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Abstract. Starting with the deontic principles in Mı̄mām. sā texts we
introduce a new deontic logic. We use general proof-theoretic methods to
obtain a cut-free sequent calculus for this logic, resulting in decidability,
complexity results and neighbourhood semantics. The latter is used to
analyse a well known example of conflicting obligations from the Vedas.

1 Introduction

We provide a first bridge between formal logic and the Mı̄mām. sā school of Indian
philosophy. Flourishing between the last centuries BCE and the 20th century,
the main focus of this school is the interpretation of the prescriptive part of
the Indian Sacred Texts (the Vedas). In order to explain “what has to be done”
according to the Vedas, Mı̄mām. sā authors have proposed a rich body of deontic,
hermeneutical and linguistic principles (metarules), called nyāyas, which were
also used to find rational explanations for seemingly contradicting obligations.

Even though the Mı̄mām. sā interpretation of the Vedas has pervaded almost
every other school of Indian philosophy, theology and law, little research has been
done on the nyāyas. Moreover, since not many scholars working on Mı̄mām. sā are
trained in formal logic, and the untranslated texts are inaccessible to logicians,
these deontic principles have not yet been studied using methods of formal logic.

In this paper starting from the deontic nyāyas we define a new logic – basic
Mı̄mām. sā deontic logic (bMDL for short) – that simulates Mı̄mām. sā reasoning.
After introducing the logic as an extension of modal logic S4 with axioms obtained
by formalising these principles 3 and providing a cut-free sequent calculus and
neighbourhood-style semantics for it, we use bMDL to reason about a well known
example of seemingly conflicting obligations contained in the Vedas. This example
concerns the malefic sacrifice called Śyena and proved to be a stumbling block
for many Mı̄mām. sā scholars. The solution to this controversy provided by the

? Supported by FWF START project Y544-N23, FWF project V400 and EU
H2020-MSCA grant 660047.

3 While some of the nyāyas we consider are listed in the Appendix of [13], we extracted
the remaining ones directly from Mı̄mām. sā texts, see [6].
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semantics of bMDL turns out to coincide with that of Prabhākara, one of the
chief Mı̄mām. sā authors, which previous approaches failed to make sense of, e.g.,
[18]. Our formal analysis relies essentially on the cut-free calculus for bMDL
introduced with the aid of the general method from [16].

Through the paper we refer to the following Mı̄mām. sā texts: the Pūrva Mı̄mām. sā
Sūtra (henceforth PMS, ca. 3rd c. BCE), its commentary, the Śābarabhās.ya
(ŚBh), the main subcommentary, Kumārila’s Tantravārttika (TV).

Related work. Logic (mainly classical) has already been successfully used to
investigate other schools of Indian thought. In particular for Navya Nyāya formal
analyses have contributed to a fruitful exchange of ideas between disciplines [8],
however, no deontic modalities were considered. A logical analysis of the deontic
aspects of the Talmud, another sacred text, is given in [1]. The deontic logic used
there is based on intuitionistic logic and contains an external mechanism for
resolving conflicts among obligations. Deontic logics similar but not equivalent
to bMDL include Minimal Deontic Logic [9] and extensions of monotone modal
logic with some versions of the D axiom [12,17]. The latter papers also introduce
cut-free sequent calculi, but do not mix alethic and deontic modalities.

2 Extracting a deontic logic from Mı̄mām. sā texts

The use of logic to simulate Mı̄mām. sā ways of reasoning is motivated by their
rigorous theory of inference and attention for possible violations of it. For instance
Kumārila, one of the chief Mı̄mām. sā authors, emphasises the fact that a text is
not epistemically reliable if the whole chain of transmission is reliable, but not
its beginning. The classical example is that of “a chain of truthful blind people
transmitting information concerning colours” (TV on PMS 1.3.27).

At this point, the problem amounts to which logic should be adopted. The
simplest logical system for dealing with obligations is Standard Deontic Logic
SDL, that extends classical logic by a unary operator O read as “It is obligatory
that...” satisfying the axioms of modal logic KD [2,7]. Though simple and well
studied, SDL is not suited to deal with conflicting obligations, which are often
present in the Vedas and in Mı̄mām. sā reasoning. A well known example from
the Vedas consists of the following norms concerning the malefic Śyena sacrifice,
which is enjoined in case one desires to harm his enemy, since it kills them:

A. “One should not harm any living being”
B. “One should sacrifice bewitching with the Śyena”

Any reasonable formalisation of the statements A. and B. leads in SDL to
a contradiction. Given that the Mı̄mām. sā authors embraced the principle of
non-contradiction and invested all their efforts in creating a consistent deontic
system, to provide adequate formalisations of Mı̄mām. sā reasoning a different
logic is needed. To this aim we introduce basic Mı̄mām. sā deontic logic (bMDL)
by extracting its properties directly from Mı̄mām. sā texts.
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The language of bMDL extends that of classical logic with the binary modal
operator O(·/·) from dyadic deontic logics and the unary modal operator � of S4.
While the latter is used to formalise the auxiliary conditions of general deontic
principles, the former allows us to impose conditions on obligations describing
the situation in which the obligation holds. Hence a formula O(ϕ/ψ) can be read
as “ϕ it is obligatory given ψ”.

The use of the dyadic operator, which is a reasonably standard approach
to avoid the problem with conflicting obligations (see, e.g., [11] and [9]), is also
suggested in the metarule “Each action is prescribed in relation to a responsible
person who is identified because of her desire” (cf. PMS 6.1.1–3).

As described in Sec. 2.1 the properties of the deontic operator O(·/·) of bMDL
(definition below) are directly extracted from the nyāyas.

