ′, B ` ¬P

wr

Γ,Γ′, A ∨B ` ¬P
∨l
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ϕ1

Γ, A `

ϕ2

Γ′, P,B `
Γ,Γ′, A ∨B,P `

∨l

Γ,Γ′, A ∨B ` ¬P
¬r

 

ϕ1

Γ, A `
Γ, A ` ¬P

wl

ϕ2

Γ′, B, P `
Γ′, B ` ¬P

¬r

Γ,Γ′, A ∨B ` ¬P
∨l

wl

ϕ1

Γ, A ` F

ϕ2

Γ′, B ` F
Γ,Γ′, A ∨B ` F

∨l

Γ,Γ′, A ∨B,P ` F
wl

 

ϕ1

Γ, A ` F
Γ, P,A ` F

wl

ϕ2

Γ′, B ` F
Γ,Γ′, P,A ∨B ` F

∨l

wr

ϕ1

Γ, A `

ϕ2

Γ′, B `
Γ,Γ′, A ∨B `

∨l

Γ,Γ′, A ∨B ` P
wr

 

ϕ1

Γ, A `
Γ, A ` P

wr

ϕ2

Γ′, B `
Γ′, B ` P

wr

Γ,Γ′, A ∨B ` P
∨l

cl

ϕ1

Γ, P,A ` F

ϕ2

Γ′, P,B ` F
Γ,Γ′, A ∨B,P, P ` F

∨l

Γ,Γ′, A ∨B,P ` F
cl

 ?

ϕ1

Γ, P, P,A ` F

ϕ2

Γ′, B ` F
Γ,Γ′, A ∨B,P, P ` F

∨l

Γ,Γ′, A ∨B,P ` F
cl

 

ϕ1

Γ, P, P,A ` F
Γ, P,A ` F

cl

ϕ2

Γ′, B ` F
Γ,Γ′, P,A ∨B ` F

∨l

ϕ1

Γ, A ` F

ϕ2

Γ′, P, P,B ` F
Γ,Γ′, A ∨B,P, P ` F

∨l

Γ,Γ′, A ∨B,P ` F
cl

 

ϕ1

Γ, A ` F

ϕ2

Γ′, P, P,B ` F
Γ′, P,B ` F

cl

Γ,Γ′, P,A ∨B ` F
∨l
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cut

ϕ1

Γ, A ` P

ϕ2

Γ′, B ` P
Γ,Γ′, A ∨B ` P

∨l
ϕ3

Γ′′, P ` F
Γ,Γ′,Γ′′, A ∨B ` F

cut
 

ϕ1

Γ, A ` P

ϕ3

Γ′′, P ` F
Γ,Γ′′, A ` F

cut

ϕ2

Γ′, B ` P

ϕ3

Γ′′, P ` F
Γ′,Γ′′, B ` F

cut

Γ,Γ′,Γ′′,Γ′′, A ∨B ` F
∨l

Γ,Γ′,Γ′′, A ∨B ` F c∗

ϕ1

Γ ` P

ϕ2

Γ′, P,A ` F

ϕ3

Γ′′, B ` F
Γ′,Γ′′, A ∨B,P ` F

∨l

Γ,Γ′,Γ′′, A ∨B ` F
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, A, P ` F
Γ,Γ′, A ` F

cut
ϕ3

Γ′′, B ` F
Γ,Γ′,Γ′′, A ∨B ` F

∨l

ϕ1

Γ ` P

ϕ2

Γ′, A ` F

ϕ3

Γ′′, P,B ` F
Γ′,Γ′′, A ∨B,P ` F

∨l

Γ,Γ′,Γ′′, A ∨B ` F
cut

 

ϕ2

Γ′, A ` F

ϕ1

Γ ` P

ϕ3

Γ′′, B, P ` F
Γ,Γ′′, B ` F

cut

Γ,Γ′,Γ′′, A ∨B ` F
∨l

B.6 Permutation of ∨r down

→l

ϕ1

Γ ` P

ϕ2

Γ′, Q ` B
Γ′, Q ` A ∨B

∨r

Γ,Γ′, P → Q ` A ∨B
→l

 

ϕ1

Γ ` P

ϕ2

Γ′′, Q ` B
Γ,Γ′, P → Q ` B

→l

Γ,Γ′, P → Q ` A ∨B
∨r

ϕ1

Γ ` P

ϕ2

Γ′, Q ` A
Γ′, Q ` A ∨B

∨r

Γ,Γ′, P → Q ` A ∨B
→l

 

ϕ1

Γ ` P

ϕ2

Γ′′, Q ` A
Γ,Γ′, P → Q ` A

→l

Γ,Γ′, P → Q ` A ∨B
∨r

→r

N/A

∧l
ϕ1

Γ, Q ` B
Γ, Q ` A ∨B

∨r

Γ, P ∧Q ` A ∨B
∧l

 

ϕ1

Γ, Q ` B
Γ, P ∧Q ` B

∧l

Γ, P ∧Q ` A ∨B
∨r
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ϕ1

Γ, P ` B
Γ, P ` A ∨B

∨r

Γ, P ∧Q ` A ∨B
∧l

 

ϕ1

Γ, P ` B
Γ, P ∧Q ` B

∧l

Γ, P ∧Q ` A ∨B
∨r

ϕ1

Γ, Q ` A
Γ, Q ` A ∨B

∨r

Γ, P ∧Q ` A ∨B
∧l

 

ϕ1

Γ, Q ` A
Γ, P ∧Q ` A

∧l

Γ, P ∧Q ` A ∨B
∨r

ϕ1

Γ, P ` A
Γ, P ` A ∨B

∨r

Γ, P ∧Q ` A ∨B
∧l

 

ϕ1

Γ, P ` A
Γ, P ∧Q ` A

∧l

Γ, P ∧Q ` A ∨B
∨r

∧r
N/A

∨l
ϕ1

Γ, P ` B
Γ, P ` A ∨B

∨r

ϕ2

Γ′, Q ` B
Γ′, Q ` A ∨B

∨r

Γ,Γ′, P ∨Q ` A ∨B
∨l

 

ϕ1

Γ, P ` B

ϕ2

Γ′, Q ` B
Γ,Γ′, P ∨Q ` B

∨l

Γ,Γ′, P ∨Q ` A ∨B
∨r

ϕ1

Γ, P ` A
Γ, P ` A ∨B

∨r

ϕ2

Γ′, Q ` A
Γ′, Q ` A ∨B

∨r

Γ,Γ′, P ∨Q ` A ∨B
∨l

 

ϕ1

Γ, P ` A

ϕ2

Γ′, Q ` A
Γ,Γ′, P ∨Q ` A

∨l

Γ,Γ′, P ∨Q ` A ∨B
∨r

ϕ1

Γ, P ` A
Γ, P ` A ∨B

∨r

ϕ2

Γ′, Q ` B
Γ′, Q ` A ∨B

∨r

Γ,Γ′, P ∨Q ` A ∨B
∨l

 ?

ϕ1

Γ, P ` B
Γ, P ` A ∨B

∨r

ϕ2

Γ′, Q ` A
Γ′, Q ` A ∨B

∨r

Γ,Γ′, P ∨Q ` A ∨B
∨l

 ?
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∨r
N/A

∀l
ϕ1

Γ, P [x/t] ` B
Γ, P [x/t] ` A ∨B

∨r

Γ, ∀x.Px ` A ∨B
∀l  

ϕ1

Γ, P [x/t] ` B
Γ, ∀x.Ax ` B

∀l

Γ, ∀x.Px ` A ∨B
∨r

ϕ1

Γ, P [x/t] ` A
Γ, P [x/t] ` A ∨B

∨r

Γ, ∀x.Px ` A ∨B
∀l  

ϕ1

Γ, P [x/t] ` A
Γ,∀x.Ax ` A

∀l

Γ, ∀x.Px ` A ∨B
∨r

∀r
N/A

∃l
ϕ1

Γ, P [x/α] ` B
Γ, P [x/α] ` A ∨B

∨r

Γ, ∃x.Px ` A ∨B
∃l  

ϕ1

Γ, P [x/α] ` B
Γ, ∃x.Px ` B

∃l

Γ, ∃x.Px ` A ∨B
∨r

ϕ1

Γ, P [x/α] ` A
Γ, P [x/α] ` A ∨B

∨r

Γ, ∃x.Px ` A ∨B
∃l  

ϕ1

Γ, P [x/α] ` A
Γ, ∃x.Px ` A

∃l

Γ, ∃x.Px ` A ∨B
∨r

∃r
N/A

¬l
N/A

¬r
N/A
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wl

ϕ1

Γ ` A
Γ ` A ∨B

∨r

Γ, P ` A ∨B
wl

 

