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Abstract
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first-order fuzzy logics using a Dedekind-MacNeille-stylecompletion and embedding.
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1 Introduction

Elimination of the cut rule is a fundamental topic in Proof Theory, corresponding to
the removal of lemmas from proofs. However, the addition andelimination of other
rules also merit investigation. In this paper we consider one such rule, important in
the meta-mathematics of Fuzzy Logic: the so-called “density rule” of Takeuti and
Titani [18]; formalized Hilbert-style as:

(A → p) ∨ (p → B) ∨ C

(A → B) ∨ C
(density)

wherep is a propositional variable not occurring inA, B, or C. IgnoringC, this
can be read contrapositively as saying (very roughly) “ifA > B, thenA > p and
p > B for somep”; hence the name “density”.

Adding (density) to Classical Logic leads to inconsistency. Just takeA to be⊤ and
B to be⊥: the premise is classically equivalent to⊤ and the conclusion to an arbi-
trary C. However, for other logics the addition of (density) can be useful, or even
“admissible” in the sense that it provides no new theorems. In particular, although
the density rule was used by Takeuti and Titani to axiomatizeIntuitionistic Fuzzy
Logic [18] (better known as first-order Gödel Logic), alternative axiomatizations
[13, 17] show that it is redundant. More generally, (density) is a useful tool for
axiomatizing fuzzy logics defined via thet-norm based approach of Hájek [11].
Indeed it is shown in [15] thatanyaxiomatic extension of the elementary proposi-
tional fuzzy logic Uninorm Logic extended with (density) iscomplete with respect
to a corresponding class of linearly and densely ordered algebras. So-called “stan-
dard completeness” with respect to algebras with lattice reduct [0, 1] can then be
obtained in many cases by means of a Dedekind-MacNeille-style completion.

Density eliminationprovides a method for showing that (density) is unnecessary
in these axiomatizations, and hence for establishing standard completeness for the
original systems. This general approach contrasts with more logic-specific alge-
braic techniques for proving standard completeness, e.g. [11, 14, 9, 16], which en-
counter problems for logics lacking weakening theoremsA → (B → A). The first
“syntactic elimination” of (density) was provided for first-order Gödel Logic by
Baaz and Zach [4] in the framework ofhypersequents; a generalization of Gentzen
sequents to multisets of sequents introduced by Avron in [1]. The elimination
method follows the spirit of Gentzen’s cut elimination, proceeding by induction
on the height of a derivation of the premise and shifting applications of the rule
upwards. This approach was extended in [15] to several otherpropositional logics
using calculus-tailored generalizations of the density rule (as in Gentzen’s “mix”
rule). However, these generalized density rules are of a combinatorial nature and
are particularly complicated for logics without weakening.

In this paper we introduce a new method,density elimination by substitutions, in
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which (similarly to normalization for Natural Deduction systems) applications of
the density rule are removed from derivations by making suitable substitutions for
the new propositional variables. This leads to elegant and uniform density elimina-
tion proofs for broad classes of hypersequent calculi and avoids the combinatorial
difficulties of the Gentzen-style proofs in [4, 15]. In particular, we show that den-
sity elimination by substitutions succeeds for single-conclusion hypersequent cal-
culi with weakening rules that satisfy conditions defined for cut elimination in [5].
We also adapt the method to deal with calculi without weakening rules and show
that the same syntactic criteria guarantee density elimination when extended with
a further condition. In particular, we obtain uniform density elimination proofs for
classes of calculi extending those for first-order Uninorm Logic [15] and first-order
Monoidalt-Norm Logic [10, 16, 3].

We also consider the primary application of density elimination. Generalizing the
approach of [15] (in particular, to the first-order level), we show that calculi ad-
mitting density elimination and some further natural properties are complete with
respect to linearly and densely ordered algebras. It follows that Gentzen systems
and axiomatizations for many first-order fuzzy logics are complete in this respect.
Finally, standard completeness is established for systemsfor several fuzzy logics
including first-order Uninorm Logic and first-order Monoidal t-Norm Logic using
a Dedekind-MacNeille-style completion and embedding.1

2 Sequent and Hypersequent Calculi

We begin with some preliminary definitions. A(first-order) (countable) language
L consists of countable sets of (term) variables XL; function symbols FL; predi-
cate symbols PL; and connectives CL with given arities.L-termsare constructed
as usual from variables and function symbols, whileatomicL-formulasare con-
structed from predicate symbols and terms.L-Formulasare either atomic or of the
form ⋆( ~A) for anm-ary connective⋆ ∈ CL where ~A ≡ A1, . . . , Am, orQxA with
Q ∈ {∀, ∃}. We distinguish syntactically between free and bound variables, using
a or b to denote the former, andx or y the latter, and recall that anL-sentenceis an
L-formula with no free variables. For convenience we call nullary function sym-
bols,constants, and nullary predicate symbols,propositional variables. Finally, we
define|A| as the number of occurrences of connectives and quantifiers in A.

We indicate withΓ, ∆, Π, Σ (possibly empty) multisets of formulas[A1, . . . , An],
writing Γ ⊎ ∆ or sometimesΓ, ∆ for the multiset sum ofΓ and∆, letting Γ, A
denoteΓ ⊎ [A] for a formulaA. We writeΓn for Γ ⊎ . . . ⊎ Γ (n times) forn ∈ N

whereΓ0 = [], andAn for the multiset[A]n.

1 An earlier version of this paper introducing density elimination by substitutions for logics
with weakening appeared as [7].
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Γ,⊥ ⇒ ∆
(⊥)

Γ ⇒ ⊤
(⊤)

Γ, A,A ⇒

Γ, A ⇒
(wc)

Γ,Πn
1 ⇒ ∆ . . . Γ,Πn

n−1 ⇒ ∆

Γ,Π1, . . . ,Πn−1 ⇒ ∆
(cn)

Γ ⇒ ∆
Γ, A ⇒ ∆

(wl) Γ ⇒
Γ ⇒ A

(wr)
Γ, A,A ⇒ ∆

Γ, A ⇒ ∆
(cl) Γ ⇒ Π ⇒ ∆

Γ,Π ⇒ ∆
(mix)

Fig. 1. Additional Sequent Rules

2.1 Sequents

A (single-conclusion) sequentS in the languageL is an ordered pair consisting of
a finite multiset of (antecedent) formulasΓ and a multiset∆ containing at most one
(consequent) formula, writtenΓ ⇒ ∆.

Defining sequents using multisets rather than sequences or sets ensures that the
multiplicity but not the order of formulas matters. Note also that we explicitly
define sequents as single-conclusion (multiple-conclusion allows∆ to be a finite
multiset), often writing justA for ∆ = [A] and an empty space for∆ = [].

A sequent ruleis a set of(sequent rule) instances: ordered pairs consisting of a
finite set of sequentsS1, . . . , Sn calledpremisesand a sequentS called thecon-
clusion, written S1, . . . , Sn / S or S1 ... Sn

S
. Instances with no premises are called

axioms. We call a sequent ruleschematicif it is presented using only multiset vari-
ables and propositional formulas built from formula variables. The instances of
such a rule are obtained as usual by uniformly replacing the multiset variables by
arbitrary multisets of formulas and the formula variables by arbitrary formulas.

In general, a sequent calculus is just any set of sequent rules. Here we are a bit more
specific, however. We consider calculi with a basic stock of axioms, a cut rule, and
two sets of schematic rules – structural and logical – obeying some natural restric-
tions. A paradigmatic example of such a calculus is presented in Appendix A: a
multiset version (with exchange internalized) of∀FLe, the first-order Full Lambek
Calculus with Exchange. Further sequent calculi are obtained from this calculus
by adding rules such as those in Fig. 1. In particular, addingthe axiom schema
(⊤) and(⊥) gives a calculus∀FL⊥

e (bounded∀FLe) for first-orderMAILL (Mul-
tiplicative Additive Intuitionistic Linear Logic). Adding the weakening rules (wl)
and (wr) to∀FLe gives∀FLew, a calculus for first-orderAMAILL (Affine MAILL),
and extending∀FLew with the contraction rule (cl) gives a calculus∀FLewc for first-
order Intuitionistic Logic. We will refer to these calculi (collected in Figure 2) and
their rules in the definitions below and throughout the paper.

Definition 1 A simple sequent calculusL consists of:

(1) a stock (id) of basic axioms of the formA ⇒ A.
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Label Rules Logic

∀FLe Appendix A First-Order Full Lambek Calculus with Exchange

∀FL
⊥
e ∀FLe + (⊥) + (⊤) of Fig. 1 First-OrderMAILL

∀FLew ∀FLe + (wl) + (wr) of Fig. 1 First-OrderAMAILL

∀FLewc ∀FLew + (cl) of Fig. 1 First-Order Intuitionistic Logic

Fig. 2. Sequent Calculi Reference Chart

(2) a set ofschematic structural ruleseach satisfying thelocal subformula prop-
erty: any formula appearing on the left (right) in the premise of arule instance
should occur as a subformula on the left (right) in its conclusion.

(3) a set ofschematic logical rulesconsisting for each connective⋆ of left logical
rules labelled{(⋆⇒)j}j∈I⋆

l
and right logical ruleslabelled{(⇒⋆)k}k∈I⋆

r
for

(possibly empty) finite index setsI⋆
l , I⋆

r , with instances of the form (n ≥ 0):

Π1 ⇒ Σ1 · · · Πn ⇒ Σn

Γ, ⋆( ~A) ⇒ ∆
(⋆⇒)j

Π1 ⇒ Σ1 · · · Πn ⇒ Σn

Γ ⇒ ⋆( ~A)
(⇒⋆)k

where:
(i) ⋆( ~A) is called theprincipal formulaof the rule instance.

(ii) Πi andΣi for i = 1 . . . n consist ofactive formulastaken from~A together
with othercontext formulas.

(iii) the rule instance obtained by removing the principal formula from the
conclusion and the active formulas from the premises satisfies the local
subformula property (see (2)).

(4) the (multiplicative version of the)cut rule, with instances:

Γ ⇒ A Π, A ⇒ ∆
Γ, Π ⇒ ∆

(cut)

whereA is called thecut formula.

L is calledw-simpleif it contains the weakening rules (wl) and (wr) of Fig. 1.

Definition 2 A first-order (w-)simple sequent calculusis a (w-)simple sequent cal-
culus plus the quantifier rules(∀⇒), (⇒∀), (∃⇒), and(⇒∃) of Appendix A.

