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Abstract

Density elimination, a close relative of cut eliminatiomnsists of removing applications
of the Takeuti-Titani density rule from derivations in Gas-style (hypersequent) calculi.
Its most important use is as a crucial step in establishiagdstrd completeness for syn-
tactic presentations of fuzzy logics; that is, completeneith respect to algebras based on
the real unit interval0, 1]. This paper introduces the method of density eliminatiosudy-
stitutions. For general classes of (first-order) hypersatjaalculi, it is shown that density
elimination by substitutions is guaranteed by known sudfiticonditions for cut elimina-
tion. These results provide the basis for uniform char&zons of calculi complete with
respect to densely and linearly ordered algebras. Stamdangleteness follows for many
first-order fuzzy logics using a Dedekind-MacNeille-stgtempletion and embedding.
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1 Introduction

Elimination of the cut rule is a fundamental topic in ProoEbhy, corresponding to
the removal of lemmas from proofs. However, the addition@irdination of other
rules also merit investigation. In this paper we consider sunch rule, important in
the meta-mathematics of Fuzzy Logic: the so-called “dgnsie” of Takeuti and
Titani [18]; formalized Hilbert-style as:

(A—=p)V(p— B)V

C :
(ASB)VO (density)

wherep is a propositional variable not occurring #y B, or C'. Ignoring C, this
can be read contrapositively as saying (very roughly‘if- B, thenA > p and
p > B for somep”; hence the name “density”.

Adding (density) to Classical Logic leads to inconsisterdogt taked to beT and

B to be L: the premise is classically equivalentToand the conclusion to an arbi-
trary C'. However, for other logics the addition of (density) can keful, or even
“admissible” in the sense that it provides no new theoremgalticular, although
the density rule was used by Takeuti and Titani to axiomdtiagitionistic Fuzzy
Logic [18] (better known as first-order Godel Logic), aftative axiomatizations
[13, 17] show that it is redundant. More generally, (densitya useful tool for
axiomatizing fuzzy logics defined via thtenorm based approach of Hajek [11].
Indeed it is shown in [15] thaany axiomatic extension of the elementary proposi-
tional fuzzy logic Uninorm Logic extended with (density)asmplete with respect
to a corresponding class of linearly and densely orderesbads. So-called “stan-
dard completeness” with respect to algebras with lattideicg[0, 1] can then be
obtained in many cases by means of a Dedekind-MacNeille-sompletion.

Density eliminatiorprovides a method for showing that (density) is unnecessary
in these axiomatizations, and hence for establishing atantbmpleteness for the
original systems. This general approach contrasts withenmgic-specific alge-
braic techniques for proving standard completeness, Elg1H4, 9, 16], which en-
counter problems for logics lacking weakening theoreins: (B — A). The first
“syntactic elimination” of (density) was provided for firgstder Godel Logic by
Baaz and Zach [4] in the framework bfpersequenis generalization of Gentzen
sequents to multisets of sequents introduced by Avron in The elimination
method follows the spirit of Gentzen’s cut elimination, geeding by induction
on the height of a derivation of the premise and shifting &jpibns of the rule
upwards. This approach was extended in [15] to several pitogrositional logics
using calculus-tailored generalizations of the densitg (as in Gentzen’s “mix”
rule). However, these generalized density rules are of éamatorial nature and
are particularly complicated for logics without weakening

In this paper we introduce a new methalgnsity elimination by substitutionis



which (similarly to normalization for Natural Deductionsgtgms) applications of
the density rule are removed from derivations by makingadlit substitutions for
the new propositional variables. This leads to elegant amfdum density elimina-
tion proofs for broad classes of hypersequent calculi anitiavthe combinatorial
difficulties of the Gentzen-style proofs in [4, 15]. In pattiar, we show that den-
sity elimination by substitutions succeeds for singleatosion hypersequent cal-
culi with weakening rules that satisfy conditions defineddat elimination in [5].
We also adapt the method to deal with calculi without weakgmules and show
that the same syntactic criteria guarantee density elimimavhen extended with
a further condition. In particular, we obtain uniform depslimination proofs for
classes of calculi extending those for first-order Uninomgic [15] and first-order
Monoidalt-Norm Logic [10, 16, 3].

We also consider the primary application of density elirtiora Generalizing the
approach of [15] (in particular, to the first-order level)e whow that calculi ad-
mitting density elimination and some further natural pmies are complete with
respect to linearly and densely ordered algebras. It faltvat Gentzen systems
and axiomatizations for many first-order fuzzy logics armptete in this respect.
Finally, standard completeness is established for systenseveral fuzzy logics
including first-order Uninorm Logic and first-order MonoidaNorm Logic using
a Dedekind-MacNeille-style completion and embedding.

2 Sequent and Hypersequent Calculi

We begin with some preliminary definitions. (first-order) (countable) language
L consists of countable sets of (term) variables ¥inction symbols F; predi-
cate symbols P, and connectives £with given arities.L-termsare constructed
as usual from variables and function symbols, wiitemic £-formulasare con-
structed from predicate symbols and terfiszormulasare either atomic or of the
form *(ff) for anm-ary connective- € C. whereA = A, ..., A, or QrA with
Q € {V, d}. We distinguish syntactically between free and bound e using
a or b to denote the former, andor y the latter, and recall that afrsentenceés an
L-formula with no free variables. For convenience we callarylfunction sym-
bols,constantsand nullary predicate symbojsopositional variablesFinally, we
define| A| as the number of occurrences of connectives and quantifiets i

We indicate withl', A, I1, 3 (possibly empty) multisets of formulad, ..., A,],
writing I' W A or sometimed”, A for the multiset sum of* and A, lettingI'; A
denotel’ v [A] for a formulaA. We write[” forI' W ... w I (n times) forn € N
wherel = [], and A" for the multisef A]".

L An earlier version of this paper introducing density eliation by substitutions for logics
with weakening appeared as [7].



A A= LI =A ... = A

rioad =7 T4z WO T, O, A (o)
r=A = NAA= A I's II=A, .
F,A:>A(WI) Toa W) A=A () NIl= A (mix)

Fig. 1. Additional Sequent Rules
2.1 Sequents

A (single-conclusion) sequeftin the language is an ordered pair consisting of
a finite multiset of (antecedent) formulBsnd a multisef\ containing at most one
(consequent) formula, writtelin = A.

Defining sequents using multisets rather than sequencest®essures that the
multiplicity but not the order of formulas matters. Note alhat we explicitly
define sequents as single-conclusion (multiple-concatualmws A to be a finite
multiset), often writing justA for A = [A] and an empty space fdx = [].

A sequent rules a set of(sequent rule) instancesrdered pairs consisting of a
finite set of sequents;, ..., S, calledpremisesand a sequent called thecon-
clusion written Sy,...,S, /S or 51755” Instances with no premises are called
axioms We call a sequent rukschematidf it is presented using only multiset vari-
ables and propositional formulas built from formula vakesh The instances of
such a rule are obtained as usual by uniformly replacing thkiset variables by

arbitrary multisets of formulas and the formula variablgsalbitrary formulas.

In general, a sequent calculus is just any set of sequerst idére we are a bit more
specific, however. We consider calculi with a basic stockxadras, a cut rule, and
two sets of schematic rules — structural and logical — olgegome natural restric-
tions. A paradigmatic example of such a calculus is preseimtéppendix A: a
multiset version (with exchange internalized)wL., the first-order Full Lambek
Calculus with Exchange. Further sequent calculi are obthinrom this calculus
by adding rules such as those in Fig. 1. In particular, adtiegaxiom schema
(T) and (L) gives a calculu&’FL, (boundedvFL.) for first-orderMAILL (Mul-
tiplicative Additive Intuitionistic Linear Logic). Addig the weakening rules (wl)
and (wr) tovFL. givesVFL.,, a calculus for first-ordeAMAILL (Affine MAILL),
and extendingFL.,, with the contraction rule (cl) gives a calculdBL.,,. for first-
order Intuitionistic Logic. We will refer to these calcutdidllected in Figure 2) and
their rules in the definitions below and throughout the paper

Definition 1 A simple sequent calculusconsists of:

(1) a stock (id) of basic axioms of the fouin= A.



Label

Rules

Logic

VFLe Appendix A

VFLs | VFLe+ (L) + (T) of Fig. 1
VFLew | VFLe + (WI) + (wr) of Fig. 1
VFLewe VFLew + (cl) of Fig. 1

First-Order Full Lambek Calculus with Exchan

First-OrderMAILL
First-OrderAMAILL

First-Order Intuitionistic Logic

je

Fig. 2. Sequent Calculi Reference Chart

(2) a set ofschematic structural rulesach satisfying théocal subformula prop-
erty. any formula appearing on the left (right) in the premise obite instance
should occur as a subformula on the left (right) in its corsatun.

