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Abstract. We present a Schütte-Tait style cut-elimination proof for the
hypersequent calculus HIF for first-order Gödel logic. This proof allows
to bound the depth of the resulting cut-free derivation by 4

|d|
ρ(d), where |d|

is the depth of the original derivation and ρ(d) the maximal complexity
of cut-formulas in it. We compare this Schütte-Tait style cut-elimination
proof to a Gentzen style proof.

1 Introduction

The most important cut-elimination methods in first-order proof theory are the
Gentzen style procedure [10] (and its variants in the context of natural deduc-
tion calculi) and the Schütte-Tait style procedure [13, 14]. The latter has been
originally introduced to deal with infinitary calculi. From a procedural point of
view, these methods differ by their cut selection rule: the Gentzen style method
selects a highest cut, while the Schütte-Tait style method a largest one (w.r.t.
the number of connectives and quantifiers). Consequently, e.g., Gentzen style
procedures, generally, will not terminate on calculi with ω rules.

In this paper we formulate cut-elimination proofs, according to both meth-
ods, for the hypersequent calculus HIF for first-order Gödel logic G∞. This
logic, also known as intuitionistic fuzzy logic [16], can be axiomatized extend-
ing intuitionistic logic IL by the linearity axiom (A ⊃ B) ∨ (B ⊃ A) and the
shifting law of universal quantifier ∀x(A(x) ∨ B) ⊃ ∀xA(x) ∨ B, where x does
not occur free in B. HIF has been defined in [8] by incorporating Gentzen’s
original calculus LJ for IL as a sub-calculus and adding to it an additional layer
of information by allowing LJ-sequents to live in the context of finite multisets
of sequents (called hypersequents). This opens the possibility to define new rules
that, “exchanging information” between different sequents, allow to prove both
the linearity axiom and the shifting law of universal quantifier.

The Schütte-Tait style cut-elimination proof introduced in this paper estab-
lishes non-elementary primitive recursive bounds for the length of the cut-free
proofs in HIF in terms of the length and the maximal complexity of cut-formulas
in the original proof. Consequently, corresponding bounds apply to the length of
Herbrand disjunctions (mid-hypersequents) as well as the length of derivations
in the chaining calculus described in [5] for the prenex fragment of G∞.
? Research supported by EC Marie Curie fellowship HPMF–CT–1999–00301



Finally, this paper allows to compare both the Gentzen and the Schütte-Tait
style procedures in the more general context of the hypersequent notation.

2 Syntax and Semantic of first-order Gödel logic

Propositional finite-valued Gödel logics have been introduced by Gödel in 1933
[11] to show that intuitionistic logic does not have a characteristic finite matrix.
Dummett [9] later generalized these to an infinite set of truth-values, and showed
that the set of its tautologies – LC – is axiomatized extending intuitionistic logic
by the linearity axiom (A ⊃ B) ∨ (B ⊃ A).

The language of Gödel logics is identical to that of classical logic (or intu-
itionistic logic, for that matter). More precisely, we use the binary connectives
∧,∨, and ⊃ and the truth constant ⊥. ¬A is defined as A ⊃ ⊥. Object variables
are denoted by x, y, . . . ; the usual existential and universal quantifiers, ∀ and ∃,
refer to these variables. Bound and free occurrences of variables are defined as
usual. Moreover, for every n ≥ 0, there is an infinite supply of n-ary predicate
symbols and function symbols. Constants are considered as 0-ary function sym-
bols. Terms and formulas are inductively defined in the usual way. Propositional
variables are identified with predicate symbols of arity 0.

In this work we consider the first-order Gödel logic G∞ defined over the real
unit interval [0, 1] 1, also known as intuitionistic fuzzy logic [16].

An interpretation I in G∞ consists of a non-empty domain D and a valuation
function vI that maps constants and object variables to elements of D and n-
ary function symbols to functions from Dn into D. vI extends in the usual way
to function mapping all terms of the language to an element of the domain.
Moreover, vI maps every n-ary predicate symbol P to a function from Dn into
[0, 1]. The truth-value of an atomic formula A ≡ P (t1, . . . , tn) is thus defined as

vI(A) = vI(P )(vI(t1), . . . , vI(tn)).

For the truth constant ⊥ we have vI(⊥) = 0.
The semantics of propositional connectives is given by

vI(A ⊃ B) =

�
1 if vI(A) ≤ vI(B)

vI(B) otherwise,

vI(A ∧ B) = min(vI(A), vI(B)) vI(A ∨ B) = max(vI(A), vI(B)).

To assist a concise formulation of the semantics of quantifiers we define the
distribution of a formula A and a free variable x with respect to an interpreta-
tion I as DistrI(A(x)) = {valI′(A(x)) | I ′ ∼x I}, where I ′ ∼x I means that
I ′ is exactly as I with the possible exception of the domain element assigned
to x. The semantics of quantifiers is given by the infimum and supremum of the
corresponding distribution:

vI((∀x)A(x)) = inf DistrI(A(x)) vI((∃x)A(x)) = sup DistrI(A(x)).
1 Different topologies on the set of truth values induce different first-order Gödel logics.



A formula A is a tautology iff for all vI , vI(A) = 1. Moreover A is a logi-
cal consequence of a set of formulas Γ (in symbols Γ |=G∞

A) iff, for all vI ,
min{vI(γ) | γ ∈ Γ} ≤ vI(A).

