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Abstract. We provide general conditions on hypersequent calculi that
guarantee standard completeness for the formalized logics. These condi-
tions are implemented in the PROLOG system AxiomCalc that takes as
input any suitable axiomatic extension of Monoidal T-norm Logic MTL
and outputs a hypersequent calculus for the logic and the result of the
check. Our approach subsumes many existing results and allows for the
computerized discovery of new fuzzy logics.

1 Introduction

Standard completeness, that is completeness of a logic with respect to algebras
based on truth values in [0, 1], has received increasing attention in the last few
years. In a standard complete logic connectives are interpreted by suitable func-
tions on [0, 1], and this makes it a fuzzy logic in the sense of [11]. For example
conjunction and implication can be interpreted by a t-norm1 and its residuum
or by classes of t-norms. Gödel and  Lukasiewicz being prominent examples of
logics based on particular t-norms, while e.g. Monoidal t-norm logic MTL [8] is
based on the class of left-continuous t-norms. MTL is a useful basic system as
many interesting logics, including Gödel and  Lukasiewicz logics, can be obtained
by extending MTL with suitable properties expressed as Hilbert axioms.

Checking or discovering whether a logic is standard complete is sometimes
a challenging task which deserves a paper for each specific logic, e.g., [5, 10,12].
It is traditionally established by semantic techniques which are inherently logic-
specific. Given a logic L described in a Hilbert-style system, semantic proofs
usually consist of the following four steps (see, e.g., [5, 7, 8, 10,11,15]):

1. The algebraic semantics of the logic is identified (L-algebras).
2. It is shown that if a formula is not valid in an L-algebra, then it is not valid

in a countable L-chain (linearly ordered L-algebra).
3. It is shown that any countable L-chain can be embedded into a countable

dense L-chain by adding countably many new elements to the algebra and
extending the operations appropriately. This establishes rational complete-
ness: a formula is derivable in L iff it is valid in all dense L-chains.

4. Finally, a countable dense L-chain is embedded into a standard L-algebra,
that is an L-algebra with lattice reduct [0, 1], using a Dedekind-MacNeille-
style completion.

1 T-norms are the main tool in fuzzy set theory to combine vague information.



The crucial step 3. above (rational completeness) is the most difficult to
establish as it relies on finding the right embedding, if any. A different approach
to step 3. was proposed in [13] by using proof-theoretic techniques. The idea
in [13] is that the admissibility of a particular syntactic rule (called density) in
a logic L can lead to a proof of rational completeness for L. This is for instance
the case when L is any axiomatic extension of MTL. Introduced by Takeuti and
Titani in [17] the density rule formalized Hilbert-style has the following form

(A→ p) ∨ (p→ B) ∨ C
(A→ B) ∨ C

where p is a propositional variable not occurring in A, B, or C. Ignoring C, this
can be read contrapositively as saying (very roughly) “if A > B, then A > p and
p > B for some p”; hence the name “density” and the intuitive connection with
rational completeness.

The new approach was used in [13] to establish standard completeness for
various logics for which semantic techniques do not appear to work. Following
this method, to establish standard completeness for a logic L we need to

(a) define a suitable proof system HL for L extended with the density rule
(b) check that this rule is eliminable (or admissible) in HL, i.e. that density does

not enlarge the set of provable formulas
(c) standard completeness may then be obtained in many cases (but not in

general) by means of the Dedekind-MacNeille completion.

A convenient proof system HMTL for MTL uses hypersequents, which are a
simple generalization of Gentzen sequents, see [1, 14].

Step (b) above (density-elimination) was shown in [2, 13] for various calculi,
including HMTL. The proofs in [2, 13] are calculi-specific and use heavy combi-
natorial arguments, in close analogy with Gentzen style cut-elimination proofs.
A different method to eliminate applications of the density rule from derivations
was introduced in [6]. It shows that each hypersequent calculus obtained by
extending HMTL by certain sequent rules admits density-elimination. Though
more general than the proofs in [2,13], this result does not apply to many inter-
esting extensions of MTL whose additional axioms require hypersequent rules;
e.g., it does not apply to weak nilpotent minimum logic WNM [4, 8].

The aim of this paper is to automate standard completeness proofs for large
classes of axiomatic extensions of MTL.