(3) a setofschematic logical rulesonsisting for each connectiweof left logical
ruleslabelled {(x=>);};c;+ andright logical ruleslabelled { (=) } rez; for
(possibly empty) finite index sefts I*, with instances of the forru(> 0):

H1:>21

I, = X,

—

[x(A) = A

where:

—,

(=),

H1:>21

I1,, = X,

= (=*)k

' = x(A)

(i) =(A) is called theprincipal formulaof the rule instance.
(i) II, andX; fori = 1...n consist ofactive formulagaken froMtogether

with othercontext formulas

(i) the rule instance obtained by removing the principatrhula from the
conclusion and the active formulas from the premises sadisfie local

subformula property (see (2)).

(4) the (multiplicative version of theut rule with instances:

'=A ILA= A
OII= A

whereA is called thecut formula

(cu

Y

L is calledw-simpleif it contains the weakening rules (wl) and (wr) of Fig. 1.

Definition 2 Afirst-order (w-)simple sequent calculissa (w-)simple sequent cal-

culus plus the quantifier ruley’ =), (=V), (3=-), and(=3) of Appendix A.

A derivationd of a sequenf from sequents, ..
labelled tree with the root labelled 8, and for each node labelleg! with parent

nodes labelled, ..
of a rule ofL. In this case, we write:

., 8! (where possiblyn = 0), S}, ..

d, S, ..

LSy LS

., S, in a sequent calculusis a

.S/ S"is aninstance



g (ew) G|s|s (e0) G|, = A1 Gy = Ay (com)
Gg|s G|s G|, Ty = Ay 111,11 = Ay
Fig. 3. Additional Hypersequent Rules
orSy,...,S, FL S to denote just that there exists such a derivation. figight|d|

of the derivation is the height of the labelled tree.
2.2 Hypersequents

A hypersequend is a finite multiset of sequents (called tbemponentsf G) [1]:

Since sequents are assumed to be single-conclusion, bygoerds are likewise
single-conclusion.

Notions of rules, rule instances, derivations, and so ofinele for sequents and
sequent calculi transfer unscathed to hypersequents getdggquent calculi: just
replace all mention of sequents with hypersequents. Mamrdkre hypersequent
calculi that we are interested in arise uniformly from simpequent calculi via
a simple transfer principle. First we takgpersequent versiord sequent rules,

obtained intuitively by adding a “side hypersequegtto both the premises and
the conclusion. For example, the hypersequent versiortseafriplication rules in

Appendix A are:

G| IB=A g|H:>A( =) G|IILA=B (
G| ILNI[LA—B=A G| '=A—-B

=—)

More precisely, théypersequent versiasf a sequent rule consists of all instances
(G| S1),...,(G|Sn) /(G| S)forany hypersequeidtand instancé;,..., S, /S

of the sequent rule, calling, ..., S,, S theactive componentsf the instance. We
qualify the hypersequent versions of the quantifier ryes=) and (= V) (for
convenience, without introducing new terminology) by extieg the eigenvariable
condition that the variable in the premise does not occur in the conclusion to the
side-hypersequeri. The hypersequent version of a (first-order) simple sequent
calculusL consists of the hypersequent versions of the rulds of

Taking hypersequent versions alone is not enough to ob#ddunicfor new logics,
however. We require further “external” structural ruleattbperate on components
of the hypersequent. The external weakening and contraailes (ew) and (ec) of
Fig. 3 add and contract components respectively while tigelle to deal with the
prelinearity axiom schem@d — B) Vv (B — A) is Avron’s “communication” rule
(com) which permits interaction between components [2].



L HLC (the hypersequent version biplus (ec), (ew), and (com) of Fig. 3)
VFLY First-Order Uninorm Logic
VFLew First-Order Monoidat-Norm Logic
VFLew + (WC) First-Order Strict Monoidat-Norm Logic
VFLew + (Cp) First-Ordern-Contractive Monoidat-Norm Logic
VFLewe First-Order Godel Logic

Fig. 4. Hypersequent Calculi Reference Chart
Following [5], we formulate our transfer principle as folls.

Definition 3 Let L be any (first-order) simple sequent calculus. Thtrt is the
hypersequent version bfplus (ec), (ew), and (com) of Fig. 3.

For exampleHVFLS . is a hypersequent calculus for first-order Godel Logic |2, 4
Removing the contraction rule (cl) gives a calcutsg-L S for first-order Monoidal
t-Norm Logic [10, 3], and removing also the weakening rule§ a&md (wr) gives a
calculusHVFLLC for first-order Uninorm Logic [15]. Hypersequent calculi forst-
order Strict Monoidak-Norm Logic [10] and first-orden-Contractive Monoidal
t-Norm Logic [6] are obtained by extendimtyFLS, with hypersequent versions of
(wc) and (g), respectively [5, 6]. In all of these calculi, (com) can Ised to prove
instances of the prelinearity axiom schema as follows:

A:>A(id) B:>B(id)

A=B|B=A (com)
A:>B|:>B—>A(:>_>)
:>A—>B|:>B—>A(:>—))

S ASBS (A= B V(B A) TV
S U= BV B~ A-BV B

= (A= B)V(B—4)

For convenience, we collect the definitions of the varioysehngequent calculi men-
tioned above in Fig. 4.

2.3 Criteria for Cut-Elimination

Syntactic criteria for preserving cut elimination when queent calculus is “lifted”

to HL® were introduced in [5]. Intuitively, it should be possiblg to shift appli-
cations of (cut) upwards over the premises of rule instamtese the cut formula
is not principal (rules arsubstitutivg, and (b) to replace applications of (cut) in
which the cut formula is principal in both premises by apgiiens of (cut) with



smaller cut formulas (logical rules areductivg. These notions are formalized for
the underlying simple sequent calculus as follows.

Definition 4 Logical rules{(=x),}jer; and{(x=)x }rer+ for » arereductivein a
(first-order) simple sequent calculusf for any j € I/, k € I¥, and instances:

= (x=); = (=*)k
I,+(A) = A [ = %(A)

I''I" = A is derivable from{I'; = A;}1<i<, and{I"; = A’} <<, using only
(cut) with cut formulas from¥ and the structural rules df.

Example 5 The logical rules of/FL. are reductive in this calculus. Consider, e.g.
instances of —=) and (=—):

LB=A II=A ,A= B
TTA-B=SA ) and Yyoaop &)

Then we have the required derivation:

WA= B II= A
IB=A H,2:>B(Cut)
OLILY = A

(cut)

To deal with shifting applications of (cut) upwards, we regusome way of indi-
cating a particular formula in hypersequents; either thdammula or the principal
formula of some rule. Anarked hypersequet is a hypersequent with one oc-
currence of a formulal distinguished, writtey’ | ', A = AorG |1l = A. A
marked instancef a rule is an instance with the occurrence of the principal f
mula marked, if there is one. We will assume that all notioeggning to usual
hypersequents also apply in the same way to marked hypensequ

It is now straightforward to define the result of multiple &pgtions of (cut) with

one fixed premise. We mark the cut formula in the fixed premidgle in the

other premise, a marked hypersequent indicates a formuléorime used in the
applications of (cut).

For a (marked or unmarked) hypersequénand a marked hypersequeht we
defineCUT (G, H) as the smallest set satisfying:

1. (H'|G) € CUT(G,H)whereH = (H' |l = A)orH = (H'|II,A= A).



2. (¢'| I\l = A) € CUT(G, H) if:
either(¢' | T, A= A) e CUT(G,H) and H = (H' | Tl = A)
or (G| I'=A)e CUT(G,H) and H = (H' | I, A= A)
noting that the occurrence éfin G’ | I', A = AorG’' | I' = A is unmarked.

Notice that for a sequerft = (I', A" = A) and marked sequent = (II = A)
whereA does not occur unmarked Iy the setCUT (S, S) consists of all sequents
of the formI', A" % TI* = Afork =1...n.ForS = (I' = A) andS’ =
(I, A = X)), the only member oEUT(S,S") isT', II = 3.

Definition 6 A rule () is substitutivef for any marked instanc#;, ..., S, / S of
(r), marked sequerfi’ and S” € CUT(S, 5):

Si,...,S, / S"is an instance ofr) for someS; € CUT(S;,S")fori=1...n
The logical rules of/FL. are substitutive. However, for the standard weakening and
contraction rules of this calculus, we require a slightlyaker condition.