A derivationd of a sequentS from sequentsS1, . . . , Sn in a sequent calculusL is a
labelled tree with the root labelled byS, and for each node labelledS ′ with parent
nodes labelledS ′

1, . . . , S
′
m (where possiblym = 0), S ′

1, . . . , S
′
m / S ′ is an instance

of a rule ofL. In this case, we write:

d, S1, . . . , Sn ⊢L S
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G

G | S
(ew)

G | S | S

G | S
(ec)

G | Γ1,Π1 ⇒ ∆1 G | Γ2,Π2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1 | Π1,Π2 ⇒ ∆2
(com)

Fig. 3. Additional Hypersequent Rules

or S1, . . . , Sn ⊢L S to denote just that there exists such a derivation. Theheight|d|
of the derivation is the height of the labelled tree.

2.2 Hypersequents

A hypersequentG is a finite multiset of sequents (called thecomponentsof G) [1]:

Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

Since sequents are assumed to be single-conclusion, hypersequents are likewise
single-conclusion.

Notions of rules, rule instances, derivations, and so on, defined for sequents and
sequent calculi transfer unscathed to hypersequents and hypersequent calculi: just
replace all mention of sequents with hypersequents. Moreover, the hypersequent
calculi that we are interested in arise uniformly from simple sequent calculi via
a simple transfer principle. First we takehypersequent versionsof sequent rules,
obtained intuitively by adding a “side hypersequent”G to both the premises and
the conclusion. For example, the hypersequent versions of the implication rules in
Appendix A are:

G | Γ, B ⇒ ∆ G | Π ⇒ A

G | Γ, Π, A → B ⇒ ∆
(→⇒)

G | Γ, A ⇒ B

G | Γ ⇒ A → B
(⇒→)

More precisely, thehypersequent versionof a sequent rule consists of all instances
(G | S1), . . . , (G | Sn) / (G | S) for any hypersequentG and instanceS1, . . . , Sn / S
of the sequent rule, callingS1, . . . , Sn, S theactive componentsof the instance. We
qualify the hypersequent versions of the quantifier rules(∃ ⇒) and (⇒ ∀) (for
convenience, without introducing new terminology) by extending the eigenvariable
condition that the variablea in the premise does not occur in the conclusion to the
side-hypersequentG. The hypersequent version of a (first-order) simple sequent
calculusL consists of the hypersequent versions of the rules ofL.

Taking hypersequent versions alone is not enough to obtain calculi for new logics,
however. We require further “external” structural rules that operate on components
of the hypersequent. The external weakening and contraction rules (ew) and (ec) of
Fig. 3 add and contract components respectively while the key rule to deal with the
prelinearity axiom schema(A → B)∨ (B → A) is Avron’s “communication” rule
(com) which permits interaction between components [2].
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L HL
C (the hypersequent version ofL plus (ec), (ew), and (com) of Fig. 3)

∀FL
⊥
e First-Order Uninorm Logic

∀FLew First-Order Monoidalt-Norm Logic

∀FLew + (wc) First-Order Strict Monoidalt-Norm Logic

∀FLew + (cn) First-Ordern-Contractive Monoidalt-Norm Logic

∀FLewc First-Order Gödel Logic

Fig. 4. Hypersequent Calculi Reference Chart

Following [5], we formulate our transfer principle as follows.

Definition 3 Let L be any (first-order) simple sequent calculus. ThenHLC is the
hypersequent version ofL plus (ec), (ew), and (com) of Fig. 3.

For example,H∀FL
C
ewc is a hypersequent calculus for first-order Gödel Logic [2, 4].

Removing the contraction rule (cl) gives a calculusH∀FLC
ew

for first-order Monoidal
t-Norm Logic [10, 3], and removing also the weakening rules (wl) and (wr) gives a
calculusH∀FL⊥C

e for first-order Uninorm Logic [15]. Hypersequent calculi for first-
order Strict Monoidalt-Norm Logic [10] and first-ordern-Contractive Monoidal
t-Norm Logic [6] are obtained by extendingH∀FLC

ew
with hypersequent versions of

(wc) and (cn), respectively [5, 6]. In all of these calculi, (com) can be used to prove
instances of the prelinearity axiom schema as follows:

A ⇒ A
(id)

B ⇒ B
(id)

A ⇒ B | B ⇒ A
(com)

A ⇒ B |⇒ B → A
(⇒→)

⇒ A → B |⇒ B → A
(⇒→)

⇒ A → B |⇒ (A → B) ∨ (B → A)
(⇒∨)2

⇒ (A → B) ∨ (B → A) |⇒ (A → B) ∨ (B → A)
(⇒∨)1

⇒ (A → B) ∨ (B → A)
(ec)

For convenience, we collect the definitions of the various hypersequent calculi men-
tioned above in Fig. 4.

2.3 Criteria for Cut-Elimination

Syntactic criteria for preserving cut elimination when a sequent calculusL is “lifted”
to HLC were introduced in [5]. Intuitively, it should be possible (a) to shift appli-
cations of (cut) upwards over the premises of rule instanceswhere the cut formula
is not principal (rules aresubstitutive), and (b) to replace applications of (cut) in
which the cut formula is principal in both premises by applications of (cut) with
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smaller cut formulas (logical rules arereductive). These notions are formalized for
the underlying simple sequent calculus as follows.

Definition 4 Logical rules{(⇒⋆)j}j∈I⋆

l
and{(⋆⇒)k}k∈I⋆

r
for ⋆ are reductivein a

(first-order) simple sequent calculusL if for any j ∈ I⋆
l , k ∈ I⋆

r , and instances:

Γ1 ⇒ ∆1 · · · Γn ⇒ ∆n

Γ, ⋆( ~A) ⇒ ∆
(⋆⇒)j

Γ′
1 ⇒ ∆′

1 · · · Γ′
m ⇒ ∆′

m

Γ′ ⇒ ⋆( ~A)
(⇒⋆)k

Γ, Γ′ ⇒ ∆ is derivable from{Γi ⇒ ∆i}1≤i≤n and{Γ′
i ⇒ ∆′

i}1≤i≤m using only
(cut) with cut formulas from~A and the structural rules ofL.

Example 5 The logical rules of∀FLe are reductive in this calculus. Consider, e.g.
instances of(→⇒) and(⇒→):

Γ, B ⇒ ∆ Π ⇒ A
Γ, Π, A → B ⇒ ∆

(→⇒)
and

Σ, A ⇒ B
Σ ⇒ A → B

(⇒→)

Then we have the required derivation:

Γ, B ⇒ ∆
Σ, A ⇒ B Π ⇒ A

Π, Σ ⇒ B
(cut)

Γ, Π, Σ ⇒ ∆
(cut)

To deal with shifting applications of (cut) upwards, we require some way of indi-
cating a particular formula in hypersequents; either the cut formula or the principal
formula of some rule. Amarked hypersequentG is a hypersequent with one oc-
currence of a formulaA distinguished, writtenG ′ | Γ, A ⇒ ∆ or G ′ | Π ⇒ A. A
marked instanceof a rule is an instance with the occurrence of the principal for-
mula marked, if there is one. We will assume that all notions pertaining to usual
hypersequents also apply in the same way to marked hypersequents.

It is now straightforward to define the result of multiple applications of (cut) with
one fixed premise. We mark the cut formula in the fixed premise,while in the
other premise, a marked hypersequent indicates a formula not to be used in the
applications of (cut).

For a (marked or unmarked) hypersequentG and a marked hypersequentH, we
defineCUT(G,H) as the smallest set satisfying:

1. (H′ | G) ∈ CUT(G,H) whereH = (H′ | Π ⇒ A) orH = (H′ | Π, A ⇒ ∆).
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2. (G′ | Γ, Π ⇒ ∆) ∈ CUT(G,H) if:

either(G′ | Γ, A ⇒ ∆) ∈ CUT(G,H) and H = (H′ | Π ⇒ A)

or (G′ | Γ ⇒ A) ∈ CUT(G,H) and H = (H′ | Π, A ⇒ ∆)

noting that the occurrence ofA in G ′ | Γ, A ⇒ ∆ or G ′ | Γ ⇒ A is unmarked.

Notice that for a sequentS = (Γ, An ⇒ ∆) and marked sequentS ′ = (Π ⇒ A)
whereA does not occur unmarked inΓ, the setCUT(S, S ′) consists of all sequents
of the form Γ, An−k, Πk ⇒ ∆ for k = 1 . . . n. For S = (Γ ⇒ A) and S ′ =
(Π, A ⇒ Σ), the only member ofCUT(S, S ′) is Γ, Π ⇒ Σ.

Definition 6 A rule (r) is substitutiveif for any marked instanceS1, . . . , Sn / S of
(r), marked sequentS ′ andS ′′ ∈ CUT(S, S ′):

S ′
1, . . . , S

′
n / S ′′ is an instance of(r) for someS ′

i ∈ CUT(Si, S
′) for i = 1 . . . n

The logical rules of∀FLe are substitutive. However, for the standard weakening and
contraction rules of this calculus, we require a slightly weaker condition.

Definition 7 A rule (r) is weakly substitutivein a sequent calculusL if for any
marked instanceS1, . . . , Sn / S of (r), marked sequentS ′, andS ′′ ∈ CUT(S, S ′):

S ′′ is derivable fromS ′
1, . . . , S

′
n for someS ′

i ∈ CUT(Si, S
′) for i = 1 . . . n using

only the structural rules ofL and(r).

Example 8 The rules (wl), (wr), (cl), (wc), (mix), and (cn) (n ≥ 2) of Fig. 1 are all
weakly substitutive in∀FLe. E.g., for (mix), suppose that we have an instance:

Γ, Ak ⇒ Π, An−k ⇒ ∆
Γ, Π, An ⇒ ∆

ConsiderS ′ = Σ ⇒ A andS ′′ = Γ, Π, Σm, An−m ⇒ ∆. We obtain the following
derivations fork ≤ m (left) andk > m (right):

Γ, Σk ⇒ Π, Σm−k, An−m ⇒ ∆

Γ, Π, Σm, An−m ⇒ ∆

Γ, Σm, Ak−m ⇒ Π, An−k ⇒ ∆

Γ, Π, Σm, An−m ⇒ ∆

However, the following variant of (mix) is not weakly substitutive in∀FLe:

Γ ⇒ ∆ Π ⇒ ∆
Γ, Π ⇒ ∆

(mix)′

To see why, consider an instance where∆ = [A] and cut the conclusion with
Σ, A ⇒: it is not possible to deriveΓ, Π, Σ ⇒ fromΓ, Σ ⇒ andΠ, Σ ⇒ in ∀FLe +
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(mix)′. On the other hand, this ruleis weakly substitutive in∀FLewc: in this case we
can apply (cl) repeatedly to obtain the required derivations.

Definition 9 A (first-order) simple calculusL is called reductiveif it has reduc-
tive logical rules, andsubstitutiveif it has substitutive logical rules and weakly
substitutive structural rules.

