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Abstract. We introduce hypersequent calculi for Rational  Lukasiewicz
logic and for the logic KZ(π), an extension of Kleene-Zadeh logic, mo-
tivated by game semantic investigations.

1 Introduction

Fuzzy Logic is nowadays a vast research area, which offers many different meth-
ods and tools to handle vagueness for computational purposes. In particular,
in the area of so-called Fuzzy Logic in narrow sense or Mathematical Fuzzy
Logic [4] many axiomatic systems have been so far introduced and investigated,
in order to characterize valid inferences under vagueness. One of the most promi-
nent such system is  Lukasiewicz logic  L. This logic is an important example of
a t-norm based logic, together with Gödel and Product logic, see e.g. [4, 9]. In
its intended or standard semantics, truth values are taken over the real interval
[0, 1] and the (strong) conjunction and implication connectives are interpreted
by the well known  Lukasiewicz t-norm x∗y = max(0, x+y−1) and its residuum
x→ y = min(1, 1− x+ y), respectively.

In this paper we focus on Rational  Lukasiewicz logic R L, an expansion of  L
with a family of unary connectives {δn}n∈N, standing for division operators. In
other words, the intended evaluation v over the real interval [0, 1] of a formula
δnα is defined by v(δnα) = v(α)/n where / stands for the usual division.

The name of the logic hints at the fact that constants corresponding to all the
rational numbers in [0, 1] are definable in R L. Not surprisingly, therefore, R L has
been shown in [3] to be a conservative extension of the so-called Rational Pavelka
logic [9]. The logic has also a nice functional representation, in analogy to the
famous McNaughton theorem for  Lukasiewicz [11]: formulas in R L correspond
to continuous piecewise linear functions with rational coefficients over [0, 1], see
[2, 3].

R L has been systematically investigated in [3], where a Hilbert system and
a corresponding algebraic semantics DMV (divisible MV algebras) have been
introduced.

In this work we present a hypersequent calculus HR L for R L, which extends
the calculus for  Lukasiewicz logic introduced in [12]. In Section 2 we introduce the
calculus and show its soundness and completeness with respect to the standard
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semantics. In Section 3 we then move to consider the logic KZ(π), an expansion
of Kleene-Zadeh logic (KZ in the following), introduced in [7] by considerations
of game-semantic nature. A hypersequent calculus for KZ(π) is easily obtained
from suitable restrictions on HR L. Indeed, the logic KZ(π) can be seen as a
proper fragment of R L. In Section 4 we conclude by pointing to future work.
In particular, we suggest that our calculi may provide a useful framework for a
proof-theoretic investigation of fuzzy logics extended with so-called fuzzy quan-
tifiers [8], such as many, few, about half, etc.

2 The hypersequent calculus HR L

In this section we introduce a calculus for the logic R L, i.e. the expansion of
 Lukasiewicz logic with division operators. Recall that in a language for propo-
sitional  Lukasiewicz logic only the constant (or 0-ary connective) ⊥ and the
connective → are needed, other connectives ¬, ·,⊕,∧,∨,> being definable in
terms of →,⊥. In the following, we call atomic formula a propositional variable
or the constant ⊥. As usual, formulas are built recursively from atomic formu-
las. Any evaluation v on the standard semantics assigns truth values in [0, 1]
to propositional variables, the value 0 to ⊥, and is extended truth functionally
by letting v(α → β) = min(1, 1 − v(α) + v(β)). For the remaining connectives,
evaluations v are determined as follows:

v(>) = 1, v(¬α) = 1− v(α)
v(α · β) = min(0, v(α) + v(β)− 1), v(α⊕ β) = min(1, v(α) + v(β))
v(α ∧ β) = min(v(α), v(β)), v(α ∨ β) = max(v(α), v(β))

Notation. In what follows, given an integer n, we denote by αn a multiset of
α’s and by nα the formula α⊕ · · · ⊕ α. More precisely, we let

α1 = α αn = α, αn−1 and 1α = α nα = α⊕ (n− 1)α.

