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1 Introduction

In his fifth Locke Lecture (2006)1 Robert Brandom has presented a new type of
semantics for propositional classical and modal logic (‘incompatibility semantics’)
that is embedded in his quite general programme (‘inferential pragmatism’) ad-
dressing major challenges to analytic philosophy. Inferential pragmatism is an
important, comprehensive, and widely discussed contribution to contemporary
philosophy. This is not the place to comment on this programme in general.
Rather, we want to draw attention to a particular problem with the semantic
framework suggested by Brandom, arising from a misinterpretation of an allegedly
central technical result. This misunderstanding has strong repercussions on the
philosophical significance of incompatibility semantics.

The main features that Brandom ascribes to his incompatibility semantics can
be briefly summarized as follows:

(1) it is based on the notion of material incompatibility of (interpreted) sen-
tences, rather than on their truth;

(2) it is strongly intensional, treating conjunction and, in particular, negation
on a par with the modal operator ‘necessarily’;

(3) it is holistic and non-compositional in the sense that the meaning of a given
compound formula (sentence) F is not determined by the semantic inter-
pretants of the subformulas and connectives occurring in F ;

(4) it nevertheless enjoys recursive projectibility, i.e., incompatibilities between
logically complex formulas are determined by the incompatibilities between
formulas that are less complex;

(5) it refutes the claim that holistic semantics cannot account for the projectibil-
ity and systematicity of a language, and hence also not for its learnability.

∗This work is supported by Eurocores-ESF/FWF grant I143-G15 (LogICCC-LoMoReVI).
1The lectures are accessible at http://www.pitt.edu/˜rbrandom/ and published as Chapter 5

of (Brandom, 2008). I first learned about this exciting endeavor from a very stimulating invited
talk of Brandom at Logica 2008.
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As indicated, Brandom’s presentation of incompatibility semantics is not only
motivated from a broader philosophical perspective, but also comes fully equipped
with a corresponding formal machinery. It thus certainly deserves the attention
not only of philosophers, but also of mathematical logicians. Indeed, regarding
claims 3, 4, and 5, above, Brandom argues that

[...] holism within each level of constructional complexity is entirely
compatible with recursiveness between levels. [...] The system I am de-
scribing allows us to prove it. (In this context, proof is the word made
flesh.) The semantic values of all the logically compound sentences
are computable entirely from the values of less complex sentences.
(Brandom, 2008), p.135

The main purpose of this contribution is to point out an important gap in
Brandom’s argument that mainly concerns the intended meaning of negated sen-
tences as ‘minimal Aristotelean contraries’. If our analysis is correct, claim 4 and
consequently also claim 5 remains unsubstantiated.

The rest of the paper is organized as follows. We start with a short review
of Brandom’s axioms for incoherence and incompatibility (Section 2). This is
followed by a discussion of Brandom’s concepts of holism and of recursive pro-
jectibility in Section 3. Section 4 addresses what I perceive as the major problem
of incompatibility semantics. Throughout Sections 3 and 4 we provide direct cita-
tions of (Brandom, 2008) to enable also readers that are not familiar with Bran-
dom’s original presentation to judge the adequateness and fairness of our criticism.
We conclude in Section 6 with the suggestion to consider logical dialogue games as
a pragmatist, analytic, and inferentialist alternative to incompatibility semantics.

2 Incompatibility semantics in a nutshell

Incompatibility semantics is defined for a classical propositional language enriched
by a standard modal operator �2. A language LP is a set of formulas that contains
a (finite or infinite) set P of propositional variables and is closed under subfor-
mulas: ¬F ∈ LP implies F ∈ LP , F ∧G ∈ LP implies F,G ∈ LP , and �F ∈ LP

implies F ∈ LP . Whenever no particular set of variables P is referred to, we
will suppress the subscript. For sake of conciseness, let us call any subset of L
a theory. (We emphasize that no closure under logical consequence is implied:
‘theory’ is just our abbreviation for ‘element of the powerset of L’.) Brandom
presents his framework in axiomatic form. The basic semantic notion is ‘incoher-
ence’: theories are classified as either incoherent or else coherent. The set of all
incoherent theories is called incoherence frame Inc. If we add further formulas to
an incoherent theory it remains incoherent. In other words, Inc has to satisfy the
following monotonicity condition:

Axiom (Persistence): X ∈ Inc and X ⊆ Y implies Y ∈ Inc.
2We use the signs ¬, ∧, and �, instead of Brandom’s N , K, and L, respectively. Moreover

we stick to the usual infix notation for conjunction.
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Given Persistence, a frame induces an incompatibility function I mapping theories
into sets of theories by stipulating

Axiom (Partition): X ∪ Y ∈ Inc iff X ∈ I(Y ).

Note that, instead of starting with an incoherence frame, one could start by
specifying for any theory X the set of theories I(X) that are incompatible with X.
Obviously X is incoherent iff X is incompatible with itself (X ∈ I(X)). Thus the
‘Partition Axiom’ just amounts to an alternative presentation of incoherence3.
The function I supports a concise definition of corresponding notion of entailment:
a theory X (incompatibility) entails a finite set of formulas Y if everything that
is incompatible with all formulas in Y is also incompatible with X.

Definition (Entailment): X |=Inc Y iff
⋂

F∈Y

I({F}) ⊆ I(X).

This more general form of an entailment relation, where a finite set of formulas,
not just a single formula, appears on the right hand side, is just like in Gentzen’s
sequent calculus LK for classical logic; i.e. the right hand side is to be inter-
preted disjunctively, while the formulas on the left hand side are to be interpreted
conjunctively. As usual, we will write F1, . . . , Fn |=Inc G1, . . . , Gm instead of
{F1, . . . , Fn} |=Inc {G1, . . . , Gm}.

Brandom specifies the semantics of logical connectives by the following axioms:

Axiom (Negation): X ∪ {¬F} ∈ Inc iff X |=Inc F .

Axiom (Conjunction): X ∪ {F ∧G} ∈ Inc iff X ∪ {F,G} ∈ Inc.

Axiom (Necessity): X ∪ {�F} ∈ Inc iff X ∈ Inc or ∃Y 6∈ I(X) : Y 6|=Inc F .

Disjunction (∨) and implication (→) are defined from ¬ and ∧ as in classical logic.
Incompatibility semantics relates to traditional Tarski-style semantics as sum-

marized in the following theorem, where |=S5 is the standard entailment relation
(defined over Kripke models) for the modal logic S5.

Theorem 1. For all theories X and formulas F : X |=S5 F iff X |=Inc F for all
incompatibility frames Inc.

Incidentally, the modal component of the language will not really concern us
much here. The problem that we want to point out and analyze below arises
already for the classical propositional connectives.

3One might argue that the presented axioms are incomplete in a rather trivial sense: certainly
the empty set of formulas is to be regarded as coherent if one wants to avoid interpretations in
which every theory is incoherent and every formula is incompatible with itself. However Brandom
explicitly admits also the degenerate case where {} ∈ Inc.
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3 Holism and recursive projectibility

As already mentioned in the introduction, Brandom insists on the holism and non-
compositionality implied by the way he sets up his semantic framework. Indeed,
the axioms for negation and for necessity take a non-predicative form. They refer
to entailment and therefore to incompatibilities between theories that are not
mentioned on the left hand sides of the equivalences. At least prima facie, it
is not clear whether the axioms for ¬F and for �F are equivalent to conditions
that only involve F and the context X, since incompatibility entailment implicitly
refers to all theories over the given language and not just to those consisting of
formulas with lower logical complexity than F and the members of X. (Only the
axiom for conjunction amounts to a recursively checkable condition in the obvious
way.) Indeed, Brandom states:

Crucial to the compositionality of meaning is that the semantic values
of logically complex sentences be reducible to the semantic values of
their constituents. In the framework of incompatibility logic, however,
meaning is holistic, and so [...] reduction cannot proceed sentence by
sentence. (Brandom, 2008), p. 147

In light of the fact that incompatibility entailment (for the language without �) co-
incides with the classical entailment relation as specified by Gentzen’s well known
introduction rules of LK in a manner that only refers to the immediate subfor-
mulas of introduced formulas, this claim is somewhat problematic. After all, well
known work in proof theoretic semantics—see, e.g., (Kahle & Schroeder-Heister,
2006)—where the logical rules of an appropriate (cut-free) sequent calculus or,
equivalently, of a normalizing natural deduction system, are regarded as specifi-
cations of the meaning of logical connectives, can hardly be classified as holistic
semantics. Nevertheless, it may be granted that there is a sense in which the ax-
ioms presented in Section 2 can be read as a ‘holistic specification’ of the semantics
of the logical language L.