We introduce the program AxiomCalc that automates steps (a)-(c) above for
propositional logics extending MTL by any Hilbert axiom within the class P3

in the syntactic classification of [4]. The main theoretical contribution of this
paper is the identification of sufficient conditions on hypersequent rules that
ensure standard completeness for the formalized logics. As shown in Section 3,
our conditions allow indeed density-elimination (and hence, by [13], they lead
to rational completeness). Standard completeness follows, being the axioms we
deal with preserved under suitable forms of Dedekind-MacNeille completions [3].

AxiomCalc implements the systematic procedure in [4] to define cut-free
hypersequent calculi from Hilbert systems for large classes of logics (step (a)),



and the check of our sufficient conditions which account for steps (b) and (c) at
once.

Our approach subsumes many existing results on standard completeness for
specific logics and allows for the computerized discovery of new fuzzy logics. For
instance, it applies to WNM and to the logics obtained by extending MTL
with the axioms ¬(α · β)n ∨ ((α ∧ β)n−1 → (α · β)n) for each n ≥ 2. The latter
family of logics is new and was discovered by playing with the PROLOG system
AxiomCalc, available at http://www.logic.at/people/lara/axiomcalc.html.

2 Automated proof theory for extensions of MTL

In this section we present the system AxiomCalc and describe the calculi that it
generates. The program is a PROLOG-implementation of the algorithm in [4].

The basic system we will deal with is Monoidal T-norm Logic MTL [8]
which was shown in [10] to be the logic of left continuous t-norms2 and their
residua. MTL is obtained by adding the prelinearity axiom (α→ β) ∨ (β → α)
to intuitionistic logic without contraction (also known as HBCK [16] or Full
Lambek calculus with exchange and weakening FLew).

Formulas of MTL are built from propositional variables and the constants
0 and 1 by using → (implication), ∧ (additive conjunction), · (multiplicative
conjunction), and ∨ (disjunction). We use ¬α as an abbreviation for α→ 0.

In the following α, β, . . . will stand for both formulas and for metavariables
for formulas. To distinguish between rule applications and rule schemas we
will denote finite (possibly empty) multisets of formulas with Γ,∆,Σ,Θ,Λ and
metavariables for multisets of formulas with Γ ,∆,Σ,Θ,Λ. Metavariables Π,Ψ
will stand for stoups, i.e., either a formula or the empty set.

Definition 1. A hypersequent is a finite multiset S1 | . . . |Sn where each Si, i =
1 . . . n is a sequent, called a component of the hypersequent.

The symbol “ | ” is intended to denote disjunction at the meta-level. In this
paper we will only consider hypersequents whose components contain at most
one formula on their right-hand side.

Henceforth we will denote hypersequents by G,H and sequents (possibly
built from metavariables) by Si, Ci. The hypersequent calculus contains initial
axioms, cut, and logical rules. These are as in sequent calculus, the only differ-
ence being the presence of a (possibly empty) side hypersequent G. Structural
rules are divided into two groups: internal and external rules. The latter, which
permit interaction between components, increase the expressive power of the
hypersequent calculus with respect to sequent calculus.

The (cut-free) hypersequent calculus HMTL for MTL is obtained by adding
Avron’s communication rule (com) to the hypersequent version of the sequent

2 A t-norm is a commutative, associative, increasing function ∗ : [0, 1]2 → [0, 1] with
identity element 1. ∗ is left continuous iff whenever {xn}, {yn} (n ∈ N) are increasing
sequences in [0, 1] s.t. their suprema are x and y, then sup{xn ∗ yn : n ∈ N} = x ∗ y.
The residuum of ∗ is a function →∗ where x→∗ y = max{z | x ∗ z ≤ y}.



G |Γ ⇒ α G |α,∆⇒ Π

G |Γ ,∆⇒ Π
(Cut)

G |α⇒ α
(init)

G | 0⇒
(0l)

G |Γ ⇒ α G |∆⇒ β

G |Γ ,∆⇒ α · β
(· r)

G |α, β, Γ ⇒ Π

G |α · β, Γ ⇒ Π
(· l)

G |Γ ⇒ Π

G | 1, Γ ⇒ Π
(1l)

G |Γ ⇒ α G |β,∆⇒ Π

G |Γ , α→ β,∆⇒ Π
(→ l)

G |α, Γ ⇒ β

G |Γ ⇒ α→ β
(→ r)

G |Γ ⇒
G |Γ ⇒ 0

(0r)

G |Γ ⇒ α G |Γ ⇒ β

G |Γ ⇒ α ∧ β
(∧r)

G |αi, Γ ⇒ Π

G |α1 ∧ α2, Γ ⇒ Π
(∧l)

G | ⇒ 1
(1r)