ϕ1

Γ ` A
Γ, P ` A

wl

Γ, P ` A ∨B
∨r

ϕ1

Γ ` B
Γ ` A ∨B

∨r

Γ, P ` A ∨B
wl

 

ϕ1

Γ ` B
Γ, P ` B

wl

Γ, P ` A ∨B
∨r

wr

N/A

cl
ϕ1

Γ, P, P ` A
Γ, P, P ` A ∨B

∨r

Γ, P ` A ∨B
cl

 

ϕ1

Γ, P, P ` A
Γ, P ` A

cl

Γ, P ` A ∨B
∨r

ϕ1

Γ, P, P ` B
Γ, P, P ` A ∨B

∨r

Γ, P ` A ∨B
cl

 

ϕ1

Γ, P, P ` B
Γ, P ` B

cl

Γ, P ` A ∨B
∨r

cut

ϕ1

Γ ` P

ϕ2

Γ′, P ` A
Γ′, P ` A ∨B

∨l

Γ,Γ′ ` A ∨B
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, P ` A
Γ,Γ′ ` A

cut

Γ,Γ′ ` A ∨B
∨r

ϕ1

Γ ` P

ϕ2

Γ′, P ` B
Γ′, P ` A ∨B

∨l

Γ,Γ′ ` A ∨B
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, P ` B
Γ,Γ′ ` B

cut

Γ,Γ′ ` A ∨B
∨r
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B.7 Permutation of ∀l down

→l

ϕ1

Γ ` P

ϕ2

Γ′, Q,A[x/t] ` F
Γ′, ∀x.Ax,Q ` F

∀l

Γ,Γ′, ∀x.Ax, P → Q ` F
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, A[x/t], Q ` F
Γ,Γ′, P → Q,A[x/t] ` F

→l

Γ,Γ′, ∀x.Ax, P → Q ` F
∀l

ϕ1

Γ, A[x/t] ` P
Γ,∀x.Ax ` P

∀l
ϕ2

Γ′, Q ` F
Γ,Γ′,∀x.Ax, P → Q ` F

→l
 

ϕ1

Γ, A[x/t] ` P

ϕ2

Γ′, Q ` F
Γ,Γ′, P → Q,A[x/t] ` F

→l

Γ,Γ′, ∀x.Ax, P → Q ` F
∀l

→r

ϕ1

Γ, P,A[x/t] ` Q
Γ, ∀x.Ax, P ` Q

∀l

Γ,∀x.Ax ` P → Q
→r

 

ϕ1

Γ, A[x/t], P ` Q
Γ, A[x/t] ` P → Q

→r

Γ, ∀x.Ax ` P → Q
∀l

∧l
ϕ1

Γ, Q,A[x/t] ` F
Γ,∀x.Ax,Q ` F

∀l

Γ, P ∧Q, ∀x.Ax ` F
∧l

 

ϕ1

Γ, A[x/t], Q ` F
Γ, P ∧Q,A[x/t] ` F

∧l

Γ, ∀x.Ax, P ∧Q ` F
∀l

ϕ1

Γ, P,A[x/t] ` F
Γ, ∀x.Ax, P ` F

∀l

Γ, P ∧Q, ∀x.Ax ` F
∧l

 

ϕ1

Γ, A[x/t], P ` F
Γ, P ∧Q,A[x/t] ` F

∧l

Γ, ∀x.Ax, P ∧Q ` F
∀l

∧r

ϕ1

Γ ` P

ϕ2

Γ′, A[x/t] ` Q
Γ′,∀x.Ax ` Q

∀l

Γ,Γ′, ∀x.Ax ` P ∧Q
∧r

 

ϕ1

Γ ` P

ϕ2

Γ′, A[x/t] ` Q
Γ,Γ′, A[x/t] ` P ∧Q

∧r

Γ,Γ′,∀x.Ax ` P ∧Q
∀l
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ϕ1

Γ, A[x/t] ` P
Γ, ∀x.Ax ` P

∀l
ϕ2

Γ′ ` Q
Γ,Γ′, ∀x.Ax ` P ∧Q

∧r
 

ϕ1

Γ, A[x/t] ` P

ϕ2

Γ′ ` Q
Γ,Γ′, A[x/t] ` P ∧Q

∧r

Γ,Γ′, ∀x.Ax ` P ∧Q
∀l

∨l

ϕ1

Γ, P ` F

ϕ2

Γ′, Q,A[x/t] ` F
Γ′, ∀x.Ax,Q ` F

∀l

Γ,Γ′, ∀x.Ax, P ∨Q ` F
∨l

 

ϕ1

Γ, P ` F

ϕ2

Γ′, A[x/t], Q ` F
Γ,Γ′, P ∨Q,A[x/t] ` F

∨l

Γ,Γ′, ∀x.Ax, P ∨Q ` F
∀l

ϕ1

Γ, P,A[x/t] ` F
Γ, ∀x.Ax, P ` F

∀l
ϕ2

Γ′, Q ` F
Γ,Γ′, ∀x.Ax, P ∨Q ` F

∨l
 

ϕ1

Γ, A[x/t], P ` F

ϕ2

Γ′, Q ` F
Γ,Γ, P ∨Q,A[x/t] ` F

∨l

Γ,Γ′, ∀x.Ax, P ∨Q ` F
∀l

∨r
ϕ1

Γ, A[x/t] ` Q
Γ, ∀x.Ax ` Q

∀l

Γ, ∀x.Ax ` P ∨Q
∨r

 

ϕ1

Γ, A[x/t] ` Q
Γ, A[x/t] ` P ∨Q

∨r

Γ, ∀x.Ax ` P ∨Q
∀l

ϕ1

Γ, A[x/t] ` P
Γ, ∀x.Ax ` P

∀l

Γ, ∀x.Ax ` P ∨Q
∨r

 

ϕ1

Γ, A[x/t] ` P
Γ, A[x/t] ` P ∨Q

∨r

Γ, ∀x.Ax ` P ∨Q
∀l

∀l
ϕ1

Γ, P [x/t], A[x/t′] ` F
Γ, ∀x.Ax, P [x/t] ` F

∀l

Γ, ∀x.Ax, ∀x.Px ` F
∀l  

ϕ1

Γ, A[x/t′], P [x/t] ` F
Γ, ∀x.Px,A[x/t′] ` F

∀l

Γ,∀x.Ax, ∀x.Px ` F
∀l
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∀r
Note: watch out for eigenvariable violations (if t contains α).

ϕ1

Γ, A[x/t] ` P [x/α]

Γ,∀x.Ax ` P [x/α]
∀l

Γ,∀x.Ax ` ∀x.Px ∀r  

ϕ2

Γ, A[x/t] ` P [x/α]

Γ, A[x/t] ` ∀x.Px
∀r

Γ,∀x.Ax ` ∀x.Px
∀l

∃l
Note: watch out for eigenvariable violations (if t contains α)

ϕ1

Γ, P [x/α], A[x/t] ` F
Γ,∀x.Ax, P [x/α] ` F

∀l

Γ,∃x.Px,∀x.Ax ` F
∃l  

ϕ1

Γ, A[x/t], P [x/α] ` F
Γ, ∃x.Px,A[x/t] ` F

∃l

Γ, ∀x.Ax, ∃x.Px ` F
∀l

∃r
ϕ1

Γ, A[x/t′] ` P [x/t]

Γ,∀x.Ax ` P [x/t]
∀l

Γ, ∀x.Ax ` ∃x.Px ∃r  

ϕ1

Γ, A[x/t′] ` P [x/t]

Γ, A[x/t′] ` ∃x.Px
∃r

Γ, ∀x.Ax ` ∃x.Px
∀l

¬l
ϕ1

Γ, A[x/t] ` P
Γ, ∀x.Ax ` P

∀l

Γ, ∀x.Ax,¬P `
¬l

 

ϕ1

Γ, A[x/t] ` P
Γ,¬P,A[x/t] `

¬l

Γ, ∀x.Ax,¬P `
∀l

¬r
ϕ1

Γ, P,A[x/t] `
Γ,∀x.Ax, P `

∀l

Γ,∀x.Ax ` ¬P
¬r

 

ϕ1

Γ, A[x/t], P `
Γ, A[x/t] ` ¬P

¬r

Γ, ∀x.Ax ` ¬P
∀l
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wl
ϕ1

Γ, A[x/t] ` F
Γ, ∀x.Ax ` F

∀l

Γ,∀x.Ax, P ` F
wl

 