The language of R L is obtained extending that of  L with the set of unary con-
nectives {δn}n∈N. (Standard) Evaluations for R L are defined extending those for
 L with the condition:

v(δnα) =
v(α)

n

for any δn. Clearly v(δm(δnα)) = v(δmnα) and v(δ1α) = v(α). Hence we will
identify in the following any formula of the kind δm(δnα) with δmnα and δ1α
with α. Note that for any rational number n/m in [0, 1], a corresponding con-
stant n(δm>) is definable in R L and clearly satisfies v(n(δm>)) = n/m for any
evaluation v.

A Hilbert-style axiomatization of the logic R L has been introduced in [3]. It
is obtained by adding the following axioms to the Hilbert system for  Lukasiewicz
logic

(δ1a) n(δnϕ)→ ϕ
(δ1b) ϕ→ n(δnϕ)
(δ2) ¬δnϕ⊕ ¬(n− 1)(δnϕ)
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The axiomatic system is shown in [3] to be complete w.r.t. the standard seman-
tics over [0, 1], via algebraic methods. More precisely, a corresponding general
algebraic semantics, the variety of divisible MV algebras (DMV algebras) is in-
troduced and shown to be generated by its members on the real interval [0, 1].
In what follows we introduce a Gentzen-style calculus for the logic R L that is
based on hypersequents. We exhibit a direct proof of the completeness of the
calculus w.r.t the standard semantics. First, we recall the notion of sequent and
hypersequent (see e.g. [1, 13]).

Definition 1. A hypersequent is a non-empty finite multiset S1 | . . . |Sn where
each Si, i = 1, . . . , n is a sequent, called a component of the hypersequent. A
(multiple-conclusioned) sequent is in turn an object of the form Γ ⇒ Π, where
Γ,Π are multisets of formulas.

Our hypersequent calculus forR L is an extension of the hypersequent calculus
for  Lukasiewiz logic introduced in [12]. In Table 1 we recall the calculus H  L for
 L , with some unessential modifications. We include also rules for the connectives
⊕,¬,>, although they are not necessary, being derivable from the rules for→,⊥.

⇒ (emp) α⇒ α (id) ⊥ ⇒ α
(⊥)

G |Γ1, Γ2 ⇒ ∆1, ∆2

G |Γ1 ⇒ ∆1 |Γ2 ⇒ ∆2

(split)
G |Γ1 ⇒ ∆1 G |Γ2 ⇒ ∆2

G |Γ1, Γ2 ⇒ ∆1, ∆2

(mix)
⇒ >

(>)

G |H |H
G |H

(ec)
G

G |H
(ew)

G |Γ ⇒ ∆

G |Γ,Π ⇒ ∆
(wl)

G |Γ, β ⇒ α,∆ |Γ ⇒ ∆

G |Γ, α→ β ⇒ ∆
(→ l)

G |Γ ⇒ ∆ G |Γ, α⇒ β,∆

G |Γ ⇒ α→ β,∆
(→ r)

G |Γ, α, β ⇒ ⊥, ∆
G |Γ, α⊕ β ⇒ ∆

(⊕l)
G |Γ,⊥ ⇒ α, β,∆ G |Γ ⇒ ∆

G |Γ ⇒ α⊕ β,∆
(⊕r)

G |Γ,⊥ ⇒ α,∆

G |Γ,¬α⇒ ∆
(¬l)

G |Γ, α⇒ ⊥, ∆
G |Γ ⇒ ¬α,∆

(¬r)

Table 1. Hypersequent calculus H  L for  Lukasiewicz logic

We are now ready to introduce the calculus for R L.

Definition 2. The calculus HR L is obtained by adding to the calculus for
 Lukasiewicz logic in Table 1 the rules in Table 2.