Definition 7 A rule (r) is weakly substitutivén a sequent calculus if for any
marked instancé;, ..., S, / S of (r), marked sequert’, andS” € CUT(S, S'):

S" is derivable fromS?, ..., S/ for someS, € CUT(S;,S") fori=1...n using
only the structural rules of and (r).

Example 8 The rules (wl), (wr), (cl), (wc), (mix), and (& (n > 2) of Fig. 1 are all
weakly substitutive inFL.. E.g., for (mix), suppose that we have an instance:

[NAY = ILAF = A
[ILA" = A

ConsiderS’ =¥ = AandS” = T',II, ™, A" = A. We obtain the following
derivations fork < m (left) andk > m (right):

Y= LYk Avm = A ™ AFm = I AR = A
T IL%™, A = A T ILY", A" = A

However, the following variant of (mix) is not weakly sutugive in'vFL.:

I'=A II=A
OLII= A

(mixy

To see why, consider an instance whéxe= [A] and cut the conclusion with
Y, A =itis not possible to deriv&, I1, > = fromT", ¥ = andIl, X = in VFL. +



(mix). On the other hand, this rulis weakly substitutive iNFL.,.: in this case we
can apply (cl) repeatedly to obtain the required derivaton

Definition 9 A (first-order) simple calculug is called reductiveif it has reduc-
tive logical rules, andsubstitutiveif it has substitutive logical rules and weakly
substitutive structural rules.

Let us now assume thatis any (first-order) simple reductive and substitutive se-
guent calculus. We will show (following the proof of [5]) théne transferred hy-
persequent calculusL® admits cut elimination. First, we state a technical lemma
asserting the “substitutivity” of calculi with substitué rules, easily proved by in-
duction on the height of a derivation. Létt) andG(¢) denote the results of substi-
tuting the termt for all free occurrences afin the derivationi(a) and hypersequent
G(a), respectively.

Lemma 10 If di(a),Gi(a),...,Gn(a) Fuc G(a) andt is a term whose variables
are all free and do not occur iti;(a), thend; (t), G, (t), ..., Gu(t) Fyrc G(1).

Theorem 11 HL® admits cut elimination.
Proof It is sufficient to show that an “uppermost” application ofif)cin anyHL®-
derivation can be eliminated without introducing new apggiions of (cut). Hence,

letting HLS be HL® without (cut), we prove the following:

Claim: For any hypersequegtand hypersequer{ with marked formulaA:
if dgFpc G and dy by M, thenky c G forall G € CUT(G, H)

Note that using Lemma 10 we can assume without loss of getyetfzt any free
variables other than those # that occur indg andd,, are distinct. We prove the
claim by induction on the lexicographically ordered triple

(1Al e(dn), dg])

where e(d) =

0 if d ends with a logical rule applied to a marked formula
1 otherwise

We begin by considering the last application of a ralgin dg. If (r) is (id), then
a member ofCUT(G, H) is eitherH or of the formH’ | G: the claim follows
immediately for the former and by (ew) for the latter(H is (ec), (ew), or (com),
then the claim follows by applying the induction hypothdsitowed by ().

Otherwise(r) contains only one active component in its premises and oeiusi.
We distinguish two cases:

10



(@) The application ofr) is of the form:

G| S ... G|S,
G| So

and the principal formula (if there is one) ot A on the opposite side to the
marked occurrence . Let H = H | S, whereS is of the appropriate form:
II = AorllA = X. PickG" | S; € CUT(G | So, H). If (r) is a quantifier
rule, then the claim follows by the induction hypothesis andapplication ofr),
using Lemma 10 to take care of renaming variables when ne€tbdrwise (r)

is (weakly) substitutive and there exists a derivatibnSi, ..., S), . Sj, with
S; e CUT(S;,S) fori = 0,...,n, that uses only the structural ruleslofnd(r).
By the induction hypothesisy, c G” forall G” € CUT(G | S;, H) fori =1...n.
The claim follows by lifting the derivatior’ to hypersequents (i.€! | S7,...,G" |
S) LG | S)), since eaclyy’ | S € CUT(G | Si, H).

(b) (r) is a logical or a quantifier rule whose application is of therfo

G ... Gn G ... Gn
G| A" = A or G|T=A

where for the case on the left ¢ T', and in both cased is the principal formula
of the application on the opposite side to the marked ocoueen’H.

Let (r) be a logical rule and leg”* € CUT(G, H) whereH is of the form:
H|T= A or H|I,A=X
The only tricky case (others follow as above using substity} is whenG” is:
G|, = A or G'|II\II=X%
whereG” € CUT(G’, H). Notice that also:
G|, A=A o G'|T=A4

is a member oLUT (G, H). So by the substitutivity of (the logical rul¢y), there
existg! € CUT(G;, H) fori = 1...m such that:

G, ... G g ... G
Gg"| T, A= A or g"|IT= A

is an instance dfr). Moreover, by the induction hypothesig, c Gifori=1...m.
Hence there is 8L derivationd ending with such a rule application.

Now we consider two subcases:

11



(1) e(dyn) = 1:i.e.dy does not end with the application of a logical rule to the
marked occurrence od. Mark the remaining occurrence df on the left or
right as appropriate im to give a derivation of” | I',1I""1, A = A or
G" | I' = A, and remove the underlining ify;. Observe that:

(IA], e(d), |dn|) < (|A], e(ds), |dg])

Hence by the induction hypothesis and further applicatizmiec),FHLCf g™,

(2) e(dy) = 0:i.e. dy ends with the application of a logical rule to the marked

-,

occurrence ofd = x(A) of the form:

Hi ... H, Hy ... H,
H|II=A o H|ILA=X

Then by reductivity (of the sequent version (@f)) and lifting to hyperse-
quentsG™ is derivable fromG;, ..., G’ Hi, ..., H; with cut formulas from
A=A, ..., A But:

<|A2‘7 e<dH)7 |d‘> < <‘A|7 €<d7'()7 ‘ng fori=1...k
So by several applications of the induction hypothesis anjl %Hch G".

Cases wherér) is a quantifier rule are very similar, except that in casel(@nma
10 is used to replace the new variablen (=-V) or (3=-) with the new ternt in
(V=)or(=3). O

Corollary 12 HL® has thesubformula propertyi.e. if -y c G, then there exists a
cut-free derivationi of G in HL® such that any formula occurring it is a subfor-
mula of a formula ing.

3 Density Elimination by Substitutions

We now turn our attention to the main topic of this paper: thedity rule, utilized
(in a different form) by Takeuti and Titani to axiomatize tigder Godel Logic
[18]. Following Baaz and Zach [4], the hypersequent vergomritten as follows:

GIl=p|Yp=
GIIx=A

A (density)

wherep is a propositional variable not occurringin¥, A, or G.

To gain an intuitive understanding of the rule, considemnge instance:

A=p|p=1B
A= B

12



Sincep does not occur il or B we can read the premise as universally quantified:
“forall p” A = p | p = B.Nowinterpret= as “<” and| as “or”. Contrapositively,
the rule says “ifA > B, thenA > p andp > B for somep”.

Adding the density rule to a hypersequent calculus can hdvaraatic effect. Con-
sider e.g. a calculus with the split rule:

Gg|IIII=A
GIT=A|lI=

(split)

Extending the calculus with (density), we are able to proxveempty sequent:

p=p (%)

? (split)
p—:rp (density)

If the calculus also has weakening rules (see Fig. 1), thehgpersequent is deriv-
able: just apply (ew), (wl), and (wr) to the empty sequent prateed as above.

However, for many calculi, adding (density) has no effectvmich hypersequents
are derivable: applications of (density) canddgninatedfrom derivations. In [4,
15], “Gentzen-style” (by analogy with cut elimination)rination procedures are
defined. These proceed by induction on the height of a desivatf the premise
and shift applications of (density) upwards. The main difti, as for the corre-
sponding cut elimination method, is the duplication of camgnts or formulas in
the derivation. For example, if thein 3, p = A in the premise of (density) is
derived by internal contraction (cl), or one of the compdaéhp = Aorl' = p

is derived by external contraction (ec), the permutatiofdehsity) with (cl) or (ec)
does not necessarily move (density) higher up in the déoivato solve this prob-
lem, ad hoc (Gentzen mix-style) rules are used that alloviiegins of (density)
to be handled “in parallel”. For example, density elimipatcan be established for
the hypersequent calcult/FLS, . for first-order Godel Logic using the following

ewc

generalization of (density) [4]:

GITh=pl|... | Th=p|Z,p"=A1 ... | 0,0 = A,
Q\Fl,...,Fn,EliAI|...|F1,...,Fn,2m:>Am

wherep does not occur in the conclusion apidstands for any multiset ofs.