Let us now assume thatL is any (first-order) simple reductive and substitutive se-
quent calculus. We will show (following the proof of [5]) that the transferred hy-
persequent calculusHLC admits cut elimination. First, we state a technical lemma
asserting the “substitutivity” of calculi with substitutive rules, easily proved by in-
duction on the height of a derivation. Letd(t) andG(t) denote the results of substi-
tuting the termt for all free occurrences ofa in the derivationd(a) and hypersequent
G(a), respectively.

Lemma 10 If d1(a),G1(a), . . . ,Gn(a) ⊢HLC G(a) and t is a term whose variables
are all free and do not occur ind1(a), thend1(t),G1(t), . . . ,Gn(t) ⊢HLC G(t).

Theorem 11 HLC admits cut elimination.

Proof It is sufficient to show that an “uppermost” application of (cut) in anyHL
C-

derivation can be eliminated without introducing new applications of (cut). Hence,
lettingHLC

cf
beHLC without (cut), we prove the following:

Claim: For any hypersequentG and hypersequentH with marked formulaA:

if dG ⊢HLC

cf

G and dH ⊢HLC

cf

H, then ⊢HLC

cf

G′ for all G′ ∈ CUT(G,H)

Note that using Lemma 10 we can assume without loss of generality that any free
variables other than those inA that occur indG anddH are distinct. We prove the
claim by induction on the lexicographically ordered triple:

〈|A|, e(dH), |dG|〉

where e(d) =











0 if d ends with a logical rule applied to a marked formula

1 otherwise

We begin by considering the last application of a rule(r) in dG. If (r) is (id), then
a member ofCUT(G,H) is eitherH or of the formH′ | G: the claim follows
immediately for the former and by (ew) for the latter. If(r) is (ec), (ew), or (com),
then the claim follows by applying the induction hypothesisfollowed by(r).

Otherwise,(r) contains only one active component in its premises and conclusion.
We distinguish two cases:

10



(a) The application of(r) is of the form:

G | S1 . . . G | Sn

G | S0

and the principal formula (if there is one) isnot A on the opposite side to the
marked occurrence inH. Let H = H | S, whereS is of the appropriate form:
Π ⇒ A or Π, A ⇒ Σ. Pick G ′ | S ′

0 ∈ CUT(G | S0, H). If (r) is a quantifier
rule, then the claim follows by the induction hypothesis andan application of(r),
using Lemma 10 to take care of renaming variables when needed. Otherwise,(r)
is (weakly) substitutive and there exists a derivationd′, S ′

1, . . . , S
′
n ⊢L S ′

0, with
S ′

i ∈ CUT(Si, S) for i = 0, . . . , n, that uses only the structural rules ofL and(r).
By the induction hypothesis⊢HLC

cf

G′′ for all G′′ ∈ CUT(G | Si,H) for i = 1 . . . n.
The claim follows by lifting the derivationd′ to hypersequents (i.e.G′ | S ′

1, . . . ,G
′ |

S ′
n ⊢L G′ | S ′

0), since eachG′ | S ′
i ∈ CUT(G | Si,H).

(b) (r) is a logical or a quantifier rule whose application is of the form:

G1 . . . Gm

G′ | Γ, An ⇒ ∆ or
G1 . . . Gm

G′ | Γ ⇒ A

where for the case on the leftA 6∈ Γ, and in both casesA is the principal formula
of the application on the opposite side to the marked occurrence inH.

Let (r) be a logical rule and letGH ∈ CUT(G,H) whereH is of the form:

H′ | Π ⇒ A or H′ | Π, A ⇒ Σ

The only tricky case (others follow as above using substitutivity) is whenGH is:

G′′ | Γ, Πn ⇒ ∆ or G′′ | Γ, Π ⇒ Σ

whereG′′ ∈ CUT(G′,H). Notice that also:

G′′ | Γ, Πn−1, A ⇒ ∆ or G ′′ | Γ ⇒ A

is a member ofCUT(G,H). So by the substitutivity of (the logical rule)(r), there
existG′

i ∈ CUT(Gi,H) for i = 1 . . .m such that:

G′
1 . . . G′

m

G′′ | Γ, Πn−1, A ⇒ ∆ or
G′

1 . . . G′
m

G′′ | Γ ⇒ A

is an instance of(r). Moreover, by the induction hypothesis⊢HLC

cf

G′
i for i = 1 . . .m.

Hence there is aHLC
cf derivationd ending with such a rule application.

Now we consider two subcases:

11



(1) e(dH) = 1: i.e. dH does not end with the application of a logical rule to the
marked occurrence ofA. Mark the remaining occurrence ofA on the left or
right as appropriate ind to give a derivation ofG ′′ | Γ, Πn−1, A ⇒ ∆ or
G′′ | Γ ⇒ A, and remove the underlining indH. Observe that:

〈|A|, e(d), |dH|〉 < 〈|A|, e(dH), |dG|〉

Hence by the induction hypothesis and further applicationsof (ec),⊢HLC

cf

GH.

(2) e(dH) = 0: i.e. dH ends with the application of a logical rule to the marked
occurrence ofA = ⋆( ~A) of the form:

H1 . . . Hl

H′ | Π ⇒ A or
H1 . . . Hl

H′ | Π, A ⇒ Σ

Then by reductivity (of the sequent version of(r)) and lifting to hyperse-
quents,GH is derivable fromG′

1, . . . ,G
′
m,H1, . . . ,Hl with cut formulas from

~A = A1, . . . , Ak. But:

〈|Ai|, e(dH), |d|〉 < 〈|A|, e(dH), |dG|〉 for i = 1 . . . k

So by several applications of the induction hypothesis and (ec),⊢HLC

cf

GH.

Cases where(r) is a quantifier rule are very similar, except that in case (2),Lemma
10 is used to replace the new variablea in (⇒∀) or (∃⇒) with the new termt in
(∀⇒) or (⇒∃). 2

Corollary 12 HL
C has thesubformula property; i.e. if ⊢HLC G, then there exists a

cut-free derivationd of G in HLC such that any formula occurring ind is a subfor-
mula of a formula inG.

3 Density Elimination by Substitutions

We now turn our attention to the main topic of this paper: the density rule, utilized
(in a different form) by Takeuti and Titani to axiomatize first-order Gödel Logic
[18]. Following Baaz and Zach [4], the hypersequent versionis written as follows:

G | Γ ⇒ p | Σ, p ⇒ ∆

G | Γ, Σ ⇒ ∆
(density)

wherep is a propositional variable not occurring inΓ, Σ, ∆, or G.

To gain an intuitive understanding of the rule, consider a simple instance:

A ⇒ p | p ⇒ B

A ⇒ B

12



Sincep does not occur inA or B we can read the premise as universally quantified:
“for all p” A ⇒ p | p ⇒ B. Now interpret⇒ as “≤” and | as “or”. Contrapositively,
the rule says “ifA > B, thenA > p andp > B for somep”.

Adding the density rule to a hypersequent calculus can have adramatic effect. Con-
sider e.g. a calculus with the split rule:

G | Γ, Π ⇒ ∆

G | Γ ⇒ ∆ | Π ⇒
(split)

Extending the calculus with (density), we are able to prove the empty sequent:

p ⇒ p (id)

p ⇒|⇒ p
(split)

⇒ (density)

If the calculus also has weakening rules (see Fig. 1), then any hypersequent is deriv-
able: just apply (ew), (wl), and (wr) to the empty sequent andproceed as above.

However, for many calculi, adding (density) has no effect onwhich hypersequents
are derivable: applications of (density) can beeliminatedfrom derivations. In [4,
15], “Gentzen-style” (by analogy with cut elimination) elimination procedures are
defined. These proceed by induction on the height of a derivation of the premise
and shift applications of (density) upwards. The main difficulty, as for the corre-
sponding cut elimination method, is the duplication of components or formulas in
the derivation. For example, if thep in Σ, p ⇒ ∆ in the premise of (density) is
derived by internal contraction (cl), or one of the componentsΣ, p ⇒ ∆ or Γ ⇒ p
is derived by external contraction (ec), the permutation of(density) with (cl) or (ec)
does not necessarily move (density) higher up in the derivation. To solve this prob-
lem, ad hoc (Gentzen mix-style) rules are used that allow applications of (density)
to be handled “in parallel”. For example, density elimination can be established for
the hypersequent calculusH∀FLC

ewc
for first-order Gödel Logic using the following

generalization of (density) [4]:

G | Γ1 ⇒ p | . . . | Γn ⇒ p | Σ1, p
∗ ⇒ ∆1 | . . . | Σm, p∗ ⇒ ∆m

G | Γ1, . . . , Γn, Σ1 ⇒ ∆1 | . . . | Γ1, . . . , Γn, Σm ⇒ ∆m

wherep does not occur in the conclusion andp∗ stands for any multiset ofps.

The above rule is not suitable, however, in the absence of either contraction or
weakening rules. In this situation, more complicated “combinatorial” induction hy-
potheses are required, involving many hard-to-check cases[15].

Here we present a new method for removing applications of (density) from hyper-
sequent derivations:density elimination by substitutions. Similarly to normaliza-
tion for Natural Deduction systems (and the cut eliminationmethod in [5]), top-
most applications of (density) are removed by making suitable substitutions in the
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derivation for the new propositional variables. Proceeding “by substitutions” in-
stead of shifting applications of (density) upwards avoidsthe need for complicated
rules as induction hypotheses and leads to uniform density elimination proofs for
large classes of calculi. In particular, we are able to show density elimination for
all (first-order) w-simple hypersequent calculi with substitutive and reductive rules,
and obtain some general (but more limited) results for calculi without weakening.

3.1 Calculi with Weakening

In this section we show that the sufficient conditions for cutelimination of Section
2.3 guarantee thatHLC extended with (density) admits density elimination by sub-
stitutions for any (first-order) w-simple sequent calculusL. For an intuitive view of
the elimination procedure, consider a cut-free derivationd in such a calculusHLC

that ends in a topmost application of (density):

··· d′

G | Γ ⇒ p | Σ, p ⇒ ∆
(density)

G | Γ, Σ ⇒ ∆

Let us call sequents of the formΓ, p ⇒ p quasi-p-axioms, reflecting the fact that
such sequents are derivable in w-simple calculi using (wl) and (id). For all sequents
occurring in hypersequents ind that are not quasi-p-axioms, occurrences ofp are
replaced in an “asymmetric” way according to whether the occurrence is on the left
or the right in the sequent: withΓ if p occurs on the left, and, ifp occurs on the
right, with Σ on the left and∆ on the right (i.e.Π ⇒ p becomesΠ, Σ ⇒ ∆). Or,
to put matters another way, we perform repeatedcutson hypersequents occurring
in d with the sequentsΓ ⇒ p andΣ, p ⇒ ∆.