Definition 1. Basic Mı̄mām. sā deontic logic bMDL extends (any Hilbert system
for) S4 with the following axioms (taken as schemata):

(1) (�(ϕ→ ψ) ∧ O(ϕ/θ))→ O(ψ/θ)
(2) �(ψ → ¬ϕ)→ ¬(O(ϕ/θ) ∧ O(ψ/θ))
(3) (�((ψ → θ) ∧ (θ → ψ)) ∧ O(ϕ/ψ))→ O(ϕ/θ)

The choice to use classical logic as base system, in contrast to the use of in-
tuitionistic logic in Gabbay et al.’s deontic logic of the Talmud [1], is due to
various metarules by Mı̄mām. sā authors implying the legitimacy of the reductio
ad absurdum argument RAA; these include the following (contained in Jayanta’s
book Nyāyamañjar̄ı): “When there is a contradiction (ϕ and not ϕ), at the denial
of one (alternative), the other is known (to be true)”. Therefore, if we deny ¬ϕ
then ϕ holds, which gives RAA.

2.1 From Mı̄mām. sā nyāyas to Hilbert axioms

Axiom (1) arises from three different principles, discussed in [6]; among them the
following abstraction of the nyāyas in the Tantrarahasya IV.4.3.3 (see [5])

If the accomplishment of X presupposes the accomplishment of Y, the
obligation to perform X prescribes also Y.

This principle leads to (�(ϕ→ ψ) ∧O(ϕ/θ))→ O(ψ/θ), where we represent the
accomplishment of X and Y as ϕ and ψ respectively, and we stipulate that the
conditions on the two prescriptions, represented by θ, are the same. Note that
we use the operator �, here as well as in the following axioms, to guarantee that
the correlations between formulae are not accidental.

Axiom (2) arises from the so-called principle of the half-hen, which is im-
plemented in different Mı̄mām. sā contexts (e.g., TV on PMS 1.3.3); an abstract
representation of it is:

Given that purposes Y and Z exclude each other, if one should use item
X for the purpose Y, then it cannot be the case that one should use it at
the same time for the purpose Z.
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This principle stresses the incongruity of enjoining someone to act in
contradiction with himself on some object. The corresponding axiom is
�(ψ → ¬ϕ)→ ¬(O(ϕ/θ) ∧ O(ψ/θ)) which guarantees that if ϕ and ψ exclude
each other, then they cannot both be obligatory under the same conditions
θ. Finally, Axiom (3) arises from a discussion (in ŚBh on PMS 6.1.25) on the
eligibility to perform sacrifices (see [6]), which can be abstracted as follows:

If conditions X and Y are always equivalent, given the duty to perform Z
under the condition X, the same duty applies under Y.

We formalise this principle as (�((ψ → θ) ∧ (θ → ψ)) ∧ O(ϕ/ψ)) → O(ϕ/θ),
where the conditions X and Y are represented by ψ and θ respectively, and ϕ
represents that the action Z is performed.

While the properties of O(·/·) are taken from Mı̄mām. sā texts, the same
cannot be done for � because Mı̄mām. sā authors do not conceptualise necessity
as separate from epistemic certainty. The established choices for a logic for the
alethic necessity operator � are S4 and S5. To keep the system as simple as
possible, and not having found any principle motivating the additional properties
of S5, we have chosen S4.

3 Proof Theory of bMDL

Hilbert systems are convenient ways of defining logics, but are not very useful
for proving theorems in and about the logics (e.g., decidability, consistency).

For this purpose we introduce a cut-free sequent calculus GbMDL for bMDL
and use it to show that, for certain issues, bMDL simulates Mı̄mām. sā ways
of reasoning. As usual, a sequent is a tuple Γ ⇒ ∆ of multisets of formulae
interpreted as

∧
Γ →

∨
∆. To construct GbMDL we use the translation from

axioms to rules and the construction of a cut-free calculus from these rules
from [15,16]. Since the latter is not fully automatic, we provide some details.

First, by [16, Thm. 26], we automatically obtain from Def. 1(1)-(3) the rules

ϕ,ψ ⇒ χ ⇒ ϕ,ψ χ⇒ ϕ θ ⇒ ξ ξ ⇒ θ

�ϕ,O(ψ/θ)⇒ O(χ/ξ)
Mon′

ϕ, θ ⇒ ξ ϕ, ξ ⇒ θ ⇒ ϕ, θ, ξ θ, ξ ⇒ ϕ ψ ⇒ χ χ⇒ ψ

�ϕ,O(ψ/θ)⇒ O(χ/ξ)
Cg

ϕ,ψ, χ⇒ ⇒ ϕ,ψ ⇒ ϕ, χ θ ⇒ ξ ξ ⇒ θ

�ϕ,O(ψ/θ),O(χ/ξ)⇒
D′

2

From these rules we construct a new set of rules saturated under cuts from which
the rules above are derivable. This step is not automatic and amounts to repeated
cutting between rules [16, Def. 7]: given any two rules we obtain a new rule whose
conclusion is the result of a cut on a formula principal in the conclusions of both
rules, and whose premisses contain all possible cuts between the premisses of the
original rules on the variables occurring in this formula. We start from the set
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Γ� ⇒ ϕ

