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Abstract

We provide general –and automatedly verifiable– sufficient conditions that en-
sure standard completeness for logics formalized Hilbert-style. Our approach
subsumes many existing results and allows for the discovery of new fuzzy logics
which extend first-order Monoidal T-norm Logic with propositional axioms.

1. Introduction

This work is part of a project which aims to extract suitable proof systems
from Hilbert calculi, and use them to prove interesting properties for large classes
of logics in a uniform way. The property we consider in this paper is standard
completeness, that is completeness of a logic with respect to algebras based
on truth values in the real interval [0, 1]. Standard completeness has received
increased attention in the last few years to formalize the engineering tool of
Fuzzy Logic and as an interesting mathematical result in itself, e.g. [22, 16].
In a standard complete logic indeed connectives are interpreted by suitable
functions on [0, 1]. For example conjunction and implication can be interpreted
by a left-continuous t-norm1 and its residuum. Gödel and  Lukasiewicz logic
are prominent examples of logics that are based on particular t-norms, while
Hajek’s Basic Logic [22] and Monoidal T-norm Logic MTL [19] are based on
the whole class of continuous and left-continuous t-norms, respectively.

Establishing whether a logic is standard complete is often a challenging task
which deserves a paper on its own, e.g., [21, 12, 24, 25]. It is traditionally proved
by semantic techniques which are inherently logic-specific. Given a logic L de-
scribed as a Hilbert system, a semantic proof usually consists of the following
four steps (see, e.g., [21, 12, 29, 18, 23]):

1. The algebraic semantics of the logic is identified (L-algebras).

2. It is shown that if a formula is not valid in an L-algebra, then it is not
valid in a countable L-chain (linearly ordered L-algebra).
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Preprint submitted to Elsevier August 17, 2014



3. The crucial step is to show that any countable L-chain can be embedded
into a countable dense L-chain by adding countably many new elements to
the algebra and extending the operations appropriately. This establishes
rational completeness: a formula is derivable in L iff it is valid in all
countable dense L-chains.

4. Finally, a countable dense L-chain is embedded into a standard L-algebra,
that is an L-algebra with lattice reduct [0, 1], using a Dedekind Mac-Neille
style completion.

Rational completeness is the most difficult step to establish as it relies on
finding the right embedding, if any. A different approach to prove standard
completeness was proposed in [27] by using proof-theoretic techniques. The idea
in [27] is that the admissibility of a particular syntactic rule (called density) in
a logic L can lead to a proof of rational completeness for L. This is for instance
the case when L is any axiomatic extension of MTL. Introduced by Takeuti
and Titani in [32] the density rule formalized Hilbert-style has the following
form

(α → p) ∨ (p → β) ∨ γ

(α → β) ∨ γ

where p is a propositional variable not occurring in the formulas α, β, or γ.
Ignoring γ, this can be read contrapositively as saying (very roughly) “if α > β,
then α > p and p > β for some p”; hence the name “density” and the intuitive
connection with rational completeness.

This new approach was used in [27] to prove standard completeness for
various logics, including some for which semantic techniques did not appear to
work. Following this method, standard completeness for a logic L is proved by:

(a) first defining a suitable proof system HL for L extended with the density
rule

(b) checking that this rule is eliminable (or admissible) in HL, i.e. that density
does not enlarge the set of provable formulas

(c) standard completeness may then be obtained in many cases (but not in
general) by means of the Dedekind Mac-Neille completion.

Hilbert systems do not help performing step (b) above (density-elimination),
which needs instead cut-free Gentzen-style calculi.

In this paper we consider MTL∀ [29] – the first-order version of MTL
– as the basic system and investigate standard completeness of its axiomatic
extensions. MTL∀ is defined by adding to MTL suitable axioms and rules for
the quantifiers ∀ and ∃, semantically interpreted as infimum and supremum. A
convenient proof system for MTL∀, in which the density rule is syntactically
similar to the cut rule, uses hypersequents that are disjunctions of Gentzen
sequents [15, 2, 28].

Density-elimination was shown in [5, 27] for various calculi, including the
hypersequent calculus HMTL for MTL. These proofs are calculi-specific and
use heavy combinatorial arguments, in close analogy with Gentzen-style proofs
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of cut-elimination. A different method to eliminate applications of the den-
sity rule from derivations was introduced in [14]. In this approach, similar to
normalization for natural deduction systems, applications of the density rule
are removed by making suitable substitutions for the newly introduced propo-
sitional variables. It is shown in [14] that each hypersequent calculus obtained
by extending the first-order version of HMTL by certain sequent rules admits
density-elimination. As shown in [8] sequent rules can only capture Hilbert ax-
ioms of a certain syntactic form (i.e., within the class N2 in the classification
of [10]). Though more general than the proofs in [5, 27], the result in [14] does
not apply to the axioms in the next level of the classification (that is, the class
P3) in spite of the fact that the corresponding algebraic equations are preserved
by Dedekind Mac-Neille completion when applied to subdirectly irreducible al-
gebras [9]. Formalized by hypersequent rules, P3 axioms are actually used to
define many interesting extensions of MTL; among them weak nilpotent mini-
mum logic WNM [19, 10].

In this paper we provide general sufficient conditions for standard complete-
ness that apply to many extensions of MTL∀ with P3 axioms. Our conditions
– formulated on the shape of hypersequent rules – can be checked on the base
of the Hilbert axioms of the considered logics using the PROLOG-system Ax-
iomCalc [6], available at http://www.logic.at/people/lara/axiomcalc.html. This
automates the steps (a)-(c) above and applies to infinitely many logics.

The paper is organized as follows: given any axiomatic extensions of MTL∀
with axioms within the class P3

(Section 2) shows that the algorithm in [10] – extracting (hyper)sequent rules out of
P3 axioms – works for logics extending MTL∀;

(Section 3) contains a general sufficient condition2 on hypersequent rules that ensures
density-elimination;

(Section 4) closes the cycle showing how to use the results in [14, 9] to prove that the
corresponding logics are standard complete.

Our approach subsumes many existing results on standard completeness for spe-
cific logics and allows for the computerized discovery of new standard complete
logics (fuzzy logics, in the sense of [22]). For instance, it applies to first-order
WNM (already known to be standard complete) and to many new axiomatic
extensions of MTL∀ (see Section 5 for some examples).

2. Analytic calculi for extensions of MTL∀

In this section we show how to define analytic calculi for a large class of
axiomatic extensions of first-order Monoidal T-norm Logic MTL∀.
We start by recalling MTL∀. Propositional MTL was introduced in [19] and

2An earlier version of this paper introducing (a more complicated version of) this condition
for propositional logics appeared as [6].
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shown in [21] to be complete with respect to the class of left-continuous t-
norms and their residua3. A Hilbert system for MTL is obtained by adding the
prelinearity axiom

(lin) (α → β) ∨ (β → α)

to the Full Lambek calculus with exchange and weakening FLew (i.e., intuition-
istic logic without contraction [31]). Many interesting logics, including Gödel
and  Lukasiewicz logics, can be obtained by extending MTL with suitable ax-
ioms. For example, weak nilpotent minimum logic WNM arises by adding to
MTL the axiom (wnm) (see Table 2).

The logic MTL∀ is the first-order version of MTL. MTL∀ is defined over
a usual first-order language L, consisting of variables, constants, functions and
predicate symbols. Terms and atomic formulas are defined in the usual way.
Formulas are built from atomic formulas and the constants 0 and 1, by us-
ing the connectives → (implication), ∧ (additive conjunction), · (multiplicative
conjunction), ∨ (disjunction) and the quantifiers ∀, ∃. We use ¬α as an abbre-
viation for α → 0. Following standard practice, we do not explicitly distinguish
between formulas and metavariables for formulas and we use α, β, . . . for both.