G |α, Γ ⇒ Π G |β, Γ ⇒ Π

G |α ∨ β, Γ ⇒ Π
(∨l)

G |Γ ⇒ αi

G |Γ ⇒ α1 ∨ α2

(∨r)
G |Γ ⇒ Π

G |Γ , α⇒ Π
(wl)

G |Γ ⇒ Π |Γ ⇒ Π

G |Γ ⇒ Π
(EC)

G

G |Γ ⇒ Π
(EW )

G |Γ ⇒
G |Γ ⇒ Π

(wr)

G |Γ 1,∆1 ⇒ Π1 G |Γ 2, ∆2 ⇒ Π2

G |Γ 1, Γ 2 ⇒ Π1 |∆1,∆2 ⇒ Π2

(com)

Table 1. Hypersequent calculus HMTL for MTL

Fig. 1. Classification (Nn,Pn) [4]

calculus for FLew, see Table 1. (Note that a sequent rule can be easily trans-
formed into a hypersequent rule by adding the context G everywhere).

A classification of Hilbert axioms in the language of FLew was introduced
in [4]. It is based on classes (Nn,Pn) which intuitively account for the difficulty
to deal with the axioms proof theoretically.

The general grammar for determining the class of each axiom is as follows
(A is the set of atomic formulas):

P0 ::= N0 ::= A
Pn+1 ::= Nn | Pn+1 · Pn+1 | Pn+1 ∨ Pn+1 | 1
Nn+1 ::= Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0

A graphical representation of this classification is depicted in Figure 1. Note that
the arrows → stand for inclusions ⊆ of the classes.



Class Axiom Rule (cf. Table 3) Logic

N2 α→ α · α (c) Gödel logic G

P2 α ∨ ¬α (em) Classical Logic CL

P3 ¬α ∨ ¬¬α (lq) SMTL
α ∨ (α→ β) ∨ (α ∧ β → γ) (bc2) 3-valued G (with (c))
¬(α · β) ∨ (α ∧ β → α · β) (wnm) WNM

¬(α · β)n ∨ ((α ∧ β)n−1 → (α · β)n) (wnm)n new!
Table 2. Some axioms and their corresponding logics

Γ , Γ ,∆⇒ Π

Γ,∆⇒ Π
(c)

G |Γ ,∆⇒ Π

G |Γ ⇒ |∆⇒ Π
(em)

G |Γ 1, Γ 2 ⇒
G |Γ 1 ⇒ |Γ 2 ⇒

(lq)

G |Γ 1, ∆2 ⇒ Π2 G |Γ 1, ∆3 ⇒ Π3 G |Γ 2, ∆3 ⇒ Π3

G |∆3 ⇒ Π3 |Γ 2, ∆2 ⇒ Π2 |Γ 1, ∆1 ⇒ Π1

(bc2)

G |Γ 2, Γ 1, ∆1 ⇒ Π1

G |Γ 1, Γ 1, ∆1 ⇒ Π1

G |Γ 1, Γ 3, ∆1 ⇒ Π1

G |Γ 2, Γ 3, ∆1 ⇒ Π1

G |Γ 2, Γ 3 ⇒ |Γ 1, ∆1 ⇒ Π1

(wnm)

{G | (Γ i, Γ j)
n, Σ ⇒ Π}1≤i,j≤(n−1)

{G | (Γ i, Γn+2j−1)n, Σ ⇒ Π}1≤i≤(n−1);1≤j≤n

{G | (Γn+2i−2, Γ j)
n, Σ ⇒ Π}1≤i≤n;1≤j≤(n−1)

{G | (Γn+2i−2, Γn+2j−1)n, Σ ⇒ Π}1≤i,j≤n

G |Γn, · · · , Γ (3n−1) ⇒ |Γ 1, · · · , Γn−1, Σ ⇒ Π
(wnm)n

Table 3. Some analytic rules

Paper [4] also contains a procedure to transform axioms within the classes3

N2,P2 and P3 into equivalent rules which preserve cut-admissibility once added
to the (hypersequent version of) the calculus for FLew.

Example 1. The axiom ¬(α · β)2 ∨ ((α ∧ β)→ (α · β)2) (that is ¬(α · β · α · β) ∨
((α ∧ β) → (α · β · α · β))) is in the class P3. The equivalent rule generated by
the algorithm in [4] is

{G |Γ 2
1, Γ

2
i , Σ ⇒ Π}1≤i≤5 {G |Γ 2

i , Γ
2
i+1, Σ ⇒ Π}2≤i≤4 G |Γ 2

2, Γ
2
5, Σ ⇒ Π

G |Γ 2, Γ 3, Γ 4, Γ 5 ⇒ |Γ 1, Σ ⇒ Π
(wnm)2

where the notation Xk within inference rules stands for X, . . . ,X k times, with
k ≥ 0. For further examples see Tables 2 and 3.