ϕ1

Γ, A[x/t] ` F
Γ, P,A[x/t] ` F

wl

Γ, ∀x.Ax, P ` F
∀l

wr
ϕ1

Γ, A[x/t] `
Γ,∀x.Ax `

∀l

Γ, ∀x.Ax ` P
wr

 

ϕ1

Γ, A[x/t] `
Γ, A[x/t] ` P

wr

Γ, ∀x.Ax ` P
∀l

cl
ϕ1

Γ, P, P,A[x/t] ` F
Γ, ∀x.Ax, P, P ` F

∀l

Γ, ∀x.Ax, P ` F
cl

 

ϕ1

Γ, A[x/t], P, P ` F
Γ, P,A[x/t] ` F

cl

Γ,∀x.Ax, P ` F
∀l

cut
ϕ1

Γ, A[x/t] ` P
Γ, ∀x.Ax ` P

∀l
ϕ2

Γ′, P ` F
Γ,Γ′, ∀x.Ax ` F

cut
 

ϕ1

Γ, A[x/t] ` P

ϕ2

Γ′, P ` F
Γ,Γ′, A[x/t] ` F

cut

Γ,Γ′, ∀x.Ax ` F
∀l

ϕ1

Γ ` P

ϕ2

Γ′, P,A[x/t] ` F
Γ′, ∀x.Ax, P ` F

∀l

Γ,Γ′, ∀x.Ax ` F
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, A[x/t], P ` F
Γ,Γ′, A[x/t] ` F

cut

Γ,Γ′, ∀x.Ax ` F
∀l

B.8 Permutation of ∀r down

→l

ϕ1

Γ ` P

ϕ2

Γ′, Q ` A[x/α]

Γ′, Q ` ∀x.Ax
∀r

Γ,Γ′, P → Q ` ∀x.Ax
→l

 

ϕ1

Γ ` P

ϕ2

Γ, Q ` A[x/α]

Γ,Γ′, P → Q ` A[x/α]
→l

Γ,Γ′, P → Q ` ∀x.Ax
∀r
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→r

N/A

∧l
ϕ1

Γ, Q ` A[x/α]

Γ, Q ` ∀x.Ax ∀r

Γ, P ∧Q ` ∀x.Ax
∧l

 

ϕ1

Γ, Q ` A[x/α]

Γ, P ∧Q ` A[x/α]
∧l

Γ, P ∧Q ` ∀x.Ax ∀r

ϕ1

Γ, P ` A[x/α]

Γ, P ` ∀x.Ax ∀r

Γ, P ∧Q ` ∀x.Ax
∧l

 

ϕ1

Γ, P ` A[x/α]

Γ, P ∧Q ` A[x/α]
∧l

Γ, P ∧Q ` ∀x.Ax ∀r

∧r
N/A

∨l
ϕ1

Γ, P ` A[x/α]

Γ, P ` ∀x.Ax ∀r

ϕ2

Γ′, Q ` A[x/α]

Γ′, Q ` ∀x.Ax
∀r

Γ,Γ′, P ∨Q ` ∀x.Ax
∨l

 

ϕ1

Γ, P ` A[x/α]

ϕ2

Γ′, Q ` A[x/α]

Γ,Γ′, P ∨Q ` A[x/α]
∨l

Γ,Γ′, P ∨Q ` ∀x.Ax
∀r

∨r
N/A

∀l
ϕ1

Γ, P [x/t] ` A[x/α]

Γ, P [x/t] ` ∀x.Ax
∀r

Γ,∀x.Px ` ∀x.Ax
∀l  

ϕ1

Γ, P [x/t] ` A[x/α]

Γ, ∀x.Px ` A[x/α]
∀l

Γ, ∀x.Px ` ∀x.Ax ∀r

∀r
N/A
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∃l
ϕ1

Γ, P [x/α] ` A[x/α′]

Γ, P [x/α] ` ∀x.Ax
∀r

Γ, ∃x.Px ` ∀x.Ax
∃l  

ϕ1

Γ, P [x/α] ` A[x/α′]

Γ, ∃x.Px ` A[x/α′]
∃l

Γ, ∃x.Px ` ∀x.Ax ∀r

∃r
N/A

¬l
N/A

¬r
N/A

wl
ϕ1

Γ ` A[x/α]

Γ ` ∀x.Ax ∀r

Γ, P ` ∀x.Ax
wl

 

ϕ1

Γ ` A[x/α]

Γ, P ` A[x/α]
wl

Γ, P ` ∀x.Ax ∀r

wr

N/A

cl
ϕ1

Γ, P, P ` A[x/α]

Γ, P, P ` ∀x.Ax ∀r

Γ, P ` ∀x.Ax
cl

 

ϕ1

Γ, P, P ` A[x/α]

Γ, P ` A[x/α]
cl

Γ, P ` ∀x.Ax ∀r

cut

ϕ1

Γ ` P

ϕ2

Γ′, P ` A[x/α]

Γ′, P ` ∀x.Ax
∀r

Γ,Γ′ ` ∀x.Ax
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, P ` A[x/α]

Γ,Γ′ ` A[x/α]
cut

Γ,Γ′ ` ∀x.Ax
∀r
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B.9 Permutation of ∃l down

→l

ϕ1

Γ ` P

ϕ2

Γ′, Q,A[x/α] ` F
Γ′, ∃x.Ax,Q ` F

∃l

Γ,Γ′, ∃x.Ax, P → Q ` F
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, A[x/α], Q ` F
Γ,Γ′, P → Q,A[x/α] ` F

→l

Γ,Γ′, ∃x.Ax, P → Q ` F
∃l

ϕ1

Γ, A[x/α] ` P
Γ, ∃x.Ax ` P

∃l
ϕ2

Γ′, Q ` F
Γ,Γ′, ∃x.Ax, P → Q ` F

→l
 

ϕ1

Γ, A[x/α] ` P

ϕ2

Γ′, Q ` F
Γ,Γ′, P → Q,A[x/α] ` F

→l

Γ,Γ′, ∃x.Ax, P → Q ` F
∃l

→r

ϕ1

Γ, P,A[x/α] ` Q
Γ, ∃x.Ax, P ` Q

∃l

Γ, ∃x.Ax ` P → Q
→r

 

ϕ1

Γ, A[x/α], P ` Q
Γ, A[x/α] ` P → Q

→r

Γ, ∃x.Ax ` P → Q
∃l

∧l
ϕ1

Γ, Q,A[x/α] ` F
Γ, ∃x.Ax,Q ` F

∃l

Γ, P ∧Q,∃x.Ax ` F
∧l

 

ϕ1

Γ, A[x/α], Q ` F
Γ, P ∧Q,A[x/α] ` F

∧l

Γ, ∃x.Ax, P ∧Q ` F
∃l

ϕ1

Γ, P,A[x/α] ` F
Γ, ∃x.Ax, P ` F

∃l

Γ, P ∧Q,∃x.Ax ` F
∧l

 

ϕ1

Γ, A[x/α], P ` F
Γ, P ∧Q,A[x/α] ` F

∧l

Γ, ∃x.Ax, P ∧Q ` F
∃l

∧r

ϕ1

Γ ` P

ϕ2

Γ′, A[x/α] ` Q
Γ′,∃x.Ax ` Q

∃l

Γ,Γ′, ∃x.Ax ` P ∧Q
∧r

 

ϕ1

Γ ` P

ϕ2

Γ′, A[x/α] ` Q
Γ,Γ′, A[x/α] ` P ∧Q

∧r

Γ,Γ′, ∃x.Ax ` P ∧Q
∃l

140



ϕ1

Γ, A[x/α] ` P
Γ, ∃x.Ax ` P

∃l
ϕ2

Γ′ ` Q
Γ,Γ′, ∃x.Ax ` P ∧Q

∧r
 

ϕ1

Γ, A[x/α] ` P

ϕ2

Γ′ ` Q
Γ,Γ′, A[x/α] ` P ∧Q

∧r

Γ,Γ′, ∃x.Ax ` P ∧Q
∃l

∨l

ϕ1

Γ, P ` F

ϕ2

Γ′, Q,A[x/α] ` F
Γ′,∃x.Ax,Q ` F

∃l

Γ,Γ′, ∃x.Ax, P ∨Q ` F
∨l

 