A Hilbert calculus for MTL∀ extends that for MTL, with:

α
∀xα

(Gen)the generalization rule

the usual axioms for quantifiers in intuitionistic logic (below t is a term in the
language L and the notation βx means that x does not occur free in β):

(∀1) ∀xα(x) → α(t) (∃1) α(t) → ∃xα(x)
(∀2) ∀x(βx → α) → (βx → ∀xα) (∃2) ∀x(α → βx) → (∃xα → βx)

and the shifting law of the universal quantifier over disjunction

(∀3) ∀x(βx ∨ α) → (βx ∨ ∀xα)

The above calculus for MTL∀ does not help proving the redundancy of the
density rule (below p is a propositional variable not occurring in α, β, or γ):

(α → p) ∨ (p → β) ∨ γ

(α → β) ∨ γ

that is the core of our approach to prove standard completeness. We need
instead to work with analytic calculi, i.e. calculi in which derivations consist
only of subformulas of the formulas to be proved. An analytic calculus for the
logic MTL∀ has been introduced in [15], and is based on Avron’s hypersequents.

3A t-norm is a commutative, associative, increasing function ∗ : [0, 1]2 → [0, 1] with identity
element 1. ∗ is left continuous iff whenever {xn}, {yn} (n ∈ N) are increasing sequences in
[0, 1] s.t. their suprema are x and y, then sup{xn ∗ yn : n ∈ N} = x ∗ y. The residuum of ∗
is a function →∗: [0, 1]2 → [0, 1] where x →∗ y = max{z | x ∗ z ≤ y}. As shown in [19], it is
equivalent for a t-norm to be left-continuous and to admit a residuum.
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Definition 1. [3] A hypersequent is a finite multiset S1 | . . . |Sn where each
Si, i = 1 . . . n is a sequent, called a component of the hypersequent.

The symbol “ | ” is intended to denote disjunction at the meta-level.
Notation. Hypersequents will be denoted by G,H and sequents (possibly

built from metavariables) by Si, Ci. Within a sequent S := Γ ⇒ Π we will
denote by L(S) the multiset4 Γ in its left hand side, and by R(S) its right
hand side Π. To distinguish between rule applications and rule schemas, we
will denote finite (possibly empty) multisets of formulas with Γ,∆,Σ,Θ,Λ and
metavariables for multisets of formulas with Γ,∆,Σ,Θ,Λ. Metavariables Π,Ψ
will stand for stoups, i.e. either a formula or the empty set.

Henceforth we will only consider single conclusion calculi: for any component
S, R(S) is either a formula or the empty set. As in sequent calculus, a hy-
persequent calculus consists of initial axioms, cut, logical and structural rules.
Structural rules are divided into internal and external rules. Axioms, cut, log-
ical and internal structural rules are as in sequent calculus; the only difference
being the presence of a context G representing a (possibly empty) hypersequent.
External structural rules, which permit the interaction between various compo-
nents, increase the expressive power of the hypersequent calculus with respect
to sequent calculus.

A derivation d of a hypersequent G from G1, . . . , Gn is defined in the usual
way, i.e. as a tree whose nodes are hypersequents, edges correspond to rule
applications, G is the root, and leaves are G1, . . . , Gn or axioms of the calculus.
Henceforth we will denote such derivation in a hypersequent calculus HL as

d,G1, . . . , Gn ⊢HL G

Given a sequent calculus, its hypersequent version is obtained (i) by adding
to all its rules a context G, and (ii) by extending the calculus with the external
structural rules of weakening and contraction ((ec) and (ew) in Table 1). Some
care is needed for the quantifier rules (∀r) and (∃l), as discussed in Example 2.
The hypersequent calculus HMTL∀ for MTL∀ is shown in Table 1. Notice that
the eigenvariable condition for the rules (∀r) and (∃l) applies to the whole rule
conclusion, i.e. the variable a must not occur in (the instantiation of) G |Γ ⇒
∀xα(x) and G |Γ, ∃xα(x) ⇒ Π, respectively.

Defining an analytic calculus for an axiomatic extension of a logic is in gen-
eral a difficult task. A systematic way to extract (hyper)sequent rules from
suitable Hilbert axioms extending the full Lambek calculus with exchange FLe

was introduced in [10]. We recall below this result and lift it to first-order
logics extending MTL∀, thus constructing cut-free hypersequent calculi for a
large class of axiomatic extensions of MTL∀. A key concept for the method in
[10] is the substructural hierarchy, a syntactic classification of Hilbert axioms
in the language of FLe. This classification accounts for the intuitive difficulty

4The use of multisets avoids to consider the exchange rule explicitly.
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G |Γ ⇒ α G |α,∆ ⇒ Π

G |Γ,∆ ⇒ Π
(cut)

G |α ⇒ α
(init)

G | 0 ⇒
(0l)

G |Γ ⇒ α G |∆ ⇒ β

G |Γ,∆ ⇒ α · β
(· r)

G |α, β,Γ ⇒ Π

G |α · β,Γ ⇒ Π
(· l)

G |Γ ⇒ Π

G | 1,Γ ⇒ Π
(1l)

G |Γ ⇒ α G | β,∆ ⇒ Π

G |Γ, α → β,∆ ⇒ Π
(→ l)

G |α,Γ ⇒ β

G |Γ ⇒ α → β
(→ r)

G |Γ ⇒

G |Γ ⇒ 0
(0r)

G |Γ ⇒ α G |Γ ⇒ β

G |Γ ⇒ α ∧ β
(∧r)

G |αi,Γ ⇒ Π

G |α1 ∧ α2,Γ ⇒ Π
(∧il)i=1,2

G | ⇒ 1
(1r)

G |α,Γ ⇒ Π G | β,Γ ⇒ Π

G |α ∨ β,Γ ⇒ Π
(∨l)

G |Γ ⇒ αi

G |Γ ⇒ α1 ∨ α2

(∨ir)i=1,2
G |Γ ⇒ Π

G |Γ, α ⇒ Π
(wl)

G |Γ, α(t) ⇒ Π

G |Γ,∀xα(x) ⇒ Π
(∀l)

G |Γ ⇒ α(a)

G |Γ ⇒ ∀xα(x)
(∀r) (a eigenvariable)

G |Γ ⇒ α(t)

G |Γ ⇒ ∃xα(x)
(∃r)

G |Γ, α(a) ⇒ Π

G |Γ,∃xα(x) ⇒ Π
(∃l) (a eigenvariable)

G |Γ ⇒ Π |Γ ⇒ Π

G |Γ ⇒ Π
(ec)

G

G |Γ ⇒ Π
(ew)

G |Γ ⇒

G |Γ ⇒ Π
(wr)

G |Γ1,∆1 ⇒ Π1 G |Γ2,∆2 ⇒ Π2

G |Γ1,Γ2 ⇒ Π1 |∆1,∆2 ⇒ Π2

(com)

Table 1: Hypersequent calculus HMTL∀ for MTL∀

to deal with these axioms proof theoretically and at the same time for the cor-
responding algebraic equations to be preserved under suitable order-theoretic
completions over residuated lattices [9]. The substructural hierarchy consists
of classes (Nn,Pn), with n ≥ 0; an axiom belongs to a class N (resp. P) if
its most external connective has negative polarity, i.e. its right introduction
rule is invertible (resp. positive polarity and left invertible rules). In particular
the connectives → and ∧ of FLe are negative, while ∨ and · are positive. The
general grammar for determining the classes Nn,Pn has the following structure:

P0 ::= N0 ::= the set of atomic formulas
Pn+1 ::= Nn | Pn+1 · Pn+1 | Pn+1 ∨ Pn+1 | 1
Nn+1 ::= Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0

A graphical representation of the classification is depicted in Figure 1. The
arrows → there stand for inclusions ⊆ of the classes.