More importantly, the above quoted passage continues as follows:

What we want instead is to show how the frame for a language with
logically complex sentences can be reduced to the frame for a syntacti-
cally less complex fragment of the language. (Brandom, 2008), p. 147

Risking the charge of pettiness, in order to argue that my analysis below is on
target, I have to point out that in the only relevant interpretation of this central
claim, the first occurrence of ‘the frame’ in the quoted sentence must be read
as ‘any frame’, whereas the second occurrence of ‘the frame’ must be read as
‘some frame’. This should be uncontroversial: after all, employing incompatibility
semantics to interpret a concrete formal language L amounts to the specification
of a concrete frame for L. Certainly all frames for L, i.e., all structures where Inc
and I satisfy the above axioms, are to be taken as candidates for interpretation.

In any case, also the passage on p. 135 of (Brandom, 2008), cited in the in-
troduction of the present paper, makes clear: recursive projectibility can only be
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established by showing that the problem of computing the semantic value of a
logically compound formula F ∈ L in any given frame Inc for L can be reduced to
computing the semantic values of less complex formulas (not necessarily subformu-
las of F ) in frames that arise from Inc by restriction to the relevant sublanguages
of L. Brandom thinks that the key to showing this is the notion of inferentially
conservative extensions of frames, to be explored in the next section.

4 Problems with inferential conservativeness

Brandom defines a language L′ to be a proper extension of L if L ⊆ L′ and all
atomic formulas of L′ are already in L. Strictly speaking, Brandom’s formulation
of the axioms reviewed in Section 2 implies that all formulas over a set P of
atomic formulas (propositional variables) that can be recursively defined using the
connectives ¬, ∧, and � have to be present in the language over which the frame
is defined. (E.g., according to the axiom for conjunction, {F,G} ∈ Inc implies F ∧
G ∈ Inc and thus the underlying language L has to be closed under conjunction.)
Consequently, there were no relevant proper extensions of L, but L itself. However,
from his somewhat idiosyncratic definition of a language (reviewed Section 2)
and from the comments following the definition of ‘proper extension’ (Brandom,
2008), p. 147, it is clear that Brandom wants to refer to sets of formulas that are
closed under subformulas, but that are not necessarily closed under connecting
already present formulas by the logical connectives. The simplest way to save
Brandom’s intentions is to assume that the axioms for negation, conjunction, and
necessity are augmented by the conditions ‘if ¬F ∈ L’, ‘if F ∧ G ∈ L’, and ‘if
�F ∈ L’, respectively. This assumption allows us to follow Brandom in speaking
of languages and corresponding frames that need not be closed under applying
logical connectives. A frame Inc′ for a language L′, that properly extends L, is
called inferentially conservative with respect to a frame Inc for L if for all X, Y ⊆ L
we have X |=Inc Y iff X |=Inc′ Y .

Brandom realizes that there are problems with the desired uniqueness of in-
ferentially conservative extensions of frames in case of infinite theories. Therefore
he defines the notion of a ‘determined frame’ as follows:

Let L′ be a proper extension of L and Inc be a frame for L. The frame
for L′ determined by Inc is the smallest frame for L′ that is IC [infer-
entially conservative] with respect to Inc. (Brandom, 2008), p. 148

At first sight the use of the definite article, implying uniqueness, seems problem-
atic. However ‘smallest’ here does not mean ‘not contained in any other frame
with the relevant property’, but rather, as clarified by a preceding remark,

[. . . ] ‘smallest’ has the sense of, contained in every other frame for L′

that is IC with respect to Inc. (Brandom, 2008), p. 148

This allows Brandom to announce:
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We now show that the determined frame exists. (If it does exist, it is
immediate from the definition that it is unique.)
(Brandom, 2008), p. 148

It is indeed not difficult to establish the existence of frames that are inferentially
conservative over a given frame for a proper sublanguage. Uniqueness, as indi-
cated, is less straightforward. (Brandom credits his research assistant Alp Aker
for crucial technical contributions.)