The above rule is not suitable, however, in the absence béretontraction or
weakening rules. In this situation, more complicated “comatorial” induction hy-
potheses are required, involving many hard-to-check qa$és

Here we present a new method for removing applications afithd from hyper-
sequent derivationglensity elimination by substitutionSimilarly to normaliza-
tion for Natural Deduction systems (and the cut eliminatioethod in [5]), top-
most applications of (density) are removed by making sietabbstitutions in the
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derivation for the new propositional variables. Procegdiny substitutions” in-
stead of shifting applications of (density) upwards avaligsneed for complicated
rules as induction hypotheses and leads to uniform denlsmtynation proofs for
large classes of calculi. In particular, we are able to shensdy elimination for
all (first-order) w-simple hypersequent calculi with subsiv&iand reductive rules,
and obtain some general (but more limited) results for ¢daldthout weakening.

3.1 Calculi with Weakening

In this section we show that the sufficient conditions forelirhination of Section
2.3 guarantee thatL¢ extended with (density) admits density elimination by sub-
stitutions for any (first-order) w-simple sequent calculusor an intuitive view of
the elimination procedure, consider a cut-free derivatiagm such a calculusiL®
that ends in a topmost application of (density):

L

GIl'=p|X,p=A _
| P|%p (density)
GILY=A

Let us call sequents of the forin p = p quasip-axioms reflecting the fact that
such sequents are derivable in w-simple calculi using (nd) @). For all sequents
occurring in hypersequents ihthat are not quagi-axioms, occurrences gfare
replaced in an “asymmetric” way according to whether thaiaence is on the left
or the right in the sequent: with if p occurs on the left, and, j§ occurs on the
right, with X on the left andA on the right (i.ell = p becomedI, > = A). Or,
to put matters another way, we perform repeatetson hypersequents occurring
in d with the sequents = p andX, p = A.

Following this replacement, the last step in the derivabenomes an application
of (ec) rather than (density). However, the resulting lluktree is no longer a
derivation; it requires some further “correction” steps:

(a) applications of logical and structural rules are repthloy suitable inferences
guaranteed by (weak) substitutivity.

(b) each subtree ending in an application of (com) invoharguasip-axiom:

g | Iy, 10, p" = p G | Ty, Iy, p*™) = A,

p - (com)
G |, Ty=p |1, 1y, p" = Ay

14



after applying the substitutions becomes:

G" | Ty, 1, p = p G" | Ty, Ty, TH=D = A
G| T1,Ty, Y = A |11, I, TF = A,

(com)

and is then replaced using (cut) and (wl) by a derivation efftrm:

G" | Ty, I, T¢D = A}

g// | Fl,Fg,E = A | Hl,Hg,Fk = Al
We are ready to make this more formal. For any hypersedtetdt:
H[F/JDUZ:>A /]

be the hypersequent obtained by first replacing all occae®fp on the left in
components o with I, and then all componenis = p with I1, > = A. Also let
H[A/p| be’H with all occurrences gf replaced byA. The following lemma is then
proved by a straightforward induction on the height of axdgion, making use of
the fact that the logical and structural rules of the undedysequent calculus are
schematic and (weakly) substitutive.

Lemma 13 LetL be a (first-order) simple reductive and substitutive setcaf
culus and leg be a hypersequent whepeoccurs only as a propositional variable.
If d Fyic G, thenkyc G[A/p] for any formulaA.

We can now prove our main theorem, noting that for convergmwe write(r)* for
an application of a rul¢r) with extra applications of (ew) and (ec).

Theorem 14 Let L be a (first-order) w-simple reductive and substitutive ssqu
calculus. TheL® plus (density) admits density elimination.

Proof For technical reasons, it will be useful in the proof to mirthe “” oc-
curring in hypersequents and its unit by suitable connestivandt (or different
symbols, if these are already taken). To this end, noticevtkacan assume that
contains the (reductive and weakly substitutive) ryles=), (= ©), (t =), and
(= t) of Appendix A. If not, then suppose that the theorem holdgHercalculus
extended with these rules. Since this extended calculuthbasbformula property
by Corollary 12, the theorem holds for the original calculus

To perform density elimination it is sufficient to remove nopst applications of
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(density). Hence by Theorem 11 we can consider a cut-freeatien d ending:

S d
G|Il=p|X,p=A
| p|%p (density)
GILY=A

Claim: if dy is a cut-free derivation itlLC of a hypersequert wherep occurs
only as a propositional variable and no componerft{o$ a quasip-axiom, then:

Fre G [T/, 772 /]

The desired result follows easily from this claim. JustigbeG |I'=p | X, p =
A.Weget-yc G| G|, X = AT, = A (noting thatG[" /,..*=* /,+] is just
G). So, by multiple applications of (ec), we havg,c G | [, X = A.

The proof of the claim proceeds by induction|dhy|. For the base casg{ is either
of the formH’ | B = B or is (the hypersequent version of) a substitutive logical
rule with no premise. In both cases, the claim follows by ginygj (ew).

For the inductive step, we distinguish cases accordingedeist rule(r) applied in

dy. If (r) is (ec), (ew) or a quantifier rule then the claim follows by lgpm the
induction hypothesis ang@-), using Lemma 10 to take care of renaming variables
when needed. The remaining cases are as follows:

e Let (r) be a rule other than (ec), (ew), or (com) with an instancecésthere is
only one active component in the premises and conclusion):

Gg1l1S ... G| Sn
gls

By assumptiong’ | S does not contain any quagiaxiom. Hence by the lo-
cal subformula property and the absence of cutd,ialso noG’ | S; for i €
{1,...,m} contains a quagi-axiom. So by the induction hypothesis:

Fre G LG SO /w2 ]l o P G LG [ Sl /™72 /]

But now, since the rules df are (weakly) substitutive and obey the local subfor-
mula property there exists a derivation for:

S [F/plvz:A /:0"]7 s Sm[r/p“E:}A /ID"] FL S[F/plvz:A /p*]

that uses only the structural ruleslofind (). The claim then follows by (ew),
lifting the above derivation fronk to HL® (i.e. addingg | ¢'[*/,.,”=* /,+] to
both the premises and conclusion).

e If (r) is (com), two cases can occur: (a) none of the premises cendaguasi-
p-axiom or (b) one of the (active) premises does. For (a), thiencfollows by
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applying the induction hypothesis and then (com). As an @tenconsider:
d1 d2
G | T, =p G| Do I, p* = Ay

- Y (com)
G |, T, p" = Ay |11, Il = p

LetG* = G'["/,.,>7* /,+]. Then by the induction hypothesis.:
Fac G| G| T, 0,8 = A andFyc G| G| Dy, 1L, TF = A

Hence by (Com)},_HLC g | g* | Fl,Fg,Fk = Al | 1,115, X = A.
For (b), we have an application of (com) of the form:

g | I, =p G ‘ Ty, p* 0 T, = A
G |y, Do, p" = Ay [T, 11y = p

(com)

LetG* = G'['/,.,*=4 /,+]. Then by the induction hypothesis:
d1 l_HLC g ‘ g* ‘ FQ, F(k_l),Hg = Al
Our aim is to find a derivation fag | G* | 'y, [y, I = A, | 11}, 11, ¥ = A.

Let®[Ay,...,Ay] standford; ©...® A, if m > 1 andt if m = 0. Consider

the original derivation’ ending with the premis¢ | ' = p | ¥,p = A of
(density). By Lemma 13, we can substit@él, for p in this derivation to get:

dgl_Hch|F:>®H2|Z,®H2:>A

Let d; be the (easy) derivation @f, = ©II, using(= ©®), (=t), and (id), and

let d;, be the derivation:

 dy
G|I=0olh| X6l =A >
wi a3
G|T' = QI |}, 0,2 = A H2:>®H2( "
cut)*
G| = Gl |, I, % = A
Now letd; be the derivation:
:dy
GG [T, T T, = A
(O=)+ (t=)

GG | o, T 0l = A

(wl)
g | g* | F17F27F(k_l)7 @HZ = A1

We obtain the required derivation:

GG T, Do, T* D Ol = Ay G| = 0l |11, 1L, S = A
Gglg| [y, T, TF = Ay | 11, 1, X = A

(cut)

17
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3.2 Calculi without Weakening

For calculi without weakening rules, matters are a bit mam@pglicated. Left as it

is, the density elimination method of Section 3.1 does nakwosuch cases. For
these calculi, quagi-axioms are not always derivable, and cannot therefore-be re
moved quite so easily. A further substitution step is regpliiifo formalize this step,
we introduce the following notation. Letbe a constant and any hypersequent:

H' is H in which each component of the forfhp = p is replaced by = ¢.