The hierarchy provides the basis for exploring the connection between axioms
and structural rules preserving cut-elimination when added to a calculus for FLe.
Indeed, [10] contains an algorithm that transforms:
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Figure 1: Substructural hierarchy (Nn,Pn) [10]

• Axioms within the class N2 into equivalent sequent structural rules

• Axioms within the class P3 into equivalent hypersequent structural rules.

By equivalence between axioms α1, . . . , αn and rules (r1), . . . , (rm) we mean
that

β1, . . . , βk ⊢FLe+{α1,...,αn} α iff ⇒ β1, . . . ,⇒ βk ⊢FL∗
e
+{(r1),...,(rm)}⇒ α,

where FL∗
e stands for either the sequent or the hypersequent calculus for FLe.

(See the Appendix A for an explicit formulation of the axioms within the
classes N2 and P3). The rules generated by the algorithm in [10] preserve cut-
elimination when added to the (hyper)sequent calculus for FLe; in general,
however, the subformula property (and hence analiticity) is ensured only in
presence of the weakening rules ((wl) and (wr) in Table 1), i.e. taking FLew

as the basic system. In this case all the rules generated by the algorithm are
completed.

Definition 2. Let (R) be a hypersequent structural rule:

G |S1 . . . G |Sn

G |C1 | . . . |Cq

(R) is said to be completed if it satisfies the following conditions:

• Strong subformula property : Each metavariable occurring in L(Si) (re-
spectively in R(Si)), with i = {1, . . . , n}, occurs also in L(Cj) (respectively
in R(Cj) ), for some j in {1, . . . , q}.

• Linear conclusion : Each metavariable occurs at most once in G|C1| . . . |Cq.

• Coupling : Let R(Cj) = Π with Π non empty, j in {1, . . . , q}. There is a
metavariable Σ in L(Cj) such that, whenever Π belongs to R(Si), for a
given i in {1, . . . , n}, Σ belongs to L(Si) as well.

Example 1. The prelinearity axiom (lin) is in the class P2. The algorithm
in [10] constructs the equivalent completed rule (com) (see Table 1); this rule
was first introduced in [2] to define a hypersequent calculus for Gödel logic G
(i.e. MTL with contraction (c), see Table 2).
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The algorithm in [10] constructs an analytic calculus for any propositional ex-
tension of MTL with additional axioms within the class P3. We show below
that this also holds taking MTL∀ as base calculus. This is not a trivial observa-
tion as the correspondence axioms-structural rules does not hold anymore once
we consider first-order logics. Indeed, in the presence of quantifiers, the rules
generated by the algorithm might be not anymore equivalent to the starting
axioms, as shown by the following example.

Example 2. Let FLew∀ be the first-order version of the logic FLew. Consider
now FLew∀ extended with the axiom (lin). The algorithm in [10] extract, out
of this axiom, the (com) rule (cf. Example 1). As shown below, (com) is not
anymore equivalent to (lin) when considering FLew∀ as base calculus. Indeed,
first notice that the quantifier rules of the hypersequent version of the calculus
for FLew∀ have to be as in Table 1, that is the eigenvariable condition in (∀r)
and (∃l) has to apply to the whole rule conclusion, as otherwise using (com) we
can easily derive ∃xα(x) ⇒ ∀xα(x) for each formula α.
However, the addition of (com) to the hypersequent version of FLew∀ allows
the following derivation of axiom (∀3), which is not a theorem of FLew∀+(lin):

α(a) ⇒ α(a)

α(a) ⇒ α(a) β ⇒ β
(com)

β ⇒ α(a) |α(a) ⇒ β β ⇒ β
2×(∨l)+(ew)′s

α(a) ∨ β ⇒ α(a) |α(a) ∨ β ⇒ β
2×(∀l)

∀x(α(x) ∨ β) ⇒ α(a) | ∀x(α(x) ∨ β) ⇒ β
(∀r)

∀x(α(x) ∨ β) ⇒ ∀xα(x) | ∀x(α(x) ∨ β) ⇒ β
2×(∨r)

∀x(α(x) ∨ β) ⇒ ∀xα(x) ∨ β | ∀x(α(x) ∨ β) ⇒ ∀xα(x) ∨ β
(ec)

∀x(α(x) ∨ β) ⇒ ∀xα(x) ∨ β
(→r)

⇒ ∀x(α(x) ∨ β) → (∀xα(x) ∨ β)

Consider the usual formula-interpretation I of a hypersequent H = Γ1 ⇒
Π1 | . . . |Γn ⇒ Πn (see, e.g., [2, 28, 15, 10]), namely

• I(Γ1 ⇒ Π1 | . . . |Γn ⇒ Πn) = I(Γ1 ⇒ Π1) ∨ · · · ∨ I(Γn ⇒ Πn)

where the interpretation of a sequent Γ ⇒ Π is:

• I(Γ ⇒ Π) = ⊙Γ → β, if Π is a formula β

• I(Γ ⇒) = ⊙Γ → 0, otherwise

⊙Γ stands for the multiplicative conjunction · of all the formulas in Γ, and is 1
when Γ is empty.
Let L∀ be any logic extending MTL∀ with axioms in P3. Henceforth we de-
note with HL∀ the hypersequent calculus obtained by adding to HMTL∀ the
corresponding completed rules generated by the algorithm in [10].
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Theorem 1 (Soundness and completeness). Let L∀ be any logic extending
MTL∀ with axioms in P3. A hypersequent H is derivable in HL∀ if and only
if I(H) is derivable in L∀.

Proof. (⇒) Proceeds by induction on the length of the derivation of H in HL∀.
For logical and structural rules we refer to [10]. Among the quantifier rules, the
only non-trivial case is (∀, r). This case is handled by using axiom (∀3), which
belongs to L∀ (as it extends MTL∀). Indeed, assume that I(G) ∨ I(Γ ⇒ α(a))
is derivable in L∀. By the generalization rule (Gen), ∀x(I(G) ∨ I(Γ ⇒ α(x)))
is also derivable in L∀. Recall that, for the eigenvariable condition, a must not
occur in I(G). Then we may assume that x does not occur there either. Hence,
using axiom (∀3) we obtain that I(G)∨∀xI(Γ ⇒ α(x)) is derivable. The result
follows using the fact that ∀xI(Γ ⇒ α(x)) → I(Γ ⇒ ∀xα(x)) is derivable in L∀
(from axiom (∀2)) .
(⇐) It is enough to show that all axioms and rules in L∀ are derivable in
HL∀. This is immediate for (∀1), (∀2), (∃1), (∃2) and (Gen). Modus ponens
is simulated by (cut). For the propositional axioms of L∀ extending MTL∀ we
refer to [10]. A derivation of (∀3) proceeds as in Example 2 (recall that HL∀ is
an extension of HMTL∀).

Let d(t) and G(t) denote the results of substituting the term t for all free
occurrences of a in the derivation d(a) and hypersequent G(a), respectively.