Γ ⇒ �ϕ,∆ 4
Γ,�ϕ,ϕ⇒ ∆

Γ,�ϕ⇒ ∆
T

Γ�, ϕ⇒ θ Γ�, ψ ⇒ χ Γ�, χ⇒ ψ

Γ,O(ϕ/ψ)⇒ O(θ/χ),∆
Mon

Γ�, ϕ⇒
Γ,O(ϕ/ψ)⇒ ∆

D1

Γ�, ϕ, θ ⇒ Γ�, ψ ⇒ χ Γ�, χ⇒ ψ

Γ,O(ϕ/ψ),O(θ/χ)⇒ ∆
D2

Fig. 1. The modal rules rules of GbMDL

Γ ⇒ ∆
Γ,Σ ⇒ ∆,Π

W
Γ, ϕ, ϕ⇒ ∆

Γ,ϕ⇒ ∆
ConL

Γ ⇒ ϕ,ϕ,∆

Γ ⇒ ϕ,∆
ConR

Γ ⇒ ϕ,∆ Σ,ϕ⇒ Π

Γ,Σ ⇒ ∆,Π
Cut

Fig. 2. The structural rules

containing the rules above and those of S4 and first cut the rules 4 (Fig. 1) with
Mon′ and 4 with Cg on the boxed formula to obtain the rules

Γ�, ψ ⇒ χ θ ⇒ ξ ξ ⇒ θ

Γ,O(ψ/θ)⇒ O(χ/ξ), ∆

Γ�, θ ⇒ ξ Γ�, ξ ⇒ θ ψ ⇒ χ χ⇒ ψ

Γ,O(ψ/θ)⇒ O(χ/ξ), ∆

where Γ� is obtained from Γ by deleting every occurrence of a formula not of
the form �ϕ. Now cutting these two rules in either possible way yields the rule
Mon (Fig. 1), and cutting this and 4 with D′

2 yields D2. We obtain D1 closing
D2 under contraction, i.e., identifying ϕ with θ and ψ with χ and contracting
conclusion and premiss.

The sequent calculus GbMDL consists of the rules in Fig. 1 together with the
standard propositional G3-rules (with principal formulae copied into the premisses)
[14] and the standard left rule for the constant ⊥. We write `GbMDL

Γ ⇒ ∆ if
Γ ⇒ ∆ is derivable using these rules. We denote extensions of GbMDL with
structural rules from Fig. 2 by appending their names, collecting ConL and ConR
into Con. E.g., GbMDLConW is GbMDL extended with Contraction and Weakening.

By construction [15,16] we have:

Theorem 1. The rule Cut is admissible in GbMDLConW.

Proof. Using the structural rules the system GbMDLConW is equivalent to the
system GbMDL

′ConW in which the principal formulae of the propositional rules and
the rule T are not copied into the premisses. By construction (and straightforward
inspection in the non-principal cases) the rules of GbMDL

′ConW satisfy the general
sufficient criteria for cut elimination established in [15,16]. Cut-free derivations
in GbMDL

′ConW are converted into cut-free derivations in GbMDLConW using the
structural rules. ut

The methods in [15,16] now automatically yield also an EXPTIME-complexity
result. However, we consider an explicit proof search procedure for GbMDL which
will be used in Sec. 4. First we establish some preliminary results.
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Lemma 1. The Contraction and Weakening rules are admissible in GbMDL.

Proof. Admissibility of weakening is proved by induction on the depth of the
derivation, while that of contraction follows from the general criteria in [16,
Thm. 16] resp. [15, Thm. 2.5.5] since the rule set GbMDL is contraction closed and
already contains the modified versions of T and the propositional rules. ut

Thus suffices to consider set-based sequents, i.e., tuples of sets of formulae
instead of multisets. The rules of GbMDL are adapted to the set-based setting in
the standard way. Since boxed formulae are always copied into the premisses of a
rule, the proof search procedure needs to include loop checking to avoid infinite
branches in the search tree. We do this using histories, i.e., lists of (set-based)
sequents, where the last element is interpreted as the current sequent:

Definition 2 (Histories). A history H is a finite list [Γ1 ⇒ ∆1; . . . ;Γn ⇒ ∆n]
of set-based sequents, where we write lastL(H) (resp. lastR(H)) for Γn (resp.
∆n) and last(H) for lastL(H) ⇒ lastR(H). Given another history H′ = [Σ1 ⇒
Π1; . . . ;Σm ⇒ Πm] with n ≤ m we write H 4 H′ if for all i ≤ n we have Γi = Σi
and ∆i = Πi. Finally, we write H++H′ for the concatenation of the two histories.

The proof search procedure for GbMDL is given in Algorithm 1, where following
[10] we call the propositional rules together with the rule T the static rules,
Mon, 4,D1,D2 are called transitional rules. The algorithm saturates the current
sequent under backwards applications of the one-premiss static rules, and then
checks whether the result is an initial sequent or could have been derived by a
two-premiss static rule or a dynamic rule. The histories are used to prevent the
procedure from exploring a sequent twice (modulo weakening).

Lemma 2 (Termination). The proof search procedure terminates.

Proof. Given a history H, the number N of different set-based sequents which
can be constructed from subformulae of the sequent last(H) is exponential in the
size of last(H). Hence after at most N -many recursive calls of the procedure the
subroutine rejects every rule application. Furthermore, for every sequent there
are only finitely many possible (backwards) applications of a rule from GbMDL, so
the subroutine is executed only a finite number of times. ut

Proposition 1. `GbMDL
Γ ⇒ ∆ iff the procedure accepts [Γ ⇒ ∆].

Proof. If the procedure accepts the input, then we construct a derivation of
Γ ⇒ ∆ in GbMDL by following the accepting choices of backwards applications of
the rules, and labelling the nodes in the derivation with the sequents last(H) for
the histories H given as input to the recursive calls of the algorithm.