Hypersequents are usually interpreted as particular formulas in a logic: for
instance, the symbol | is generally interpreted as a disjunction ∨ and ⇒ as
an implication →. This is not the case of H  L, where hypersequents are directly
interpreted over the standard semantics of the logic. The evaluation of a multiset
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G |Γ, (δnα)n ⇒ ∆,⊥n−1

G |Γ, α⇒ ∆
(δ ↑ l)

G |Γ,⊥n−1 ⇒ (δnα)n, ∆

G |Γ ⇒ α,∆
(δ ↑ r)

G |Γ, α,⊥n−1 ⇒ ∆

G |Γ, (δnα)n ⇒ ∆
(δ ↓ l)

G |Γ ⇒ α,⊥n−1, ∆

G |Γ ⇒ (δnα)n, ∆
(δ ↓ r)

G |Γ, δnβ, δn> ⇒ δnα,∆ |Γ, δn> ⇒ ∆

G |Γ, δn(α→ β)⇒ ∆
(δ → l)

G |Γ, δnα⇒ δn>, δnβ,∆ Γ ⇒ δn>, ∆
G |Γ ⇒ δn(α→ β), ∆

(δ → r)

Table 2. Additional Rules for HR L

Γ of formulas is defined in [12,13] for  L as:

v(Γ ) = 1 +
∑
α∈Γ

(v(α)− 1).

We will adopt the same notion for the evaluation of a multiset of formulas in the
logic R L . The validity of a hypersequent is then defined as follows.

Definition 3. Let G = Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n be a hypersequent in HR L .
We say that G is valid and denote it by |=R L G iff for any valuation v there is
a component Γi ⇒ ∆i such that v(Γi) ≤ v(∆i) ( i ∈ {1, . . . , n}).

As usual, we denote by `HR L G the fact that a hypersequent G is derivable
in HR L. Note that the rules for (δ →) allow for a form of deep inference: they
do not necessarily operate on the most external connective, i.e. on δn, but inside
the formula. As an example to illustrate the functioning of the calculus, we show
how to derive the axiom (δ2) in page 3:

⊥n ⇒ ⊥n
(wl)

ϕ,⊥n ⇒ ⊥n
(δ ↓ l)

⊥, (δnϕ)n ⇒ ⊥n
(⊕l)× (n− 2)

⊥, δnϕ, (n− 1)(δnϕ)⇒ ⊥,⊥
(¬r)× 2

⊥ ⇒ ¬δnϕ,¬(n− 1)(δnϕ)
(emp)

⇒
(⊕r)

⇒ ¬δnϕ⊕ ¬(n− 1)(δnϕ)

where ⊥n ⇒ ⊥n is clearly derivable by repeated applications of (mix) with the
axiom ⊥ ⇒ ⊥.

Lemma 1. The rules for HR L in Table 2 are sound and invertible.

Proof. We consider only two rules, the others being similar. First, we consider
the rule (δ → r). Assume that the premises hold. The case where the context G
is valid is trivial. W.l.o.g. let us assume thus:

(∗) v(Γ ) + (
v(α)

n
− 1) ≤ (

1

n
− 1) + (

v(β)

n
− 1) + v(∆)
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and

(∗∗) v(Γ ) ≤ v(∆) + (
1

n
− 1).

In case v(α) ≤ v(β), we have v(α→ β) = 1, hence the conclusion just amounts
to (∗∗). In case v(β) ≤ v(α), we have v(α → β) = 1 − v(α) + v(β), hence the
conclusion holds iff

v(Γ ) ≤ (
1− v(α) + v(β)

n
− 1) + v(∆)

which follows from (∗) by easy computations. For invertibility, we assume that

(∗ ∗ ∗) v(Γ ) ≤ (
v(α→ β)

n
− 1) + v(∆).

In case v(α) ≤ v(β) this amounts to (∗∗) i.e. the right premise. Combining
v(α) ≤ v(β) and (∗∗) we can easily obtain (∗), i.e. the left premise. In case
v(β) ≤ v(α) we obtain the left premise (∗) by easy computations. From (∗ ∗ ∗)
we easily get

v(Γ ) ≤ 1

n
+
v(β)− v(α)

n
− 1 + v(∆) ≤ 1

n
− 1 + v(∆)

i.e. the right premise (∗∗).
Let us consider now the rule (δ ↑ l) and assume its premises hold, i.e.

v(Γ ) + n(
v(α)

n
− 1) ≤ v(∆)− (n− 1).