Lemma 1. If d(a), G1(a), . . . , Gn(a) ⊢HL∀ G(a) and t is a term whose variables
are all free and do not occur in d(a), then d(t), G1(t), . . . , Gn(t) ⊢HL∀ G(t).

The substitution lemma above and the properties of completed rules are the
keys for proving the following theorem.

Theorem 2. Let L∀ be any logic extending MTL∀ with axioms in P3. The
hypersequent calculus HL∀ admits cut-elimination.

Proof. Cut-admissibility for (the hypersequent version of) FLe extended by
any set of completed rule was proved in [10]. The algebraic proof there was re-
formulated syntactically in [11] (cut-elimination) and extended to calculi having
more than one formula on the right hand side of their sequents. It is easy to see
that the addition of the quantifier rules in Table 1 does not harm this proof, as
we can use the substitution lemma to rename variables, when needed.

Recalling that axioms within class P3 are transformed into equivalent com-
pleted rules by the algorithm in [10], we get the following.

Corollary 1. Any logic extending MTL∀ with axioms within P3 has an ana-
lytic hypersequent calculus.

The above corollary can be shown in a constructive way and indeed the analytic
calculi for these extensions of MTL∀ can be automatedly constructed by using
the PROLOG-system AxiomCalc [6].
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Class Axiom Rule (cf. Table 3) MTL∀+
N2 α → α · α (c) Gödel logic G∀

αn−1 → αn (cn) CnMTL∀ [12]
P2 α ∨ ¬α (em) Classical Logic
P3 ¬α ∨ ¬¬α (lq) SMTL∀ [18]

α ∨ (α → β) ∨ (α ∧ β → γ) (bc2) 3-valued G∀ (with (c))
¬(α · β) ∨ (α ∧ β → α · β) (wnm) WNM∀[19]

¬(α · β)n ∨ ((α ∧ β)n−1 → (α · β)n) (wnmn) investigated in [6]
¬(αn) ∨ (αn−1 → αn) (wnm1n) (new!)∨

i<k(¬αi → ¬αi+1) (invk) investigated in [30]

Table 2: Some axioms and their corresponding logics

In what follows, the notation αk (k ≥ 0), stands for α · · · · · α, k times, for a
formula α, while Xk stands for X, . . . , X , k times, where X is either a multiset
Γ or a metavariable Γ.

Example 3. The axiom (wnm3) := ¬(α · β)3 ∨ ((α ∧ β)2 → (α · β)3) is in the
class P3. The equivalent rule generated by the algorithm in [10] is

{G |Γ
3
1,Γ

3
i ,∆ ⇒ Π}1≤i≤8

{G |Γ
3
i ,Γ

3
i+1,∆ ⇒ Π}3≤i≤7

{G |Γ
3
2,Γ

3
i ,∆ ⇒ Π}1≤i≤8

{G |Γ
3
i ,Γ

3
i+3,∆ ⇒ Π}3≤i≤5 G |Γ

3
3,Γ

3
8,∆ ⇒ Π

G |Γ3,Γ4,Γ5,Γ6,Γ7,Γ8 ⇒ |Γ1,Γ2,∆ ⇒ Π
(wnm3)

See Tables 2 and 3 for more examples.

2.1. The density rule

The density rule was introduced by Takeuti and Titani in their axiomatiza-
tion of first-order Gödel logic [32], called there Intuitionistic Fuzzy Logic. In
hypersequent calculi density is a structural rule of the form:

G |Σ, p ⇒ Π |Λ ⇒ p

G |Σ,Λ ⇒ Π
(D)

where p is a propositional variable not occurring in (any instance of) Σ,Λ,Π
or G (p is an eigenvariable). Notice that adding the density rule to a hyperse-
quent calculus can have a dramatic effect. For instance, the addition of (D) to
the calculus HMTL∀ + (em) (cf. Table 3) permits to derive the empty sequent.
A similar situation arises for HMTL∀ + (bc2) (cf. Table 3), where the empty
sequent can be derived as follows:

q ⇒ q

p ⇒ p q ⇒ q
(com)

q ⇒ p | p ⇒ q p ⇒ p
(bc2)

⇒ p | p ⇒ q | p ⇒ q | q ⇒
(ec)

⇒ p | p ⇒ q | q ⇒
(D)

⇒ p | p ⇒
(D)

⇒

10



G |Γ,Γ,∆ ⇒ Π

G |Γ,∆ ⇒ Π
(c)

G |Γ,∆ ⇒ Π

G |Γ ⇒ |∆ ⇒ Π
(em)

G |Γ1,Γ2 ⇒

G |Γ1 ⇒ |Γ2 ⇒
(lq)

G |Γ1, n. . .,Γ1,∆ ⇒ Π . . . G |Γn−1, n. . .,Γn−1,∆ ⇒ Π

G |Γ1, . . . ,Γn−1,∆ ⇒ Π
(cn)

G |Γ1,∆2 ⇒ Π2 G |Γ1,∆3 ⇒ Π3 G |Γ2,∆3 ⇒ Π3

G |∆3 ⇒ Π3 |Γ2,∆2 ⇒ Π2 |Γ1,∆1 ⇒ Π1

(bc2)

G |Γ1,Γ1,∆1 ⇒ Π1 G |Γ2,Γ1,∆1 ⇒ Π1 G |Γ2,Γ3,∆1 ⇒ Π1 G |Γ1,Γ3,∆1 ⇒ Π1

G |Γ2,Γ3 ⇒ |Γ1,∆1 ⇒ Π1

(wnm)

{G |Γ
n

i ,Γ
n

j ,∆ ⇒ Π}1≤i≤(n−1),1≤j≤(3n−1) {G |Γ
n

i ,Γ
n

i+(2p−1),∆ ⇒ Π}1≤p≤n,n≤i≤(3n−2p)

G |Γn, · · · ,Γ3n−1 ⇒ |Γ1, · · · ,Γn−1,∆ ⇒ Π
(wnmn)

{G |Γ2i,Γ2i+1 ⇒ }1≤i≤(k−2)

G |Γ1,Γ2 ⇒ | . . . |Γ2k−3,Γ2k−2 ⇒
(invk)

Table 3: Some completed rules

There is nothing surprising since, as shown in [27], the addition and subsequent
elimination of (D) from any extension of HMTL leads to rational completeness
for the formalized logic, and the two calculi above formalize logics that are not
rational complete: classical and 3-valued Gödel logic (see Table 2).

As shown in the next section, for many extensions of HMTL∀, adding (D)
has no effect on which hypersequents are derivable: applications of (D) can be
eliminated from derivations.

3. Convergent rules and Density Elimination

We identify a (large) class of hypersequent rules – called convergent – that
allow for density elimination.

Notation: Let S := X,Y ⇒ p be a sequent. Henceforth we indicate by
S[Λ/X ]l[Σ⇒Ψ/p]r (where X is either a metavariable for multisets of formulas or
a propositional variable) the sequent Λ, Y,Σ ⇒ Ψ, obtained by replacing each
occurrence of X (resp. p) on the left (right) with a Λ on the left (a Σ on the
left and a Ψ on the right).

Let V be a set of metavariables and σ : V → V . We will indicate with
S[{σ(Γ)/Γ}Γ∈V ]l the sequent obtained by substituting in the left hand side of S

each occurrence of a metavariable Γ in V with a metavariable σ(Γ) .

Definition 3. A p-axiom is a hypersequent of the form G|Θ, pk ⇒ p, for any
G,Θ, and k > 0.

Notice that any p-axiom is derivable from the axiom p ⇒ p using weakenings.