Conversely, if the set-based sequent Γ ⇒ ∆ is derivable in GbMDL, then by
admissibility of Weakening there is a minimal derivation of it, i.e., a derivation
in which no branch contains two set-based sequents Σ ⇒ Π and Ω ⇒ Θ such
that Σ ⇒ Π occurs on the path between Ω ⇒ Θ and the root, and such that
Ω ⊆ Σ and Θ ⊆ Π. By induction on the depth of such a minimal derivation it
can then be seen that the procedure accepts the input [Γ ⇒ ∆]. ut
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Algorithm 1: The proof search procedure for GbMDL

Input: A history H
Output: Is last(H) derivable in GbMDL given the history H?

1 Saturate last(H) under the one-premiss static rules;
2 if last(H) is an initial sequent then
3 accept the history
4 else
5 for every possible application of a two-premiss static rule to last(H) do
6 for every premiss Σ ⇒ Π of this application do
7 recursively call the proof search procedure with input H++[Σ ⇒ Π];

8 accept the application if each of these calls accepts

9 for every possible application of a transitional rule to last(H) do
10 for every premiss Σ ⇒ Π of this application do
11 if there is an H′ 4 H with Σ ⊆ lastL(H′) and Π ⊆ lastR(H′) then
12 reject the premiss
13 else
14 call the proof search procedure with input H++[Σ ⇒ Π];
15 accept the premiss if this call accepts

16 accept the rule application if each of the premisses is accepted

17 accept the history if at least one of the possible applications is accepted

3.1 Inner and Outer Consistency

Having extracted a cut-free calculus from the axioms using the method in [15,16],
soundness and completeness w.r.t. bMDL follow by construction (Thm. 2). By
the subformula property we then obtain the inner consistency of the logic bMDL,
i.e., the fact that ⊥ is not a theorem of the logic. This is one of the most
basic requirements that our logic should satisfy. But since bMDL was introduced
with the purpose of simulating Mı̄mām. sā reasoning, it should also be consistent
with respect to the examples considered by the Mı̄mām. sā authors such as the
Śyena sacrifice, i.e., it should not enable us to derive a contradiction from
the formalisations of these examples. We capture this in the notion of outer
consistency or consistency in presence of global assumptions. To make this precise
we consider the consequence relation associated with the logic bMDL and the
corresponding relation associated with the calculus GbMDL. Henceforth we denote
by A any set of formulae of bMDL.

Definition 3. The usual notion of derivability of a formula ϕ from a set A of
assumptions in bMDL is denoted by A `bMDL ϕ. Similarly, for a set S of sequents,
a sequent Γ ⇒ ∆ is derivable from S in GbMDLCut if there is a derivation of
Γ ⇒ ∆ in GbMDL with leaves labelled with initial sequents, zero-premiss rules or
sequents from S. We then write A `bMDL ϕ resp. S `GbMDLCut Γ ⇒ ∆.
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Theorem 2 (Soundness and Completeness). For all sets S of sequents and
sequents Γ ⇒ ∆ we have:

S `GbMDLCut Γ ⇒ ∆ iff {
∧
Σ →

∨
Π | Σ ⇒ Π ∈ S} `bMDL

∧
Γ →

∨
∆ .

Proof. The corresponding standard results for the propositional calculi transfer
readily to the system bMDL and the Gentzen system G3 with the zero-premiss

rules ⇒ θ
for each modal axiom schema θ of bMDL. The result then follows

from interderivability of these rules with the modal rules from GbMDL [15,16].
As an example, the derivation of the zero-premiss rule for Axiom (2), where α
denotes �(ψ → ¬ϕ)→ ¬(O(ϕ/θ) ∧ O(ψ/θ)), is as follows

D1....
�(ψ → ¬ϕ), ψ, ϕ⇒ �(ψ → ¬ϕ), θ ⇒ θ

ax.
�(ψ → ¬ϕ), θ ⇒ θ

ax.

O(ψ/θ),O(ϕ/θ),O(ϕ/θ) ∧ O(ψ/θ),�(ψ → ¬ϕ)⇒ α,¬(O(ϕ/θ) ∧ O(ψ/θ))
D2

⇒ α
prop.

where the double line denotes multiple applications of the propositional rules
and the derivation D1 is

ψ → ¬ϕ,�(ψ → ¬ϕ), ψ, ϕ⇒ ψ
ax.

¬ϕ,ψ → ¬ϕ,�(ψ → ¬ϕ), ψ, ϕ⇒ ϕ
ax.

¬ϕ,ψ → ¬ϕ,�(ψ → ¬ϕ), ψ, ϕ⇒
¬ ⇒

ψ → ¬ϕ,�(ψ → ¬ϕ), ψ, ϕ⇒
→⇒

�(ψ → ¬ϕ), ψ, ϕ⇒ T

ut

Corollary 1. The logic bMDL is consistent, i.e., ⊥ 6∈ bMDL. ut

Proof. Follows by Thm. 2.1 and the fact that the rules of GbMDL satisfy the
subformula property. ut

Definition 4. bMDL enjoys outer consistency with respect to A if A 6`bMDL ⊥

By Thm. 2 this condition is equivalent to { ⇒ ϕ | ϕ ∈ A} 6`GbMDLCut ⇒ ⊥. We
now show that bMDL allows us to consistently formalise the seemingly conflicting
statements of the Śyena sacrifice. The proof uses the proof search procedure given
in Algorithm 1 and the following version of the deduction theorem (see Section 5
for a semantic proof).