The idea is to perform the asymmetric substitutions of tleipus section té*
rather thari{. However, to obtain an analogue of Theorem 14 for calculhout
weakening, we also require a further condition:

Definition 15 LetL be a (first-order) simple sequent calculus. A rule instance:

F1:>A1 Fn:>An
I'=A

is premise-balanceifl one of the following hold:

i) A=
(i) T'; =T andA; = Afori=1...n(in particular, if n = 0).
(i) T1¢--- W, =TandA; lJ---WA, = A.

A (first-order) simple calculus is premise-balanced if atances of its structural
rules and logical rules with the principal formula and adiformulas removed are
premise-balanced.

Example 16 VFL. (see Appendix A) is premise-balanced (the trivial-seeroamny
dition (ii) is needed, with (iii), to ensure that instancefstbe logical rules with
the principal formula and active formulas removed are ps¥balanced). Also
the structural rules (wc) and (mix) in Fig. 1 are premisedorated: (wc) satisfies
(i), while (mix) satisfiegiii)). However, none of the conditions (i)-(iii) hold for the
contraction rules (g) and (cl).

Theorem 17 Let L be a (first-order) simple reductive, substitutive, and psam
balanced sequent calculus. Thieh® plus (density) admits density elimination.

Proof As in the proof of Theorem 14, we can assume that the calcaliades
rules for® andt. Then, as before we proceed by removing applications ofsfdgn
which are topmost. Lef be a cut-free derivation:

S d
GIl'=p|X,p=A _
| P|%p (density)
GILY=A
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Claim: if dy is a cut-free derivation of a hypersequéntvherep occurs only as a
propositional variable, then:

Fae G| 0,8 = A HIT /0,572 /]
The result follows from this claim exactly as in the proof d¢febrem 14.

The proof of the claim proceeds by induction j@k|. If H is an instance of (id),
then for the case wherH is p = p, we have thatj |= t is derivable by (ew)
and (= t), and otherwisé{’ is H and the result follows using (ew) and (id). We
distinguish other cases according to the last fujepplied ind;,. The cases where
(r) is (ec), (ew) or a quantifier rule proceed as in Theorem 14.

Suppose thatr) is any rule instance other than (ec), (ew), or (com), witHoss
of generality of the form (since there is only one active comgnt in the premises
and conclusion):

gl|Sl gl|Sm

Gi |5

If S is nota quasip-axiom, then we proceed as in Theorem 14. Otherwise, if at
least one of5; ... S,, is a quasip-axiom (hencér) satisfies Conditions (ii) or (iii)
of Definition 15), the claim follows by the induction hypo#ie and a subsequent
application of(r). Hence assume that none 8f...S,, is a quasip-axiom and
S = (II,p**! = p) wherep does not occur ifl. LetH' = (G | I', X = A) and
observe that! = S; for i = 1...m. By the induction hypothesis:

Fre BTG SO /™72 o] o P LGSl /775 ]

Using the (weak) substitutivity and the local subformulagerty of the rules ok
we have-yc H' | (1| ST/, =2 /s ie.

Fre 1 TGO /78 o] [TL T B = A

and we can complete the required derivation as follows:

H GO )y, =2 ] [T S = A = Eﬁt))*
com
H (GO /572 ] [ILTF =t | T, = A

Now assume thair) is (com). Two cases can occur: (a) neither of the active com-
ponents in the rule conclusion contains a quaakiom; (b) at least one does.

For (a), if no active component in the premises contain aiguasiom, then the
claim easily holds by applying the induction hypothesisdiwked by an application
of (com). Otherwise, we have:

- dy - dy
G | Iy, 0, p* ) = A Gi | Ty, Iy, pt = p

(com)
Gi| Ty, Ty, pF = Ay | T,y = p
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wherep ¢ I Wy WA WIL W, LetG* = Gi[Y /%72 /] | G | T, 8 = A
Our aim is to prove:

Fue 67 | Ty, To, TF = A [ 11,1, S = A
starting from the derivations (obtained by the inductiopdthesis):
dy e 67| T, T, TED = A and d) by GF | Ty, T, T = ¢

We first apply the ruldt =) to the end sequent af;, obtaining a derivation of
G* | I, T¢=D I, ¢t = A,. By (cut) with the end sequent df:

d Fuie G° | Ty, Do, TF LT T = A
Now let P = &(I1; W Il,), letting P = ¢t whenIl; = II, = [|, and consider:

G| T=P|S,P=A G T, T¢D P= A
g*|F1,F2,Fk:>A1|Z,P:>A

(cuty

The left premise is derivable by (ew) and Lemma 13, and the pgemise is deriv-
able by extending/; with (¢ =) and(® =) as necessary. The required derivation
is then obtained by applying (cttjo the conclusion and,, II, = P.

Now consider case (b) for (com). Assume first that just onez@ciomponent in
the conclusion of (com) contains a quasaxiom. If one of the active components
in the premise contains a quasaxiom, then the claim easily follows by applying
the induction hypothesis and (com). Otherwise, the apidicas of the form:

d1 d2
G ‘ Iy, = p G1 ‘ F27H2,p(kﬂ) = A
gl | F17F27pk = A1 | H17H27pj :>p

(com)

LetG* = Gi['/,.,”72 /] | G | T, £ = A. By the induction hypothesis:
& b G° | T1,I, 2= A and  d) Frie GF | Ty, I, TEH) = A
The required derivation can be given as follows:

L - dy
g | I, IL,E= A G* | Ty, T, THH) = A
G |T,% = A |y, Ty, TEVD I L = A,
G* | Ty, Ty, % = Ay | T, I, TUY = ¢

(com) — (=1)
=t

(comy

Now, again for case (b), assume that both active componeriteiconclusion of
(com) contain a quagi-axiom. If the active components in both premises also con-
tain a quasp-axiom, then the claim easily follows by applying the indanthy-
pothesis followed by an application of (com). Assume ingdtiat only one active
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component in the premise of (com) contains a gpaaxiom, as in:

- dy - dy
Gy | Ty, 10, p*H) = p G|, =p
Gi | Ty, 5, p" = p |11, 1y, p/ = p

LetG = Gi[" /"7 2 /]

(com)

G | I', ¥ = A. By the induction hypothesis:
d e G| T, T, TEHD = ¢ and dy b 67 | Ty, I, X = A
The required derivation @§* | I'y, Ty, [*~1 = ¢ | I}, II,, TU-Y = tis:
 dy
L G" | Tp I, X = A
G* [Ty, I, TR0 = ¢ G [Ty, I, 5t = A
g* | F17F27H17H27F(k+j_1)72 = A
. (com) — (=t)
G| T1, Do, TR = ¢ | 11 T, TV, 8 = A =t
G |0, 2 = AT, Ty, T = ¢ | 1}, 1T, TV = ¢
G* | Tp, Do, TR=Y = ¢ | 11 11, TUY = ¢

(t=)

(cut)y — (=1t)
=t

(comy*

(ec) O

4 Standard Completeness

We turn our attention now to the main application of dendlitymation: establish-
ing standard completeness for syntactic presentationfgstf¢rder) fuzzy logics.
To better explain what we mean by this, consider the follgnariom systenMTL
for Monoidalt-Norm Logic in a language with connectives —, A, andf:

(A1) (A— B) = (B — C) — (A— C))

(A2) (A®B) — A

(A3) (A® B) — (B® A)

(Ad) (AANB) — A

(A5) (A A B) — (B A A)

(A6) (A® (A — B)) — (A A B)

(A7) (A B) = C) = (A— (B — ()

(A8) (A — (B — C)) — (A® B) — C)

(A9) (A — B) — C) — (B — A) — C) — C)
(A10) f — A

(
(
(
(
(
(
(
(
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A A— B
A A=D (mp)

An alternative axiomatization is obtained by extending akipm system foFL.,,
with the axiom schemgA9).

It was conjectured by Godo and Esteva in [10] that a formuisiderivable inMTL
iff it is valid (always evaluates td) in all algebrag|0, 1], ®, —, A, V, f,t) whereA
andvV are interpreted bynin andmax, f andt by 0 and1, ® by a left-continuous-
norm (an increasing commutative associative binary functiofoot] with unit 1),
and— by theresiduumof ©; a binary function satisfying oy < ziff + <y — z.