ϕ1

Γ, P ` F

ϕ2

Γ′, A[x/α], Q ` F
Γ,Γ′, P ∨Q,A[x/α] ` F

∨l

Γ,Γ′, ∃x.Ax, P ∨Q ` F
∃l

ϕ1

Γ, P,A[x/α] ` F
Γ, ∃x.Ax, P ` F

∃l
ϕ2

Γ′, Q ` F
Γ,Γ′, ∃x.Ax, P ∨Q ` F

∨l
 

ϕ1

Γ, A[x/α], P ` F

ϕ2

Γ′, Q ` F
Γ,Γ′, P ∨Q,A[x/α] ` F

∨l

Γ,Γ′, ∃x.Ax, P ∨Q ` F
∃l

∨r
ϕ1

Γ, A[x/α] ` Q
Γ, ∃x.Ax ` Q

∃l

Γ, ∃x.Ax ` P ∨Q
∨r

 

ϕ1

Γ, A[x/α] ` Q
Γ, A[x/α] ` P ∨Q

∨r

Γ, ∃x.Ax ` P ∨Q
∃l

ϕ1

Γ, A[x/α] ` P
Γ, ∃x.Ax ` P

∃l

Γ, ∃x.Ax ` P ∨Q
∨r

 

ϕ1

Γ, A[x/α] ` P
Γ, A[x/α] ` P ∨Q

∨r

Γ, ∃x.Ax ` P ∨Q
∃l

∀l
ϕ1

Γ, P [x/t], A[x/α] ` F
Γ, ∃x.Ax, P [x/t] ` F

∃l

Γ,∀x.Px,∃x.Ax ` F
∀l  

ϕ1

Γ, A[x/α], P [x/t] ` F
Γ, ∀x.Px,A[x/α] ` F

∀l

Γ, ∃x.Ax, ∀x.Px ` F
∃l
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∀r
ϕ1

Γ, A[x/α′] ` P [x/α]

Γ, ∃x.Ax ` P [x/α]
∃l

Γ, ∃x.Ax ` ∀x.Px ∀r  

ϕ1

Γ, A[x/α′] ` P [x/α]

Γ, A[x/α′] ` ∀x.Px
∀r

Γ, ∃x.Ax ` ∀x.Px
∃l

∃l
ϕ1

Γ, P [x/α], A[x/α′] ` F
Γ, ∃x.Ax, P [x/α] ` F

∃l

Γ, ∃x.Ax, ∃x.Px ` F
∃l  

ϕ1

Γ, A[x/α′], P [x/α] ` F
Γ, ∃x.Px,A[x/α′] ` F

∃l

Γ, ∃x.Ax, ∃x.Px ` F
∃l

∃r
ϕ1

Γ, A[x/α] ` P [x/t]

Γ, ∃x.Ax ` P [x/t]
∃l

Γ, ∃x.Ax ` ∃x.Px ∃r  

ϕ1

Γ, A[x/α] ` P [x/t]

Γ, A[x/α] ` ∃x.Px
∃r

Γ, ∃x.Ax ` ∃x.Px
∃l

¬l
ϕ1

Γ, A[x/α] ` P
Γ, ∃x.Ax ` P

∃l

Γ, ∃x.Ax,¬P `
¬l

 

ϕ1

Γ, A[x/α] ` P
Γ,¬P,A[x/α] `

¬l

Γ, ∃x.Ax,¬P `
∃l

¬r
ϕ1

Γ, P,A[x/α] `
Γ, ∃x.Ax, P `

∃l

Γ, ∃x.Ax ` ¬P
¬r

 

ϕ1

Γ, A[x/α], P `
Γ, A[x/α] ` ¬P

¬r

Γ, ∃x.Ax ` ¬P
∃l

wl
ϕ1

Γ, A[x/α] ` F
Γ, ∃x.Ax ` F

∃l

Γ, P,∃x.Ax ` F
wl

 

ϕ1

Γ, A[x/α] ` F
Γ, P,A[x/α] ` F

wl

Γ, P,∃x.Ax ` F
∃l
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wr

ϕ1

Γ, A[x/α] `
Γ, ∃x.Ax `

∃l

Γ,∃x.Ax ` P
wr

 

ϕ1

Γ, A[x/α] `
Γ, A[x/α] ` P

wr

Γ, ∃x.Ax ` P
∃l

cl

ϕ1

Γ, P, PA[x/α] ` F
Γ, P, P∃x.Ax ` F

∃l

Γ, P,∃x.Ax ` F
cl

 

ϕ1

Γ, P, P,A[x/α] ` F
Γ, P,A[x/α] ` F

cl

Γ, P,∃x.Ax ` F
∃l

cut

ϕ1

Γ, A[x/α] ` P
Γ, ∃x.Ax ` P

∃l
ϕ2

Γ′, P ` F
Γ,Γ′, ∃x.Ax ` F

cut
 

ϕ1

Γ, A[x/α] ` P

ϕ2

Γ′, P ` F
Γ,Γ′, A[x/α] ` F

cut

Γ,Γ′, ∃x.Ax ` F
∃l

ϕ1

Γ ` P

ϕ2

Γ, P,A[x/α] ` F
Γ′,∃x.Ax, P ` F

∃l

Γ,Γ′, ∃x.Ax ` F
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, A[x/α], P ` F
Γ,Γ′, A[x/α] ` F

cut

Γ,Γ′, ∃x.Ax ` F
∃l

B.10 Permutation of ∃r down

→l

ϕ1

Γ ` P

ϕ2

Γ′, Q ` A[x/t]

Γ′, Q ` ∃x.Ax
∃r

Γ,Γ′, P → Q ` ∃x.Ax
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, Q ` A[x/t]

Γ,Γ′, P → Q ` A[x/t]
→l

Γ,Γ′, P → Q ` ∃x.Ax
∃r

→r

N/A

143



∧l
ϕ1

Γ, Q ` A[x/t]

Γ, Q ` ∃x.Ax ∃r

Γ, P ∧Q ` ∃x.Ax
∧l

 

ϕ1

Γ, Q ` A[x/t]

Γ, P ∧Q ` A[x/t]
∧l

Γ, P ∧Q ` ∃x.Ax ∃r

ϕ1

Γ, P ` A[x/t]

Γ, P ` ∃x.Ax ∃r

Γ, P ∧Q ` ∃x.Ax
∧l

 

ϕ1

Γ, P ` A[x/t]

Γ, P ∧Q ` A[x/t]
∧l

Γ, P ∧Q ` ∃x.Ax ∃r

∧r
N/A

∨l
ϕ1

Γ, P ` A[x/t]

Γ, P ` ∃x.Ax ∃r

ϕ2

Γ′, Q ` A[x/t′]

Γ′, Q ` ∃x.Ax
∃r

Γ,Γ′, P ∨Q ` ∃x.Ax
∨l

 ?

∨r
N/A

∀l
Γ, P [x/t] ` A[x/t′]

Γ, P [x/t] ` ∃x.Ax
∃r

Γ, ∀x.Px ` ∃x.Ax
∀l  

Γ, P [x/t] ` A[x/t′]

Γ, ∀x.Px ` A[x/t′]
∀l

Γ,∀x.Px ` ∃x.Ax ∃r

∀r
N/A
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∃l
Note: watch out for eigenvariable violations (if t contains α)

ϕ1

Γ, P [x/α] ` A[x/t]

Γ, P [x/α] ` ∃x.Ax
∃r

Γ, ∃x.Px ` ∃x.Ax
∃l  

ϕ1

Γ, P [x/α] ` A[x/t]

Γ, ∃x.Px ` A[x/t]
∃l

Γ, ∃x.Px ` ∃x.Ax ∃r

∃r
N/A

¬l
N/A

¬r
N/A

wl

ϕ1

Γ ` A[x/t]

Γ ` ∃x.Ax ∃r

Γ, P ` ∃x.Ax
wl

 

ϕ1

Γ ` A[x/t]

Γ, P ` A[x/t]
wl

Γ, P ` ∃x.Ax ∃r

wr

N/A

cl

ϕ1

Γ, P, P ` A[x/t]

Γ, P, P ` ∃x.Ax ∃r

Γ, P ` ∃x.Ax
cl

 

ϕ1

Γ, P, P ` A[x/t]

Γ, P ` A[x/t]
cl

Γ, P ` ∃x.Ax ∃r
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cut

ϕ1

Γ ` P

ϕ2

Γ′, P ` A[x/t]

Γ′, P ` ∃x.Ax
∃r

Γ,Γ′ ` ∃x.Ax
cut

→

ϕ1

Γ ` P

ϕ2

Γ′, P ` A[x/t]

Γ,Γ′ ` A[x/t]
cut

Γ,Γ′ ` ∃x.Ax
∃r

B.11 Permutation of ¬l down

→l

ϕ1

Γ ` P

ϕ2

Γ′, Q ` A
Γ′,¬A,Q `

¬l

Γ,Γ′,¬A,P → Q `
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, Q ` A
Γ,Γ′, P → Q ` A