Following this replacement, the last step in the derivationbecomes an application
of (ec) rather than (density). However, the resulting labelled tree is no longer a
derivation; it requires some further “correction” steps:

(a) applications of logical and structural rules are replaced by suitable inferences
guaranteed by (weak) substitutivity.

(b) each subtree ending in an application of (com) involvinga quasi-p-axiom:

···
G′ | Γ1, Π1, p

l ⇒ p

···
G′ | Γ2, Π2, p

(k−l) ⇒ ∆1
(com)

G′ | Γ1, Γ2 ⇒ p | Π1, Π2, p
k ⇒ ∆1

14



after applying the substitutions becomes:

···
G′′ | Γ1, Π1, p

l ⇒ p

···
G′′ | Γ2, Π2, Γ

(k−l) ⇒ ∆1
(com)

G′′ | Γ1, Γ2, Σ ⇒ ∆ | Π1, Π2, Γ
k ⇒ ∆1

and is then replaced using (cut) and (wl) by a derivation of the form:

···
G′′ | Γ2, Π2, Γ

(k−l) ⇒ ∆1

·
·
·

G′′ | Γ1, Γ2, Σ ⇒ ∆ | Π1, Π2, Γ
k ⇒ ∆1

We are ready to make this more formal. For any hypersequentH, let:

H[Γ/pl,Σ⇒∆ /pr ]

be the hypersequent obtained by first replacing all occurrences ofp on the left in
components ofH with Γ, and then all componentsΠ ⇒ p with Π, Σ ⇒ ∆. Also let
H[A/p] beH with all occurrences ofp replaced byA. The following lemma is then
proved by a straightforward induction on the height of a derivation, making use of
the fact that the logical and structural rules of the underlying sequent calculus are
schematic and (weakly) substitutive.

Lemma 13 Let L be a (first-order) simple reductive and substitutive sequent cal-
culus and letG be a hypersequent wherep occurs only as a propositional variable.
If d ⊢HLC G, then⊢HLC G[A/p] for any formulaA.

We can now prove our main theorem, noting that for convenience, we write(r)∗ for
an application of a rule(r) with extra applications of (ew) and (ec).

Theorem 14 Let L be a (first-order) w-simple reductive and substitutive sequent
calculus. ThenHL

C plus (density) admits density elimination.

Proof For technical reasons, it will be useful in the proof to mimicthe “,” oc-
curring in hypersequents and its unit by suitable connectives⊙ andt (or different
symbols, if these are already taken). To this end, notice that we can assume thatL

contains the (reductive and weakly substitutive) rules(⊙⇒), (⇒⊙), (t ⇒), and
(⇒ t) of Appendix A. If not, then suppose that the theorem holds forthe calculus
extended with these rules. Since this extended calculus hasthe subformula property
by Corollary 12, the theorem holds for the original calculus.

To perform density elimination it is sufficient to remove topmost applications of

15



(density). Hence by Theorem 11 we can consider a cut-free derivationd ending:

··· d′

G | Γ ⇒ p | Σ, p ⇒ ∆
(density)

G | Γ, Σ ⇒ ∆

Claim: if dH is a cut-free derivation inHLC of a hypersequentH wherep occurs
only as a propositional variable and no component ofH is a quasi-p-axiom, then:

⊢HLC G | H[Γ/pl,Σ⇒∆ /pr ]

The desired result follows easily from this claim. Just letH beG | Γ ⇒ p | Σ, p ⇒
∆. We get⊢HLC G | G | Γ, Σ ⇒ ∆ | Γ, Σ ⇒ ∆ (noting thatG[Γ/pl,Σ⇒∆ /pr ] is just
G). So, by multiple applications of (ec), we have⊢HLC G | Γ, Σ ⇒ ∆.

The proof of the claim proceeds by induction on|dH|. For the base case,H is either
of the formH′ | B ⇒ B or is (the hypersequent version of) a substitutive logical
rule with no premise. In both cases, the claim follows by applying (ew).

For the inductive step, we distinguish cases according to the last rule(r) applied in
dH. If (r) is (ec), (ew) or a quantifier rule then the claim follows by applying the
induction hypothesis and(r), using Lemma 10 to take care of renaming variables
when needed. The remaining cases are as follows:

• Let (r) be a rule other than (ec), (ew), or (com) with an instance (since there is
only one active component in the premises and conclusion):

G′ | S1 . . . G′ | Sm

G′ | S

By assumptionG′ | S does not contain any quasi-p-axiom. Hence by the lo-
cal subformula property and the absence of cuts ind, also noG ′ | Si for i ∈
{1, . . . , m} contains a quasi-p-axiom. So by the induction hypothesis:

⊢HLC G | (G′ | S1)[
Γ/pl,Σ⇒∆ /pr ] . . . ⊢HLC G | (G′ | Sm)[Γ/pl,Σ⇒∆ /pr ]

But now, since the rules ofL are (weakly) substitutive and obey the local subfor-
mula property there exists a derivation for:

S1[
Γ/pl,Σ⇒∆ /pr ], . . . , Sm[Γ/pl,Σ⇒∆ /pr ] ⊢L S[Γ/pl,Σ⇒∆ /pr ]

that uses only the structural rules ofL and(r). The claim then follows by (ew),
lifting the above derivation fromL to HLC (i.e. addingG | G′[Γ/pl,Σ⇒∆ /pr ] to
both the premises and conclusion).

• If (r) is (com), two cases can occur: (a) none of the premises contains a quasi-
p-axiom or (b) one of the (active) premises does. For (a), the claim follows by
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applying the induction hypothesis and then (com). As an example, consider:

··· d1

G′ | Γ1, Π1 ⇒ p

··· d2

G′ | Γ2, Π2, p
k ⇒ ∆1

(com)
G′ | Γ1, Γ2, p

k ⇒ ∆1 | Π1, Π2 ⇒ p

Let G∗ = G′[Γ/pl,Σ⇒∆ /pr ]. Then by the induction hypothesis.:

⊢HLC G | G∗ | Γ1, Π1, Σ ⇒ ∆ and ⊢HLC G | G∗ | Γ2, Π2, Γ
k ⇒ ∆1

Hence by (com),⊢HLC G | G∗ | Γ1, Γ2, Γ
k ⇒ ∆1 | Π1, Π2, Σ ⇒ ∆.

For (b), we have an application of (com) of the form:

G′ | Γ1, Π1, p
l ⇒ p G′ | Γ2, p

(k−l), Π2 ⇒ ∆1
(com)

G′ | Γ1, Γ2, p
k ⇒ ∆1 | Π1, Π2 ⇒ p

Let G∗ = G′[Γ/pl,Σ⇒∆ /pr ]. Then by the induction hypothesis:

d1 ⊢HLC G | G∗ | Γ2, Γ
(k−l), Π2 ⇒ ∆1

Our aim is to find a derivation forG | G∗ | Γ1, Γ2, Γ
k ⇒ ∆1 | Π1, Π2, Σ ⇒ ∆.

Let⊙[A1, . . . , Am] stand forA1⊙ . . .⊙Am if m ≥ 1 andt if m = 0. Consider
the original derivationd′ ending with the premiseG | Γ ⇒ p | Σ, p ⇒ ∆ of
(density). By Lemma 13, we can substitute⊙Π2 for p in this derivation to get:

d2 ⊢HLC G | Γ ⇒ ⊙Π2 | Σ,⊙Π2 ⇒ ∆

Let d3 be the (easy) derivation ofΠ2 ⇒ ⊙Π2 using(⇒⊙), (⇒ t), and (id), and
let d′

2 be the derivation:

··· d2

G | Γ ⇒ ⊙Π2 | Σ,⊙Π2 ⇒ ∆
(wl)

G | Γl ⇒ ⊙Π2 | Π1,⊙Π2, Σ ⇒ ∆

··· d3

Π2 ⇒ ⊙Π2
(cut)∗

G | Γl ⇒ ⊙Π2 | Π1, Π2, Σ ⇒ ∆

Now letd′
1 be the derivation:

··· d1

G | G∗ | Γ2, Γ
(k−l), Π2 ⇒ ∆1

(⊙⇒) + (t⇒)
G | G∗ | Γ2, Γ

(k−l),⊙Π2 ⇒ ∆1
(wl)

G | G∗ | Γ1, Γ2, Γ
(k−l),⊙Π2 ⇒ ∆1

We obtain the required derivation:

G | G∗ | Γ1, Γ2, Γ
(k−l),⊙Π2 ⇒ ∆1 G | Γl ⇒ ⊙Π2 | Π1, Π2, Σ ⇒ ∆

(cut)∗
G | G∗ | Γ1, Γ2, Γ

k ⇒ ∆1 | Π1, Π2, Σ ⇒ ∆
2
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3.2 Calculi without Weakening

For calculi without weakening rules, matters are a bit more complicated. Left as it
is, the density elimination method of Section 3.1 does not work in such cases. For
these calculi, quasi-p-axioms are not always derivable, and cannot therefore be re-
moved quite so easily. A further substitution step is required. To formalize this step,
we introduce the following notation. Lett be a constant andG any hypersequent:

Ht is H in which each component of the formΓ, p ⇒ p is replaced byΓ ⇒ t.

The idea is to perform the asymmetric substitutions of the previous section toHt

rather thanH. However, to obtain an analogue of Theorem 14 for calculi without
weakening, we also require a further condition:

Definition 15 LetL be a (first-order) simple sequent calculus. A rule instance:

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ ⇒ ∆

is premise-balancedif one of the following hold:

(i) ∆ = [].
(ii) Γi = Γ and∆i = ∆ for i = 1 . . . n (in particular, if n = 0).
(iii) Γ1

⊎

· · ·
⊎

Γn = Γ and∆1
⊎

· · ·
⊎

∆n = ∆.

A (first-order) simple calculus is premise-balanced if all instances of its structural
rules and logical rules with the principal formula and active formulas removed are
premise-balanced.

Example 16 ∀FLe (see Appendix A) is premise-balanced (the trivial-seemingcon-
dition (ii) is needed, with (iii), to ensure that instances of the logical rules with
the principal formula and active formulas removed are premise-balanced). Also
the structural rules (wc) and (mix) in Fig. 1 are premise-balanced: (wc) satisfies
(i), while (mix) satisfies(iii)). However, none of the conditions (i)-(iii) hold for the
contraction rules (cn) and (cl).

Theorem 17 Let L be a (first-order) simple reductive, substitutive, and premise-
balanced sequent calculus. ThenHLC plus (density) admits density elimination.