To put this another way, consider the clasdWfL-algebras(L, A, V, ®, —, f,t)
where(L, ®, t) isa commutative monoid[, A, V, f,t) is a bounded lattice, and

is the residuum of), satisfying the prelinearity condition< (x — y) V (y — )
forall z,y € L. SinceMTL is sound and complete with respectMd L-algebras
(A is derivable inMTL iff A is valid in allMTL-algebras), the conjecture becomes
that A is valid in all MTL-algebras iff it is valid in all “standardMTL-algebras;
thoseMTL-algebras with = [0, 1].

A proof of Godo and Esteva’'s conjecture was provided by Jandi Montagna
in [14]. Their method consists of three parts. First it iswhdhat if a formula is
not valid in anMTL-algebra, then it is not valid in a countatl&TL-chain (lin-
early orderedMTL-algebra). Next it is shown that any countabld L-chain can
be embedded into a countable deNsSEL-chain by adding countably many new el-
ements to the algebra and extending the operations apatelgriThis establishes
“rational completeness” foKITL: a formula is derivable iff it is valid in all dense
MTL-chains. Finally, a countable denb€TL-chain is embedded into a standard
MTL-algebra using a Dedekind-MacNeille-style completionsTthethod has been
extended to first-ordeMTL in [16] (making use of a different completion), and
adapted to prove standard completeness for other axicatiatiz of fuzzy logics
with weakening in [9, 6]. It relies however on finding the ‘migextension” of opera-
tions from chains to dense chains for each logic. Indeedydlo extension has been
found for logics without weakening such as Uninorm Logicioaxatized by ex-
tending an axiom system fé&t. - with the prelinearity schemal — B)V(B — A)
and distributivity scheméA A (BV C)) — ((AAB) vV (AN C)) [15].

Density elimination provides an alternative and more galmaethod for establish-
ing rational completeness. Instead of treatMi@L directly, we can consider the
corresponding hypersequent calcuii S . As we show below, a sequest A is
derivable inHFLS, extended with (density) iffl is valid in all densev TL-chains.

But then by density elimination, this holds i A is derivable irHFLS, and hence

iff A is derivable inMTL. More generally, we show that any suitable hypersequent
calculusHL® extended with (density) is sound and complete with respeatdass

of dense chains obtained via a Lindenbaum algebra conistnu@ensity elimi-
nation then tells us that this completeness result holds falsHL®. Finally, we
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can use a Dedekind-MacNeille-style completion and embepiai obtain uniform
standard completeness proofs for a wide range of logickjdimg first-order Uni-
norm Logic and first-order MonoidaNorm Logic.

4.1 Hypersequent Theories

We adapt the usual notion of a theory here to consist of hgpelents of sentences
(rather than just sentences). Hence (&itheory 7" for a languagel is a set of
hypersequents containing onfitsentences, recalling that since we deal only with
countable languages, theories will also be countable. Aalwge writeT;, 75 and

T, G to denotel’; U T, andT U {G}, respectively.

A hypersequent calculud for a languageC has the:

e Proof by cases propertf?CP if wheneverT, G, -4 H andT,G, Fy H, then
T,(G1 | G2) Fu H.

e Prelinearity propertyPP if wheneverT, (A = B) Fy ‘H andT, (B = A) Fu
H, thenT Fy H.

e Density propertyDP if wheneverl -y G | A = p | p = B for somep not
occurringin?’, G, A, or B, thenT -y G | A = B.

e Local deduction propert DP if T Hy I'y = Ay | ... | T, = Aliff there exists
a multiset of formula$l with predicate symbols restricted to thosdisuch that
Fu T, = Ay | .. | T, II= A, andT Fy = Aforall A € 11.

Let us assume now thatis a (first-order) simple calculus for some languate
recalling thatHL® is the hypersequent version loplus (ew), (ec), and (com).

We write £’ > £ to mean that the languag® is an extension of the language
with at most countably many new propositional variables esnistants. Since all
the rules oHL® except the quantifier rules are schematic, we can extédor £
to anyL’' > L in the usual way with the extra substitution instances oftihes.

Lemma 18
(a) HL® satisfies the°CP andPP.
(b) If HLC plus (density) admits density elimination and @7, thenHLC sat-
isfies theDP.
Proof For (a), observe first that tlfe’P follows from thePCP. Suppose that:

T, (A = B) |_HLC ‘H and T, (B = A) l_HLC H
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ThenT, (A= B | B = A) by.c H bythePCP.Butalsot-yc A= B|B= A,
SOT tFyc H. For thePCP, consider a derivation df',G; k. c ‘H: a tree where
the leaves are labelled either with axioms, membefE, afr G, (we can assume by
Lemma 10 that none of the new variables in the derivation ioecl). We alter
this tree as follows to obtain a derivation f6r(G; | Gs) Fpic H:

(1) Re-label nodes labelled with G | H, and extend the tree at the root from
'H | H to a new rootH by removing sequents frofi; i.e. by applying (ec).

(2) Extend every leaf labelled | H whereG is an axiom or member df to a
new leafG by removing sequents frofi; i.e. with applications of (ew).

(3) Extend the remaining leaves of the fogn | H by placing them as roots of
derivations ofl", G, -y, c H with every node labelled re-labelledd; | G.

(4) Extend every leaf labelled, | G whereG is an axiom or member df to a
new leafG by removing the elements ¢f ; i.e. with applications of (ew).

The only leaves not labelled with an axiom or membéer @fre labelledy; | G», SO
we have a derivation fdf’, (G, | Go) Fnyc H.

(b) Suppose thal’ < G | A = p | p = B for some propositional variable
not occurring inl’, G, A, or B. By the LDP, there exists a set of formuldbwith
predicate symbols restricted to those occurring@ isuch that:

Thruyc=C forallCecll and FycG' |, A=p|ll,p=B

whereG! is obtained by addingfl to the left of all the sequents . But then by
density eliminatior-y,c G | II,II, A = B. Hence, sincd’ -y c= C for all
C € 11, by multiple applications of (cut)’ y.c G | A = B as required. O

We define arnC-theoryT to be:

e L-linearif for all £-sentences, B, eitherT Fyc A= BorT Fyc B = A.

e L-densedif for all £L-sentences\, B, wheneverl' t/,c A = B, thenT I/y.c
A = C andT ty.c C = B for someL-sentence&.

e L-Henkinif for all £-sentence€’,VzA(x), and3xzA(z), whenevefl t/y c C =
VzA(z), thenT tyc C = A(c) for some constantof £, and whenever' ty, c
dxA(x) = C, thenT tyc A(d) = C for some constant of L.

We now come to our crucial lemma, relating density elimimatio the extension
of theories to dense linear Henkin theories.

Lemma 19 If HLC satisfies theDP and T' t/y c G for someL-theoryT', then
T Fuic G for someL-linear £-denseL-HenkinL-theoryT © T wherel > L.

Proof We construct]” in countably many steps. First l&t be the extension of
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L with countably infinitely many new propositional variablasd constants not
occurring inT or G. In the construction of’ we have to:

(a) deal withZ-linearity andC-density for each pair of-sentences! and B.
(b) deal with theC-Henkin property for each pair af-sentences’ andvz A.
(c) deal with theC-Henkin property for each pair ai-sentence§’ and3x A.

Since these are countably many tasks we can interleave them.

We letTy = T andG, = G. For the induction step, assume thtandg,, have
been constructed such thBt ty < G,,. We constructl,,,; 2 T, andgG,.1 2 G,
such thatl}, . Fyic G, andT,,,4 fulfills the n-th task.

(a) Suppose that the-th task is dealing withC-linearity and£-density for4 and
B.IfT,, (A= B),(B = A) l/q.c Gn, then itis sufficient to define:

Twi1=T,U{A= B,B= A} and G,.1 =G,
Otherwise, we claim that one of the following holds:

(1) T, (A= B)uc G | B=p|p= A
(2) T,,,(B= A) uc G | A=p|p= B.

for somep not occurring int,,, A, B, orG,. If not, then by theDP:
T, (A= B)FycG,|B=A and T,,,(B=A)FycG,|A=B
But now sincel,, (A = B),(B = A) by.c G, andT,,, G, Fy.c G, by the PCP:
T,,(A=B),(G,| B=A) by G, and T,,, (G, | A= B),(B = A) Fyic G,\'
and so, sincé,,, (A= B)Fyc G, | B= AandTl,,(B= A) by G, | A= B:
T,,A= BtycG, and T,,B= Aty G,
But thenT,, Fy.c G, by thePP, contradicting the induction hypothesis.

If (1) holds, letT,,,, =T, U{A= B} and G,.1 =G, | B=p|p= A.
If (2) holds, letT},,, =T, U{B= A} andG,.1 =G, | A=p|p= B.

