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Abstract

A new cut elimination method is obtained here by “proof mining”
(unwinding) from the following non-effective proof that begins with ex-
tracting an infinite branch B when the canonical search tree T for a given
formula E of first order logic is not finite. The branch B determines a
semivaluation so that B |= Ē and (*) every semivaluation can be ex-
tended to a total valuation. Since for every derivation d of E and every
model M, M |= E, this provides a contradiction showing that T is finite,
∃l(T < l). A primitive recursive function L(d) such that T < L(d) is
obtained using instead of (*) the statement: For every r, if the canonical
search tree T r+1 with cuts of complexity r + 1 is finite, then T r is finite.

In our proof the reduction of (r+1)-cuts does not introduce new r-cuts
but preserves only one of the branches.

1 Introduction

Continuing work done in [5] we obtain a new cut elimination method by “proof
mining” (unwinding) from a familiar non-effective proof consisting of four parts.

1. If the canonical search tree T for a given formula E of first order logic is
not finite, then there exists an infinite branch B of T .

2. The branch B determines a semivaluation (partial model for subformulas
of E) so that B |= Ē.

3. Every semivaluation can be extended to a total valuation (model).

4. For every derivation d of E and every model M, M |= E.

This is a contradiction showing that T is finite, ∃l(T < l). A primitive recursive
function L(d) such that T < L(d) is obtained in the present paper after replacing
the statement 3 by

(3’) For every r if the canonical search tree T r+1 with cuts of quantifier
complexity r + 1 is finite, then T r is finite.
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By quantifier complexity we mean the number of quantifiers in the cut for-
mula. Our proof of (3’) provides a reduction of (r+1)-cuts that (unlike familiar
Gentzen’s reduction) does not introduce new r-cuts but preserves only one of the
branches, depending however of the truth-values of subformulas in the “current”
node of the tree T r. This node is changed in the course of reduction.

To save notation we assume that the endformula of an original derivation d
is a Σ0

1 sentence of first order logic,

E = ∃xM(x), x := x1, . . . xp,

with a quantifier free M , but given derivation d as well as proof search trees
may contain formulas of an arbitrary complexity.

T r is a canonical proof search tree for S with cuts over formulas of quantifier
complexity ≤ r beginning with a quantifier. In particular

T := T 0 is a proof search tree with ∃ rules instantiated by terms in H (the
Herbrand universe for E) and cuts over all atomic formulas with terms
in H. We wish to prove:

If d is a derivation of E, then T < l for some l.
It is assumed that the eigenvariables for the ∀ inference (that can occur for

r > 0) in a proof search tree is uniquely determined by the formula introduced
by the rule. In this way the eigenvariables in T r for different r but the same
principal formula are the same.

The step 3 in the non-effective proof of cut-elimination consists in an ex-
tension of a semivaluation to all formulas of complexity r and hence to a total
valuation. This is proved by induction on the quantifier complexity r of the
semivaluation with a trivial base r = 0 and the induction step:

∃fSem(f, r) → ∃fSem(f, r + 1) (1.1)

where Sem(f, r) means that f is a semivaluation defined for all formulas of
complexity r.

As noticed in [4], given derivation d : E with cuts of quantifier complexity
R provides a bound l such that T R < l: this l is a level in T R where all rules
present in d had been already applied. In particular for R = 0 any derivation
with only atomic cuts provides a bound for T .

As G.Kreisel pointed out [1], semivaluations are closely related to infinite
branches of the proof search tree. By König’s Lemma,

∃fSem(f, r) ⇐⇒ T r is infinite,

therefore (1.1) can be converted into the implication

∃l(T r+1 < l) → ∃l(T r < l) (1.2)

of Σ0
1-formulas. A familiar proof of this implication consists of converting it

back to (1.1) and using arithmetical comprehension.
There are (at least) two ways of replacing this with a primitive recursive proof

of (1.2). One way is to note that a standard Gentzen-style cut reduction applied
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to all cuts of complexity r + 1 in T r+1 leads to a derivation d of complexity r
that provides a simple bound for T r.