This is clearly equivalent to

v(Γ ) + v(α)− 1 ≤ v(∆).

that is, the conclusion of (δ ↑ l). The same reasoning gives also the invertibility
of (δ ↑ l).

In what follows we call δ-atomic any formula of kind δnα, with α atomic for-
mula.1. We call a hypersequent δ-atomic if it only contains δ-atomic formulas.
Towards the completeness theorem, we show first two useful technical lemmas.

Lemma 2. (i) The following rules are derivable in HR L and invertible.

G |Γm,⊥(m−1)n ⇒ ∆m

G |Γ, (δm>)n ⇒ ∆
(div l)

G |Γm ⇒ ⊥(m−1)n, ∆m

G |Γ ⇒ (δm>)n, ∆
(div r)

(ii) The sequent δmα⇒ δm> is derivable in HR L.

1 A formula of the kind δn(δmα) with α atomic is considered δ-atomic as well. Recall
that we identify such formulas with δmnα.
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Proof. (i). The rule (div l) is derivable as follows:

G |Γm,⊥(m−1)n ⇒ ∆m

(wl)
G |Γm,>n,⊥(m−1)n ⇒ ∆m

(δ ↓ l)× n
G |Γm, ((δm>)m)

n ⇒ ∆m

(split)×m
G |Γ, (δm>)

n ⇒ ∆ | . . . |Γ, (δm>)
n ⇒ ∆

(ec)×m
G |Γ, (δm>)

n ⇒ ∆

For invertibility, note that (δ ↓ l) and (ec) are invertible in general. The applica-
tions of (split) and (wl) above can be easily shown to be invertible as well. The
rule (div r) is derivable in a similar way, using repeated (mix) with the sequent
⇒ > instead of (wl) and (δ ↓ r) instead of (δ ↓ l).

(ii). A derivation of δmα⇒ δm> is obtained as follows:

⊥m−1 ⇒ ⊥m−1

(wl)
α,⊥m−1 ⇒ ⊥m−1

(δ ↓ l)
(δmα)

m ⇒ ⊥m−1

(div r)
δmα⇒ δm>

Where ⊥m−1 ⇒ ⊥m−1 is derivable by repeated applications of (mix) with the
axiom ⊥ ⇒ ⊥.

Lemma 3. If `HR L G |Γ, δn> ⇒ ∆ then `HR L G |Γ, δnα⇒ ∆.

Proof. We reason by induction on the length of the derivation of G |Γ, δn> ⇒ ∆.
For the base case, if we have an axiom of the form δn> ⇒ δn>, we replace it by
the derivable sequent δnα ⇒ δn> (see Lemma 2). In the remaining cases, the
lemma just follows by a suitable application of the induction hypothesis on the
last applied rule in a derivation of G |Γ, δn> ⇒ ∆.

We are now ready for the completeness theorem, which follows the basic
structure of the argument for  Lukasiewicz logic as presented e.g. in [5, 12,13].

Theorem 1. [Completeness] Let G be a hypersequent in HR L. If |=R L G, then
`HR L G

Proof. By the invertibility of logical rules (see Lemma 1), it is sufficient to show
the claim only for δ-atomic hypersequents. We reason by induction on the num-
ber k of different propositional variables occurring on the left hand side of the
components of G. In case k = 0, there can only be ⊥, δn> on the left hand side
of any component. By applying (mix) backwards with ⊥ ⇒ ⊥, δn> ⇒ δn>, we
remove any simultaneous occurrence of ⊥ and δn> on both sides of a sequent.
We then apply the rules (div l) and (div r) backwards (see Lemma 2) to obtain
a hypersequent G1 where no occurrences of δn> appear. It is clear that G1 is
valid iff G is valid and moreover, if G1 is derivable, G is derivable as well. To
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conclude the base case, we are now left to show that if G1 is valid, it is provable.
Note that any component of G1 can only be of the form (⊥)n ⇒ ∆ for a certain
n. If there is a component such that n ≥ |∆|, then the whole hypersequent is
derivable by (⊥), (mix),(wl) and (ew). Assume this is not the case and consider
an evaluation which assigns the value 0 to any propositional variable. It can be
easily shown that this evaluation would falsify the whole hypersequent G1, thus
contradicting our assumption that G1 is valid.