Theorem 2. For every proper extension L′ of a language L and for every frame Inc
for L there exists a frame Inc′d for L′ that is determined by Inc.

The problem with Theorem 2 is not that it were wrong but that it does
not match the purpose for which it was motivated. Remember from Section 3
that Brandom claims that although incompatibility semantics is holistic and non-
compositional, it nevertheless enjoys recursive projectibility. To support this claim
formally the following assertion, that is a kind of inverse to Theorem 2, has to be
considered:

(Strong projectibility): For every proper extension L′ of a language L, every
frame Inc′ for L′ is determined by some frame Inc over L.

Arguably, it might suffice to establish the following slightly weaker version:

(Weak projectibility): For every frame Inc′ over L′P there is some frame Inc
over LP = P , such that Inc the frame for L′ is determined by Inc.

However, it is not difficult to show that both forms of projectibility fail. (A
concrete counter example will be specified below.) In contrast to Brandom’s
claims—e.g., in the cited passages on p. 135 and on p. 147 of (Brandom, 2008)—
the semantic values, i.e. the incompatibilities as specified by a given frame, of
logically compound formulas are not computable from the values of less complex
formulas, in general. In fact, already a simple counting argument should make
clear that there is no deterministic way at all in which a given frame for L′ can
be reduced to a frame over a proper sublanguage L: in general, if L′ is a proper
extension of L, there are strictly more different frames for L′ than for L. Thus
there is no surjective function from the set of frames for L to the set of frames
for L′. To illustrate the problem with Brandom’s suggestion of using inferential
conservativeness to establish recursive projectibility consider the following simple
example.

Let the language LP = P consist of just two atomic sentences (propositional
variables), say, P = {a, b}. If we exclude the possibility that the empty set is
incoherent and assume that neither a nor b is self-incompatible, just two possible
frames, i.e., two different sets of incoherent subsets of LP remain:

• Inc1 = {{a, b}}, meaning that a and b are incompatible,

• Inc2 = {}, meaning that a and b are not incompatible.
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By the definition of (incompatibility) entailment, we have a 6|=Inc1 b and b 6|=Inc1 a,
but a |=Inc2 b and b |=Inc2 a. Moreover, note that for all frames Inc over LP and
all F,G ∈ LP we have: F |=Inc G iff {F,G} 6∈ Inc. The fact that compatibility
(i.e. non-incompatibility) between formulas implies entailment already hints at
a problem. However, at this point, one might still be satisfied with the remark
that the strange coincidence of compatibility and entailment is due to the absence
of negation from the language. Let us therefore consider the proper extension
L′P = {a, b,¬a,¬b} of LP . It is easy to check that the following two frames Inc′1
and Inc′2 over L′P are inferentially conservative with respect to Inc1 and Inc2,
respectively:

• Inc′1 consists of those theories over L′P that contain {a, b}, or {¬a, a}, or
{¬b, b}. (Note that, because of Persistence, a frame cannot just consist
in the three exhibited two-element sets. We always have to close of with
respect to supersets to obtain a frame.)

• Inc′2 consists of those theories over L′P that contain {a,¬b}, or {¬a, b}, or
{¬a, a}, or {¬b, b}.