→l

Γ,Γ′, P → Q,¬A `
¬l

→r

N/A

∧l
ϕ1

Γ, Q ` A
Γ,¬A,Q `

¬l

Γ, P ∧Q,¬A `
∧l

 

ϕ1

Γ, Q ` A
Γ, P ∧Q ` A

∧l

Γ, P ∧Q,¬A `
¬l

ϕ1

Γ, P ` A
Γ,¬A,P `

¬l

Γ, P ∧Q,¬A `
∧l

 

ϕ1

Γ, P ` A
Γ, P ∧Q ` A

∧l

Γ, P ∧Q,¬A `
¬l

∧r
N/A

∨l

ϕ1

Γ, P `

ϕ2

Γ′, Q ` A
Γ′,¬A,Q `

¬l

Γ,Γ,¬A,P ∨Q `
∨l

 

ϕ1

Γ, P `
Γ, P ` A

wr

ϕ2

Γ′, Q ` A
Γ,Γ′, P ∨Q ` A

∨l

Γ,Γ′, P ∨Q,¬A `
¬l
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ϕ1

Γ, P ` A
Γ,¬A,P `

¬l
ϕ2

Γ′, Q `
Γ,Γ′,¬A,P ∨Q `

∨l
 

ϕ1

Γ, P ` A

ϕ2

Γ′, Q `
Γ′, Q ` A

wr

Γ,Γ′, P ∨Q ` A
∨l

Γ,Γ′, P ∨Q,¬A `
¬l

∨r
N/A

∀l
ϕ1

Γ, P [x/t] ` A
Γ,¬A,P [x/t] `

¬l

Γ, ∀x.Px,¬A `
∀l  

ϕ1

Γ, P [x/t] ` A
Γ, ∀x.Px ` A

∀l

Γ, ∀x.Px,¬A `
¬l

∀r
N/A

∃l
ϕ1

Γ, P [x/α] ` A
Γ,¬A,P [x/α] `

¬l

Γ, ∃x.Px,¬A `
∃l  

ϕ1

Γ, P [x/α] ` A
Γ, ∃x.Px ` A

∃l

Γ, ∃x.Px,¬A `
¬l

∃r
N/A

¬l
N/A

¬r
Γ, P ` A

Γ,¬A,P `
¬l

Γ,¬A ` ¬P
¬r

 ?
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wl
ϕ1

Γ ` A
Γ,¬A `

¬l

Γ,¬A,P `
wl

 

ϕ1

Γ ` A
Γ, P ` A

wl

Γ,¬A,P `
¬l

wr
ϕ1

Γ ` A
Γ,¬A `

¬l

Γ,¬A ` P
wr

 ?

cl
ϕ1

Γ, P, P ` A
Γ,¬A,P, P `

¬l

Γ,¬A,P `
cl

 

ϕ1

Γ, P, P ` A
Γ, P ` A

cl

Γ,¬A,P `
¬l

cut

ϕ1

Γ ` P

ϕ2

Γ′, P ` A
Γ′,¬A,P `

¬l

Γ,Γ′,¬A `
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, P ` A
Γ,Γ′ ` A

cut

Γ,Γ′,¬A `
¬l

B.12 Permutation of ¬r down

→l

ϕ1

Γ ` P

ϕ2

Γ′, Q,A `
Γ′, Q ` ¬A

¬r

Γ,Γ′, P → Q ` ¬A
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, A,Q `
Γ,Γ′, P → Q,A `

→l

Γ,Γ′, P → Q ` ¬A
¬r

→r

N/A
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∧l
ϕ1

Γ, Q,A `
Γ, Q ` ¬A

¬r

Γ, P ∧Q ` ¬A
∧l

 

ϕ1

Γ, A,Q `
Γ, P ∧Q,A `

∧l

Γ, P ∧Q ` ¬A
¬r

ϕ1

Γ, P,A `
Γ, P ` ¬A

¬r

Γ, P ∧Q ` ¬A
∧l

 

ϕ1

Γ, A, P `
Γ, P ∧Q,A `

∧l

Γ, P ∧Q ` ¬A
¬r

∧r
N/A

∨l

ϕ1

Γ, P,A `
Γ, P ` ¬A

¬r

ϕ2

Γ′, Q,A `
Γ′, Q ` ¬A

¬r

Γ,Γ′, P ∨Q ` ¬A
∨l

 

ϕ1

Γ, A, P `

ϕ2

Γ′, A,Q `
Γ,Γ′, P ∨Q,A,A `

∨l

Γ,Γ′, P ∨Q,A `
cl

Γ,Γ′, P ∨Q ` ¬A
¬r

∨r
N/A

∀l
ϕ1

Γ, P [x/t], A `
Γ, P [x/t] ` ¬A

¬r

Γ, ∀x.Px ` ¬A
∀l  

ϕ1

Γ, A, P [x/t] `
Γ, ∀x.Px,A `

∀l

Γ, ∀x.Px ` ¬A
¬r

∀r
N/A
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∃l
ϕ1

Γ, P [x/α], A `
Γ, P [x/α] ` ¬A

¬r

Γ, ∃x.Px ` ¬A
∃l  

ϕ1

Γ, A, P [x/α] `
Γ, ∃x.Px,A `

∃l

Γ, ∃x.Px ` ¬A
¬r

∃r
N/A

¬l
N/A

¬r
N/A

wl
ϕ1

Γ, A `
Γ ` ¬A

¬r

Γ, P ` ¬A
wl

 

ϕ1

Γ, A `
Γ, P,A `

wl

Γ, P ` ¬A
¬r

wr

N/A

cl
ϕ1

Γ, P, P,A `
Γ, P, P ` ¬A

¬r

Γ, P ` ¬A
cl

 

ϕ1

Γ, P, P,A `
Γ, P,A `

cl

Γ, P ` ¬A
¬r

cut

ϕ1

Γ ` P

ϕ2

Γ′, P,A `
Γ′, P ` ¬A

¬r

Γ,Γ′ ` ¬A
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, A, P `
Γ,Γ′, A `

cut

Γ,Γ′ ` ¬A
¬r
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B.13 Permutation of wl down

→l

ϕ1

Γ ` P
Γ, A ` P

wl

ϕ2

Γ′, Q ` F
Γ,Γ′, P → Q,A ` F

→l
 

ϕ1

Γ ` P

ϕ2

Γ′, Q ` F
Γ,Γ′, P → Q ` F

→l

Γ,Γ′, P → Q,A ` F
wl

ϕ1

Γ ` P

ϕ2

Γ′, Q ` F
Γ′, A,Q ` F

wl

Γ,Γ′, P → Q,A ` F
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, Q ` F
Γ,Γ′, P → Q ` F

→l

Γ,Γ′, P → Q,A ` F
wl

→r

ϕ1

Γ, P ` Q
Γ, A, P ` Q

wl

Γ, A ` P → Q
→r

 

ϕ1

Γ, P ` Q
Γ ` P → Q

→r

Γ, A ` P → Q
wl

∧l
ϕ1

Γ, P ` F
Γ, P,A ` F

wl

Γ, P ∧Q,A ` F
∧l

 

ϕ1

Γ, P ` F
Γ, P ∧Q ` F

∧l

Γ, P ∧Q,A ` F
wl

ϕ1

Γ, Q ` F
Γ, Q,A ` F

wl

Γ, P ∧Q,A ` F
∧l

 

ϕ1

Γ, Q ` F
Γ, P ∧Q ` F

∧l

Γ, P ∧Q,A ` F
wl

∧r

ϕ1

Γ ` P

ϕ2

Γ′ ` Q
Γ′, A ` Q

wl

Γ,Γ′, A ` P ∧Q
∧r

 

ϕ1

Γ ` P

ϕ2

Γ′ ` Q
Γ,Γ′ ` P ∧Q

∧r

Γ,Γ′, A ` P ∧Q
wl
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ϕ1

Γ ` P
Γ, A ` P

wl

ϕ2

Γ′ ` Q
Γ,Γ′, A ` P ∧Q

∧r
 

ϕ1

Γ ` P

ϕ2

Γ′ ` Q
Γ,Γ′ ` P ∧Q

∧r

Γ,Γ′, A ` P ∧Q
wl

∨l
ϕ1

Γ, P ` F
Γ, A, P ` F

wl

ϕ2

Γ′, Q ` F
Γ,Γ′, A, P ∨Q ` F

∨l
 

ϕ1

Γ, P ` F

ϕ2

Γ′, Q ` F
Γ,Γ′, P ∨Q ` F

∨l

Γ,Γ′, P ∨Q,A ` F
wl

ϕ1

Γ, P ` F

ϕ2

Γ′, Q ` F
Γ′, A,Q ` F

wl

Γ,Γ′, A, P ∨Q ` F
∨l

 