We consider now the case where k > 0 and we pick an atomic variable
q occurring on the left of at least one sequent in G. By suitable backwards
application of the rules (δ ↑ r) and (δ ↑ l), we can obtain a hypersequent where
all occurrences of q are of the form δnq, for the same integer n. W.l.o.g. we assume
n ≥ 2 (in case n = 1 the proof proceeds as the one in [13]). We remove any
occurrence of δnq on both sides of each sequent, applying backwards repeatedly
(mix) with the axiom δnq ⇒ δnq. We obtain thus a valid hypersequent, whose
components contain δnq either only on the right or on the left. We multiply
the components of this hypersequent applying (ec) and (split) backwards, so to
obtain

G′ = G0 | {Γi, (δnq)λ ⇒ ∆i |Πj ⇒ (δnq)
λ, Σj}i∈I,j∈J

where I, J are finite sets of indices and λ ∈ N. Clearly we still have |=R L G
′. Let

us consider now the hypersequent

H = G0 | {Γi, Πj ⇒ Σj , ∆i |Γi, (δn>)λ ⇒ ∆i |Πj ⇒ (δnq)
λ, Σj}i∈I,j∈J

which contains fewer distinct variables on the left than G′. We claim that, if H
is derivable, G′ is derivable as well. Indeed, from a derivation of H, by suitable
applications of (mix) with δnq ⇒ δnq and (split), we can obtain a derivation of

G0 | {Γi, (δnq)λ ⇒ ∆i |Γi, (δn>)λ ⇒ ∆i |Πj ⇒ (δnq)
λ, Σj}i∈I,j∈J

Applying Lemma 3 to the latter hypersequent and (ec), we obtain our desired
derivation of G′. It suffices now to show that H is valid, as in this case we obtain
`HR L H by the induction hypothesis. For a contradiction, let us suppose that
there exists a valuation v such that v(Γ ) > v(∆) for all components Γ ⇒ ∆ ∈ H.
We let

x = max({v(∆i)− v(Γi)}i∈I ∪ {−λ})
y = min({v(Πj)− v(Σj)}j∈J ∪ {0}).

Assume x ≥ y. We would have either v(Γi) + v(Πj) ≤ v(Σj) + v(∆i) or −λ ≥
v(Πj)−v(Σj) or v(∆i)−v(Γi) ≥ 0. In any of these cases, we can easily obtain a
contradiction with the assumption that the valuation v does not satisfy H. Hence
we have x < y. We claim that there is a w ∈ [0, 1] such that x < λ(wn − 1) < y.
Towards this aim, let us first show the two following facts:

(a) x < λ(
1

n
− 1) (b) λ(

v(q)

n
− 1) < y

Let us start from (a). In case x = −λ we get −λ < λ( 1
n − 1) which clearly holds.

Assume instead that x = v(∆i)− v(Γi) for some i ∈ I. We have v(∆i)− v(Γi) <
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λ( 1
n − 1) as otherwise v would satisfy the component Γi, (δn>)λ ⇒ ∆i of H and

this would contradict our assumption. Let us now consider the inequation (b)

and assume it does not hold. In case y = 0, we would have λ( v(q)
n −1) ≥ 0, which

is clearly a contradiction. Otherwise, there would be an index j ∈ J such that

y = v(Πj) − v(Σj) ≤ λ( v(q)
n − 1). Hence we would have v(Πj) ≤ v(Σj , (δnq)

λ),
which contradicts the assumption that v does not satisfy the hypersequent H.