Since Inc′1 is inferentially conservative over Inc1, we still have a 6|=Inc′1
b and

b 6|=Inc′1
a. More generally, we obtain F 6|=Inc′1

G for all F,G ∈ L′P , where F 6= G. In
contrast, for Inc′2, we obtain a |=Inc′2

b and b |=Inc′2
a, as required for the inferential

conservativeness of Inc′2 with respect to Inc2. Moreover we have ¬a |=Inc′2
¬b as

well as ¬b |=Inc′2
¬a by the form of Inc′2 and the axioms. Note that in all frames

each formula is incompatible with its negation (assuming, of course, that it is in
the language). Moreover all frames that are inferentially conservative over Inc1

have to contain {a, b}, since {a, b} ∈ Inc is equivalent to {a, b} |=Inc {} for all
frames Inc. Therefore Inc′1 is the smallest (and in fact the only) frame for L′P
that is inferentially conservative with respect to Inc1. Thus it is determined by
Inc1, according to Brandom’s definition. The case for Inc′2 is similar: it is the
only frame for L′P that is inferentially conservative over Inc2. Consequently Inc′2
is determined by Inc2.

For our argument it is important to recognize that the above examples of
determined frames leave many possible frames for L′P as not determined by any
frame for LP . In particular, it is straightforward to check that in the only frame
Inc for LP where a |=Inc b and b 6|=Inc a the atomic formula a is self-incompatible,
which implies that a |=Inc {}. But it is not difficult to specify a frame Inc′ for L′P
where a |=Inc′ b and b 6|=Inc′ a as well as a 6|=Inc {}: let Inc′ consist of just
those theories that contain {a,¬b} or {a,¬a} or {b,¬b}. Inc′ is not inferentially
conservative over any frame for LP and thus cannot be recursively projected or
in any other systematic way reduced to any frame over LP . This provides the
concrete counter example to (weak and strong) projectibility, announced earlier.
As already indicated above, the central fact that not all frames over languages
with negation can be reduced to frames without negation can also be established
by checking that there are just 5 different frames for LP , while there exist more
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than twice as many different frames for L′P , each inducing a different entailment
relation.

5 Consequences of the non-reducibility of frames

As we have seen in the last section, recursive projectibility, i.e. the claim that
incompatibilities between logically complex formulas are determined by the in-
compatibilities between formulas that are less complex, cannot be maintained.
Independently of the contents of Theorem 2, the presented examples show that
there are frames over simple, finite languages with negation for which the incom-
patibilities are not determined by any frame over a language without negation.
In other words, even the knowledge of the semantic status of all formulas with-
out negation does not suffice to determine the semantic status of formulas with
negation. Coming back to Brandom’s five claims about incompatibility semantics,
formulated in the Introduction of this paper, this means that claim 4 (recursive
projectibility) cannot be maintained. Since claim 5, namely that the properties of
incompatibility semantics allow to refute the assertion that holistic semantics can-
not account for the learnability of a language, depends on the validity of claim 4,
it remains unsubstantiated as well.

We emphasize that the outlined problem arises already for non-modal lan-
guages. Moreover, the axiom for conjunction stipulates a direct reduction of the
status of a formula F ∧ G to that of F and G, respectively, and thus does not
contribute to the ‘holism’ or to the intensional character of incompatibility seman-
tics. Brandom insists in defining disjunction and (material) implication in terms
of negation and conjunction, just like in classical logic: F∨G =df. ¬(¬F∧¬G) and
F → G =df. ¬(F ∧¬G). Therefore, as far as non-modal languages are concerned,
the problem rests with the suggested semantics of negation. However, in light
of claim 2 (intentionality), claim 3 (holism and non-compositionality), but also
claim 5 (learnability), it might be deemed odd that Brandom does not consider
more direct, alternative routes to provide meaning for disjunction and, in particu-
lar, implication. Of course, if the only aim were to characterize ordinary classical
logic or the simplest modal logic, S5, in terms of incoherence/incompatibility,
then restricting attention to negation and conjunction is an obvious move. How-
ever, why should one insist on classical logic or on S5 in the wider context of
inferentialism and analytic pragmatism? Indeed, some of Brandom’s remarks, in
particular in his reply to an attempt to bring incompatibility semantics for modal
logic closer to Kripke semantics (Göcke, Pleitz, & Wulfen, 2008)4, indicate that
Brandom were happy to go beyond just S5. Concerning the non-modal fragment
of the language there are corresponding remarks on intuitionism in (Brandom,