ϕ1

Γ, P ` F

ϕ2

Γ′, Q ` F
Γ,Γ′, P ∨Q ` F

∨l

Γ,Γ′, P ∨Q,A ` F
wl

∨r
ϕ1

Γ ` P
Γ, A ` P

wl

Γ, A ` P ∨Q
∨r

 

ϕ1

Γ ` P
Γ ` P ∨Q

∨r

Γ, A ` P ∨Q
wl

ϕ1

Γ ` Q
Γ, A ` Q

wl

Γ, A ` P ∨Q
∨r

 

ϕ1

Γ ` Q
Γ ` P ∨Q

∨r

Γ, A ` P ∨Q
wl

∀l
ϕ1

Γ, P [x/t] ` F
Γ, A, P [x/t] ` F

wl

Γ,∀x.Px,A ` F
∀l  

ϕ1

Γ, P [x/t] ` F
Γ, ∀x.Px ` F

∀l

Γ, ∀x.Px,A ` F
wl
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∀r
ϕ1

Γ ` P [x/α]

Γ, A ` P [x/α]
wl

Γ, A ` ∀x.Px ∀r  

ϕ1

Γ ` P [x/α]

Γ ` ∀x.Px ∀r

Γ, A ` ∀x.Px
wl

∃l
ϕ1

Γ, P [x/α] ` F
Γ, A, P [x/α] ` F

wl

Γ, A, ∃x.Px ` F
∃l  

ϕ1

Γ, P [x/α] ` F
Γ,∃x.Px ` F

∃l

Γ, A, ∃x.Px ` F
wl

∃r
ϕ1

Γ ` P [x/t]

Γ, A ` P [x/t]
wl

Γ, A ` ∃x.Px ∃r  

ϕ1

Γ ` P [x/t]

Γ ` ∃x.Px ∃r

Γ, A ` ∃x.Px
wl

¬l
ϕ1

Γ ` P
Γ, A ` P

wl

Γ,¬P,A `
¬l

 

ϕ1

Γ ` P
Γ,¬P `

¬l

Γ,¬P,A `
wl

¬r
ϕ1

Γ, P `
Γ, A, P `

wl

Γ, A ` ¬P
¬r

 

ϕ1

Γ, P `
Γ ` ¬P

¬r

Γ, A ` ¬P
wl

wl
ϕ1

Γ ` F
Γ, A ` F

wl

Γ, P,A ` F
wl

 

ϕ1

Γ ` F
Γ, P ` F

wl

Γ, P,A ` F
wl
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wr
ϕ1

Γ `
Γ, A `

wl

Γ, A ` P
wr

 

ϕ1

Γ `
Γ ` P

wr

Γ, A ` P
wl

cl
ϕ1

Γ, P, P ` F
Γ, A, P, P ` F

wl

Γ, P,A ` F
cl →

ϕ1

Γ, P, P ` F
Γ, P ` F

cl

Γ, P,A ` F
wl

cut

ϕ1

Γ ` P
Γ, A ` P

wl

ϕ2

Γ′, P ` F
Γ,Γ′, A ` F

cut
 

ϕ1

Γ ` P

ϕ2

Γ′, P ` F
Γ,Γ′ ` F

cut

Γ,Γ′, A ` F
wl

ϕ1

Γ ` P

ϕ2

Γ′, P ` F
Γ′, A, P ` F

wl

Γ,Γ′, A ` F
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, P ` F
Γ,Γ′ ` F

cut

Γ,Γ′, A ` F
wl

B.14 Permutation of wr down

→l

ϕ1

Γ ` P

ϕ2

Γ′, Q `
Γ′, Q ` A

wr

Γ,Γ′, P → Q ` A
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, Q `
Γ,Γ′, P → Q `

→l

Γ,Γ′, P → Q ` A
wr

→r

N/A
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∧l
ϕ1

Γ, P `
Γ, P ` A

wr

Γ, P ∧Q ` A
∧l

 

ϕ1

Γ, P `
Γ, P ∧Q `

∧l

Γ, P ∧Q ` A
wr

ϕ1

Γ, Q `
Γ, Q ` A

wr

Γ, P ∧Q ` A
∧l

 

ϕ1

Γ, Q `
Γ, P ∧Q `

∧l

Γ, P ∧Q ` A
wr

∧r
N/A

∨l
ϕ1

Γ, P `
Γ, P ` A

wr

ϕ2

Γ′, Q `
Γ′, Q ` A

wr

Γ,Γ′, P ∨Q ` A
∨l

 

ϕ1

Γ, P `

ϕ2

Γ′, Q `
Γ,Γ′, P ∨Q `

∨l

Γ,Γ′, P ∨Q ` A
wr

∨r
N/A

∀l
ϕ1

Γ, P [x/t] `
Γ, P [x/t] ` A

wr

Γ, ∀x.Px ` A
∀l  

ϕ1

Γ, P [x/t] `
Γ,∀x.Px `

∀l

Γ, ∀x.Px ` A
wr

∀r
N/A
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∃l
ϕ1

Γ, P [x/α] `
Γ, P [x/α] ` A

wr

Γ, ∃x.Px ` A
∃l  

ϕ1

Γ, P [x/α] `
Γ, ∃x.Px `

∃l

Γ, ∃x.Px ` A
wr

∃r
N/A

¬l
N/A

¬r
N/A

wl
ϕ1

Γ `
Γ ` A

wr

Γ, P ` A
wl

 

ϕ1

Γ `
Γ, P `

wl

Γ, P ` A
wr

wr

N/A

cl
ϕ1

Γ, P, P `
Γ, P, P ` A

wr

Γ, P ` A
cl

 

ϕ1

Γ, P, P `
Γ, P `

cl

Γ, P ` A
wr

cut

ϕ1

Γ ` P

ϕ2

Γ′, P `
Γ′, P ` A

wr

Γ,Γ′ ` A
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, P `
Γ,Γ′ `

cut

Γ,Γ′ ` A
wr
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B.15 Permutation of cl down

→l

ϕ1

Γ, A,A ` P
Γ, A ` P

cl

ϕ2

Γ′, Q ` F
Γ,Γ′, P → Q,A ` F

→l
 

ϕ1

Γ, A,A ` P

ϕ2

Γ′, Q ` F
Γ,Γ′, P → Q,A,A ` F

→l

Γ,Γ′, P → Q,A ` F
cl

ϕ1

Γ ` P

ϕ2

Γ′, Q,A,A ` F
Γ′, A,Q ` F

cl

Γ,Γ′, P → Q,A ` F
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, A,A,Q ` F
Γ,Γ′, P → Q,A,A ` F

→l

Γ,Γ′, P → Q,A ` F
cl

→r

ϕ1

Γ, P,A,A ` Q
Γ, A, P ` Q

cl

Γ, A ` P → Q
→r

 

ϕ1

Γ, A,A, P ` Q
Γ, A,A ` P → Q

→r

Γ, A ` P → Q
cl

∧l
ϕ1

Γ, P,A,A ` F
Γ, P,A ` F

cl

Γ, P ∧Q,A ` F
∧l

 

ϕ1

Γ, A,A, P ` F
Γ, P ∧Q,A,A ` F

∧l

Γ, P ∧Q,A ` F
cl

ϕ1

Γ, Q,A,A ` F
Γ, Q,A ` F

cl

Γ, P ∧Q,A ` F
∧l

 

ϕ1

Γ, A,A,Q ` F
Γ, P ∧Q,A,A ` F

∧l

Γ, P ∧Q,A ` F
cl

∧r

ϕ1

Γ ` P

ϕ2

Γ′, A,A ` Q
Γ′, A ` Q

cl

Γ,Γ′, A ` P ∧Q
∧r

 