Recall now that x < y. If either x < λ( v(q)
n − 1) < y or x < λ( 1

n − 1) < y we are
done. Otherwise we have

λ(
v(q)

n
− 1) < x < y < λ(

1

n
− 1)

Also in this latter case we can find a w ∈ [0, 1] (actually in (v(q), 1)) such
that x < λ(wn − 1) < y. We define now a new valuation v′(q) which differs

from v only for letting v′(q) = w. We have thus x < λ(v
′(q)
n − 1) < y. Hence

v′(∆i)− v′(Γi) < λ(v
′(q)
n − 1) and λ( v

′(q)
n − 1) < v′(Πj)− v′(Σj), i.e.

v′(Γi, (δnq)
λ) > v′(∆i) v′(Πj) > v′(Σj , (δnq)

λ)

for any i ∈ I, j ∈ J . This means that G′ is not valid, which contradicts our
initial assumption.

In Theorem 1 we have directly shown the completeness of the hypersequent
calculus with respect to the standard semantics over the real interval [0, 1]. Notice
that our calculus does not include the (cut) rule

G |Γ, α⇒ ∆ Σ ⇒ α,Π

G |Γ,Σ ⇒ Π,∆
(cut)

which can be easily proved to be sound with respect to the standard semantics.
The completeness of our (cut)-free calculus shows thus that the (cut) rule is ac-
tually admissible for HR L. This means that the addition of (cut) to the calculus
HR L would not change the set of derivable formulas.

3 A hypersequent calculus for the logic KZ(π)

In this section we introduce a calculus for the logic KZ(π), which we obtain as
a restriction of the calculus HR L. KZ(π) was introduced in [7] in the context
of an investigation into Hintikkas’s game semantics for fuzzy logic. Hintikka-
games [10] are essentially two-person zero-sum games. The players, say Myself
and You, in each move stepwise reduce a complex logic formula, until atomic
formulas are reached. A state of the game is fully determined by the formula at
stake and by an attribution of roles (attacker and defender) to the two players.
For propositional (classical) logic, the rules for decomposing complex into atomic
formulas are as follows:
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(R∧) If I assert (i.e. defend) α ∧ β then You attack by pointing either to the left
or to the right subformula. As corresponding defense, I then have to assert
either α or β, according to Your choice.

(R∨) If I assert α ∨ β then I have to assert either α or β at My own choice.
(R¬) If I assert ¬α then You have to assert α. In other words, our roles are

switched: the game continues with You as defender and Me as attacker (of α).

Once the players reach an atomic formula, the game ends. We say that I win
if in a final state I assert an atomic formula α and v(α) = 1 (my payoff is 1).
Similarly, I lose if v(α) = 0 (my payoff is 0). In case in a final state You assert
an atomic formula α, the winning conditions and related payoffs are reverted.

The game-theoretical framework just sketched provides an alternative char-
acterization for truth in classical logic: the satisfiability of a formula corresponds
to the existence of a winning strategy (i.e. ending with payoff 1) for Myself in
the corresponding game.

Hintikka games were not originally meant to deal with many-valued logic:
atomic formulas are indeed interpreted only as either true or false. Nevertheless,
it is possible to drop this requirement and admit evaluations over [0, 1], while
retaining the basic game-theoretical framework. As shown in [7], this results in
a game-theoretic semantics for the {∧,∨,¬,⊥}-fragment of  Lukasiewicz logic,
i.e. the so-called Kleene Zadeh logic (KZ). More precisely, a formula α in KZ
evaluates to w ∈ [0, 1] under a certain evaluation iff the corresponding Hintikka
game has a payoff value w for Myself. Moreover, it is shown in [7] that any
additional rule in a Hintikka game, involving only choices between two players
and role switches, (such as (R∧), (R∨), (R¬)) always corresponds to a definable
connective in KZ. Hence a different kind of game rule is needed to go beyond
the logic KZ. The logic KZ(π) is obtained in [7] expanding KZ with a new
binary connective π, characterized by the following random choice rule:

(Rπ) If the current formula is απβ then a uniformly random choice determines
whether the game continues with α or with β.