Proof As in the proof of Theorem 14, we can assume that the calculus includes
rules for⊙ andt. Then, as before we proceed by removing applications of (density)
which are topmost. Letd be a cut-free derivation:

··· d′

G | Γ ⇒ p | Σ, p ⇒ ∆
(density)

G | Γ, Σ ⇒ ∆
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Claim: if dH is a cut-free derivation of a hypersequentH wherep occurs only as a
propositional variable, then:

⊢HLC G | Γ, Σ ⇒ ∆ | Ht[Γ/pl,Σ⇒∆ /pr ]

The result follows from this claim exactly as in the proof of Theorem 14.

The proof of the claim proceeds by induction on|dH|. If H is an instance of (id),
then for the case whereH is p ⇒ p, we have thatG |⇒ t is derivable by (ew)
and(⇒ t), and otherwiseHt is H and the result follows using (ew) and (id). We
distinguish other cases according to the last rule(r) applied indH. The cases where
(r) is (ec), (ew) or a quantifier rule proceed as in Theorem 14.

Suppose that(r) is any rule instance other than (ec), (ew), or (com), withoutloss
of generality of the form (since there is only one active component in the premises
and conclusion):

G1 | S1 . . . G1 | Sm

G1 | S

If S is not a quasi-p-axiom, then we proceed as in Theorem 14. Otherwise, if at
least one ofS1 . . . Sm is a quasi-p-axiom (hence(r) satisfies Conditions (ii) or (iii)
of Definition 15), the claim follows by the induction hypothesis and a subsequent
application of(r). Hence assume that none ofS1 . . . Sm is a quasi-p-axiom and
S = (Π, pk+1 ⇒ p) wherep does not occur inΠ. Let H′ = (G | Γ, Σ ⇒ ∆) and
observe thatSt

i = Si for i = 1 . . .m. By the induction hypothesis:

⊢HLC H′ | (Gt
1 | S1)[

Γ/pl,Σ⇒∆ /pr ] . . . ⊢HLC H′ | (Gt
1 | Sm)[Γ/pl,Σ⇒∆ /pr ]

Using the (weak) substitutivity and the local subformula property of the rules ofL
we have⊢HLC H′ | (Gt

1 | S)[Γ/pl,Σ⇒∆ /pr ]; i.e.

⊢HLC H′ | (Gt
1)[

Γ/pl,Σ⇒∆ /pr ] | Π, Γk+1, Σ ⇒ ∆

and we can complete the required derivation as follows:

H′ | (Gt
1)[

Γ/pl,Σ⇒∆ /pr ] | Π, Γk+1, Σ ⇒ ∆ ⇒ t
(⇒ t)

H′ | (Gt
1)[

Γ/pl,Σ⇒∆ /pr ] | Π, Γk ⇒ t | Γ, Σ ⇒ ∆
(com)∗

Now assume that(r) is (com). Two cases can occur: (a) neither of the active com-
ponents in the rule conclusion contains a quasi-p-axiom; (b) at least one does.

For (a), if no active component in the premises contain a quasi-p-axiom, then the
claim easily holds by applying the induction hypothesis followed by an application
of (com). Otherwise, we have:

··· d1

G1 | Γ1, Π1, p
(k−l) ⇒ ∆1

··· d2

G1 | Γ2, Π2, p
l ⇒ p

(com)
G1 | Γ1, Γ2, p

k ⇒ ∆1 | Π1, Π2 ⇒ p
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wherep 6∈ Γ1 ⊎ Γ2 ⊎ ∆1 ⊎ Π1 ⊎ Π2. Let G∗ = Gt
1[

Γ/pl,Σ⇒∆ /pr ] | G | Γ, Σ ⇒ ∆.
Our aim is to prove:

⊢HLC G∗ | Γ1, Γ2, Γ
k ⇒ ∆1 | Π1, Π2, Σ ⇒ ∆

starting from the derivations (obtained by the induction hypothesis):

d′
1 ⊢HLC G∗ | Γ1, Π1, Γ

(k−l) ⇒ ∆1 and d′
2 ⊢HLC G∗ | Γ2, Π2, Γ

(l−1) ⇒ t

We first apply the rule(t ⇒) to the end sequent ofd′
1, obtaining a derivation of

G∗ | Γ1, Γ
(k−l), Π1, t ⇒ ∆1. By (cut) with the end sequent ofd′

2:

d∗
1 ⊢HLC G∗ | Γ1, Γ2, Γ

k−1, Π1, Π2 ⇒ ∆1

Now letP = ⊙(Π1 ⊎ Π2), lettingP = t whenΠ1 = Π2 = [], and consider:

G∗ | Γ ⇒ P | Σ, P ⇒ ∆ G∗ | Γ1, Γ2, Γ
(k−1), P ⇒ ∆1

G∗ | Γ1, Γ2, Γ
k ⇒ ∆1 | Σ, P ⇒ ∆

(cut)∗

The left premise is derivable by (ew) and Lemma 13, and the right premise is deriv-
able by extendingd∗

1 with (t⇒) and(⊙⇒) as necessary. The required derivation
is then obtained by applying (cut)∗ to the conclusion andΠ1, Π2 ⇒ P .

Now consider case (b) for (com). Assume first that just one active component in
the conclusion of (com) contains a quasi-p-axiom. If one of the active components
in the premise contains a quasi-p-axiom, then the claim easily follows by applying
the induction hypothesis and (com). Otherwise, the application is of the form:

··· d1

G1 | Γ1, Π1 ⇒ p

··· d2

G1 | Γ2, Π2, p
(k+j) ⇒ ∆1

(com)
G1 | Γ1, Γ2, p

k ⇒ ∆1 | Π1, Π2, p
j ⇒ p

Let G∗ = Gt
1[

Γ/pl,Σ⇒∆ /pr ] | G | Γ, Σ ⇒ ∆. By the induction hypothesis:

d′
1 ⊢HLC G∗ | Γ1, Π1, Σ ⇒ ∆ and d′

2 ⊢HLC G∗ | Γ2, Π2, Γ
(k+j) ⇒ ∆1

The required derivation can be given as follows:

··· d′
1

G∗ | Γ1, Π1, Σ ⇒ ∆

··· d′
2

G∗ | Γ2, Π2, Γ
(k+j) ⇒ ∆1

(com)
G∗ | Γ, Σ ⇒ ∆ | Γ1, Γ2, Γ

(k+j−1), Π1, Π2 ⇒ ∆1

(⇒ t)
⇒ t

(com)∗
G∗ | Γ1, Γ2, Γ

k ⇒ ∆1 | Π1, Π2, Γ
(j−1) ⇒ t

Now, again for case (b), assume that both active components in the conclusion of
(com) contain a quasi-p-axiom. If the active components in both premises also con-
tain a quasi-p-axiom, then the claim easily follows by applying the induction hy-
pothesis followed by an application of (com). Assume instead that only one active
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component in the premise of (com) contains a quasi-p-axiom, as in:

··· d1

G1 | Γ1, Π1, p
(k+j) ⇒ p

··· d2

G1 | Γ1, Π2 ⇒ p
(com)

G1 | Γ1, Σ1, p
k ⇒ p | Π1, Π2, p

j ⇒ p

Let G∗ = Gt
1[

Γ/pl,Σ⇒∆ /pr ] | G | Γ, Σ ⇒ ∆. By the induction hypothesis:

d′
1 ⊢HLC G∗ | Γ1, Π1, Γ

(k+j−1) ⇒ t and d′
2 ⊢HLC G∗ | Γ2, Π2, Σ ⇒ ∆

The required derivation ofG∗ | Γ1, Γ2, Γ
(k−1) ⇒ t | Π1, Π2, Γ

(j−1) ⇒ t is:

··· d′1

G∗ | Γ1,Π1,Γ
(k+j−1) ⇒ t

··· d′2
G∗ | Γ2,Π2,Σ ⇒ ∆

(t⇒)
G∗ | Γ2,Π2,Σ, t ⇒ ∆

(cut)
G∗ | Γ1,Γ2,Π1,Π2,Γ

(k+j−1),Σ ⇒ ∆
(⇒t)

⇒ t
(com)∗

G∗ | Γ1,Γ2,Γ
(k−1) ⇒ t | Π1,Π2,Γ

j ,Σ ⇒ ∆
(⇒t)

⇒ t
(com)∗

G∗ | Γ,Σ ⇒ ∆ | Γ1,Γ2,Γ
(k−1) ⇒ t | Π1,Π2,Γ

(j−1) ⇒ t
(ec) 2

G∗ | Γ1,Γ2,Γ
(k−1) ⇒ t | Π1,Π2,Γ

(j−1) ⇒ t

4 Standard Completeness

We turn our attention now to the main application of density elimination: establish-
ing standard completeness for syntactic presentations of (first-order) fuzzy logics.
To better explain what we mean by this, consider the following axiom systemMTL

for Monoidalt-Norm Logic in a language with connectives⊙, →, ∧, andf :

(A1) (A → B) → ((B → C) → (A → C))

(A2) (A ⊙ B) → A

(A3) (A ⊙ B) → (B ⊙ A)

(A4) (A ∧ B) → A

(A5) (A ∧ B) → (B ∧ A)

(A6) (A ⊙ (A → B)) → (A ∧ B)

(A7) ((A ⊙ B) → C) → (A → (B → C))

(A8) (A → (B → C)) → ((A ⊙ B) → C)

(A9) ((A → B) → C) → (((B → A) → C) → C)

(A10) f → A
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A A → B
B

(mp)

An alternative axiomatization is obtained by extending anyaxiom system forFLew

with the axiom schema(A9).

It was conjectured by Godo and Esteva in [10] that a formulaA is derivable inMTL

iff it is valid (always evaluates to1) in all algebras〈[0, 1],⊙,→,∧,∨, f, t〉 where∧
and∨ are interpreted bymin andmax, f andt by 0 and1,⊙ by a left-continuoust-
norm(an increasing commutative associative binary function on[0, 1] with unit 1),
and→ by theresiduumof ⊙; a binary function satisfyingx⊙y ≤ z iff x ≤ y → z.

To put this another way, consider the class ofMTL-algebras〈L,∧,∨,⊙,→, f, t〉
where〈L,⊙, t〉 is a commutative monoid,〈L,∧,∨, f, t〉 is a bounded lattice, and→
is the residuum of⊙, satisfying the prelinearity conditiont ≤ (x → y) ∨ (y → x)
for all x, y ∈ L. SinceMTL is sound and complete with respect toMTL-algebras
(A is derivable inMTL iff A is valid in allMTL-algebras), the conjecture becomes
thatA is valid in all MTL-algebras iff it is valid in all “standard”MTL-algebras;
thoseMTL-algebras withL = [0, 1].