3 An explicit description of the axioms in these classes is given in Appendix.



2.1 Density and convergent rules

The density rule was introduced by Takeuti and Titani in their axiomatization
of first-order Gödel logic [17]. In hypersequent calculi (an instance of) this rule
has the form: G′ |Σ, p⇒ Π |Λ⇒ p

G′ |Σ,Λ⇒ Π
(D)

where p is a propositional variable not occurring in Σ,Λ,Π or G′ (p is an
eigenvariable). Note that adding the density rule to a hypersequent calculus can
have a dramatic effect. Consider, e.g., HMTL + (em), i.e., HMTL extended with
the rule (em) (cf. Table 3): by adding (D) we are able to prove the empty sequent
as follows:

p⇒ p (init)

p⇒ | ⇒ p
(em)

⇒ (D)

A similar situation arises for HMTL + (bc2) + (c). This is no surprise since, as
shown in [13], the addition and subsequent elimination of (D) from an extension
of HMTL leads to rational completeness for the formalized logic, and the two
calculi above formalize logics that are not rational complete: classical and 3-
valued Gödel logic (see Table 2).

However, for many extensions of HMTL, adding (D) has no effect on which
hypersequents are derivable: applications of (D) can be eliminated from deriva-
tions. Below we identify properties that, when satisfied by hypersequent rules
generated using the algorithm in [4], ensure density-elimination of the corre-
sponding extensions of HMTL. Rules satisfying these properties will be called
convergent.

Given a sequent S henceforth we will denote by L(S) its left hand side and by
R(S) its right hand side. Let S := Γ1, Γ2 ⇒ Π, we indicate by S[Γ1/Λ]l[Π/Σ⇒Ψ ]r

the sequent Λ, Γ2, Σ ⇒ Ψ . The notations apply also to metasequents, i.e., se-
quents built from metavariables.

In what follows we will refer to any hypersequent rule generated by the
procedure in [4] as completed.

Definition 2. Let (r) be a completed hypersequent rule:

G |S1 . . . G |Sm

G |C1 | . . . |Cq

Let G|Si and G|Sj be among its premises.

(0-pivot) G|Si is a 0-pivot if there is an s ∈ {1, . . . , q} such that R(Si) = R(Cs) and
the different metavariables in L(Si) are contained in those of L(Cs).

(n-pivot) G|Sj is an n-pivot for G|Si, for n > 0, if the following conditions hold:
• G|Sj is a 0-pivot
• R(Si) = R(Sj)

• L(Sj) = L(Si[
Γ 1/∆1

, . . .Γn /∆n
]l) for Γ 1, . . . Γn ∈ L(Si) and ∆1, . . .∆n ∈

L(Sj)



• If n > 1, G|Sj is a (n-1)-pivot for n premises G|Sj1 . . . G|Sjn , and

L(Sj) = L(Sji [
Γ 1/∆1

, . . . ,Γ i−1 /∆i−1
,Γ i+1 /∆i+1

, . . . ,Γn /∆n
]l)

for Γ 1, . . . , Γ i−1, Γ i+1, . . . , Γn ∈ L(Sji), ∆1, . . . ,∆i−1,∆i+1, . . . ,∆n ∈
L(Sj) and i = 1, . . . , n.

Definition 3. A completed hypersequent rule (r) is convergent if for each premise
G|Si one of the following conditions holds: (1) R(Si) = ∅, (2) G|Si is a 0-pivot,
or (3) there is a premise G|Sj which is an n-pivot for G|Si, with n > 0.

Intuitively, the conclusion of a convergent rule results from a “minimal in-
terplay” among its premises. Indeed for a premise G|Si, in which R(Si) is not
empty, two cases can arise: either the metavariables contained in it are already
present in a component of the rule’s conclusion, or there is a premise G|Sj hav-
ing this property and which allows us to obtain G|Si by suitable replacements
of the metavariables.

Example 2. Convergent rules are all internal structural rules, (wnm), (lq) and
(wnm)n, see Table 3. For instance, in the particular case of (wnm)2 (cf. Ex. 1):

– All different metavariables in the premise P1 = G |Γ 2
1, Γ

2
1, Σ ⇒ Π are con-

tained in the component Γ 1, Σ ⇒ Π of the conclusion. Therefore, P1 is a
0-pivot.