The corresponding truth function for this connective is obtained as

v(απβ) = (v(α) + v(β))/2.

This truth function matches the corresponding game semantics, provided that
we consider expected payoff instead of payoff. More precisely, it is shown in [7]
that a formula of KZ(π) has a value w under a given evaluation iff the expected
payoff in the corresponding Hintikka game for Myself is w. Note that the logic
KZ(π) is a proper extension of KZ, but it is incomparable with  L: indeed,
the connective π is not definable from the connectives of  L, nor can ·,⊕,→ be
defined from π,∧,∨,¬,⊥. The addition to KZ(π) of a further unary connective,
standing for a doubling of the truth values, is needed to capture the whole  L
while retaining the Hintikka-style game-semantics.

We can see KZ(π), however, as a fragment of the logic R L, which we con-
sidered in Section 2. The fragment is generated by the atomic formulas and the
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G |Γ ⇒ ∆

G |Γ,Π ⇒ ∆
(wl)

⇒ (emp) α⇒ α (id)

(δ2m )⊥ ⇒ α
(⊥l)

⇒ >
(>)

G |Γ1, Γ2 ⇒ ∆1, ∆2

G |Γ1 ⇒ ∆1 |Γ2 ⇒ ∆2

(split)
G |Γ1 ⇒ ∆1 G |Γ2 ⇒ ∆2

G |Γ1, Γ2 ⇒ ∆1, ∆2

(mix)

G |H |H
G |H

(ec)
G

G |H
(ew)

G |Γ, (δ2m ) α⇒ ∆ G |Γ, (δ2m ) β ⇒ ∆

G |Γ, (δ2m ) α ∨ β ⇒ ∆
(∨l)

G |Γ ⇒ (δ2m ) α,∆ |Γ ⇒ (δ2m ) β,∆

G |Γ ⇒ (δ2m ) α ∨ β,∆
(∨r)

G |Γ, (δ2m ) α⇒ ∆ |Γ, (δ2m ) β ⇒ ∆

G |Γ, (δ2m ) α ∧ β ⇒ ∆
(∧l)

G |Γ ⇒ (δ2m ) α,∆ G |Γ ⇒ (δ2m ) β,∆

G |Γ ⇒ (δ2m ) α ∧ β,∆
(∧r)

G |Γ, (δ2m+1 ) α, (δ2m+1 ) β ⇒ ⊥, ∆

G |Γ, (δ2m ) απβ ⇒ ∆
(πl)

G |Γ,⊥ ⇒ (δ2m+1 ) α, (δ2m+1 ) β,∆

G |Γ ⇒ (δ2m ) απβ,∆
(πr)

G |Γ,⊥, (δ2m ) > ⇒ (δ2m ) α,∆

G |Γ, (δ2m ) (¬α)⇒ ∆
(¬l)

G |Γ, (δ2m ) α⇒ ⊥, (δ2m ) >, ∆
G |Γ ⇒ (δ2m ) (¬α), ∆

(¬r)

G |Γ, δ2α, δ2α⇒ ∆,⊥
G |Γ, α⇒ ∆

(δ ↑ l)
G |Γ,⊥ ⇒ δ2α, δ2α,∆

G |Γ ⇒ α,∆
(δ ↑ r)

G |Γ, α,⊥ ⇒ ∆

G |Γ, δ2α, δ2α⇒ ∆
(δ ↓ l)

G |Γ ⇒ α,⊥, ∆
G |Γ ⇒ δ2α, δ2α,∆

(δ ↓ r)

Table 3. Calculus HKZ(π) for KZ(π)

connectives ∧,∨,¬, π where xπy := δ2x ⊕ δ2y. Note that, in turn the unary
connective δ2 is definable in KZ(π) by letting δ2α = απ⊥. By these simple ob-
servations we can thus obtain a hypersequent calculus for KZ(π) as a fragment
of that for R L. We present the calculus explicitly in Table 3. Note that only δ-
formulas of the kind δ2mα can occur in a proof of a hypersequent in the language
of KZ(π)2.