This argument led to the algorithm for bounding T discussed in [5] : elimi-
nate all non-atomic cuts, then restrict T as above, completely bypassing (1.1).

Our present method relies on a non-effective proof of (1.2) which is closer
to extension of a semivaluation f of complexity r to a semivaluation, say g of
complexity r + 1. If T r+1, or any other derivation d : E of complexity r + 1
is finite, and g is given, assumption g(E) = ⊥ leads to a contradiction by
computing the truth values of all formulas and sequent S in T r+1 and proving
g(S) = >. The values of g for the formulas of complexity ≤ r with parameters
from T r are the same as the given values of f .

Instead of using comprehension to determine the values under g of remaining
formulas (of complexity r + 1), consider which of these values are needed at the
beginning under the “depth first” strategy: in the uppermost leftmost r +1-cut
try to compute the left hand side premise ∃xA(x) first:

∆, A(ti)
∆,∃xA(x)

...
Γ,∃xA(x)

...b
Γ, Ā(b)

Γ,∀xĀ(x)
∀

Γ, E (1.3)

The values f(A(ti)) are all defined, and it is possible to act as if

g(∃xA(x)) = max
i

f(A(ti))

for all A(ti) in a given derivation. This allows to prune the cut (1.3) retaining
only one of the premises depending on this value of g(∃xA(x)). At the end, all
r + 1-cuts are removed and (1.2) is established.

We present a non-effective proof of (1.2) modified in this way for the case
r = 0 in Section 3. The same proof works for arbitrary r and by conservative-
ness of Konig’s Lemma over primitive recursive arithmetic PRA its unwinding
provides a primitive recursive cut elimination algorithm (as pointed out by U.
Kohlenbach). Section 4 presents our unwinding leading to a new cut elimination
procedure for first order logic.

Discussions with G. Kreisel, S. Feferman and especially U. Kohlenbach helped
to clarify the goal of this work and the statements of results and proofs.

2 Preliminaries

2.1 Tree notation

Let’s recall some notation concerning finite sequences of natural numbers. We
use a,b, c as variables for binary finite sequences

a =< a0, . . . , an > where ai ∈ {0, 1}, lth(a) := n + 1, (a)i := ai.
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Concatenation ∗:
< a0, . . . , an > ∗ < b0, . . . , bm >:=< a0, . . . , an, b0, . . . , bm >.
<> is the empty sequence with lth(<>) = 0. a ⊆ b : ⇐⇒ ∃cb = a ∗ c;
a < b iff a lexicographically strictly precedes b, that is situated strictly to the

left in the tree of all finite sequences:
a ⊂ b or for some j < lth(a), (a)i = (b)i for all i < j, and (a)j < (b)j .
Consider a primitive recursive tree T of binary sequences with the root <>:

b ∈ T &a ⊆ b → a ∈ T ; a ∈ T → (∀i < lth(a))(a)i ≤ 1

Ta is the subtree of T with the root a: {b ∈ T : a ⊆ b}.
In fact we use labeled trees. T (a) = 0 means a /∈ T , while T (a) 6= 0 means

that a ∈ T and contains some additional information. A node a ∈ T is a leaf if
b ⊃ a implies b 6∈ T . In this case all branches of T through a are closed.

T < l := (∀a : lth(a) = l)(a /∈ T ); T > l := (∃a : lth(a) = l + 1)(a ∈ T )

and similar bounded formulas with replacement of <,> by ≤,≥.

2.2 Tait Calculus; Canonical proof trees

We consider first order formulas in positive normal form (negations only at
atomic formulas). Negation Ā of a formula A is defined in a standard way by
de-Morgan rules. Derivable objects are sequents, that is multisets of formulas.

Axioms: A, Ā,Γ
Inference Rules:

A,Γ B,Γ
A&B,Γ &

A,B, Γ
A ∨B,Γ ∨

M(t),∃xB(x),Γ
∃xB(x),Γ ∃

B(a),Γ
∀xB(x),Γ ∀

C,Γ C̄, Γ
Γ cut

The eigenvariable a in ∀ inference should be fresh. The term t in the rule ∃ is
called the term of that rule.