– The premise P1 is a 1-pivot for all premises G |Γ 2
1, Γ

2
i , Σ ⇒ Π, 2 ≤ i ≤ 5 as

they differ from P1 only by one metavariable.
– P1 is a 2-pivot for the remaining premises of (wnm)2.

Completed rules that are not convergent are (em) and (bc2).

AxiomCalc. The procedure in [4] to transform axioms into equivalent ana-
lytic (hyper)sequent rules is implemented in the PROLOG-system AxiomCalc.
It takes as input any axiom provided by the user, indicates the class Nn or Pn
to which the axiom belongs and, for axioms within N2,P2 and P3, it generates
(a paper that contains) the equivalent (hyper)sequent rules. Finally, the system
checks whether the generated rules are convergent.

3 Sufficient Conditions for Density Elimination

In this section we prove that HMTL extended with any set of convergent rules
admits density-elimination. Our proof uses and refines the method in [6] of
density elimination by substitutions, which is outlined below: Let d be a sub-
derivation ending in the following uppermost application of density

··· d
′

G′ |Σ, p⇒ Π |Λ⇒ p
(D)

G′ |Σ,Λ⇒ Π

(D) is removed by substituting the occurrences of p in d in an “asymmetric”
way, according to whether p occurs in the left or in the right hand side of a



sequent. More precisely, each component S of a hypersequent in d is replaced by
S[p/Λ]l[p/Σ⇒Π ]r. This way, the application of (D) above is simply replaced by
(EC).

A problem: the resulting labeled tree, denoted by d∗, is in general not a cor-
rect derivation anymore. The reason being the presence in d of external struc-
tural rules different from (EW ) and (EC), that, by mixing the content of various
conclusion components, might lead to p-axioms in their premises, i.e. to hyperse-
quents of the form G|Θ, pk ⇒ p derivable from axioms simply using weakenings;
the problem is that the asymmetric substitution on a p-axiom leads, e.g., to
G|Θ,Λk, Σ ⇒ Π, which is no longer derivable in the same way.

The proof in [6]: Density-elimination was proved for calculi containing only
(EC), (EW ) and (com) as external structural rules. The only problematic case
was when in d one of the premises of (com) led to a p-axiom. This case was
handled by removing in d∗ this application of (com) and replacing it with a
suitable (sub)derivation starting from the other premise.

The addition of convergent rules: We show below that, though a convergent
rule (r) can manipulate more hypersequent components at once and hence might
create p-axioms, (r) behaves well with respect to the asymmetric substitutions.
Indeed, intuitively, if one or more premises of (r) led in d to a p-axiom, say
G|Θ, pk ⇒ p, the special premises of (r) called pivot are used to derive their
substituted version G|Θ,Λk, Σ ⇒ Π which allow us to correctly apply (r).

The length |d| of a derivation d is, as usual, the (maximal number of inference
rules) + 1, occurring on any branch. A (D)-free derivation is a derivation not
containing the (D) rule. The following lemma, which allows us to suitably “move”
multisets of formulas between components, is the key for our main proof.

Lemma 1. Given HMTL + R, with R any set of convergent rules.

1. Any derivation d of H can be transformed into a derivation of H[p/α]l[p/⇒α]r,
for any formula α and propositional variable p.

2. Let d′ and d1 be derivations of G′|Σ, p ⇒ Π|Λ ⇒ p (p /∈ G′, Σ,Π,Λ) and
G′|Θ,∆⇒ Ψ . We can find a derivation of G′|Θ,Λ⇒ Ψ |Σ,∆⇒ Π.

Proof. 1. Just replace p in d everywhere with α. The claim is proved by induction
on the length of the resulting derivation, as convergent rules are completed (and
hence substitutive, cf. the definition and the analogous lemma in [6]).

2. By 1. and d′ we have a derivation d2 of G′|Σ,�∆ ⇒ Π|Λ ⇒ �∆ where
�∆ stands for the multiplicative conjunction · of the formulas in ∆ (note that
p /∈ G′, Σ,Π,Λ). The desired derivation follows by applying (Cut) between
G′|Θ,Λ⇒ Ψ |∆⇒ �∆ and the end hypersequent of

··· d2
G′|Σ,�∆⇒ Π|Λ⇒ �∆

··· d1
G′|Θ,∆⇒ Ψ

(·l) + (EW )
G′|Θ,�∆⇒ Ψ |Σ,�∆⇒ Π

(Cut)
G′|Θ,Λ⇒ Ψ |Σ,�∆⇒ Π



We are now ready for the main theorem. Henceforth we denote by S∗i the se-
quent Si[

p/Λ]l[p/Σ⇒Π ]r, and by G∗,H∗, the hypersequents G,H, where the same
substitution is applied to each one of their components.