Clearly T, fulfills the ﬁ-linearity condition forA and B, and7,,.1 Fyic Gnat-
Moreover, ifT,, .1 yc A = B, thenT, .1 t/yc G, | A= p| p= Bandsohy
(ew), T, 11 e A = pandT, 1 Fyc p= B.The case wheré, ., /4y c B= A
is symmetrical, sd,., fulfills the £-density condition ford and B.

(b) If the n-th task is dealing with th&-Henkin property forC' andvzA(z), then
let c be a constant not occurring,, G,,, C, or A. There are two cases:
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(1) T, Pae G | C = A(c), thenT), yc C = Vo A(z), and let:
Twi1=T, and G,.1 =G, | C = A(c)
(2 BT, Fyc Go | C = A(c), thenT, Fyc G, | C = VzA(x), so let:
Thi1 =T,U{C = VzA(x)} and G, =G,

Suppose thdf, ;1 Fyic G,11. Since alsd;,, G, Fuic G, by thePCP, we get
T, (G, | C = Yz A(z)) Fyic G, HenceT,, Fy c G, a contradiction.

(c) Dealing with thel-Henkin property foiC and3xA(x) is very similar to (b).

Finally, T = U,y 7., is £-linear, £-dense, and-Henkin, andl” /yc G. O

4.2 Algebraic Semantics

Let us begin by reviewing some algebraic notions for firgteorlogics (see e.g.
[8]). A (partially-ordered) algebraA for a language’ is a poset L, <) equipped
with operations corresponding to the connectivgo€L. A is called achainif it
is linearly ordered, i.er < yory < z forall z,y € La, anddensef whenever
x Lyforz,y € La,there exists € L suchthatr £ zandz £ y.

An A-structureis a tripleM = (M, (pm)pep.., (fm) rer. ) WhereM is a non-empty
set called thelomain pys is a functionM™ — L, for eachp € P, with arity n,
and fy; is a functionM™ — M for eachf € F, with arity n.

An M-valuationwv is a mapping from object variables;Xo M. For any variable
x andu € M, v[x — u] is the M-valuation defined by[x — u|(x) = w and
vz — u](y) = v(y) for anyy not equal tar.

| Al|81., is then defined inductively as follows, stipulating that tfaue is unde-
fined if either one of the required arguments is undefined®ntgeded infimum or
supremum does not exist iny :

z|8g., = v(z) forz e X,
£ st R = a1 [als,)for £ € Fe with aritym
It ) e = prall1 e Iali) for p € P with arity n
I (v, A e = (A8 [1Aallde,) for = € Ce with arity n

1(v2) AllNg,, = mF{ Al o 1 € M}
1(32) Allf,, = sup{l|Alljgup  u € M}
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M is calledsafeif || Al|f;, is defined for each formuld andM-valuationv, and
in this case we defingA||§; = inf{[| Ay, : v is anM-valuatior}.

We call anZ-theoryT" equationalif it contains only sequents of the forrh = B
whereA and B are L-sentences.

An A-modelof such an equational theofl is a safeA-structureM such that
| A& < ||B||&;forall A= BeT.

For a class of algebrds for a languageC, we writeT =x A = B to mean that
forall A € K, any A-model ofT" is anA-model of{ A = B}.

We obtain corresponding algebras for suitable hypersequaeuli via a Linden-
baum algebra construction. Call a (first-order) sequeriubasL for a languagel
regularif it is simple and for eack € C, with arity n, fori =1...n:

(A= B),(B= A) b x(Ch....,C)A/C)] = +(Ch, ..., C)[B/C;

Example 20 Any simple sequent calculus with rules for connectivegnnv, —
,O,t, f, L, T} from Appendix A and Figure 1 is regular. E.g., fer we have:

CiCM)B:A(
A%QB#C(
A—-C=B-—-C

C—-AC=8B (
and C —-A=C—21DB

—>:>)

=—)

=—)

Thatis,(A= B),(B= A F A—-C=B—Cand(A= B),(B=A)F_
C — A= C — Basrequired.

For a (first-order) regular sequent calculufor a language and L-theoryT’, let:
LIND% =qet (L5, {5 : % € C}) where:

1. [A)4 =qef {Bis anL-sentence T -y c A = B andT Fy.c B = A}.
2. L5 =qet {[A)% : Ais anL-sentenckand[A]% < [B]4iff T Fyc A= B.
3. K& ([A1)4, ... [An)5) =aef [X(A1, ..., A,)]% for eachn-ary connective: of L.

The definition is justified by the fact thatis regular.

An HLC-algebraA is any algebra fo such that for all equational-theoriesT”
and£-sentencesl andB, if 7"y c A= B,thenT’ =4y A= B.

We call a linearly ordere#iL“-algebra, aHL¢-chain and astandardHL“-algebra

if its universe is the real unit intervél, 1] equipped with the usual order. We let
DEN(HL®) andSTAN(HL®) denote the classes of all dengk-chains and stan-
dardHLC-algebras, respectively.

Lemma 21 (a) LIND% is a countableHL -algebra. (b)LIND% is a chain iffT" is
L-linear, and dense iff" is £-dense.
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Proof (a) Let7” be an equational-theory and letA and B be £-sentences. Sup-

L
LINDL

pose thatl” -,c A = B. Let M be a LND%-model of 7. L.e. ||C|ly © <

L L L
ID|laf " forall C = D € T'. But thenT by ||Clnt " = || D5 for all
L
T <

LINDL LINDZ LIND

C=DeT.SoT Fycc |Allm © = ||Bllp © which means that A||

LINDA, . . r
|Bllp - Thatis,M is a LIND7-model of{ A = B}.

(b) LIND% is a chain iff for allL-sentencest and B either[A]4 < [B]% or [B]4 <
[A]%. But this holds iffT -y c A = BorT Fyc B = A;i.e. iff T is L-linear.
LIND% is dense iff whenevdrd]5 £ [B]%, there exist$C]% such thafAl% £ [C14
and[C]4% £ [B]%. But this holds iff whenever t/y c A = B, thenT t/yc A= C
andT tHy .« C = B for someL-sentencé&; i.e. iff T'is L-dense. O

Lemma 22 For an £-Henkin theoryl” and formulaA(a) with one free variable:

(@) [VrA(x)]
(b) BrA(z)]

= inf{[A(c)]% : cis a constant oL}.
= sup{[A(c)]5 : cis a constant oL }.

HBNL

Proof We will consider just (a) since (b) is very similar. EasjlyzA(z)])% <
[A(c)]4 for all constants: of £ sinceT Fyc VrA(xr) = A(c). Now suppose
that[C]5 < [A(c)]5 for all c but[C]4 £ [VzA(z)]5. We getT g c C = VzA(z),
so by theL-Henkin propertyl” 4, c C = A(d) for somed, a contradiction. O

Now we can use Lemma 19 to obtain completeness results vafece to dense
chains. LeL be a (first-order) regular sequent calculus suchlfhatplus (density)
admits density elimination and th&DP.

Lemma 23 If Tt/ c A = B for some equational-theoryT and £-sentences!
and B, thenT [~y A = B for some countable denst.“-chain A.

Proof Let 7" be an equational-theory, letA and B be £L-sentences, and suppose
thatT t/yc A = B. By Lemma 197 t/4,c A = B for someL-linear £L-dense

L-Henkin £-theoryT D T where > L. Let A = LINDX. By Lemma 21,A

is a countable dengel-chain. LetD be the set of closed terms gf Define an
A-structureM with domainD such thatf (¢4, ..., tm) = f(t1,...,t,) for each
m-ary function symbolf andpyi(ti, ..., tn)) = [p(t1, ... ,tm)]g for eachm-ary
predicate symbap. Then, proceeding by induction on formula complexity, gsin
regularity to take care of the propositional connectivess la@mma 22 to take care
of the quantifiers|| B||y; = [B]% for all L-sentences3. Hence for eaclt’ = D e

T, sinceT Fyc C = D, [C’]TQ < [D]é% and so||C||&; < || D||&;. Similarly, since
T t/uc A= B, itfollows that[A]% # [B)% and||A|$; £ | Bl#. O

Corollary 24 For any equational’-theory7 and £-sentences!, B:

T l_HLC A = B |ff T ):DEN(HLC) A = B
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4.3 Applications

We can use the very general results established above to sbtdadard complete-
ness results for first-order fuzzy logics, including firstler Uninorm Logic and
first-order Monoidak-Norm Logic. Rather than deal directly with axiom systems,
we treat their algebraic counterparts; (bounded) pointedroutative residuated
lattices, investigated in detail by Tsinakis and co-wosksee e.g. [12]).