11



Our proof of density elimination uses and refines the method in [14] of density
elimination by substitutions, which is first presented below in an informal way.
Let d be a cut-free subderivation ending in the following uppermost application
of density

··· d
′

G′ |Σ, p ⇒ Π |Λ ⇒ p
(D)

G′ |Σ,Λ ⇒ Π

(D) is removed by substituting the occurrences of p in d in an “asymmetric”
way, according to whether p occurs in the left or in the right hand side of a
sequent. More precisely, each component S of any hypersequent in d is replaced
by S[Λ/p]l[Σ⇒Π/p]r. This way, the application of (D) above is simply replaced
by an application of (ec).

A problem

Note however that the labeled tree that results by applying the “asymmetric”
substitution to d (we denote it by d∗) is in general not a correct derivation
anymore. This is due to the possible presence in d of p-axioms G|Θ, pk ⇒ p
that become in d∗ hypersequents G|Θ,Λk,Σ ⇒ Π and are no longer derivable.

To solve the problem and obtain a correct density-free derivation we need
to remove all applications of the old p-axioms. This is done by suitably restruc-
turing the tree d∗. Looking at the original (cut-free) derivation d bottom-up
it is clear that p-axioms can originate only from applications of external struc-
tural rules that “mix” the content of various components from the conclusion.
We describe below how to restructure d∗ in presence of critical applications of
(com) (see Table 1) and of a class of rules which we call convergent (Definition
4 below).

Communication rule ([14]): Density-elimination was proved in [14] for cal-
culi containing only (com) as external structural rule “mixing” the content of
components. The only problematic case to handle was when in d one of the
premises of (com) led to a p-axiom as, e.g., in the following case

···
G |Γ1,Γ2 ⇒ Ψ

···p ⇒ p
(com)

G |Γ1 ⇒ p |Γ2, p ⇒ Ψ

The restructuring of d∗ was handled there by removing this application of (com)
and replacing it with a (sub)derivation starting from the premise G |Γ1,Γ2 ⇒ Ψ
and containing suitable applications of (cut).

Convergent rules: We show below that many external structural rules (called
convergent), though mixing components, allow for a suitable restructuring of d∗.
Indeed convergent rules have the property that, whenever a premise S is a p-
axiom, the remaining premises can be used to derive its substituted version
S[Λ/p]l[Σ⇒Π/p]r. We illustrate the idea behind convergent rules and the way
we restructure the derivation d∗ in Theorem 3 first with an example.

12



Example 4. Consider the rule (wnm) of Table 3

G |Γ1,Γ1,∆1 ⇒ Π1 G |Γ2,Γ1,∆1 ⇒ Π1 G |Γ2,Γ3,∆1 ⇒ Π1 G |Γ1,Γ3,∆1 ⇒ Π1

G |Γ2,Γ3 ⇒ |Γ1,∆1 ⇒ Π1

Notice that the metavariables in the premise Γ1,Γ1,∆1 ⇒ Π1 are all included in
one component of the conclusion, i.e. Γ1,∆1 ⇒ Π1. Hence this premise is a p-
axiom in the original derivation d only if the conclusion component Γ1,∆1 ⇒ Π1

is already a p-axiom. Therefore we can assume that each application of (wnm)
in d always contains at least one premise that is not a p-axiom. This premise
will play a crucial role in the transformation of d∗ into a correct derivation. As
a particular simple case, assume that d contains the following application of
(wnm):

··· d1
Γ1,Γ1 ⇒ p

p ⇒ p
(wl)

p,Γ1 ⇒ p

p ⇒ p
(wl)

p, p ⇒ p

p ⇒ p
(wl)

p,Γ1 ⇒ p
(wnm)

p, p ⇒ |Γ1 ⇒ p

We want to derive p, p ⇒ |Γ1 ⇒ p [Λ/p]l[Σ⇒Π/p]r, i.e. Λ,Λ ⇒ |Γ1,Σ ⇒ Π.
The idea is to use the non p-axiom premise Γ1,Γ1 ⇒ p to derive the substi-
tuted version of the other premises, i.e. p,Γ1 ⇒ p [Λ/p]l[Σ⇒Π/p]r and p, p ⇒
p [Λ/p]l[Σ⇒Π/p]r. This way the incorrect (sub)derivation in d∗

··· d
∗
1

Γ1,Γ1,Σ ⇒ Π

··· ??
Λ,Σ ⇒ Π

(wl)
Λ,Γ1,Σ ⇒ Π

··· ??
Λ,Σ ⇒ Π

(wl)
Λ,Λ,Σ ⇒ Π

··· ??
Λ,Σ ⇒ Π

(wl)
Λ,Γ1,Σ ⇒ Π

(wnm)
Λ,Λ ⇒ |Γ1,Σ ⇒ Π

(d∗1 is obtained by applying the asymmetric substitution [Λ/p]l[Σ⇒Π/p]r to
all the sequents in d1) is replaced by

··· d
∗
1

Γ1,Γ1,Σ ⇒ Π

··· d
∗
1

Γ1,Γ1,Σ ⇒ Π
·····
(∗)

Λ,Γ1,Σ ⇒ Π

··· d
∗
1

Γ1,Γ1,Σ ⇒ Π
·····
(∗∗)

Λ,Λ,Σ ⇒ Π

··· d
∗
1

Γ1,Γ1,Σ ⇒ Π
·····
(∗)

Λ,Γ1,Σ ⇒ Π
(wnm)

Λ,Λ ⇒ |Γ1,Σ ⇒ Π

where (∗) and (∗∗) contain suitable applications of (cut) using Lemma 2(ii)
below.

Note that, in the general case, the premise Γ1,Γ1,∆1 ⇒ Π1 of (wnm) might
not suffice to derive the substituted version of all the p-axiom premises. How-
ever, the special relation among the premises (see Definition 4 and Example 5
below) assures that we can always find other premises of (wnm) which are not
p-axioms and that can do the work.

We are now ready to introduce the notion of convergent rules.
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Definition 4. Let (r) be a completed hypersequent structural rule:

G |S1 . . . G |Sn

G |C1 | . . . |Cq

(r)

and V be the set of different metavariables appearing in L(S1) ∪ · · · ∪ L(Sn).

• A premise G|Si of (r) is said to be a pivot-premise if there is a component
Cj of the conclusion such that R(Si) = R(Cj) and the (set of) metavari-
ables in L(Si) are all contained in L(Cj).

• The rule (r) is said to be convergent if, for any premise G|Si of (r), either
R(Si) = ∅ or there is a map σ : V → V such that:

(i) G|Si[{
σ(Γ)/Γ}Γ∈V ]l is a premise of (r) which is a pivot.

(ii) For any W ⊂ V , the hypersequent G|Si[{σ(Γ)/Γ}Γ∈W ]l is a premise
of (r).

Notice that both conditions (i) and (ii) are trivially satisfied if G|Si is a
pivot premise itself, by letting σ be the identity function.

Example 5. We show that the rule (wnm) (see Example 4)

G |Γ1,Γ1,∆1 ⇒ Π1 G |Γ2,Γ1,∆1 ⇒ Π1 G |Γ1,Γ3,∆1 ⇒ Π1 G |Γ2,Γ3,∆1 ⇒ Π1

G |Γ2,Γ3 ⇒ |Γ1,∆1 ⇒ Π1

is convergent. Let V = {Γ1,Γ2,Γ3,∆1} be the set of all metavariables appearing
on the left hand side of its premises. For each premise of (wnm), we verify that
conditions (i) and (ii) of Definition 4 are satisfied.