ϕ1

Γ ` P

ϕ2

Γ′, A,A ` Q
Γ,Γ′, A,A ` P ∧Q

∧r

Γ,Γ′, A ` P ∧Q
cl
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ϕ1

Γ, A,A ` P
Γ, A ` P

cl

ϕ2

Γ′ ` Q
Γ,Γ′, A ` P ∧Q

∧r
 

ϕ1

Γ, A,A ` P

ϕ2

Γ′ ` Q
Γ,Γ′, A,A ` P ∧Q

∧r

Γ,Γ′, A ` P ∧Q
cl

∨l
ϕ1

Γ, P,A,A ` F
Γ, A, P ` F

cl

ϕ2

Γ′, Q ` F
Γ,Γ′, A, P ∨Q ` F

∨l
 

ϕ1

Γ, A,A, P ` F

ϕ2

Γ′, Q ` F
Γ,Γ′, P ∨Q,A,A ` F

∨l

Γ,Γ′, P ∨Q,A ` F
cl

ϕ1

Γ, P ` F

ϕ2

Γ′, Q,A,A ` F
Γ′, A,Q ` F

cl

Γ,Γ′, A, P ∨Q ` F
∨l

 

ϕ1

Γ, P ` F

ϕ2

Γ′, A,A,Q ` F
Γ,Γ′, P ∨Q,A,A ` F

∨l

Γ,Γ′, P ∨Q,A ` F
cl

∨r
ϕ1

Γ, A,A ` P
Γ, A ` P

cl

Γ, A ` P ∨Q
∨r

 

ϕ1

Γ, A,A ` P
Γ, A,A ` P ∨Q

∨r

Γ, A ` P ∨Q
cl

ϕ1

Γ, A,A ` Q
Γ, A ` Q

cl

Γ, A ` P ∨Q
∨r

 

ϕ1

Γ, A,A ` Q
Γ, A,A ` P ∨Q

∨r

Γ, A ` P ∨Q
cl

∀l
ϕ1

Γ, P [x/t], A,A ` F
Γ, A, P [x/t] ` F

cl

Γ, ∀x.Px,A ` F
∀l  

ϕ1

Γ, A,A, P [x/t] ` F
Γ, ∀x.Px,A,A ` F

∀l

Γ,∀x.Px,A ` F
cl
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∀r
ϕ1

Γ, A,A ` P [x/α]

Γ, A ` P [x/α]
cl

Γ, A ` ∀x.Px ∀r  

ϕ1

Γ, A,A ` P [x/α]

Γ, A,A ` ∀x.Px ∀r

Γ, A ` ∀x.Px
cl

∃l
ϕ1

Γ, P [x/α], A,A ` F
Γ, A, P [x/α] ` F

cl

Γ, A, ∃x.Px ` F
∃l  

ϕ1

Γ, A,A, P [x/α] ` F
Γ, ∃x.Px,A,A ` F

∃l

Γ, A, ∃x.Px ` F
cl

∃r
ϕ1

Γ, A,A ` P [x/t]

Γ, A ` P [x/t]
cl

Γ, A ` ∃x.Px ∃r  

ϕ1

Γ, A,A ` P [x/t]

Γ, A,A ` ∃x.Px ∃r

Γ, A ` ∃x.Px
cl

¬l
ϕ1

Γ, A,A ` P
Γ, A ` P

cl

Γ,¬P,A `
¬l

 

ϕ1

Γ, A,A ` P
Γ,¬P,A,A `

¬l

Γ,¬P,A `
cl

¬r
ϕ1

Γ, P,A,A `
Γ, A, P `

cl

Γ, A ` ¬P
¬r

 

ϕ1

Γ, A,A, P `
Γ, A,A ` ¬P

¬r

Γ, A ` ¬P
cl

wl
ϕ1

Γ, A,A ` F
Γ, A ` F

cl

Γ, P,A ` F
wl

 

ϕ1

Γ, A,A ` F
Γ, P,A,A ` F

wl

Γ, P,A ` F
cl
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wr
ϕ1

Γ, A,A `
Γ, A `

cl

Γ, A ` P
wr

 

ϕ1

Γ, A,A `
Γ, A,A ` P

wr

Γ, A ` P
cl

cl
ϕ1

Γ, P, P,A,A ` F
Γ, A, P, P ` F

cl

Γ, P,A ` F
cl →

ϕ1

Γ, P, P,A,A ` F
Γ, P,A,A ` F

cl

Γ, P,A ` F
cl

cut
ϕ1

Γ, A,A ` P
Γ, A ` P

cl

ϕ2

Γ′, P ` F
Γ,Γ′, A ` F

cut
 

ϕ1

Γ, A,A ` P

ϕ2

Γ′, P ` F
Γ,Γ′, A,A ` F

cut

Γ,Γ′, A ` F
cl

ϕ1

Γ ` P

ϕ2

Γ′, P,A,A ` F
Γ′, A, P ` F

cl

Γ,Γ′, A ` F
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, A,A, P ` F
Γ,Γ′, A,A ` F

cut

Γ,Γ′, A ` F
cl

B.16 Permutation of cut down

→l

ϕ1

Γ ` A

ϕ2

Γ′, A ` P
Γ,Γ′ ` P

cut
ϕ3

Γ′′, Q ` F
Γ,Γ′,Γ′′, P → Q ` F

→l
 

ϕ1

Γ ` A

ϕ2

Γ′, A ` P

ϕ3

Γ′′, Q ` F
Γ′,Γ′′, P → Q,A ` F

→l

Γ,Γ′,Γ′′, P → Q ` F
cut

ϕ1

Γ ` P

ϕ2

Γ′, Q ` A

ϕ3

Γ′′, A ` F
Γ′,Γ′′, Q ` F

cut

Γ,Γ′,Γ′′, P → Q ` F
→l

 

ϕ1

Γ ` P

ϕ2

Γ′, Q ` A
Γ,Γ′, P → Q ` A

→l

ϕ3

Γ′′, A ` F
Γ,Γ′,Γ′′, P → Q ` F

cut

160



ϕ1

Γ ` P

ϕ2

Γ′ ` A

ϕ3

Γ′′, Q,A ` F
Γ′,Γ′′, Q ` F

cut

Γ,Γ′,Γ′′, P → Q ` F
→l

 

ϕ2

Γ′ ` A

ϕ1

Γ ` P

ϕ3

Γ′′, Q,A ` F
Γ,Γ′′, P → Q,A ` F

→l

Γ,Γ′,Γ′′, P → Q ` F
cut

→r

ϕ1

Γ, P ` A

ϕ2

Γ′, A ` Q
Γ,Γ′, P ` Q

cut

Γ,Γ′ ` P → Q
→r

 ?

ϕ1

Γ ` A

ϕ2

Γ′, P,A ` Q
Γ,Γ′, P ` Q

cut

Γ,Γ′ ` P → Q
→r

 

ϕ1

Γ ` A

ϕ2

Γ′, P,A ` Q
Γ′, A ` P → Q

→r

Γ,Γ′ ` P → Q
cut

∧l
ϕ1

Γ, P ` A

ϕ2

Γ′, A ` F
Γ,Γ′, P ` F

cut

Γ,Γ′, P ∧Q ` F
∧l

 

ϕ1

Γ, P ` A
Γ, P ∧Q ` F

∧l
ϕ2

Γ′, A ` F
Γ,Γ′, P ∧Q ` F

cut

ϕ1

Γ ` A

ϕ2

Γ′, P,A ` F
Γ,Γ′, P ` F

cut

Γ,Γ′, P ∧Q ` F
∧l

 

ϕ1

Γ ` A

ϕ2

Γ′, A, P ` F
Γ′, P ∧Q,A ` F

∧l

Γ,Γ′, P ∧Q ` F
cut

ϕ1

Γ, Q ` A

ϕ2

Γ′, A ` F
Γ,Γ′, Q ` F

cut

Γ,Γ′, P ∧Q ` F
∧l

 

ϕ1

Γ, Q ` A
Γ, P ∧Q ` F

∧l
ϕ2

Γ′, A ` F
Γ,Γ′, P ∧Q ` F

cut

ϕ1

Γ ` A

ϕ2

Γ′, Q,A ` F
Γ,Γ′, Q ` F

cut

Γ,Γ′, P ∧Q ` F
∧l

 

ϕ1

Γ ` A

ϕ2

Γ′, A,Q ` F
Γ′, P ∧Q,A ` F

∧l

Γ,Γ′, P ∧Q ` F
cut
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∧r
ϕ1

Γ ` A

ϕ2

Γ′, A ` P
Γ,Γ′ ` P

cut
ϕ3

Γ′′ ` Q
Γ,Γ′,Γ′′ ` P ∧Q

∧r
 

ϕ1

Γ ` A

ϕ2

Γ′, A ` P

ϕ3

Γ′′ ` Q
Γ′,Γ′′, A ` P ∧Q

∧r

Γ,Γ′,Γ′′ ` P ∧Q
cut

ϕ1

Γ ` P

ϕ2

Γ′ ` A

ϕ3

Γ′′, A ` Q
Γ′,Γ′′ ` Q

cut

Γ,Γ′,Γ′′ ` P ∧Q
∧r

 

ϕ2

Γ′ ` A

ϕ1

Γ ` P

ϕ3

Γ′′, A ` Q
Γ,Γ′′, A ` P ∧Q

∧r

Γ,Γ′,Γ′′ ` P ∧Q
cut

∨l
ϕ1

Γ, P ` A

ϕ2

Γ′, A ` F
Γ,Γ′, P ` F

cut
ϕ3

Γ′′, Q ` F
Γ,Γ′,Γ′′, P ∨Q ` F

∨l
 ?