Theorem 1 (Density Elimination). HMTL extended with any set R of con-
vergent rules admits density elimination

Proof. To perform density elimination, it is sufficient to remove topmost appli-
cations of (D). Take the derivation d above in HMTL + (D) + R, ending in an
application of (D) and let d′ be the (D)-free derivation ending in

G′ |Σ, p⇒ Π |Λ⇒ p

As convergent rules are particular completed rules, they preserve cut-elimination
when added to HMTL. Hence we assume that d′ is cut-free.

Claim: For each hypersequent H in d′ that is not a p-axiom, one can find a
(D)-free derivation of G′|H∗.

The result on density elimination follows from this claim. Just let H be
G′|Λ ⇒ p|Σ, p ⇒ Π. We get that G′ |G′ |Λ,Σ ⇒ Π |Λ,Σ ⇒ Π is derivable
(note that (G′)∗ = G′ by the eigenvariable condition on p). The desired proof of
G′|Λ,Σ ⇒ Π follows by multiple applications of (EC).

The proof of the claim proceeds by induction on the length of the cut-free
subderivation dH of H in HMTL + R. We distinguish cases according to the
last rule (r) applied in dH . The cases |dH | = 0, or when (r) is (EC) or (EW )
are easy. The proof for logical rules and for (com) proceeds as in [6].

Convergent rules: Assume that (r) is a convergent rule of the form

G |S1 . . . G |Sm
G |C1 | . . . |Cq

(r)

and that the conclusion of (r) contains no p-axiom. We show how to find a
derivation of

G′|G∗|C∗1 | . . . |C∗q .

Take a premise G|Si. If G|Si is not a p-axiom, the inductive hypothesis gives
us a derivation of G′|G∗|S∗i . Note that this is always the case when R(Si) = ∅,
and when G|Si is a 0-pivot as in the latter case the metavariables instantiated
to obtain Si are all included in one component of the conclusion. Thus, if G|Si
was a p-axiom, the conclusion would be a p-axiom as well, thus contradicting
the assumption.

Assume now that G|Si is a p-axiom. We show below that we can always
obtain a (D)-free derivation of

G′ |G∗ |S∗i |C∗s

for some s ∈ {1, . . . , q}. Being (r) convergent, there is an n-pivot premise G|Sj
for G|Si. We show how to use G|Sj to obtain the required derivation.



– Case n = 1: There is a 1-pivot premise G|Sj for G|Si, i.e., (the metasequent
leading to) Si differs only in 1 metavariable from (that of) Sj . By Defini-
tion 2, G|Sj is also a 0-pivot and hence it is not a p-axiom. Let G|Si and
G|Sj be obtained as instantiations of the following premises4 of (r):

Si is obtained from Θ,Γ
k
,∆

l ⇒ Π and Sj from Θ,∆
k+l ⇒ Π

As G|Si is a p-axiom and G|Sj is not, only Γ can be instantiated with a
propositional variable p. The most general case is when Γ is instantiated by
Γ, pn, the metavariable ∆ by the multiset ∆, Θ by Θ and Π by p. Hence

G|Si is G|Θ,Γ k, ∆l, pmk ⇒ p and G|Sj is G |Θ,∆k+l ⇒ p.

As G|Sj is not a p-axiom, by the inductive hypothesis we have a derivation
for G′|G∗|Θ,∆k+l, Σ ⇒ Π. Using the derivation d′ of G′ |Σ, p⇒ Π |Λ⇒ p,
by k applications of Lemma 1.2 with (EW ) and (EC) we get

G′ |G∗ |Θ,Λk, ∆l, Σ ⇒ Π |Σ,∆⇒ Π

Now, by multiple applications of internal weakenings (wl), we have

G′ |G∗ |Θ,Γ k, Λmk, ∆l, Σ ⇒ Π |Σ,∆⇒ Π

From further repeated applications of (wl) on the fourth component, we
finally obtain G′ |G∗ |S∗i |C∗s , where Cs stands for the component of the
conclusion to which all the metavariables in (the metasequent leading to) Sj
belong.