• G|Γ1,Γ1,∆1 ⇒ Π1 is a pivot premise. Conditions (i) and (ii) are satisfied,
letting σ be the identity function.

• G|Γ2,Γ1,∆1 ⇒ Π1. Take the map σ that acts as the identity on V
except for σ(Γ2) = Γ1. Condition (i) is satisfied, as G|Γ2,Γ1,∆1 ⇒

Π1[{σ(Γ)/Γ}Γ∈V ]l is the pivot premise G|Γ1,Γ1,∆1 ⇒ Π1. Condition (ii)

is satisfied as well, as for any W ⊂ V , the hypersequent G|Γ2,Γ1,∆1 ⇒

Π1[{σ(Γ)/Γ}Γ∈W ]l would be either G|Γ2,Γ1,∆1 ⇒ Π1 itself or G|Γ1,Γ1,∆1 ⇒

Π1.

• G|Γ3,Γ1,∆1 ⇒ Π1. Similar to the previous case, taking σ to be the
identity function, except for σ(Γ3) = Γ1.

• G|Γ2,Γ3,∆1 ⇒ Π1. Take σ to be the identity, except for σ(Γ2) = Γ1 and

σ(Γ3) = Γ1. Condition (i) is satisfied, as G|Γ2,Γ3,∆1 ⇒ Π1[{σ(Γ)/Γ}Γ∈V ]l

is the pivot premise G|Γ1,Γ1,∆1 ⇒ Π1. For condition (ii), let W =

V \{Γ3} or W = V \{Γ2}. We obtain that G|Γ2,Γ3,∆1 ⇒ Π1[{σ(Γ)/Γ}Γ∈W ]l

corresponds to the premises G |Γ3,Γ1,∆1 ⇒ Π1 and G |Γ2,Γ1,∆1 ⇒ Π1,
respectively. For other choices of W ⊂ V , the verification of the condition
is straightforward.
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Example 6. All internal structural rules are convergent and so are the rules
(wnm), (lq),(invk) and (wnmn) in Table 3.

Completed rules that are not convergent are (em) and (bc2).

Remark 1. The program AxiomCalc [6] verifies whether a rule is convergent.
Notice that the program actually works on the basis of the definition of conver-
gent rules given in [6]. Though syntactically different, this definition turns out
to be equivalent to the one presented here (Definition 4).

The technical lemma below, which allows us to suitably “move” multisets of
formulas between components, is the key for our proof of density elimination.
In what follows, the length |d| of a derivation d is, as usual, the (maximal number
of inference rules) + 1, occurring on any branch.

Lemma 2. Let HL∀ be any calculus extending HMTL∀ with convergent rules.

(i) Any derivation d of a hypersequent H can be transformed into a derivation
of H [α/p]l[⇒α/p]r, for any formula α and propositional variable p.

(ii) Let d′ and d1 be respectively derivations of G′|Σ, p ⇒ Π|Λ ⇒ p (p /∈
G′,Σ,Π,Λ) and G|Θ,∆ ⇒ Ψ. Then there exists a derivation of G|G′|Θ,Λ ⇒
Ψ|Σ,∆ ⇒ Π.

Proof.

(i) Replace p in d everywhere with α. The claim is proved by induction on
the length of the resulting derivation, as convergent rules are completed
(and hence substitutive, cf. the definition and the analogous lemma in
[14]), possibly using Lemma 1 to rename variables.

(ii) By (i) and d′ we have a derivation d2 of G′|Σ,⊙∆ ⇒ Π|Λ ⇒ ⊙∆ where
⊙∆ stands for the multiplicative conjunction · of the formulas in ∆ (note
that p /∈ G′,Σ,Π,Λ). The desired derivation follows by applying (cut)
between G|G′|Θ,Λ ⇒ Ψ|∆ ⇒ ⊙∆ and the end hypersequent of

·
·
·
d2

G
′|Σ,⊙∆ ⇒ Π|Λ ⇒ ⊙∆

(ew)
G|G′|Σ,⊙∆ ⇒ Π|Λ ⇒ ⊙∆

·
·
·
d1

G|Θ,∆ ⇒ Ψ
(·l) + (ew)

G|G′|Σ,⊙∆ ⇒ Π|Θ,⊙∆ ⇒ Ψ
(cut)

G|G′|Θ,Λ ⇒ Ψ|Σ,⊙∆ ⇒ Π

We are now ready to present the main theorem of this section, namely density
elimination. Henceforth, we denote by S∗

i the sequent Si[
Λ/p]l[Σ⇒Π/p]r, and by

G∗,H∗, the hypersequents G,H , where the same substitution is applied to each
one of their components. A (D)-free derivation is a derivation not containing
the (D) rule.

Theorem 3 (Density Elimination). Any calculus HL∀ extending HMTL∀
with convergent rules admits density elimination.
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Proof. It is enough to consider topmost applications of (D). Take the deriva-
tion d in HL∀ +(D), ending in an application of (D)

··· d
′

G
′ |Σ, p ⇒ Π |Λ ⇒ p

(D)

G
′ |Σ,Λ ⇒ Π

where d′ is a (D)-free derivation.

Claim: For each hypersequent H in d′ that is not a p-axiom, one can find a
(D)-free derivation of G′|H∗.

The result on density elimination follows from this claim. Just let H be G′|Λ ⇒
p|Σ, p ⇒ Π. We get that G′ |G′ |Λ,Σ ⇒ Π |Λ,Σ ⇒ Π is derivable (note that
(G′)∗ = G′ by the eigenvariable condition on p). The desired (D)-free proof of
G′|Λ,Σ ⇒ Π follows by multiple applications of (ec).

The proof of the claim proceeds by induction on the length of the cut-free
subderivation dH of H in HL∀. We distinguish cases according to the last rule
(r) applied in dH . All cases but those involving convergent rules are handled as
in the analogous proof in [14]. To make the proof self-contained we discuss here
also these cases. The cases |dH | = 1, or when (r) is (ec) or (ew) are easy. When
(r) is a logical, a quantifier or an internal structural rule, if its conclusion is not
a p-axiom then so is(are) its premise(s). Hence the claim follows, by using the
induction hypothesis and a subsequent application of the rule (r), using Lemma
1 to rename variables, when needed.

For (com), we show how to handle the case mentioned in the introduction
of the section, i.e. when d′ contains

··· d1
G |Γ1,Γ2 ⇒ Ψ

···
G | p ⇒ p

(com)

G |Γ1, p ⇒ Ψ |Γ2 ⇒ p

By the inductive hypothesis we get a derivation d∗1 ⊢ G′ |G∗ |Γ1,Γ2 ⇒ Ψ. The
desired (D)-free derivation of

G′ |G∗ |Γ1,Λ ⇒ Ψ |Γ2,Σ ⇒ Π

follows by Lemma 2 (ii) (applied to d∗1 and d′ ⊢ G′ |Σ, p ⇒ Π |Λ ⇒ p). See the
proof in [14] for all possible cases involving (com).