A proof of Godo and Esteva’s conjecture was provided by Jeneiand Montagna
in [14]. Their method consists of three parts. First it is shown that if a formula is
not valid in anMTL-algebra, then it is not valid in a countableMTL-chain (lin-
early orderedMTL-algebra). Next it is shown that any countableMTL-chain can
be embedded into a countable denseMTL-chain by adding countably many new el-
ements to the algebra and extending the operations appropriately. This establishes
“rational completeness” forMTL: a formula is derivable iff it is valid in all dense
MTL-chains. Finally, a countable denseMTL-chain is embedded into a standard
MTL-algebra using a Dedekind-MacNeille-style completion. This method has been
extended to first-orderMTL in [16] (making use of a different completion), and
adapted to prove standard completeness for other axiomatizations of fuzzy logics
with weakening in [9, 6]. It relies however on finding the “right extension” of opera-
tions from chains to dense chains for each logic. Indeed, no such extension has been
found for logics without weakening such as Uninorm Logic, axiomatized by ex-
tending an axiom system forFL⊥

e with the prelinearity schema(A → B)∨(B → A)
and distributivity schema(A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C)) [15].

Density elimination provides an alternative and more general method for establish-
ing rational completeness. Instead of treatingMTL directly, we can consider the
corresponding hypersequent calculusHFL

C
ew. As we show below, a sequent⇒ A is

derivable inHFLC
ew

extended with (density) iffA is valid in all denseMTL-chains.
But then by density elimination, this holds iff⇒ A is derivable inHFLC

ew
and hence

iff A is derivable inMTL. More generally, we show that any suitable hypersequent
calculusHLC extended with (density) is sound and complete with respect to a class
of dense chains obtained via a Lindenbaum algebra construction. Density elimi-
nation then tells us that this completeness result holds also for HLC. Finally, we

22



can use a Dedekind-MacNeille-style completion and embedding to obtain uniform
standard completeness proofs for a wide range of logics, including first-order Uni-
norm Logic and first-order Monoidalt-Norm Logic.

4.1 Hypersequent Theories

We adapt the usual notion of a theory here to consist of hypersequents of sentences
(rather than just sentences). Hence anL-theory T for a languageL is a set of
hypersequents containing onlyL-sentences, recalling that since we deal only with
countable languages, theories will also be countable. As usual we writeT1, T2 and
T,G to denoteT1 ∪ T2 andT ∪ {G}, respectively.

A hypersequent calculusH for a languageL has the:

• Proof by cases propertyPCP if wheneverT,G1 ⊢H H andT,G2 ⊢H H, then
T, (G1 | G2) ⊢H H.

• Prelinearity propertyPP if wheneverT, (A ⇒ B) ⊢H H andT, (B ⇒ A) ⊢H

H, thenT ⊢H H.

• Density propertyDP if wheneverT ⊢H G | A ⇒ p | p ⇒ B for somep not
occurring inT , G, A, or B, thenT ⊢H G | A ⇒ B.

• Local deduction propertyLDP if T ⊢H Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆ iff there exists
a multiset of formulasΠ with predicate symbols restricted to those inT such that
⊢H Γ1, Π ⇒ ∆1 | . . . | Γn, Π ⇒ ∆n andT ⊢H ⇒ A for all A ∈ Π.

Let us assume now thatL is a (first-order) simple calculus for some languageL,
recalling thatHLC is the hypersequent version ofL plus (ew), (ec), and (com).

We writeL′ ≥ L to mean that the languageL′ is an extension of the languageL
with at most countably many new propositional variables andconstants. Since all
the rules ofHLC except the quantifier rules are schematic, we can extendHLC for L
to anyL′ ≥ L in the usual way with the extra substitution instances of therules.

Lemma 18

(a) HLC satisfies thePCP andPP .
(b) If HLC plus (density) admits density elimination and theLDP, thenHLC sat-

isfies theDP.

Proof For (a), observe first that thePP follows from thePCP . Suppose that:

T, (A ⇒ B) ⊢HLC H and T, (B ⇒ A) ⊢HLC H

23



ThenT, (A ⇒ B | B ⇒ A) ⊢HLC H by thePCP . But also⊢HLC A ⇒ B | B ⇒ A,
soT ⊢HLC H. For thePCP , consider a derivation ofT,G1 ⊢HLC H: a tree where
the leaves are labelled either with axioms, members ofT , orG1 (we can assume by
Lemma 10 that none of the new variables in the derivation occur in H). We alter
this tree as follows to obtain a derivation forT, (G1 | G2) ⊢HLC H:

(1) Re-label nodes labelledG with G | H, and extend the tree at the root from
H | H to a new rootH by removing sequents fromH; i.e. by applying (ec).

(2) Extend every leaf labelledG | H whereG is an axiom or member ofT to a
new leafG by removing sequents fromH; i.e. with applications of (ew).

(3) Extend the remaining leaves of the formG1 | H by placing them as roots of
derivations ofT,G2 ⊢HLC H with every node labelledG re-labelledG1 | G.

(4) Extend every leaf labelledG1 | G whereG is an axiom or member ofT to a
new leafG by removing the elements ofG1; i.e. with applications of (ew).

The only leaves not labelled with an axiom or member ofT are labelledG1 | G2, so
we have a derivation forT, (G1 | G2) ⊢HLC H.

(b) Suppose thatT ⊢HLC G | A ⇒ p | p ⇒ B for some propositional variablep
not occurring inT , G, A, or B. By theLDP, there exists a set of formulasΠ with
predicate symbols restricted to those occurring inT such that:

T ⊢HLC ⇒ C for all C ∈ Π and ⊢HLC GΠ | Π, A ⇒ p | Π, p ⇒ B

whereGΠ is obtained by addingΠ to the left of all the sequents inG. But then by
density elimination⊢HLC GΠ | Π, Π, A ⇒ B. Hence, sinceT ⊢HLC⇒ C for all
C ∈ Π, by multiple applications of (cut),T ⊢HLC G | A ⇒ B as required. 2

We define anL-theoryT to be:

• L-linear if for all L-sentencesA, B, eitherT ⊢HLC A ⇒ B or T ⊢HLC B ⇒ A.

• L-denseif for all L-sentencesA, B, wheneverT 6⊢HLC A ⇒ B, thenT 6⊢HLC

A ⇒ C andT 6⊢HLC C ⇒ B for someL-sentenceC.

• L-Henkinif for all L-sentencesC, ∀xA(x), and∃xA(x), wheneverT 6⊢HLC C ⇒
∀xA(x), thenT 6⊢HLC C ⇒ A(c) for some constantc of L, and wheneverT 6⊢HLC

∃xA(x) ⇒ C, thenT 6⊢HLC A(d) ⇒ C for some constantd of L.

We now come to our crucial lemma, relating density elimination to the extension
of theories to dense linear Henkin theories.

Lemma 19 If HLC satisfies theDP and T 6⊢HLC G for someL-theory T , then
T̂ 6⊢HLC G for someL̂-linear L̂-denseL̂-HenkinL̂-theoryT̂ ⊇ T whereL̂ ≥ L.

Proof We constructT̂ in countably many steps. First let̂L be the extension of
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L with countably infinitely many new propositional variablesand constants not
occurring inT or G. In the construction of̂T we have to:

(a) deal withL̂-linearity andL̂-density for each pair of̂L-sentencesA andB.
(b) deal with theL̂-Henkin property for each pair of̂L-sentencesC and∀xA.
(c) deal with theL̂-Henkin property for each pair of̂L-sentencesC and∃xA.

Since these are countably many tasks we can interleave them.

We letT0 = T andG0 = G. For the induction step, assume thatTn andGn have
been constructed such thatTn 6⊢HLC Gn. We constructTn+1 ⊇ Tn andGn+1 ⊇ Gn

such thatTn+1 6⊢HLC Gn+1 andTn+1 fulfills the n-th task.

(a) Suppose that then-th task is dealing witĥL-linearity andL̂-density forA and
B. If Tn, (A ⇒ B), (B ⇒ A) 6⊢HLC Gn, then it is sufficient to define:

Tn+1 = Tn ∪ {A ⇒ B, B ⇒ A} and Gn+1 = Gn

Otherwise, we claim that one of the following holds:

(1) Tn, (A ⇒ B) 6⊢HLC Gn | B ⇒ p | p ⇒ A.
(2) Tn, (B ⇒ A) 6⊢HLC Gn | A ⇒ p | p ⇒ B.

for somep not occurring inTn, A, B, orGn. If not, then by theDP:

Tn, (A ⇒ B) ⊢HLC Gn | B ⇒ A and Tn, (B ⇒ A) ⊢HLC Gn | A ⇒ B

But now sinceTn, (A ⇒ B), (B ⇒ A) ⊢HLC Gn andTn,Gn ⊢HLC Gn, by thePCP :

Tn, (A ⇒ B), (Gn | B ⇒ A) ⊢HLC Gn and Tn, (Gn | A ⇒ B), (B ⇒ A) ⊢HLC Gn‘

and so, sinceTn, (A ⇒ B) ⊢HLC Gn | B ⇒ A andTn, (B ⇒ A) ⊢HLC Gn | A ⇒ B:

Tn, A ⇒ B ⊢HLC Gn and Tn, B ⇒ A ⊢HLC Gn

But thenTn ⊢HLC Gn by thePP , contradicting the induction hypothesis.

If (1) holds, letTn+1 = Tn ∪ {A ⇒ B} and Gn+1 = Gn | B ⇒ p | p ⇒ A.
If (2) holds, letTn+1 = Tn ∪ {B ⇒ A} and Gn+1 = Gn | A ⇒ p | p ⇒ B.

ClearlyTn+1 fulfills the L̂-linearity condition forA andB, andTn+1 6⊢HLC Gn+1.
Moreover, ifTn+1 6⊢HLC A ⇒ B, thenTn+1 6⊢HLC Gn | A ⇒ p | p ⇒ B and so by
(ew),Tn+1 6⊢HLC A ⇒ p andTn+1 6⊢HLC p ⇒ B. The case whereTn+1 6⊢HLC B ⇒ A
is symmetrical, soTn+1 fulfills the L̂-density condition forA andB.

(b) If the n-th task is dealing with thêL-Henkin property forC and∀xA(x), then
let c be a constant not occurring inTn, Gn, C, or A. There are two cases:
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(1) If Tn 6⊢HLC Gn | C ⇒ A(c), thenTn 6⊢HLC C ⇒ ∀xA(x), and let:

Tn+1 = Tn and Gn+1 = Gn | C ⇒ A(c)

(2) If Tn ⊢HLC Gn | C ⇒ A(c), thenTn ⊢HLC Gn | C ⇒ ∀xA(x), so let:

Tn+1 = Tn ∪ {C ⇒ ∀xA(x)} and Gn+1 = Gn

Suppose thatTn+1 ⊢HLC Gn+1. Since alsoTn,Gn ⊢HLC Gn, by thePCP , we get
Tn, (Gn | C ⇒ ∀xA(x)) ⊢HLC Gn. HenceTn ⊢HLC Gn, a contradiction.