4This is not the place to analyze the interesting ideas of Göcke, Pleitz, and von Wulfen.
However, let me emphasize that some of their suggestions are clearly mistaken for precisely the
same reason that invalidates some of Brandom’s claims: worlds in a Kripke structure cannot be
identified with sets of atomic sentences that are maximally coherent with respect to an incom-
patibility frame, since those sets, even jointly, do not determine the semantic status of negated
sentences and of modal sentences.
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2008). But remember that, while ¬F abbreviates F → ⊥, falsum (⊥), disjunc-
tion, conjunction, and implication are not inter-definable in intuitionistic logic.
In any case, I cannot imagine that Brandom really wants to claim that, e.g., the
stipulation that F ∨G abbreviates ¬(¬F ∧¬G) is all one must or should say about
the learnability of disjunctive sentences, granted that we know how to learn the
meanings of negation and conjunction. Consequently, the case for claim 5 would
remain incomplete, even if recursive projectibility could be established.

There seems to be an easy way out of the quagmire of frames for negation-free
languages: just insist that all literals, i.e. all atomic formulas and all their nega-
tions are always present in a language. However this suggestion does not fit well
with Brandom’s explicit intention to treat classical propositional connectives in an
intensional manner (cf. claim 2), on a par with the modal operator, and without
involving the notions of truth or falsity. Given the ‘recursive’ axiom for conjunc-
tion and the definition of disjunctions and implications as abbreviations of negated
conjunctions, we are left with just a rather trivial notational variant of ordinary
Tarskian truth functional semantics for classical logic. To see this, we identify
classical interpretations, i.e. assignments of true and false to propositional vari-
ables {p1, p2, . . .}, with maximally coherent subsets of literals {p1,¬p1, p2,¬2, . . .}.
More formally, any classical truth value assignment v : P 7→ {true, false} induces
the set Φ(v) = {p | v(p) = true} ∪ {¬p | v(p) = false}. Clearly Φ amounts to a
bijection between truth value assignments and maximally coherent sets of literals,
since every set that contains both p and ¬p for some propositional variable p ∈ P
is incoherent, and since every coherent set of literals that contains neither p nor
¬p can be extended to another coherent set by adding either p or ¬p. In other
words: there remains only a superficial difference between talk about (Tarskian)
interpretations satisfying a formula F and talk about maximally coherent subsets
of literals that incompatibility-entail F , respectively. This can hardly be accepted
as a way to save incompatibility semantics as intended.

6 Hints on dialogue game semantics

After this largely negative assessment of some central aspects of incompatibility
semantics, we want to end at a more positive note by briefly suggesting that
Brandom’s fascinating project of providing a formal semantics that fits well into
the wider frame of inferentialism and analytic pragmatism could well be based
on quite different notions. In fact, I can think of many different ways of building
formal semantics on pragmatist and inferentialist grounds. At least one concept
of this kind is ready to be picked up from the literature: dialogue game semantics.

Already in the late 1950s Paul Lorenzen suggested to specify the meaning
of logical connectives by reference to what we are obliged and entitled to do in
confrontational dialogues involving logically complex assertions (Lorenzen, 1960).
More precisely, Lorenzen suggested a strategic game that starts with the assertion
of a sentence (formula) F by a proponent P to be challenged by an opponent O and
proceeds by systematic attack and defense moves referring to relevant subformulas
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of F . The rules guiding this game take the following form:

Implication rule: If P asserts F → G then O is entitled to attack by asserting F
in reply, which in turn obliges P to assert G as well.

Conjunction rule: If P asserts F ∧ G then O is entitled to attack by obliging
P to assert F , likewise O is entitled to attack by obliging P to assert G.

Disjunction rule: If P asserts F ∨G then O is entitled to attack by obliging P
to either assert F or to assert G, where the choice is up to P.