Convergent rules: Assume that (r) is a convergent rule of the form

G |S1 . . . G |Sn

G |C1 | . . . |Cq

(r)

and that its conclusion is not a p-axiom. We show how to find a (D)-free
derivation of

G′|G∗|C∗
1 | . . . |C

∗
q
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Take a premise G|Si of (r). If G|Si is not a p-axiom, the inductive hypothesis
gives us a derivation of G′|G∗|S∗

i . Note that this is always the case when R(Si) =
∅, and when G|Si is a pivot, as in the latter case the metavariables instantiated
to obtain Si are all included in one component of the conclusion (see Definition
4). Thus, if G|Si was a p-axiom, the conclusion would be a p-axiom as well,
contradicting the assumption. Assume now that G|Si is a p-axiom (and it is
not a pivot). We show below that we can always obtain a (D)-free derivation of

G′ |G∗ |S∗
i |C

∗
s

for some s ∈ {1, . . . , q}. Let G|Si be an instantiation of a premise of the kind
G|Γ1, . . . ,Γm ⇒ Π1. Being G|Si a p-axiom, Π1 is instantiated with p and at
least one of the instantiations of Γ1, . . . ,Γm contains some p’s. W.l.o.g., let
Γ1, . . .Γr, with r ≤ m be the metavariables in L(Si) whose instantiations con-
tain at least one p. Being (r) a convergent rule, by Definition 4(i) there exists
a map σ acting on the set V of metavariables in L(S1) ∪ . . . ∪ L(Sm), such

that G|Si[{σ(Γ)/Γ}Γ∈V ]l is a pivot premise for (r), that we call G|Spiv. As-

sume that G|Spiv is an instantiation of a premise ∆1, . . . ,∆m ⇒ Π1 and that
σ(Γi) = ∆i for any i ∈ {1, . . . ,m}. Notice that, being G |Spiv a pivot, none of
the instances of the metavariables ∆1, . . .∆m contains a p, as otherwise G |Spiv

would be a p-axiom. Consider now the restriction of σ to the set of metavariables

W = {Γ1, . . . ,Γr} ⊂ V . Definition 4(ii) ensures that G |Si[{
σ(Γi)/Γi

}Γi∈W ]l is
a premise of (r), say G |Sk. Notice that, in case r = m (i.e. all metavariables
Γ1, . . .Γm in G |Si were instantiated with at least one p), G |Sk would simply
coincide with the pivot premise G|Spiv. In the most general case, G |Sk is an
instantiation of a premise of the kind G |∆1, . . . ,∆r,Γr+1, . . . ,Γm ⇒ Π1. From
our assumptions, the instances ∆i of ∆i, for i ∈ {1, . . . , r} and the instances Γj

of Γj , for j ∈ {r + 1, . . .m} do not contain any p, while Π1 is instantiated with
p. Hence G |Sk is not a p-axiom and by the i.h. we can get a (D)-free deriva-
tion of G′ |G∗ |S∗

k = G′ |G∗ |∆1, . . . ,∆r,Γr+1, . . .Γm,Σ ⇒ Π. By r iterative
applications of Lemma 2(ii), starting from G′ |G∗ |S∗

k and the derivation d′ of
G′ |Σ, p ⇒ Π |Λ ⇒ p, we eventually obtain a derivation of

(∗) G′ |G∗ |Λr,Γr+1, . . .Γm,Σ ⇒ Π |∆1,Σ ⇒ Π | . . . |∆r,Σ ⇒ Π

Notice that all the metavariables ∆1, . . .∆r belong to the pivot premise G|Spiv.
Hence, by Definition 4 these metavariables also belong to one component of the
conclusion, say Cs. Thus, by repeated applications of (wl) to all sequents in (∗)
of the form ∆i,Σ ⇒ Π, followed by (ec), we obtain

(∗∗) G′ |G∗ |Λr,Γr+1, . . .Γm,Σ ⇒ Π |C∗
s

The desired hypersequent G′ |G∗ |S∗
i |C

∗
s is obtained by final applications of

(wl) to the component Λr,Γr+1, . . .Γm,Σ ⇒ Π in (∗∗). Notice that Si contains
at least r times p, as we assumed that the instantiations of the metavariables
Γ1, . . .Γr contained at least one p. Hence S∗

i can be obtained by (wl) from
Λr,Γr+1, . . . ,Γm,Σ ⇒ Π, as S∗

i should contain at least r times Λ.
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By summarizing, when the last rule (r) in dH is convergent, for each premise
G |Si we have:

• If G |Si is not a p-axiom, G′ |G∗ |S∗
i is (D)-free derivable.

• If G |Si is a p-axiom, then G′ |G∗ |S∗
i |C

∗
s is (D)-free derivable.

The required derivation of G′ |G∗ |C∗
1 | . . . |C

∗
q follows by (ew), (r) and possibly

subsequent applications of (ec). This completes the proof of the main claim.

4. From Density Elimination to Standard Completeness

Let us take stock of what we have achieved so far. Let L∀ be a logic extending
MTL∀ with axioms within the class P3 in the substructural hierarchy of [10]
(see Section 2 and the Appendix):

• We introduced a hypersequent calculus HL∀ for L∀, by extending HMTL∀
with structural rules equivalent to the additional axioms (Section 2).

• We showed that, if these rules are convergent, density elimination holds
for the calculus HL∀ (Section 3).

In this section we combine these results with those in [13, 9] to prove that L∀ is
standard complete. The two missing steps towards this proof amount to showing
(in fact adapting from [13, 9]) that:

• If a hypersequent calculus HL∀ admits density elimination, then the logic
L∀ is rational complete, i.e. L∀ is complete with respect to countable
dense algebras (Section 4.1).

• Any countable dense algebra can be regularly embedded into a standard
algebra, i.e. an algebra whose lattice reduct is the real unit interval [0, 1]
(Section 4.2).

4.1. Density Elimination ⇒ Rational Completeness

We briefly recall the usual structures that provide algebraic semantics for
our logics (see, e.g. [4, 23, 19] for more details).

Definition 5. An FLew-algebra is a structure A = (A,∧,∨, ·,→, 0, 1) where
(A,∧,∨, 0, 1) is a bounded lattice, (A, ·, 1) is a commutative monoid and for
each x, y, z ∈ A the residuation property holds, i.e. x · z ≤ y ⇔ z ≤ x → y.
An MTL-algebra is an FLew-algebra, satisfying the prelinearity equation, i.e.,
for every x, y ∈ A, 1 = x → y ∨ y → x.

FLew-algebras can be defined equationally, hence they form algebraic varieties,
see, e.g., [7, 20]. An FLew-algebra A = (A,∧,∨, ·,→, 0, 1) is

• a chain if, for every x, y ∈ A, either x ≤ y or y ≤ x holds.
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• a dense algebra if, for every x, y ∈ A, whenever x 6≤ y, there is a z ∈ A
such that x 6≤ z and z 6≤ y.

• a complete algebra if, for every X ⊆ A, infX ∈ A and supX ∈ A, where
inf and sup are related to the lattice ordering ≤.

Notice that, with a slight abuse of notation, we used the same symbols to
denote algebraic operations and logical connectives. Similarly, with α we will
denote both a quantifier-free axiom and the corresponding algebraic term, where
each connective symbol stands for the corresponding algebraic operation.

Definition 6. A convergent axiom is an axiom whose transformation by the
algorithm from [10] gives a convergent rule.

Henceforth L∀ indicates any logic extending MTL∀ with any set of convergent
axioms.

Definition 7. An L-algebra is an MTL-algebra satisfying the algebraic equa-
tion 1 = α, for each convergent axiom α in L∀.