(c) Dealing with theL̂-Henkin property forC and∃xA(x) is very similar to (b).

Finally, T̂ =
⋃

n∈N Tn is L̂-linear,L̂-dense, and̂L-Henkin, andT̂ 6⊢HLC G. 2

4.2 Algebraic Semantics

Let us begin by reviewing some algebraic notions for first-order logics (see e.g.
[8]). A (partially-ordered) algebraA for a languageL is a poset〈LA,≤〉 equipped
with operations corresponding to the connectives CL of L. A is called achain if it
is linearly ordered, i.e.x ≤ y or y ≤ x for all x, y ∈ LA, anddenseif whenever
x 6≤ y for x, y ∈ LA, there existsz ∈ LA such thatx 6≤ z andz 6≤ y.

An A-structureis a tripleM = (M, (pM)p∈PL
, (fM)f∈FL

) whereM is a non-empty
set called thedomain, pM is a functionMn → LA for eachp ∈ PL with arity n,
andfM is a functionMn → M for eachf ∈ FL with arity n.

An M-valuationv is a mapping from object variables XL to M . For any variable
x andu ∈ M , v[x → u] is theM-valuation defined byv[x → u](x) = u and
v[x → u](y) = v(y) for anyy not equal tox.

‖A‖A

M,v is then defined inductively as follows, stipulating that thevalue is unde-
fined if either one of the required arguments is undefined or the needed infimum or
supremum does not exist inLA:

‖x‖A

M,v = v(x) for x ∈ XL

‖f(t1, . . . , tn)‖A

M,v = fM(‖t1‖
A

M,v, . . . , ‖tn‖
A

M,v) for f ∈ FL with arity n

‖p(t1, . . . , tn)‖A

M,v = pM(‖t1‖
A

M,v, . . . , ‖tn‖
A

M,v) for p ∈ PL with arity n

‖ ⋆ (A1, . . . , An)‖A

M,v = ⋆(‖A1‖
A

M,v, . . . , ‖An‖
A

M,v) for ⋆ ∈ CL with arity n

‖(∀x)A‖A

M,v = inf{‖A‖A

M,v[x→u] : u ∈ M}

‖(∃x)A‖A

M,v = sup{‖A‖A

M,v[x→u] : u ∈ M}
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M is calledsafeif ‖A‖A

M,v is defined for each formulaA andM-valuationv, and
in this case we define‖A‖A

M
= inf{‖A‖A

M,v : v is anM-valuation}.

We call anL-theoryT equationalif it contains only sequents of the formA ⇒ B
whereA andB areL-sentences.

An A-modelof such an equational theoryT is a safeA-structureM such that
‖A‖A

M
≤ ‖B‖A

M
for all A ⇒ B ∈ T .

For a class of algebrasK for a languageL, we writeT |=K A ⇒ B to mean that
for all A ∈ K, anyA-model ofT is anA-model of{A ⇒ B}.

We obtain corresponding algebras for suitable hypersequent calculi via a Linden-
baum algebra construction. Call a (first-order) sequent calculusL for a languageL
regular if it is simple and for each⋆ ∈ CL with arity n, for i = 1 . . . n:

(A ⇒ B), (B ⇒ A) ⊢L ⋆(C1, . . . , Cn)[A/Ci] ⇒ ⋆(C1, . . . , Cn)[B/Ci]

Example 20 Any simple sequent calculus with rules for connectives in{∧,∨,→
,⊙, t, f,⊥,⊤} from Appendix A and Figure 1 is regular. E.g., for→ we have:

C ⇒ C
(id)

B ⇒ A
A → C, B ⇒ C

(→⇒)

A → C ⇒ B → C
(⇒→)

and

A ⇒ B C ⇒ C
(id)

C → A, C ⇒ B
(→⇒)

C → A ⇒ C → B
(⇒→)

That is,(A ⇒ B), (B ⇒ A) ⊢L A → C ⇒ B → C and(A ⇒ B), (B ⇒ A) ⊢L

C → A ⇒ C → B as required.

For a (first-order) regular sequent calculusL for a languageL andL-theoryT , let:

L INDL
T =def 〈L

L
T , {⋆LT : ⋆ ∈ CL}〉 where:

1. [A]LT =def {B is anL-sentence: T ⊢HLC A ⇒ B andT ⊢HLC B ⇒ A}.
2. LL

T =def {[A]LT : A is anL-sentence} and[A]LT ≤ [B]LT iff T ⊢HLC A ⇒ B.
3. ⋆LT ([A1]

L
T , . . . , [An]LT ) =def [⋆(A1, . . . , An)]

L
T for eachn-ary connective⋆ of L.

The definition is justified by the fact thatL is regular.

An HLC-algebraA is any algebra forL such that for all equationalL-theoriesT ′

andL-sentencesA andB, if T ′ ⊢HLC A ⇒ B, thenT ′ |={A} A ⇒ B.

We call a linearly orderedHLC-algebra, anHLC-chain, and astandardHLC-algebra
if its universe is the real unit interval[0, 1] equipped with the usual order. We let
DEN(HLC) andSTAN(HLC) denote the classes of all denseHLC-chains and stan-
dardHLC-algebras, respectively.

Lemma 21 (a) L INDL
T is a countableHLC-algebra. (b)L INDL

T is a chain iffT is
L-linear, and dense iffT isL-dense.
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Proof (a) LetT ′ be an equationalL-theory and letA andB beL-sentences. Sup-

pose thatT ′ ⊢HLC A ⇒ B. Let M be a LINDL
T -model of T ′. I.e. ‖C‖

L INDL

T

M
≤

‖D‖
L INDL

T

M
for all C ⇒ D ∈ T ′. But thenT ⊢HLC ‖C‖

L INDL

T

M
⇒ ‖D‖

L INDL

T

M
for all

C ⇒ D ∈ T ′. SoT ⊢HLC ‖A‖
L INDL

T

M
⇒ ‖B‖

L INDL

T

M
which means that‖A‖

L INDL

T

M
≤

‖B‖
L INDL

T

M
. That is,M is a LINDL

T -model of{A ⇒ B}.

(b) LINDL
T is a chain iff for allL-sentencesA andB either[A]LT ≤ [B]LT or [B]LT ≤

[A]LT . But this holds iffT ⊢HLC A ⇒ B or T ⊢HLC B ⇒ A; i.e. iff T is L-linear.
L INDL

T is dense iff whenever[A]LT 6≤ [B]LT , there exists[C]LT such that[A]LT 6≤ [C]LT
and[C]LT 6≤ [B]LT . But this holds iff wheneverT 6⊢HLC A ⇒ B, thenT 6⊢HLC A ⇒ C
andT 6⊢HLC C ⇒ B for someL-sentenceC; i.e. iff T is L-dense. 2

Lemma 22 For anL-Henkin theoryT and formulaA(a) with one free variable:

(a) [∀xA(x)]LT = inf{[A(c)]LT : c is a constant ofL}.
(b) [∃xA(x)]LT = sup{[A(c)]LT : c is a constant ofL}.

Proof We will consider just (a) since (b) is very similar. Easily[∀xA(x)]LT ≤
[A(c)]LT for all constantsc of L sinceT ⊢HLC ∀xA(x) ⇒ A(c). Now suppose
that[C]LT ≤ [A(c)]LT for all c but [C]LT 6≤ [∀xA(x)]LT . We getT 6⊢HLC C ⇒ ∀xA(x),
so by theL-Henkin propertyT 6⊢HLC C ⇒ A(d) for somed, a contradiction. 2

Now we can use Lemma 19 to obtain completeness results with respect to dense
chains. LetL be a (first-order) regular sequent calculus such thatHLC plus (density)
admits density elimination and theLDP.

Lemma 23 If T 6⊢HLC A ⇒ B for some equationalL-theoryT andL-sentencesA
andB, thenT 6|={A} A ⇒ B for some countable denseHLC-chainA.

Proof Let T be an equationalL-theory, letA andB beL-sentences, and suppose
thatT 6⊢HLC A ⇒ B. By Lemma 19,T̂ 6⊢HLC A ⇒ B for someL̂-linear L̂-dense
L̂-Henkin L̂-theory T̂ ⊇ T whereL̂ ≥ L. Let A = L IND L̂

T̂
. By Lemma 21,A

is a countable denseHLC-chain. LetD be the set of closed terms of̂L. Define an
A-structureM with domainD such thatfM(t1, . . . , tm) = f(t1, . . . , tm) for each
m-ary function symbolf andpM(t1, . . . , tm)) = [p(t1, . . . , tm)]L̂

T̂
for eachm-ary

predicate symbolp. Then, proceeding by induction on formula complexity, using
regularity to take care of the propositional connectives and Lemma 22 to take care
of the quantifiers,‖B‖A

M
= [B]L̂

T̂
for all L̂-sentencesB. Hence for eachC ⇒ D ∈

T , sinceT̂ ⊢HLC C ⇒ D, [C]L̂
T̂
≤ [D]L̂

T̂
and so‖C‖A

M
≤ ‖D‖A

M
. Similarly, since

T̂ 6⊢HLC A ⇒ B, it follows that[A]L̂
T̂
6≤ [B]L̂

T̂
and‖A‖A

M
6≤ ‖B‖A

M
. 2

Corollary 24 For any equationalL-theoryT andL-sentencesA, B:

T ⊢HLC A ⇒ B iff T |=DEN(HLC) A ⇒ B
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4.3 Applications

We can use the very general results established above to obtain standard complete-
ness results for first-order fuzzy logics, including first-order Uninorm Logic and
first-order Monoidalt-Norm Logic. Rather than deal directly with axiom systems,
we treat their algebraic counterparts; (bounded) pointed commutative residuated
lattices, investigated in detail by Tsinakis and co-workers (see e.g. [12]).

A pointed commutative residuated lattice (p.c.r.l.)is an algebra〈L,∧,∨,⊙,→
, t, f〉 with binary operations∧, ∨, ⊙, →, and constantst, f such that:

(1) 〈L,∧,∨〉 is a lattice with order defined byx ≤ y iff x ∧ y = x.
(2) 〈L,⊙, t〉 is a commutative monoid.
(3) x ⊙ y ≤ z iff x ≤ y → z for all x, y, z ∈ L.

A bounded p.c.r.l.is an algebra〈L,∧,∨,⊙,→, t, f,⊥,⊤〉 where〈L,∧,∨,⊙,→
, t, f〉 is a p.c.r.l. with top and bottom elements⊤ and⊥, respectively.