The rules have been formulated just for P as defender as O as attacker, but the
implication rule entails that the roles may switch. Accordingly, analogous rules
also hold for inverted roles, i.e. for P challenging assertions of O. ¬F is defined
as F → ⊥, where ⊥ is a formula that can never be defended successfully; i.e.
whoever asserts ⊥ looses the dialogue game. Otherwise P wins the game if O
attacks a sentence that O herself has already asserted previously. If furthermore
certain structural rules (Lorenzen’s Rahmenregeln), regulating the succession of
attacks and defenses, are imposed, one can show that P has a winning strategy
for exactly those initial assertions that are intuitionistically valid, see (Felscher,
1985). Already Lorenzen and his collaborators considered different versions of
the game—for further references see (Felscher, 1986; Krabbe, 1985)—and it soon
became clear that not only intuitionistic logic, but rather a large variety of logics,
including classical logic and modal logics, can be characterized in a similar man-
ner. Moreover, systematic correspondences between logical dialogue games and
sequent as well as hypersequent based proof theory have been explored, e.g. in
(Krabbe, 1985; Fermüller, 2003; Fermüller & Metcalfe, 2009). Those correspon-
dences incidentally relate dialogue games also to the programme of proof theoretic
semantics, mentioned briefly in Section 3. In the 1970s a particularly interesting
variant of Lorenzen’s ideas has been developed by Robin Giles in an attempt to
provide ‘tangible meaning’ to logical connectives and atomic assertions as they
arise in reasoning within theories of physics (Giles, 1974, 1977). Giles combines a
Lorenzen style dialogue game with a betting scheme on the results of elementary
experiments associated with atomic sentences that may show dispersion; i.e. the
same experiment may yield a different result upon repetition—only a subjective
success probability is stipulated. Giles showed that a strategy, that guarantees
that no money is lost in average when arguing and betting accordingly, exists if
and only if the originally asserted sentence corresponds to a formula that is valid
in infinitely value  Lukasiewicz logic. This result has later been generalized to fur-
ther so-called t-norm based fuzzy logics and, again, connected to proof theoretical
investigations (Ciabattoni, Fermüller, & Metcalfe, 2005; Fermüller & Metcalfe,
2009; Fermüller, 2009).

Admittedly, these short and vastly incomplete hints at dialogical approaches
to logic cannot replace a serious investigation that seeks to clarify whether, why,
and how the largely implicit reference to normative, pragmatic, and inferentialist
concepts in dialogue games can be made explicit. I can only hope that my critical
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remarks on incompatibility semantics don’t deter any friend of Brandom’s general
approach to semantics and to reasoning—among whom I certainly count myself—
from taking up this suggestion.

Christian G. Fermüller
Theory and Logic Group, TU Wien
Favoritnstr. 9-11, A-1090 Vienna, Austria
chrisf@logic.at
http://www.logic.at/staff/chrisf

References

Brandom, R. (2008). Between saying and doing. towards an analytic pragmatism.
Oxford University Press.

Ciabattoni, A., Fermüller, C., & Metcalfe, G. (2005). Uniform Rules and Dialogue
Games for Fuzzy Logics. In Proceedings of LPAR 2004 (Vol. 3452, pp. 496–
510). Springer.

Felscher, W. (1985). Dialogues, strategies, and pntuitionistic provability. Annals
of Pure and Applied Logic, 28 , 217–254.

Felscher, W. (1986). Dialogues as foundation for intuitionistic logic. In D. Gabbay
& F. Günther (Eds.), Handbook of philosophical logic (Vol. III, pp. 341–372).
Reidel.

Fermüller, C. (2003). Parallel dialogue games and hypersequents for intermediate
logics. In M. C. Mayer & F. Pirri (Eds.), Proceedings of tableaux 2003 (Vol.
2796, pp. 48–64). Springer.

Fermüller, C. (2009). Revisiting Giles - connecting bets, dialogue games, and
fuzzy logics. In O. Majer, A. Pietarinen, & T. Tulenheimo (Eds.), Games:
Unifying logic, language, and philosophy (p. 209-227). Springer.

Fermüller, C., & Metcalfe, G. (2009). Giles’s game and the proof theory of
 lukasiewicz logic. Studia Logica(92), 27–61.

Giles, R. (1974). A non-classical logic for physics. Studia Logica, 4 (33), 399–417.
Giles, R. (1977). A non-classical logic for physics. In R. Wojcicki & G. Malinkowski

(Eds.), Selected papers on  lukasiewicz sentential calculi (pp. 13–51). Polish
Academy of Sciences.
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