Theorem 3. For every sequent Γ ⇒ ∆ and set A of formulae the following are
equivalent (writing �A for {�ϕ | ϕ ∈ A} taken as a multiset):

1. { ⇒ ϕ | ϕ ∈ A} `GbMDLCut Γ ⇒ ∆
2. { ⇒ �ϕ | ϕ ∈ A} `GbMDLCut Γ ⇒ ∆
3. `GbMDL

�A, Γ ⇒ ∆.
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Proof. 1→ 2: Easily follows by using the rules T and Cut.
2→ 3: Since every rule in GbMDL copies all boxed formulae in the antecedent

from conclusion to premisses, the result of adding the formulae {�ϕ | ϕ ∈ A}
to the antecedents of every sequent occurring in the derivation of Γ ⇒ ∆ from
{�ϕ | ϕ ∈ A} is still a derivation. As this turns every assumption ⇒ �ϕ into
the derivable sequent �A ⇒ �ϕ, the result is a derivation without assumptions.
Statement 3 now follows using Cut Elimination (Thm. 1).

3→ 1: Easily follows by using the rules 4 and Cut. ut

Thus in order to check whether bMDL enjoys outer consistency w.r.t. a set A
of formulae it is sufficient to check that the sequent �A ⇒ ⊥ is not derivable
in GbMDL. Before we formalise the Śyena sacrifice, let us remark that while the
operator O(·/·) only captures conditional obligations, we would also like to reason
about unconditional obligations, i.e., obligations which always have to be fulfilled.
We formalise such obligations in the standard way by O(·/>). A formula O(ϕ/>)
then can be read as “it is obligatory that ϕ provided anything is the case”, and
thus models an unconditional obligation. A formalisation of the problematic
situation in the Śyena example (sentences A. and B. in Sec. 2) then is:

1. O(¬hrm/>) for “One should not perform violence on any living being”
2. O(sy/des hrm en) for “If you desire to harm your enemy you should perform

the Śyena”
3. hrm en→ hrm for “harming the enemy entails harming a living being”
4. sy→ hrm en for “performing the Śyena entails harming the enemy”.

with the variables hrm for “performing violence on any living being”, sy for “per-
forming the Śyena sacrifice”, hrm en for “harming your enemy”, and des hrm en

for “desiring to harm your enemy”.

Theorem 4. bMDL enjoys outer consistency w.r.t. the Śyena sacrifice, i.e.:{
hrm en→ hrm, sy→ hrm en, O(¬hrm/>), O(sy/des hrm en)

}
6`bMDL ⊥ .

Proof. By Thm. 2 and Thm. 3 it is sufficient to show that the sequent

�(hrm en→ hrm),�(sy→ hrm en),�O(¬hrm/>),�O(sy/des hrm en)⇒ ⊥

is not derivable in GbMDL. This is done in the standard way by (a bit tediously)
performing an exhaustive proof search following the procedure in Algorithm 1. ut

4 Semantics of bMDL

The semantics for bMDL is build on the standard semantics for modal logic S4,
i.e., Kripke-frames with transitive and reflexive accessibility relation [2]. The
additional modality O is captured using neighbourhood semantics [4], which we
modify to take into account only accessible worlds. Intuitively, the neighbourhood
map singles out a set of deontically acceptable sets of accessible worlds for certain
possible situations, i.e., sets of accessible worlds. As usual, if R ⊆ W ×W is a
relation and w ∈ W , we write R[w] for {v ∈ W | wRv}. Also, for a set X we
write Xc for the complement of X (relative to an implicitly given set).
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Definition 5. A Mı̄mām. sā-frame (or briefly: m-frame) is a triple (W,R, η)
consisting of a non-empty set W of worlds or states, an accessibility relation
R ⊆W ×W and a map η : W → P(P(W )× P(W )) such that:

1. R is transitive and reflexive;
2. if (X,Y ) ∈ η(w), then X ⊆ R[w] and Y ⊆ R[w];
3. if (X,Z) ∈ η(w) and X ⊆ Y ⊆ R[w], then also (Y,Z) ∈ η(w);
4. (∅, X) /∈ η(w);
5. if (X,Y ) ∈ η(w), then (Xc ∩R[w], Y ) /∈ η(w).

A Mı̄mām. sā-model (or m-model) is a m-frame with a valuation σ : W → P(Var).

Intuitively, Condition 1 in Def. 5 corresponds to axioms (4) and (T) of S4,
Condition 2 ensures that only accessible worlds influence the truth of a formula
O(ϕ/ψ) and comes from the rules (Mon) and (Cg), Condition 3 corresponds to
the rule (Mon), while Conditions 4 resp. 5 correspond to (D1) resp. (D2).

Definition 6 (Satisfaction, truth set). Let M = (W,R, η), σ be a m-model.
The truth set JϕKM of a formula ϕ in M is defined recursively by

1. JpKM := {w ∈W | p ∈ η(w)}
2. J�ϕKM := {w ∈M | R[w] ⊆ JϕKM}
3. JO(ϕ/ψ)KM := {w ∈W | (JϕKM ∩R[w], JψKM ∩R[w]) ∈ η(w)}

and the standard clauses for the boolean connectives. We omit the subscript M if
the m-model is clear from the context, and we write M, w  ϕ for w ∈ JϕKM. A
formula ϕ is valid in a m-model M if for all worlds w of M we have M, w  ϕ.

Note that in clause 3 we slightly deviate from the standard treatment in that
we restrict the attention to worlds accessible from the current world.

Lemma 3. For all rules of GbMDL we have: if the interpretations of its premisses
are valid in all m-models, then so is the interpretation of its conclusion.