Lemma 4. The logical rules and (δ ↑), (δ ↓) in Table 3 are sound and invertible
for R L.

Proof. By simple arithmetic computation, as for the proof of Lemma 1. Notice
that the rules (δ ↑) and (δ ↓) are just particular cases of the corresponding ones
in Table 1. Similarly, the rules for (¬) and (π) are just special cases of the rules
(δ →) and (⊕), respectively.

Being the logical rules invertible, the completeness proof in Theorem 1 can be
adapted to the fragment KZ(π).

2 As for R L, we identify δ2mδ2nα with δ2m+nα and δ20α, i.e. δ1α, with α.
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Theorem 2. Let G be a hypersequent in the language of KZ(π). If |=KZ(π) G,
then `HKZ(π) G

Proof. Using the invertibility of the logical rules, we can reduce G to an atomic
hypersequent. Applying the rules (δ ↑ l) and (δ ↑ r) backwards we obtain a valid
hypersequent which contains only δ-atomic formulas of the kind (δ2m) α, for a
given m. The rest of the proof proceeds as in Theorem 1 (note that Lemmas 2
and 3 apply to HKZ(π) as well).

4 Conclusions and future work

Variants ofKZ(π), with similar game theoretical motivations, can also be defined
as fragments of R L. First, in the definition of the game rule (Rπ) in page 9 we
can drop the requirement that the formula is chosen according to a random
uniform distribution. A generalized connective πr for any rational number r in
[0, 1] can be introduced via the game rule:

(Rπr
) If the current formula is απrβ then the game continues with α with proba-

bility r and with β with probability 1− r.

Let r = m/n, for m,n natural numbers. The corresponding truth function for πr
is v(απrβ) = (m/n)v(α) + (1−m/n)v(β). The connective πr is clearly definable
in R L as απrβ := m(δnα)⊕ (n−m)δnβ.

In a different direction, we can also consider π-like connectives of arbitrary
arity3, i.e. connectives of kind πn, arising from the following game rule:

(Rπn) If the current formula is πn(α1, . . . , αn) then a uniform random choice de-
termines whether the game continues with one of the α1, . . . , αn.

The corresponding truth function is clearly the average of the truth values
v(α1), . . . , v(αn), i.e.

v(πn(α1, . . . , αn)) =
∑

i=1,...,n

v(αi)

n
.

The connective is definable in R L by letting πn(α1, . . . , αn) = δnα1⊕· · ·⊕δnαn.
The connective πn is strictly related to the random witness quantifier, introduced
by game semantics means in [6], as an extension of first-order  Lukasiewicz logic.
The random witness quantifier is determined by the following game rule

(RΠ) If the current formula is ΠxF (x) then an element c from the domain D is
chosen randomly and the game continues with F (c).

As we might expect, for a finite domain D, the corresponding truth function for
Πx is defined as:

v(ΠxF (x)) =
∑
d∈D

v(F (d))

|D|

3 Note that π is not associative in general.
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This coincides with the truth function of the connective πn for n = |D|. It is thus
possible to investigate the properties of the quantifier Π(x) in a finite domain by
means of the corresponding connective πn, which is in turn definable in R L. As
shown in [6,7], the mechanism of random choice provides a guiding principle for
the characterization and systematic introduction of families of so-called fuzzy
quantifiers, i.e. expressions such as “few”, “many”, “about half”. Many such
quantifiers are indeed definable over an extension of first-order  Lukasiewicz logic
with Π(x). Our calculus HR L can thus provide a natural framework where a
proof-theoretical study of these quantifiers can be further developed.

We leave also as a topic of future research the closer investigation of the
connection between the calculi HR L, HKZ(π) and the game semantics of the
corresponding logic, along the lines of [5].
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