ϕ1

Γ ` A

ϕ2

Γ′, P,A ` F
Γ,Γ′, P ` F

cut
ϕ3

Γ′′, Q ` F
Γ,Γ′,Γ′′, P ∨Q ` F

∨l
 

ϕ1

Γ ` A

ϕ2

Γ′, A, P ` F

ϕ3

Γ′′, Q ` F
Γ′,Γ′′, P ∨Q,A ` F

∨l

Γ,Γ′,Γ′′, P ∨Q ` F
cut

ϕ1

Γ, P ` F

ϕ2

Γ′, Q ` A

ϕ3

Γ′′, A ` F
Γ′,Γ′′, Q ` F

cut

Γ,Γ′,Γ′′, P ∨Q ` F
∨l

 ?

ϕ1

Γ, P ` F

ϕ2

Γ′ ` A

ϕ3

Γ′′, Q,A ` F
Γ′,Γ′′, Q ` F

cut

Γ,Γ′,Γ′′, P ∨Q ` F
∨l

 

ϕ2

Γ′ ` A

ϕ1

Γ, P ` F

ϕ3

Γ′′, A,Q ` F
Γ,Γ′′, P ∨Q,A ` F

∨l

Γ,Γ′,Γ′′, P ∨Q ` F
cut

∨r
ϕ1

Γ ` A

ϕ2

Γ′, A ` P
Γ,Γ′ ` P

cut

Γ,Γ′ ` P ∨Q
∨r

 

ϕ1

Γ ` A

ϕ2

Γ′, A ` P
Γ′, A ` P ∨Q

∨r

Γ,Γ′ ` P ∨Q
cut
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ϕ1

Γ ` A

ϕ2

Γ′, A ` Q
Γ,Γ′ ` Q

cut

Γ,Γ′ ` P ∨Q
∨r

 

ϕ1

Γ ` A

ϕ2

Γ′, A ` Q
Γ′, A ` P ∨Q

∨r

Γ,Γ′ ` P ∨Q
cut

∀l
ϕ1

Γ, P [x/t] ` A

ϕ2

Γ′, A ` F
Γ,Γ′, P [x/t] ` F

cut

Γ,Γ′, ∀x.Px ` F
∀l

 

ϕ1

Γ, P [x/t] ` A
Γ, ∀x.Px ` A

∀l
ϕ2

Γ′, A ` F
Γ,Γ′,∀x.Px ` F

cut

ϕ1

Γ ` A

ϕ2

Γ′, P [x/t], A ` F
Γ,Γ′, P [x/t] ` F

cut

Γ,Γ′, ∀x.Px ` F
∀l

 

ϕ1

Γ ` A

ϕ2

Γ′, A, P [x/t] ` F
Γ′, ∀x.Px,A ` F

∀l

Γ,Γ′, ∀x.Px ` F
cut

∀r
ϕ1

Γ ` A

ϕ2

Γ′, A ` P [x/α]

Γ,Γ′ ` P [x/α]
cut

Γ,Γ′ ` ∀x.Px
∀r

 

ϕ1

Γ ` A

ϕ2

Γ′, A ` P [x/α]

Γ′, A ` ∀x.Px
∀r

Γ,Γ′ ` ∀x.Px
cut

∃l
ϕ1

Γ, P [x/α] ` A

ϕ2

Γ′, A ` F
Γ,Γ′, P [x/α] ` F

cut

Γ,Γ′, ∃x.Px ` F
∃l

 

ϕ1

Γ, P [x/α] ` A
Γ, ∃x.Px ` A

∃l
ϕ2

Γ′, A ` F
Γ,Γ′, ∃x.Px ` F

cut

ϕ1

Γ ` A

ϕ2

Γ′, P [x/α], A ` F
Γ,Γ′, P [x/α] ` F

cut

Γ,Γ′, ∃x.Px ` F
∃l

 

ϕ1

Γ ` A

ϕ2

Γ′, A, P [x/α] ` F
Γ′,∃x.Px,A ` F

∃l

Γ,Γ′, ∃x.Px ` F
cut
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∃r
ϕ1

Γ ` A

ϕ2

Γ′, A ` P [x/t]

Γ,Γ′ ` P [x/t]
cut

Γ,Γ′ ` ∃x.Px
∃r

 

ϕ1

Γ ` A

ϕ2

Γ′, A ` P [x/t]

Γ′, A ` ∃x.Px
∃r

Γ,Γ′ ` ∃x.Px
cut

¬l
ϕ1

Γ ` A

ϕ2

Γ′, A ` P
Γ,Γ′ ` P

cut

Γ,Γ′,¬P `
¬l

 

ϕ1

Γ ` A

ϕ2

Γ′, A ` P
Γ′,¬P,A `

¬l

Γ,Γ′,¬P `
cut

¬r
ϕ1

Γ ` A

ϕ2

Γ′, P,A `
Γ,Γ′, P `

cut

Γ,Γ′ ` ¬P
¬r

 

ϕ1

Γ ` A

ϕ2

Γ′, P,A `
Γ′, A ` ¬P

¬r

Γ,Γ′ ` ¬P
cut

ϕ1

Γ, P ` A

ϕ2

Γ′, A `
Γ,Γ′, P `

cut

Γ,Γ′ ` ¬P
¬r

 ?

wl
ϕ1

Γ ` A

ϕ2

Γ′, A ` F
Γ,Γ′ ` F

cut

Γ,Γ′, P ` F
wl

 

ϕ1

Γ ` A

ϕ2

Γ′, A ` F
Γ′, P,A ` F

wl

Γ,Γ′, P ` F
cut

wr
ϕ1

Γ ` A

ϕ2

Γ′, A `
Γ,Γ′ `

cut

Γ,Γ′ ` P
wr

 

ϕ1

Γ ` A

ϕ2

Γ′, A `
Γ′, A ` P

wr

Γ,Γ′ ` P
cut
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cl
ϕ1

Γ, P ` A

ϕ2

Γ′, P,A ` F
Γ,Γ′, P, P ` F

cut

Γ,Γ′, P ` F
cl

 ?

ϕ1

Γ, P, P ` A

ϕ2

Γ′, A ` F
Γ,Γ′, P, P ` F

cut

Γ,Γ′, P ` F
cl

 

ϕ1

Γ, P, P ` A
Γ, P ` A

cl

ϕ2

Γ′, A ` F
Γ,Γ′, P ` F

cut

ϕ1

Γ ` A

ϕ2

Γ′, P, P,A ` F
Γ,Γ′, P, P ` F

cut

Γ,Γ′, P ` F
cl

 

ϕ1

Γ ` A

ϕ2

Γ′, P, P,A ` F
Γ′, P,A ` F

cl

Γ,Γ′, P ` F
cut

cut
ϕ1

Γ ` A

ϕ2

Γ′, A ` P
Γ,Γ′ ` P

cut
ϕ3

Γ′′, P ` F
Γ,Γ′,Γ′′ ` F

cut
 

ϕ1

Γ ` A

ϕ2

Γ′, A ` P

ϕ3

Γ′′, P ` F
Γ′,Γ′′, A ` F

cut

Γ,Γ′,Γ′′ ` F
cut

ϕ1

Γ ` P

ϕ2

Γ′, P ` A

ϕ3

Γ′′, A ` F
Γ′,Γ′′, P ` F

cut

Γ,Γ′,Γ′′ ` F
cut

 

ϕ1

Γ ` P

ϕ2

Γ′, P ` A
Γ,Γ′ ` A

cut
ϕ3

Γ′′, A ` F
Γ,Γ′,Γ′′ ` F

cut

ϕ1

Γ ` P

ϕ2

Γ′ ` A

ϕ3

Γ′′, P,A ` F
Γ′,Γ′′, P ` F

cut

Γ,Γ′,Γ′′ ` F
cut

 

ϕ2

Γ′ ` A

ϕ1

Γ ` P

ϕ3

Γ′′, P,A ` F
Γ,Γ′′, A ` F

cut

Γ,Γ′,Γ′′ ` F
cut
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