Proof. We show that if the negation of the interpretation of the conclusion is
satisfiable in a m-model, then so is the negation of the interpretation of (at least)
one of the premisses. For 4,T and the propositional rules this is standard.

For the modal rules we only show the case of D2, the other cases being similar.
Assume that for the m-model M = (W,R, η), σ the negation of the conclusion
is satisfied in w ∈ W , i.e., we have M, σ 

∧
Γ ∧ O(ϕ/ψ) ∧ O(θ/χ) . Then

we have (JϕK ∩ R[w], JψK ∩ R[w]) ∈ η(w) and (JθK ∩ R[w], JχK ∩ R[w]) ∈ η(w).
By Cond. 5 in Def. 5 we know that (JϕKc ∩ R[w], JψK ∩ R[w]) 6∈ η(w), hence
JθK ∩R[w] 6= JϕKc ∩R[w] or JψK ∩R[w] 6= JχK ∩R[w]. If the latter does not hold,
using this and Cond. 3 we have JϕKc∩R[w] ( JθK∩R[w] and hence we find a world
v ∈ JϕK ∩ JθK ∩R[w]. Then with transitivity we obtain M, σ, v 

∧
Γ� ∧ ϕ ∧ θ,

and thus the negation of the first premiss of the rule is satisfiable. Otherwise we
have JψK ∩ JχKc ∩R[w] 6= ∅ or JχK ∩ JψKc ∩R[w] 6= ∅ and again using transitivity
we satisfy the negation of the second or the third premiss of the rule. ut
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Corollary 2 (Soundness of GbMDL). For every sequent Γ ⇒ ∆ we have: if
`GbMDL

Γ ⇒ ∆, then
∧
Γ →

∨
∆ is valid in all m-models.

Proof. By induction on the depth of the derivation, using Lem. 3. ut

For completeness we show how to construct a countermodel for a given sequent
from a failed proof search for it. For this, fix Γ ⇒ ∆ to be a sequent not derivable
in GbMDL. We build a m-model MΓ⇒∆ = (W,R, η), σ from a rejecting run of
Alg. 1 on input [Γ ⇒ ∆], such that

∧
Γ ∧

∧
¬∆ is satisfied in a world of MΓ⇒∆.

For this, take the set W of worlds to be the set of all histories occurring in the
run of the procedure. To define the accessibility relation we first construct the
intermediate relation R′ by setting HR′H′ iff (at least) one of the following holds:

1. H 4 H′; or
2. H′ 4 H and there is a transitional rule application with conclusion last(H)

and a premiss Σ ⇒ Π of this rule application such that Σ ⊆ lastL(H′) and
Π ⊆ lastR(H′).

Intuitively, in 2. we add the loops which have been detected by the procedure. The
relation R then is defined as the reflexive and transitive closure of R′. To define
the function η we first introduce a syntactic version of the truth set notation:

|ϕ|W := {H ∈W | ϕ ∈ lastL(H)}

Now we define η : W → P(P(W )× P(W )) by setting for every history H in W :

η(H) :=

{
(X,Y ) ∈ P(R[H])2 | for some formula O(ϕ/ψ) ∈ lastL(H) :

|ϕ|W ∩R[H] ⊆ X and |ψ|W ∩R[H] = Y

}
.

Finally, we define the valuation σ by setting for every variable p ∈ Var:

σ(p) := |p|W .

Let us write MΓ⇒∆ for the resulting structure (W,R, η). Then we have:

Lemma 4. The structure MΓ⇒∆, σ is a m-model.

Proof. By construction σ is a valuation, R is a transitive and reflexive relation
on W , and Conditions 2 and 3 of Def. 5 hold for η. To see that Condition 5 holds,
we need to show that if (X,Y ) ∈ η(H) then (Xc ∩R[H], Y ) 6∈ η(H). For this we
show that whenever (X,Y ) ∈ η(H) and (Z,W ) ∈ η(H), then Z 6= Xc ∩R[H] or
Y 6= W . So assume we have such (X,Y ) and (Z,W ) in η(H). By construction of
η there must be formulae O(ϕ/ψ) and O(θ/χ) in lastL(H) such that

– |ϕ|W ∩R[H] ⊆ X and |ψ|W ∩R[H] = Y ; and
– |θ|W ∩R[H] ⊆ Z and |χ|W ∩R[H] = W .

Since both O(ϕ/ψ) and O(θ/χ) are in lastL(H), the transitional rule D2 can be
applied to last(H). Thus the proof search procedure either used the premisses

lastL(H)
�
, ϕ, θ ⇒ lastL(H)

�
, ψ ⇒ χ lastL(H)

�
, χ⇒ ψ



12 Agata Ciabattoni, Elisa Freschi, Francesco A. Genco, and Björn Lellmann

of this rule application to create new histories by appending them to H, or it
found a history H′ 4 H whose last sequent subsumes one of the premisses. In
either case for at least one premiss Σ ⇒ Π there is a history H′ s.t. Σ ⊆ lastL(H′)
and Π ⊆ lastR(H′) and for which proof search fails. Moreover, for this H′ by
construction of R we know that HRH′. Assume that Σ ⇒ Π is the first premiss.
Then ϕ, θ ∈ lastL(H′), and hence H′ ∈ |ϕ|W ∩ |θ|W ∩R[H] and the latter is non-
empty. Then in particular Xc ∩R[H] ⊆ (|ϕ|W ∩R[H])c ∩R[H] = (|ϕ|W )c ∩R[H]
is not equal to |θ|W ∩ R[H] = Z. Similarly, if Σ ⇒ Π is one of the remaining
premisses we obtain Y 6= W . Thus whenever (X,Y ) ∈ η(H) and (Z,W ) ∈ η(H),
then Z 6= Xc ∩R[H] or Y 6= W . The reasoning for Cond. 4 is similar. ut

Lemma 5 (Truth Lemma). For every history H ∈ W : (i) If ϕ ∈ lastL(H),
then MΓ⇒∆, σ,H  ϕ and (ii) if ψ ∈ lastR(H), then MΓ⇒∆, σ,H  ¬ψ.