– Assume that there is an n-pivot premise G|Sj for G|Si, with n > 1. By
Def. 2 (the metasequent leading to) G|Si differs from (that of) G|Sj by n
metavariables and there exist n other premises for which G|Sj is an (n− 1)-
pivot. As in the previous case, let Si and Sj be obtained respectively as
instantiations of the following premises of (r)

Θ,Γ
k1
1 , . . . , Γ

kn
n ,∆

l1
1 , . . . ,∆

ln
n ⇒ Ψ and Θ,∆

k1+l1
1 , . . . ,∆

kn+ln
n ⇒ Ψ

Assume w.l.o.g. that G|Sj is:

G |Θ,∆k1+l1
1 , . . . ,∆kn+ln

n ⇒ p

Two cases have to be considered, according to the possible instantiations of
the metavariables Γi with the propositional variable p in G|Si:
(i) In G|Si all the metavariables Γi are instantiated with a multiset Γi

together with at least one occurrence of p. Then we repeatedly apply
Lemma 1.2 to d′ and G|Sj together with (EW ) and (EC) to replace
∆1, . . . ,∆n with Λ in Sj , respectively k1, . . . kn times. This way we get

G|Θ,Λk1 , . . . , Λkn , ∆l1
1 , . . . ,∆

ln
n , Σ ⇒ Π|∆1, Σ ⇒ Π| . . . |∆n, Σ ⇒ Π.

The desired hypersequentG′ |G∗ |S∗i |C∗s follows by suitable applications
of (wl) and (EC) (as in the 1-pivot case, Cs stands for the component
of the conclusion to which all the metavariables in Sj belong).

4 To simplify the notation Θ stands for all the metavariables in common, except ∆.



(ii) In G|Si all the metavariables Γi are instantiated with Γi, p
mi and mi > 0

only for r of them (1 ≤ r < n). (Note that in this case Lemma 1.2 would
replace each metavariable ∆i with Λ, leading to at least n occurrences
of Λ, and n > r). The idea here is to find another premise of (r) which
is not a p-axiom, for which suitable applications of Lemma 1.2 do the
job. The existence of (at least one) such a premise is guaranteed by the
notion of n-pivot.
We first illustrate the way we proceed with an example for n = 3.
Assume that Si arises as an instantiation of Γ 1, Γ 2, Γ 3 ⇒ Π and Sj
as an instantiation of ∆1,∆2,∆3 ⇒ Π (G|Sj is a 3-pivot for G|Si). By
definition of 3-pivot, there exist 3 premises in (r) for which G|Sj is a 2-
pivot. For each of these premises, there exist 2 premises in (r) for which
G|Sj is a 1-pivot. In the figure below we show how all these premises are
related w.r.t the metavariables they instantiate.

(Case r = 1) If only 1 metavariable, say Γ 1, is instantiated in Si with
Γ1, p we need to find a corresponding premise which will not contain
a p-axiom, i.e., that does not contain Γ 1. The first occurrence of such
a premise is among the premises that have G|Sj as a 2-pivot, that is
∆1, Γ 2, Γ 3 ⇒ Π.
(Case r = 2) Assume now that 2 metavariables, say Γ 1, Γ 2, are in-
stantiated with Γ1, p and Γ2, p, respectively. Again, we need to find a
corresponding premise that is not a p-axiom. In this case, the set of
premises that have G|Sj as a 2-pivot does not suffice because each of
them contains either Γ 1 or Γ 2. The first occurrence of a premise that is
not a p-axiom is among the premises that have G|Sj as a 1-pivot, i.e.,
∆1,∆2, Γ 3 ⇒ Π.

In general, we can eventually find a premise that is not a p-axiom among
those that have G|Sj as (n− r)-pivot. Assume for the general case that
the occurrences of p in G|Si are related to the instantiation of r different
metavariables, w.l.o.g Γ1, . . . , Γr, i.e., Si is

Θ,Γ k11 , . . . , Γ knn , ∆l1
1 , . . . ,∆

ln
n , p

m1k1+...+mrkr ⇒ p with m1, . . . ,mr > 0

Then we can find premises for which G|Sj is an (n−r)-pivot; (the metase-
quent leading to) those premises differ from that of G|Si in r metavari-
ables. (At least) one of these premises will not be a p-axiom, and hence



it will have the form:

G |Θ,∆k1+l1
1 , . . . ,∆kr+lr

r , Γ
kr+1

r+1 , ∆
lr+1

r+1 , . . . , Γ
kn
n , ∆ln

n ⇒ p

By inductive hypothesis we have a derivation of:

G′ |G∗ |Θ,∆k1+l1
1 , . . . ,∆kr+lr

r , Γ
kr+1

r+1 , ∆
lr+1

r+1 , . . . , Γ
kn
n , ∆ln

n , Σ ⇒ Π

Then we repeatedly apply Lemma 1.2 together with (EW ) and (EC) to
replace ∆1, . . . ,∆r with Λ, respectively k1, . . . , kr times. After suitable
applications of internal weakening and further external contractions, we
finally get

G′ |G∗ |S∗i |C∗s .