We will call an L-algebra that is a chain, an L-chain. The notion of inter-
pretation for L∀ is as usual and it is sketched below (see, e.g. [13, 4] for more
details). An A-valuation on a (non-empty) domain D is defined as a function
v, with parameters in D, from closed formulas (sentences) to an L-algebra A.
v is extended from atomic to complex formulas, in the usual truth-functional
way, interpreting connectives with corresponding algebraic operations in A. In
particular, quantifiers ∀ and ∃ are interpreted as inf and sup, with respect to
the lattice ordering in A. We restrict here to safe valuations, i.e. A-valuations
v, such that v(α) is defined for every sentence α.
Let T ∪ {α} be a set of sentences. We say that α is a semantical consequence of
T , and write T |=A α, if 1 = v(β) for each β ∈ T implies that 1 = v(α), for any
safe A-valuation v, with A an L-algebra. The logic L∀ is sound with respect to
valuations on L-algebras. More precisely, the following holds, see e.g. [4].

Theorem 4. Let T ∪ {α} be a set of sentences. T ⊢L∀ α implies T |=A α, for
any L-algebra A.

The converse direction (completeness) also holds, see e.g. [4]. However, as
shown in [13], density elimination allows us to prove something stronger: the ra-
tional completeness of L∀, i.e. the completeness of L∀ with respect to valuations
on dense countable L-chains.

Theorem 5 (Rational Completeness). Let T ∪ {α} be a set of sentences
and L∀ any logic extending MTL∀ with convergent axioms. Then T ⊢L∀ α iff
T |=A α for A any countable dense L-chain.

Proof. By Theorem 3, the hypersequent calculus HL∀ for L∀ admits density-
elimination. The claim follows by Theorem 4 in [13].
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4.2. Rational Completeness ⇒ Standard Completeness

The last step is achieved by means of a Dedekind Mac-Neille completion
(DM-completion for short). This is a well-known construction generalizing to
various ordered algebraic structures, Dedekind’s embedding of the rational num-
bers into the extended real field (i.e. R with ±∞).

Definition 8 (Dedekind Mac-Neille completion). (e.g. [20, 27])
Let A = (A,∧,∨, ·,→, 1, 0) be an FLew-algebra and X ⊆ A. The sets of upper

and lower bounds of X are defined as follows:
Xu = {y ∈ A s.t. x ≤ y for all x ∈ X} X l = {y ∈ A s.t. y ≤ x for all x ∈ X}

Moreover, let DM(A) = {X ⊆ A : (Xu)l = X} and

• X ∨DM Y = ((X ∪ Y )u)l X ∧DM Y = X ∩ Y

• X ·DM Y = ({x · y : x ∈ X, y ∈ Y }u)l

• X →DM Y = {z ∈ A|z · x ∈ Y for all x ∈ X}

• 1DM = A 0DM = {0}

The structure A+ = (DM(A),∧DM ,∨DM ,→DM , ·DM , 1DM , 0DM ) is a com-
plete FLew-algebra, called the Dedekind Mac-Neille completion of A.

The following is a well known fact about DM-completions, e.g. [27, 20, 7].

Lemma 3. Let A be an FLew-algebra and A+ its DM-completion. The map
e : A → DM(A), associating to any x ∈ A the set {x}l in DM(A), is a regular
embedding, i.e. an injective map, preserving all operations and all existing inf
and sup in A.

We recall now (a slightly modified form of) a result in [9], which will be
crucial for proving standard completeness. First notice that the syntactic clas-
sification of Hilbert axioms in [10] (i.e. the substructural hierarchy, see Section
2) applies to algebraic equations as well [9, 8]. In particular, an equation α = 1
belongs to the same class of the hierarchy as the corresponding formula α.

Lemma 4. Let A be an FLew-algebra satisfying a given set of equations within
the class P3 in the substructural hierarchy. Then its DM-completion A+ satisfies
the same equations as A, provided that the following holds:
(∗) Whenever A satisfies 1 = β ∨ γ, then A satisfies either 1 = β or 1 = γ.

Proof. The claim follows by Theorem 4.3 in [9], where it is shown that equa-
tions within the class P3 are preserved under DM-completion for FLew-algebras
that are subdirectly irreducible (see, e.g., [7]). An easy inspection of the proofs
in [9] reveals that the restriction to subdirectly irreducible algebras is needed
only in Lemma 3.1 of [9], to prove (∗).

We then obtain the following.

Theorem 6. Dense L-chains are preserved under DM-completion.
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Proof. The fact that dense FLew-chains are preserved under DM-completion
is shown e.g. in Theorem 27 of [27]. Recall that the equations defining L-
algebras are within the class P3. The claim follows by Lemma 4, as for chains
either β ∨ γ = β or β ∨ γ = γ holds.

Theorem 3 and Theorem 6 ensure the existence of a regular embedding from a
dense L-chain to a complete dense L-chain (its DM-completion). This, together
with rational completeness (Theorem 5), leads to standard completeness for the
first-order logics we consider, using standard arguments (see e.g. [17, 27, 13, 23]).

Theorem 7 (Standard Completeness). Let T ∪ {α} be a set of sentences
and L∀ any logic extending MTL∀ with convergent axioms. Then T ⊢L∀ α iff
T |=A α for A any L-algebra with lattice reduct [0, 1] (standard L-algebra).

5. Conclusion

We have shown that every logic extending MTL∀ with (any set of) conver-
gent axioms is standard complete. Our approach subsumes existing results and
allows for the discovery of new fuzzy logics. As an example consider the P3

axioms (n > 1)

(wnmn) : ¬(α · β)n ∨ ((α ∧ β)n−1 → (α · β)n).

These axioms, that generalize the peculiar axiom (wnm) of weak nilpotent min-
imum logic WNM, were first introduced in [6]. The corresponding rules are
convergent (see Table 3 and Example 6) and hence the (infinitely many) logics
MTL∀ + (wnmn) are standard complete. The P3 axiom

(wnm1) : ¬(α2) ∨ (α → α2)

which is the single-variable variant of (wnm) (see [1]) is also convergent (easy
check using the program AxiomCalc). Hence the logic MTL∀ + (wnm1) is
standard complete. The same holds for the single-variable variant of (wnmn),
i.e. :

(wnm1n) : ¬(αn) ∨ (αn−1 → αn)

Hence MTL∀ + (wnm1n) is standard complete. Notice that different n’s in
(wnm1n) determine different logics. This follows by the facts that for any n,
(1) as shown in [12] MTL∀ + (cn) and MTL∀ + (cn+1) are distinct (see Table
3) and (2) MTL∀ + (wnm1n) is intermediate between MTL∀ + (cn+1) and
MTL∀ + (cn).

Remark 2. Despite of its generality, convergency is not a necessary condition
for standard completeness. E.g. as shown in [26], the logic Ω(SnMTL), obtained
by extending MTL with both the n-contraction axiom (cn) (see Table 2) and
(αn−1 → β) ∨ (β → β · α), is standard complete. The latter axiom is in P3, but
is not convergent. (this can be easily checked by using the system AxiomCalc).
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Appendix A.

The normal form of axioms within the class N2 is the following:

N2: Axioms have the form
∧

1≤i≤n δi, in which every δi is a α1 · · ·αm → β

where:
– β = 0 or β1 ∨ · · · ∨ βk and each βl is a multiplicative conjunction of

propositional variables and

– each αi is of the form
∧

1≤j≤p γ
j
i → βj

i where

◦ βj
i = 0 or a propositional variable, and

◦ γj
i is a multiplicative conjunction or a disjunction of propositional

variables (or 1).

The normal form of axioms within the classes Pn+1 is the following:

Pn+1: Axioms have the form
∨⊙

Nn i.e. any axiom in Pn+1 is a disjunction
of multiplicative conjunctions of axioms in Nn.
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