Definition 2.1 The Herbrand Universe H of a Σ0
1-formula E consists of all

terms generated from constants and free variables occurring in M by function
symbols occurring in M . If the initial supply is empty, add a new constant.

For a given formula E = ∃x1 . . . xpM list all p-tuples of terms in of the Herbrand
universe H in a sequence

t1, . . . , ti, . . . (2.1)

We assume also some Godel enumeration Gn(A) of all terms and formulas A.
The canonical proof search tree T for a sentence E = ∃xM(x) is constructed by
bottom-up application of the rules &,∨ (first) and ∃ and atomic cut when &,∨
are not applicable.
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T assigns sequents to nodes a of the tree of finite binary sequences. To
express a 6∈ T (when a is situated over an axiom or the second premise of a
one-premise inference rule) we write T (a) = 0.

T (<>) contains sequent E. If T (a) is already constructed and is not an
axiom (:=closed ‘ node or branch), then it is extended preserving all existing
formulas. Principal formulas of the propositional rules are preserved (for book-
keeping). If all branches of T are closed, then the whole tree is closed.

The following fairness conditions are assumed. There exists a primitive
recursive function L0 such that for each a ∈ T and every non-closed b ⊇ a,b ∈ T
with lth(b) ≥ lth(a) + L0(a)

1. If C&D ∈ T (a) then C ∈ T (b) or D ∈ T (b),

2. If C ∨D ∈ T (a) then C ∈ T (b) and D ∈ T (b),

3. B(ti) ∈ T (b) for every i ≤ lth(a),

4. For every atomic formula A over H with Gn(A) < lth(a) either A ∈ T (b)
or Ā ∈ T (b).

For r > 0 let Hr be the Herbrand universe for T r generated by the functions
(including constants) in E from the eigenvariables (chosen in a standard way as
above) for all ∀-formulas of quantifier complexity ≤ r.

We say that a formula A agrees with a node a ∈ T r if A contains free only
eigenvariables of the ∀ rules situated under a.

The canonical proof search tree T r of complexity r > 0 is defined similarly
to T , but now cuts are applied to atomic formulas and formulas of complexity
≤ r beginning with quantifier that agree with a given node.

The following fairness conditions are assumed. There exists a primitive
recursive function Lr such that for each a ∈ T r and every non-closed b ⊇ a,b ∈
T r with lth(b) ≥ lth(a) + Lr(a)

1. If C&D ∈ T (a) then C ∈ T (b) or D ∈ T (b),

2. If C ∨D ∈ T (a) then C ∈ T (b) and D ∈ T (b),

3. If ∃yC(y) ∈ T (a), then C(t) ∈ T (b) for every term t with Gn(t) ≤ lth(a),

4. For every every formula A over Hr with Gn(A) < lth(a) that agrees with
a and is atomic or begins with a quantifier, either A ∈ T (b) or Ā ∈ T (b).

3 Cuts of rank 1: modified non-effective proof

Let us modify the proof of (1.2) for r = 0 restated as follows:

Lemma 3.1 T is infinite ⇒ T 1 is infinite.
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Proof. Suppose T is infinite. Then every non-closed branch B of T (existing by
Koenig’s Lemma) is a countermodel for E: B |= Ē.

Write B |=+ A to express that A is propositionally implied by the values of
formulas present in the branch B: there are A1, . . . Ak ∈ T (b) for some b ∈ B
such that Ā1& . . .&Āk → A is a tautology. Note that for every quantifier free
formula A with parameters in H (the Herbrand universe of E).

B |=+ A or B |=+ Ā,

since all atomic formulas in A are decided by cuts in every branch of T .
Consider a new inference rule:

B |=+ A Ā,Γ
Γ B-cut

for a quantifier free A with all terms in the Herbrand universe H.
Define extended derivations as ones using B-cut and cuts of rank 1 in addition

to ordinary cut free rules.
Assume there exists an extended derivation d of E and prove B |= E using

induction on the number of cuts in d. This implies T is finite by contradiction
with B 6|= E.

Induction base. No cuts. Induction on d using the fact that B is defined for
all needed subformulas.