The classes of (bounded) p.c.r.l.s that we are interested inare classes of algebras
based on hypersequent calculi. Let us fix the sequent calculus L to be (referring to
Appendix A and Fig. 1):

∀FLew + K for K ⊆ {(cl), (wc), (cn)} or ∀FL
⊥
e + K for K ⊆ {(wc), (mix)}

Lemma 25 The class ofHLC-algebras consists of all (bounded, if the language of
L contains⊤ and⊥) p.c.r.l.s satisfying:

(i) t ≤ (x → y) ∨ (y → x) and x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z).
(ii) x ≤ t andf ≤ x if L extends∀FLew.
(iii) x ≤ x ⊙ x if (cl) ∈ K.
(iv) f ≤ t if (mix) ∈ K.
(v) x ∧ (x → f) ≤ f if (wc) ∈ K.

(vi) xn−1 ≤ xn if (cn) ∈ K for n ≥ 2 (wherex1 = x andxk+1 = x ⊙ xk).

Proof Let A be a (bounded) p.c.r.l. satisfying the appropriate conditions for L

stated above. Using soundness results in the literature (consult e.g. [15]), ifT ⊢HLC

A ⇒ B, then everyA-model ofT is anA-model ofA ⇒ B. HenceA is an
HL

C-algebra. For the other direction, note that for each inequation in (i)-(vi), a cor-
responding sequent (replacing≤ by⇒) is derivable inHLC (again consult [15]). For
example, botht ⇒ (A → B)∨(B → A) andA∧(B∨C) ⇒ (A∧B)∨(A∧C) are
HFLC

e -derivable. Hence eachHLC-algebra satisfies the appropriate conditions.2

In particular, bounded p.c.r.l.s satisfying the prelinearity and distributivity condi-
tions of (i) (algebras for Uninorm Logic) are preciselyHFL⊥C

e
-algebras and vice

versa, while p.c.r.l.s satisfying conditions (i)-(ii) (algebras for Monoidalt-Norm
Logic) constitute the class ofHFLC

ew-algebras.
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SinceHLC admits density elimination, by Corollary 24, we can establish complete-
ness ofHLC with respect to denseHLC-chains by showing thatHLC has the local
deduction property.

Lemma 26 HLC has theLDP.

Proof Let G = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n. Suppose that for some finite multiset
of formulasΠ with predicate symbols restricted to those inT :

⊢HLC Γ1, Π ⇒ ∆1 | . . . | Γn, Π ⇒ ∆n and T ⊢HLC ⇒ A for all A ∈ Π

We obtain a derivation forT ⊢HLC G using these derivations and multiple applica-
tions of (cut) and (ew).

Now suppose conversely thatT ⊢HLC G. Compactness follows from the definition
of a derivation, so we can assume thatT is finite. Define a functionI from hyperse-
quents to formulas as follows: (a)I(Γ ⇒ ∆) = ⊙Γ → ⊕∆ where⋆[A1, . . . , Ak] =
(A1 ⋆ . . . ⋆ Ak) for ⋆ ∈ {⊙,⊕}, ⊙[] = t, and⊕[] = f ; (b) I(S1 | . . . | Sm) =
I(S1) ∨ . . . ∨ I(Sm). Let Π = [I(H) ∧ t : H ∈ T ]. Note that the following rule is
HLC-derivable using (ec),(⇒∨)1, and(⇒∨)2:

G | Γ ⇒ A | Γ ⇒ B

G | Γ ⇒ A ∨ B
(⇒∨)

We obtain a derivation forT ⊢HLC ⇒ A for eachA ∈ Π by applying (backwards)
the rules(⇒∧), (⇒ t), (⇒∨), (⇒→), and(⊙⇒). Moreover, we can show that if
d, T ⊢HLC G, then⊢HLC Γ1, Π

m ⇒ ∆1 | . . . | Γn, Πm ⇒ ∆n for somem ∈ N,
proceeding by induction on|d|. For the base case, ifd ends with (id) or a logical
rule, then the result follows immediately, takingm = 0. If G is a member ofT ,
then we takem = 1. By the invertibility of the rules(⇒∨), (⇒→), (⊙⇒), (t⇒),
and(⇒ f) (see [15] for details),⊢HLC Γ1, I(G) ⇒ ∆1 | . . . | Γn, I(G) ⇒ ∆n, and
the result follows by multiple applications of(∧⇒) and(t⇒).

For the inductive step, we consider as an example the case where d ends with an
application of(→⇒):

Σ1 ⇒ A | Γ2 ⇒ ∆2 | . . . | Γn ⇒ ∆n Σ2, B ⇒ ∆1 | Γ2 ⇒ ∆2 | . . . | Γn ⇒ ∆n

Σ1, Σ2, A → B ⇒ ∆1 | Γ2 ⇒ ∆2 | . . . | Γn ⇒ ∆n

whereΓ1 = Σ1 ⊎ Σ2. Then by the induction hypothesis twice,⊢HLC Σ1, Π
k ⇒ A |

Γ2, Π
k ⇒ ∆2 | . . . | Γn, Πk ⇒ ∆n and⊢HLC Σ2, B, Πl ⇒ ∆1 | Γ2, Π

l ⇒ ∆2 | . . . |
Γn, Π

l ⇒ ∆n for somek, l ∈ N. Let m = k + l. Then by multiple applications of
(∧⇒) and(t⇒), we have⊢HLC Σ1, Π

k ⇒ A | Γ2, Π
m ⇒ ∆2 | . . . | Γn, Π

m ⇒ ∆n

and⊢HLC Σ2, B, Πl ⇒ ∆1 | Γ2, Π
m ⇒ ∆2 | . . . | Γn, Π

m ⇒ ∆n. The result
follows by a single application of(→⇒). 2

So by Corollary 24, for any equational theoryT and sentencesA, B: T ⊢HLC A ⇒
B iff T |=DEN(HLC) A ⇒ B. As a further step, we now use a Dedekind-MacNeille-
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L HL
C Original Proofs

∀BFLe First-Order Uninorm Logic [15] (propositional)

∀FLew First-Order Monoidalt-Norm Logic [14, 16]

∀FLew + (wc) First-Order Strict Monoidalt-Norm Logic [9] (propositional)

∀FLew + (cn) First-Ordern-Contractive Monoidalt-Norm Logic [6] (propositional)

∀FLewc First-Order Gödel Logic [13]

Fig. 5. Standard Completeness Results for First-Order Fuzzy Logics

style completion (following [15]) to show thatHLC is complete with respect to
standardHLC-algebras.

LetA be a (bounded) p.c.r.l. ForX ⊆ LA, letXu denote the set of upper bounds of
X, andX l, the set of lower bounds ofX. Let DM(A) be the algebra with universe
DM(LA) =def {X ⊆ LA : (Xu)l = X} ordered by⊆ with constantstDM = {t}l

andfDM = {f}l (and⊥DM = {⊥} and⊤DM = LA if A is bounded) and binary
operations:

X ∧DM Y = X ∩ Y X ⊙DM Y = ({x ⊙ y : x ∈ X, y ∈ Y }u)l

X ∨DM Y = ((X ∪ Y )u)l X →DM Y = {x ∈ LA : x ⊙ y ∈ Y for all y ∈ Y }

Lemma 27 Every countable denseHLC-chain can be embedded into a standard
HLC-algebra by a complete embedding.

Proof LetA be a countable denseHLC-chain. SinceLA is order-isomorphic toQ∩
[0, 1] with the usual order, the Dedekind-MacNeille completionDM(LA) is order-
isomorphic to[0, 1] with the usual order. Moreover, as shown in e.g. [15],DM(A)
is a (bounded) p.c.r.l. satisfying the appropriate conditions for HLC-algebras of
Lemma 25. Finally,Φ(x) = {x}l is a complete embedding (preservinginfs and
sups of elements inLA) of A into DM(A). 2

Theorem 28 For any equationalL-theoryT andL-sentencesA, B:

T ⊢HLC A ⇒ B iff T |=STAN(HLC) A ⇒ B

Proof The left-to-right direction follows from the definition of an HLC-algebra.
For the other direction, suppose thatT 6⊢HLC A ⇒ B. By Theorems 14 and 17,
HLC plus (density) admits density elimination. Also by Lemma 26, these systems
admit theLDP. Hence by Lemma 23, there is a countable denseHLC-chainA

and anA-model ofT that is not anA-model of{A ⇒ B}. But by the previous
lemma, there is a complete embedding ofA into a standardHLC-algebra. Hence
T 6|=STAN(HLC) A ⇒ B. 2
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In particular, we obtain standard completeness results forthe first-order fuzzy log-
ics displayed with references to the original proofs (some just at the propositional
level) in Figure 5.
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A The Sequent Calculus∀FLe

Initial Sequents

A ⇒ A
(id)

Logical Rules

f ⇒
(f ⇒) Γ ⇒

Γ ⇒ f
(⇒f)

Γ ⇒ ∆
Γ, t ⇒ ∆

(t⇒)
⇒ t

(⇒ t)

Γ, A,B ⇒ ∆

Γ, A ⊙ B ⇒ ∆
(⊙⇒) Γ ⇒ A Π ⇒ B

Γ,Π ⇒ A ⊙ B
(⇒⊙)

Γ, A ⇒ ∆

Γ, A ∧ B ⇒ ∆
(∧⇒)1

Γ, B ⇒ ∆

Γ, A ∧ B ⇒ ∆
(∧⇒)2

Γ, A ⇒ ∆ Γ, B ⇒ ∆

Γ, A ∨ B ⇒ ∆
(∨⇒) Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧ B
(⇒∧)

Γ ⇒ A
Γ ⇒ A ∨ B

(⇒∨)1
Γ ⇒ B

Γ ⇒ A ∨ B
(⇒∨)2

Γ, B ⇒ ∆ Π ⇒ A

Γ,Π, A → B ⇒ ∆
(→⇒)

Γ, A ⇒ B

Γ ⇒ A → B
(⇒→)

Quantifier Rules

Γ, A(t) ⇒ ∆

Γ,∀xA(x) ⇒ ∆
(∀⇒)

Γ ⇒ A(a)

Γ ⇒ ∀xA(x)
(⇒∀)

Γ, A(a) ⇒ ∆

Γ,∃xA(x) ⇒ ∆
(∃⇒)

Γ ⇒ A(t)

Γ ⇒ ∃xA(x)
(⇒∃)

wherea does not occur in the conclusions of(∃⇒) or (⇒∀).

Cut Rule
Γ ⇒ A Π, A ⇒ ∆

Γ,Π ⇒ ∆
(cut)
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