In summary, when the last rule in dH is convergent, for each premise G|Si
we have:

– If G|Si does not contain any p-axiom, G′|G∗|S∗i is (D)-free derivable.

– If G|Si contains a p-axiom, then G′|G∗|S∗i |C∗s is (D)-free derivable.

The required derivation of G′|G∗|C1
∗|...|Cq∗ follows by (r) and subsequent

applications of (EC), if needed. This completes the proof of the main claim.

4 From Density Elimination to Standard Completeness

Theorem 1 together with the results in [3, 13] lead to standard completeness
for any logic L extending MTL with any set A of axioms having equivalent
convergent rules. (For all concepts of universal algebra below we refer to [3,9,13]).

As shown in [13], density elimination is indeed a uniform method to estab-
lish rational completeness for any extension of MTL. From Theorem 1 we can
therefore state the following: let L be an MTL-algebra (see [8] and steps 1-4 in
the introduction) satisfying the equations A∗ corresponding to the axioms in A

A formula α is satisfied in each dense L-chain ⇔ α is derivable in MTL + A.

Standard completeness is then achieved through so called Dedekind Mac-Neille
completion, which generalizes to various ordered algebraic structures Dedekind’s
embedding of the rational numbers into the reals.

It is shown, e.g. in [13], that the Dedekind-McNeille completion of a dense
MTL-chain is still a dense MTL-chain (in other words, it is preserved by
Dedekind-MacNeille-completion). It is easy to see that the results in [3] on the
preservation of equations by this completion hold for the equations A∗ when re-
stricting to MTL-chains. Hence the Dedekind-MacNeille completion of a dense
L-chain is still a dense L-chain, and in addition it is order-isomorphic to [0, 1].
This leads to standard completeness for the logic L.



Remark Our sufficient condition for density-elimination can be easily extended
to first-order calculi, hence leading, by the results in [6], to standard completeness
proofs for axiomatic extensions of first-order MTL. In contrast, convergency of
rules might be too weak to ensure density-elimination for hypersequent calculi
not containing (wl) and (wr). For these calculi, formalizing logics which extend
Uninorm Logic UL [13], only calculi-tailored proofs of density-elimination are
available; the proof in [6] applies indeed to very few of them, namely, those
extending the calculus for UL only with additional internal structural rules
having a very simple structure (e.g. contraction (c) is not one of them).

4.1 A case study

As a corollary of our results follows that the family of logics obtained by ex-
tending MTL with the axioms (wnm)n: ¬(α · β)n ∨ ((α∧ β)n−1 → (α · β)n), for
n ≥ 2 (here xn stands for x · · · · · x, n times) are standard complete and hence
they are fuzzy logics in the sense of [11]. This new family of logics, discovered by
playing with AxiomCalc, contains infinitely many different logics. This can be
easily seen by noticing that (wnm)n is valid in the m-valued logic of  Lukasiewicz
if and only if m ≤ n+ 1.
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A Appendix

The normal form of axioms within the classes N2, P2 and P3 is the following.
N2: Axioms have the form

∧
1≤i≤n δi, in which every δi is a α1 · · ·αm → β

where:
– β = 0 or β1 ∨ · · · ∨ βk and each βl is a multiplicative conjunction of

propositional variables and

– each αi is of the form
∧

1≤j≤p γ
j
i → βji where

◦ βji = 0 or a propositional variable, and

◦ γji is a multiplicative conjunction or a disjunction of propositional
variables (or 1).

P2: Axioms have the form
∨

1≤i≤n δi, where each δi is of the form∧
1≤j≤m αj → βj or

∧
1≤j≤m αj where:

– each αj is a multiplicative conjunction or disjunction of propositional
variables and 1, and

– βj = 0 or a propositional variable.
P3: Axioms have the form δ1 ∨ · · · ∨ δn, where each δi is in N2.