A pointed commutative residuated lattice (p.c.rik)an algebra(L, A, V,®, —
,t, f) with binary operationg,, v, ®, —, and constants f such that:

(1) (L, A, V) is a lattice with order defined by < y iff z Ay = =.
(2) (L,®,t) is a commutative monoid.
B)roy<ziffe<y— zforalzx,y,z € L.

A bounded p.c.rlis an algebra L, A, V,®, —,t, f, L, T) where(L,A\,V,®, —
,t, f) is a p.c.r.l. with top and bottom elementsand_L, respectively.

The classes of (bounded) p.c.r.l.s that we are interestackeirlasses of algebras
based on hypersequent calculi. Let us fix the sequent caltutube (referring to
Appendix A and Fig. 1):

VFLe, + K for K C {(cl), (wc), (c,)} or VFLY + K for K C {(wc), (mix)}

Lemma 25 The class oflL -algebras consists of all (bounded, if the language of
L containsT and 1) p.c.r.l.s satisfying:

)t<(z—y)Vy—z)andzA(yVz) <(xAy)V(zAz).

(i) x <t andf <z if L extends/FL,,.
(i) 2 <z if () € K.

(iv) f <t if (mix) € K.

V) zA(x— f) < fif (wc) € K.

(vi) 2"t < 2" if (c,) € K forn > 2 (wherez! = x andz**! = 2 © 2%).

Proof Let A be a (bounded) p.c.r.l. satisfying the appropriate comaistifor L
stated above. Using soundness results in the literatunsttoe.g. [15]), if7" by c
A = B, then everyA-model of 7" is an A-model of A = B. HenceA is an
HLC-algebra. For the other direction, note that for each intiquan (i)-(vi), a cor-
responding sequent (replacingpy =) is derivable irHL® (again consult [15]). For
example, bothh = (A — B)V(B — A)andAA(BVC) = (AAB)V(ANC) are
HFLS-derivable. Hence eadhl“-algebra satisfies the appropriate conditions.

In particular, bounded p.c.r.l.s satisfying the prelintyaand distributivity condi-
tions of (i) (algebras for Uninorm Logic) are precisélfL“-algebras and vice
versa, while p.c.r.l.s satisfying conditions (i)-(ii) ¢elbras for Monoidat-Norm
Logic) constitute the class ¢fFLS -algebras.
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SinceHL® admits density elimination, by Corollary 24, we can estibiomplete-
ness ofHL® with respect to denskHL -chains by showing thatlL¢ has the local
deduction property.

Lemma 26 HLC has theCDP.

Proof LetG =17 = A, | ... | ', = A,. Suppose that for some finite multiset
of formulaslII with predicate symbols restricted to thosé/in

Fue T, = Ay | ... | T, II= A, and TFyc= A forall A €1l

We obtain a derivation fof" -, < G using these derivations and multiple applica-
tions of (cut) and (ew).

Now suppose conversely thatt, < G. Compactness follows from the definition
of a derivation, so we can assume thds finite. Define a functiod from hyperse-
quents to formulas as follows: (A)I' = A) = OI' — @A wherex[A4;, ..., A;] =
(Ap % ...x Ap) forx € {O,8}, O] =t,anda[] = f; 0O) I(S1 | ... | Sm) =
I(S1) V...V I(Sy,). Letll = [I(H) At : H € T]. Note that the following rule is
HLC-derivable using (ec)=V):, and(=V)s:

G|IT'=A|I'=B (=)
G|I'=AVB

We obtain a derivation fof’ -, < = A for eachA € II by applying (backwards)
the rules(=A), (=1t), (=V), (=—), and(® =). Moreover, we can show that if
d,T Fpc G, thenkyc T, 1™ = Ay | ... | [, II™ = A, for somem € N,
proceeding by induction ofi|. For the base case, dfends with (id) or a logical
rule, then the result follows immediately, taking = 0. If G is a member off’,
then we taken = 1. By the invertibility of the rule§=V), (=—), (©0=), (t=),
and(=- f) (see [15] for details); 1y c ['1, 1(G) = Ay | ... | T, I(G) = A, and
the result follows by multiple applications 6f=-) and(t=-).

For the inductive step, we consider as an example the case wiads with an

application of(—=):

21:>A|F2:>A2||FNZ>AH 22,B$A1|F2:>A2||FHZ>AH
El,EQ,A—)B:>A1 | F2:>A2 | |Fn:>An

wherel'; = ¥, & Y,. Then by the induction hypothesis twicgg, c 31, ITF = A |
FQ,Hk = AQ | ‘ Fn,Hk = An andl_HLC 227B,Hl = Al | Fg,Hl = AQ | |
I, II' = A, for somek,l € N. Letm = k + [. Then by multiple applications of
(A=) and(t=), we have—c &1, I1F = A | Ty, lIm = Ay | ... | [,, I = A,
andbyc X, BII' = Ay | T, 1™ = Ay | ... | T,,II™ = A,. The result
follows by a single application gf—=-). O

So by Corollary 24, for any equational thedfyand sentences, B: T by c A =
Biff T Fpenicy A = B. As a further step, we now use a Dedekind-MacNeille-
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L HLC Original Proofs

VBFL. First-Order Uninorm Logic [15] (propositional)
VFLew First-Order Monoidat-Norm Logic [14, 16]
VFLew + (WC) First-Order Strict Monoidat-Norm Logic [9] (propositional)

VFLew + (C,) | First-Ordern-Contractive Monoidat-Norm Logic | [6] (propositional)
VFLewce First-Order Godel Logic [13]

Fig. 5. Standard Completeness Results for First-OrderyFuagics

style completion (following [15]) to show thadL® is complete with respect to
standardHL“-algebras.

Let A be a (bounded) p.c.r.l. FOf C L4, let X* denote the set of upper bounds of
X, andX!, the set of lower bounds of . Let DM(A) be the algebra with universe
DM(La) =dget {X C La : (X“)! = X} ordered byC with constantgpy = {t}
and fom = {f} (and Lpm = {L} andTpy = L, if A is bounded) and binary
operations:

XNopnwY =XNY X@DMY:({ny:xEX,yEY}“)l
X\/DMY:((XUY)U)Z X—>DMY:{[L’GLAZIL'@?/GYfOI'a”yGY}

Lemma 27 Every countable densgL-chain can be embedded into a standard
HLC-algebra by a complete embedding.

Proof Let A be a countable dens# “-chain. Since. 4 is order-isomorphic t@Q@n
0, 1] with the usual order, the Dedekind-MacNeille completidi (L4 ) is order-
isomorphic to[0, 1] with the usual order. Moreover, as shown in e.g. [T8Y)(A)
is a (bounded) p.c.r.l. satisfying the appropriate condiifor HL -algebras of
Lemma 25. Finally®(z) = {z}' is a complete embedding (preservings and
sups of elements i) of A intoDM(A). O

Theorem 28 For any equational’-theoryT and £-sentences!, B:
T l_HLC A = B |ff T ’:STAN(HLC) A = B

Proof The left-to-right direction follows from the definition ofhaHL -algebra.
For the other direction, suppose thatt/;,c A = B. By Theorems 14 and 17,
HL® plus (density) admits density elimination. Also by Lemma 2&@se systems
admit the£LDP. Hence by Lemma 23, there is a countable ddr&-chain A
and anA-model of T that is not anA-model of { A = B}. But by the previous
lemma, there is a complete embeddingofinto a standardiL“-algebra. Hence
T FEstanmey A= B. O
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In particular, we obtain standard completeness resulthéofirst-order fuzzy log-
ics displayed with references to the original proofs (soust @t the propositional
level) in Figure 5.
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A The Sequent CalculusvFL.

Initial Sequents

A=A (id)
Logical Rules
. TI'=
r=A
It=A (t=) =1 (=1)
A, B=A I'=A II=B
T AcB=A (©F) ThisAon O
NA= A A I''B=A A
TANBES A TANB= A )
A=A T'B=A Ir'=A I'=B
TAvBoa V) r=anp =N
I'=A I'=2~B
1“:>A\/B(:>v)1 F:>A\/B(:>v)2
IB=A II=A I'N'A=B
THASBoA ) rsAoE )
Quantifier Rules
[LA(L) = A I'= A(a)
I\WVzA(z) = A (V=) I' = VzA(z) (=v)
I'A(a) = A I'= A(t)
- =
T 3wA@) = A C) IS 3od() )

wherea does not occur in the conclusions (@=>) or (= V).

Cut Rule
'=sA IILA=A

Toa  CW
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