Induction step.

1. For some ∃ inference in (1.3) one has B |=+ A(ti). Replace (1.3) by the
rule

B |=+ A(ti)

...ti
Ā(ti),∆

∆ B-cut

where the right hand side premise is obtained by substitution of ti for b.
Now apply IH.

2. For some paricular cut in (1.3) and for all ∃ inferences as above B |= Ā(t).
Replace the cut (1.3) by its left branch, erasing all formulas ∃xA traceable
to this cut and replacing corresponding ∃ inference by a B-cut with the
premise B |= Ā(t). Now IH is applicable.

Let us assume the only free variables of the terms ti are the eigenvariables of the
∀ inferences situated below. Then if the case 1 does not obtain, the situation in
the case 2 always occurs for one of the cuts (1.3), namely for the uppermost cut
in the leftmost (with respect to r + 1-cuts) branch. Indeed, r + 1-eigenvariables
do nor occur in the conclusions of ∃ rules in that branch. This concludes the
proof. a
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4 Reduction of quantifier complexity

We present a combinatorial proof of (1.2) obtained by “unwinding” the proof
for complexity 1 in the previous subsection.

We use finite objects similar to B-derivations. For a node a ∈ T r consider a
rule

A ∈ T r(a) A,Γ
Γ a-cut

for a formula A agreeing with a and use a-derivations using this rule. For
comparison with B-cut recall that B |= Ā for A ∈ T (a), a ∈ B.

Assume also that every free variable of the term t in ∃ rule either occurs
free in the conclusion or is an eigenvariable of a rule occurring below. This
can be achieved by replacing redundant free variables by a constant 0. (Recall
however remarks by G. Kreisel [2] on essential use of such “redundant” variables
in unwinding of mathematical proofs).

4.1 A bound for T r

4.1.1 Eliminating r + 1-cuts

Till the end of the subsection 4.1.1

d : Γ, E

denotes an a-derivation of complexity r + 1, with Γ agreeing with a, complexity
of Γ ≤ r, a ∈ T r with eigenvariables for ∀-formulas of the complexity ≤ r chosen
in a standard way.

At the beginning d = T r, at the end all r + 1-cuts are replaced by a-rules
for a suitable a that changes in the process.

Definition 4.1 A formula A is decided by a if A ∈ T (a) (i.e. A is explicitly
false in a) or Ā ∈ T (a) (i.e. A is explicitly true in a).

Consider an r + 1-cut in d:

∆,∃xA(x) ∆,∀xĀ(x)
∆, E

cut (4.1)

Such a cut is leftmost, if there are no ∀-premises of r + 1-cuts below it, that is
it is in the left branch of every r + 1-cut situated below. Choose a leftmost cut
(4.1) such that there are no r + 1-cuts above it. List all side formulas of ∃ rules
traceable to the formula ∃xA(x).

A(t1), . . . , A(tm) (4.2)

Note that the terms ti do not contain eigenvariables of the ∀ rules of complexity
r + 1, so ti ∈ Hr.
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Lemma 4.2 Let a ∈ T r, d : Γ, E be a-derivation, and all formulas A(ti) in
(4.2) be decided by a.

Then the cut (4.1) can be replaced by a-cuts, leading to a new a-derivation
of Γ, E.

Proof. Consider possible cases.

1. At least one of the side formulas A(ti) is “true” in a: Ā(ti) ∈ T (a). Then
we can replace (4.1) by a-cuts. Delete the left branch, replace all formulas
traceable to ∀xĀ(x) by Ā(ti) and substitute the eigenvariable of rules
introducing ∀xĀ(x) by ti. Both (4.1) and all such ∀ rules become a-cuts:

Ā(ti) ∈ T r(a) Ā(ti),Σ
Σ (4.3)

2. All side formulas A(ti) are “false” in a: A(ti) ∈ T r(a). Then the formula
∃xA is redundant. Delete the right branch of the cut (4.1). From the left
branch delete all formulas traceable to ∃xA(x). Then ∃ rules introducing
this formula become a-cuts:

A(ti) ∈ T r(a) A(ti),Σ
Σ (4.4)

a
We say that the transformation in Lemma 4.2 reduces d to a new derivation.