Proof. We prove both statements simultaneously by induction on the complexity
of ϕ resp. ψ. The base case and the cases where the main connective of ϕ resp. ψ is
a propositional or � are standard (note that Alg. 1 saturates every sequent under
the static rules, i.e., the propositional rules and T, and that every transitional
rule copies all the boxed formulae in the antecedent into the premisses). If
ϕ = O(θ/χ), then by construction of η we have (|θ|W ∩ R[H], |χ|W ∩ R[H]) ∈
η(H), and thus MΓ⇒∆, σ,H  O(θ/χ). Now suppose that ψ = O(ξ/γ). To see
that ψ does not hold in H we show that for no O(δ/β) ∈ lastL(H) we have
|δ|W ∩ R[H] ⊆ |ξ|W ∩ R[H] and |β|W ∩ R[H] = |γ|W ∩ R[H] . The result then
follows by construction of η and the definition of truth set. If lastL(H) does not
contain any formula of the form O(δ/β), then η(H) is empty and we are done.
Otherwise, there is such a O(δ/β) and the rule Mon can be applied backwards
to last(H). But then from the failed proof search for at least one of the premisses

lastL(H)
�
, δ ⇒ ξ lastL(H)

�
, γ ⇒ β lastL(H)

�
, β ⇒ γ

we obtain a history H′ with HRH′ whose last sequent subsumes this premiss.
But then as above either |δ|W ∩R[H] 6⊆ |ξ|W ∩R[H], if it is obtained from the
first premiss, or |β|W ∩R[H] 6= |γ|W ∩R[H] otherwise. ut

Theorem 5 (Completeness). For every sequent Γ ⇒ ∆ we have: if
∧
Γ →∨

∆ is valid in every m-model, then `GbMDL
Γ ⇒ ∆.

Proof. If 6`GbMDL
Γ ⇒ ∆, then by Lem. 2 and Prop. 1 the procedure in Alg. 1

terminates and rejects the input [Γ ⇒ ∆]. Thus by Lem. 4 and 5 we have
MΓ⇒∆, [Γ ⇒ ∆] 

∧
Γ ∧ ¬

∨
∆ and hence

∧
Γ →

∨
∆ is not m-valid. ut

Since only finitely many histories occur in a run of the proof search procedure,
the constructed model is finite and by standard methods we immediately obtain:

Corollary 3. The logic bMDL has the finite model property and is decidable. ut
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5 Applications to Indology

We show now that despite being reasonably simple, bMDL is strong enough to
derive consequences about topics discussed by Mı̄mām. sā authors (Example 1) and
to provide useful insights on the reason why the seemingly conflicting statements
in the Śyena example are not contradictory.

Example 1. Consider the following excerpt: “Since the Veda is for the purpose of
an action, whatever in it does not aim at an action is meaningless and therefore
must be said not to belong to the permanent Veda” (PMS 1.2.1). In other words:
each Vedic prescription should promote an action. Given that no actual action
can have a logical contradiction as an effect, a logical contradiction cannot be
enjoined by an obligation. This can be translated into the formula ¬O(⊥/θ), one
of the forms of axiom D, which is derivable in GbMDL as follows:

⊥ ⇒ ⊥ ⇒

O(⊥/θ)⇒ ¬O(⊥/θ) D1

⇒ ¬O(⊥/θ)
⇒ ¬

A logical perspective on the Śyena controversy

In Mı̄mām. sā literature many explanations of the reasons why the sentences A.
and B. in Sec. 2 are not contradictory have been proposed. We show that the
bMDL solution matches the one of Prabhākara, one of the chief Mı̄mām. sā authors,
and makes it formally meaningful.

Consider the sequent in the proof of Thm. 4. Since it is not derivable in GbMDL,
using Algorithm 1 we can construct a model for the formula

�(hrm en→ hrm)∧�(sy→ hrm en)∧�O(¬hrm/>)∧�O(sy/des hrm en) (1)

However, to make the solution clearer, we define below a simpler model M0 =
(W0, R0, η0), σ0 based on Vedic concepts. The domain W0 is {wi | 1 ≤ i ≤ 8},
represented in Fig. 3 by circles. The accessibility relation R0 is universal, i.e.
for any 1 ≤ i, j ≤ 8 it holds that R0(wi, wj); it is not represented in the figure
for better readability. The map η0 is such that η0(wi) = {(X,W0) | X ⊆
W0, {w1, w5} ⊆ X}

⋃
{(Y, {w5, w6, w7, w8}) | Y ⊆ W0, {w4, w8} ⊆ Y }. The

figure represents only the elements of the neighbourhood of w1 that are relevant
to the valuation of our deontic statements. Each element corresponds to a kind
of arrow: solid arrows for the statement about Śyena and dashed ones for the
obligation not to harm anyone. An element of the neighbourhood is a pair of
sets of states, to represent it we draw an arrow from each state belonging to
the second element of the pair to each one belonging to the first element of
the pair. The function σ0 is the valuation of the model and it is such that
σ0(w1) = ∅; σ0(w2) = {hrm}; σ0(w3) = {hrm, hrm en}; σ0(w4) = {hrm, hrm en,
sy}; σ0(w5) = {des hrm en}; σ0(w6) = {hrm, des hrm en}; σ0(w7) = {hrm,
hrm en, des hrm en}; and σ0(w8) = {hrm, hrm en, sy, des hrm en}. Clearly M0

satisfies all the requirements stated in Def. 5.
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w1

w2 hrm

w3 hrm, hrm en

w4 hrm, hrm en, sy

w5

des hrm en

w6hrm, des hrm en

w7hrm, hrm en, des hrm en

w8hrm, hrm en, sy, des hrm en

Fig. 3. The model M0 for the Śyena controversy

The definition of M0 is based on adhikāra ([5], pp.147-155), a central concept in
Prabhākara’s analysis of the Vedas, which identifies the addressee of a prescription
through their desire for the results. In the prescription about the Śyena sacrifice,
the adhikāra corresponds to the desire to harm an enemy; the results correspond
to the fact that an enemy is harmed through the performance of Śyena, and, more
generally, to the fact that someone is harmed. Some combinations of these facts
are impossible if we need to satisfy �(hrm en→ hrm) and �(sy→ hrm en), thus
all the possibilities are the eight states in the model. The accessibility relation
accounts for the possible changes of subject’s condition. The neighbourhood
of a state encodes the obligations holding for that state, and given that these
obligations are the same for each state, the neighbourhood is the same too. Thus
the arrows show the changes of condition promoted by the obligations.

We show now that the formula (1) is true in the state w1. First, all its
conjuncts without deontic operators are true in all states. Secondly, the for-
mula �O(¬hrm/>) is true in w1 if (J¬hrmKM0 ∩ R0[s], J>KM0 ∩ R0[s]) ∈ η0(s)
holds for all s such that R0(w1, s). Given that ({w1, w5},W0) belongs to η0(s)
for all s ∈ W0, the formula O(¬hrm/>) is true in all states. For the formula
�O(sy/des hrm en) the valuation is similar. Hence M0 is a model of (1) and,
by Thm. 2 and 3, this provides a semantic proof of Thm. 4.

Among the different solutions for the Śyena controversy, the model M0 matches
Prabhākara’s one which can be summarised in his statement: “A prescription
regards what has to be done. But it does not say that it has to be done” (Br.hat̄ı I,
p. 38, l. 8f). Indeed in state w1 no conflicting prescriptions are applicable and all
obligations are fulfilled. We call this a Vedic state. The existence of such a state
shows that an agent can find a way not to transgress any prescription, and that
the Vedic prescriptions do not imply that the Śyena sacrifice has necessarily to
be done. Our model also explains Prabhākara’s claim that the Vedas do not impel
one to perform the malevolent sacrifice Śyena, they only say that it is obligatory,
which was wrongly considered meaningless e.g. in [18].

Remark 1. Our analysis highlights that Vedic prescriptions are “instructions
to attain desired outcomes” rather than absolute imperatives. A Vedic state
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provides a way not to transgress any obligation, but at the same time there
are norms, e.g., the one about Śyena, for those who intend to transgress some
obligations, but nonetheless do not want to altogether reject the Vedic principles.
This is explicit in another Mı̄mām. sā author, Veṅkat.anātha, who claims that the
Śyena is the best way to kill one’s enemy if one is determined to transgress the
general prescription not to perform violence. This feature suggests a possible use
of suitable extensions of bMDL to reason about machine ethics, where indeed
choices between actions that should be avoided often arise. Consider a self-driving
vehicle that has no choice but to harm some people. There is no perfect solution
but, nevertheless, the system should be able to provide instructions that promote
imperfect outcomes in order to avoid the worst-case scenario.

6 Conclusions and Future Work

We defined a novel deontic logic justified by principles elaborated by Mı̄mām. sā
authors over the last 2,500 years, and used its proof theory and semantics to
analyse a notoriously challenging example. The fruits of this synergy of Logic
and Indology can be gathered from both sides: The vast body of knowledge
constituted by Mı̄mām. sā texts can provide interesting new stimuli for the logic
community, and at the same time our methods can lead to new tools for the
analysis of philosophical and sacred texts. Our investigation also raises a number
of further research directions, such as (i) a formal analysis of the concept of
prohibition as discussed by Mı̄mām. sā authors. Moreover, (ii) among the about 200
considered4 nyāyas (50 of which were on deontic principles), some hinted at the
need for extending bMDL in various directions: e.g., the principle “the agent of a
duty needs to be the one identified by a given prescription” (PMS 6.1.1–3) seems
to require first-order quantification; some metarules that distinguish between
different repetitions of the same action suggest the introduction of temporal
operators; finally the fact that ŚBh 1.1.1 asserts that the Vedas prevail over other
authoritative texts suggests the need of a system to manage conflicts among
different authorities, a feature also important for reasoning about ethical machines
[3]. Finally, (iii) while the metarules considered for bMDL are common to the
Mı̄mām. sā school, there are additional principles employed only by specific authors.
Their identification and formalisation might shed light on the strength of the
different interpretations of various Mı̄mām. sā authors and, e.g., help arguing for
the conjecture that Kumārila’s interpretation is more explicative than Man.d. ana’s.
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Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp.
297–398. Kluwer, Dordrecht (1999)

11. Hilpinen, R.: Deontic logic. In: Goble, L. (ed.) The Blackwell Guide to Philosophical
Logic, pp. 159–182. Blackwell Publishers (2001)

12. Indrzejczak, A.: Sequent calculi for monotonic modal logics. Bull. Sect. Log. 34(3),
151–164 (2005)
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