We show that d can be (primitive recursively in all parameters) reduced to
derivations without (r + 1)-cuts by climbing up T r.

Lemma 4.3 Let a ∈ T r, d : Γ, E be a-derivation. Then there exists a level
l ≥ lth(a) such that every node b ⊃ a, b ∈ T r decides all formulas in (4.2).

Proof. Formulas A(ti) contain only eigenvariables of the rules of complexity ≤ r,
hence they contain only terms in Hr. Using the fairness function Lr find a level
l ≥ lth(a) such that all these formulas appear (possibly negated) by the level l.
a

For a ∈ T r let Lprop(a) be the first level ≥ lth(a) of T r saturated with
respect to propositional rules appled to all formulas in T r(a).

Lemma 4.4 Let a ∈ T r, d : Γ be an a-derivation, Γ ⊇ T r(a) and let d consist
of a-cuts and propositional rules. Then

T r
a < Lprop(a)

that is the restriction of T r
a to this level is a derivation.

Proof. Let A1, . . . , An be all a-cut formulas in d. Then

T r(a) ⊇ Γ, A1, . . . An (4.5)
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by the proviso in the a-cut. Now use induction on d. Induction base is ob-
vious, the case of a-cut in the induction step follows from (4.5). Consider a
propositional rule, say

A,Γ B,Γ
A&B,Γ

There is a level l ≤ Lprop(a) such that every non-closed node b ⊇ a, lth(b) = l
contains A or B and Lprop(b) ≤ Lprop(a). Now apply IH. a

For an arbitrary finite sequence A1, . . . , Am of formulas of complexity ≤ r
with parameters in Hr that agree with a let LE(a, A1, . . . , Am, d) be the first
level l ≥ lth(a) containing A1, . . . , Am up to negation and saturated with respect
to all rules appled to all formulas in T r(a), A1, . . . Am in d. The latter condition
means in particular that if Ai = ∃xB(x) is instantiated by a term t in d and
Ai ∈ T r(b) with b ⊇ a, lth(b) ≥ l, then B(t) ∈ T r(b).

Lemma 4.5 Let a ∈ T r, d : Γ be an a-derivation of complexity r, Γ ⊇ T r(a).
Then

T r
a < LE(a, A1, . . . , Am, d)

where A1, . . . , Am is the complete list of the principal and side formulas of quan-
tifier rules in d.

Proof. Like in the previous Lemma, with all quantifier rules treated using the
new bound. a

Lemma 4.6 There is a primitive recursive function L1 such that T r < L1(d)
for every d : E of complexity r + 1 with the standard choice of eigenvariables.

Proof. Combine the previous Lemmata. a
The original derivation d : E may fail to satisfy the standardness condition

for eigenvariables. This condition can be enforced by renaming eigenvariables
and deleting redundant formulas and branches. We use fairness properties of
T r instead.

Theorem 4.7 There is a primitive recursive function L∗ such that T r < L∗(d)
for every d : E of complexity r.

Proof. Rename eigenvariables in d into standard eigenvariables. This invalidates
some of the ∀ rules in d by violating the proviso for eigenvariables. However
Lemma 4.5 is still applicable to the resulting figure. a

Theorem 4.8 There is a primitive recursive function L such that T < L(d)
for every d : E.

Proof. Iterate the previous theorem. a
Let’s see what happens if d : E is not a derivation but an infinite figure

constructed by inference rules of predicate logic. In this case the proofs we gave
in Lemma 3 and Lemma 4.2 do not go through for several reasons. First, it is
possible that the given branch B or the leftmost branch (with respect to r + 1-
cuts) contains infinitely many r + 1-cuts so that every ∃-formula is instantiated

9



by a term containing r + 1-eigenvariable. Second, even if there is only finite
number of r + 1-cuts, the search through all instance A(ti) of ∃xA(x) can be
infinite. This agrees with the fact that finding the branch in T r+1 is not in
general recursive (in a given branch of T r).
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