A Hilbert style calculus for G∞ is obtained by extending LC with the shifting
law of universal quantifier ∀x(A(x) ∨B) ⊃ ∀xA(x) ∨B, where x does not occur
free in B, see, e.g., [12].

3 Hypersequent Calculi for G �

In [8] an analytic calculus for G∞ has been introduced. This calculus —called
HIF2— uses hypersequents, a natural generalization of Gentzen sequents, see
[3]. HIF is based on Avron’s hypersequent calculus GLC for LC [2].

The most significant feature of HIF is its close relation to Gentzen’s se-
quent calculus LJ for intuitionistic logic [10]. Indeed, HIF contains LJ as a
sub-calculus and simply adds it an additional layer of information by allow-
ing LJ-sequents to live in the context of finite multisets of sequents, as well as
suitable (external) structural rules to manipulate sequents with respect to their
contexts. In particular, the crucial rule of the calculus HIF, added to LJ, is the
so called communication rule (com). It is this rule which increases the expressive
power of HIF compared to LJ.

Recall that a sequent is an expression of the form Γ ⇒ A, where Γ is a
multiset of formulas and A may be empty.

Definition 1. A hypersequent is a multiset

Γ1 ⇒ A1 | . . . | Γn ⇒ An

where for every i = 1, . . . , n, Γi ⇒ Ai is a sequent, called component of the
hypersequent.

The interpretation of the symbol “ | ” is disjunctive.
In HIF the rules for connectives and quantifiers, as well as the internal struc-

tural rules, are those of LJ. The only difference is the presence of a context G
representing a (possibly empty) hypersequent. The structural rules are divided
into internal and external rules. The former deal with formulas within com-
ponents. These are weakening and contraction. The external rules manipulate
whole components within a hypersequent. These are external weakening (EW),
contraction (EC), as well as the (com) rule. More precisely, HIF consists of

Axioms and Cut Rule

A ⇒ A (id) ⊥ ⇒ (⊥)

G | Γ ⇒ A G | A,Γ ⇒ C

G | Γ ⇒ C
(cut)

2
HIF stands for Hypersequent calculus for Intuitionistic Fuzzy logic.



Internal Structural Rules

G | Γ ⇒ C

G | Γ, A ⇒ C
(w, l)

G | Γ ⇒

G | Γ ⇒ A
(w, r)

G | Γ, A, A ⇒ C

G | Γ, A ⇒ C
(c, l)

External Structural Rules

G
G | Γ ⇒ A

(EW )
G | Γ ⇒ A | Γ ⇒ A

G | Γ ⇒ A
(EC)

G | Γ1, Γ2 ⇒ A G | Γ1, Γ2 ⇒ B

G | Γ1 ⇒ A | Γ2 ⇒ B
(com)

Logical Rules

G | Γ, A ⇒ B

G | Γ ⇒ A ⊃ B
(⊃, r)

G | Γ ⇒ A G | B, Γ ⇒ C

G | Γ, A ⊃ B ⇒ C
(⊃, l)

G | Γ ⇒ A G | Γ ⇒ B

G | Γ ⇒ A ∧ B
(∧, r)

G | Γ, Ai ⇒ C

G | Γ, A1 ∧ A2 ⇒ C
(∧i, l)i=1,2

G | Γ ⇒ Ai

G | Γ ⇒ A1 ∨ A2
(∨i, r)i=1,2

G | Γ, A ⇒ C G | Γ, B ⇒ C

G | Γ, A ∨ B ⇒ C
(∨, l)

G | A(t), Γ ⇒ C

G | (∀x)A(x), Γ ⇒ C
(∀, l)

G | Γ ⇒ A(a)

G | Γ ⇒ (∀x)A(x)
(∀, r)

G | A(a), Γ ⇒ C

G | (∃x)A(x), Γ ⇒ C
(∃, l)

G | Γ ⇒ A(t)

G | Γ ⇒ (∃x)A(x)
(∃, r)

where (∀, r) and (∃, l) must obey the eigenvariable condition: the free variable
a must not occur in the lower hypersequent.

Definition 2. In the above rules, Γ and C are called internal contexts while
G, external context. For each rule, the components not in the external context
are called active components. In the conclusion of each logical rule, the formula
in the active component that does not belong to the internal context is called
principal formula.

Remark 1. By the presence of (c, l) and (w, l) (resp. (EW) and (EC)), one can
derive equivalent versions of the above rules with multiplicative internal (resp.
external) contexts (see, e.g., [17] for this terminology).

In fact, HIF has been originally defined in [8] using a different version of the
communication rule, namely

G | Π1, Γ1 ⇒ A G | Π2, Γ2 ⇒ B

G | Π1, Π2 ⇒ A | Γ1, Γ2 ⇒ B
(com′)

However, using (w, l) and (c, l), (com) and (com′) are interderivable (see [3]).



Definition 3. The complexity |A| of a formula A is inductively defined as fol-
lows:

– |A| = 0 if A is atomic
– |A ∧ B| = |A ∨ B| = |A ⊃ B| = max(|A|, |B|) + 1
– |∀xA(x)| = |∃xA(x)| = |A| + 1

The right (left) rank of a cut is the number of consecutive hypersequents con-
taining the cut formula, counting upward from the right (left) upper sequent of
the cut.

For the cut-elimination proof in the next section, following Tait [14], we shall
consider an equivalent version of HIF without explicit (internal and external)
contraction rules. In this calculus, we call it HIFset, hypersequents are consid-
ered as sets of components, each one of them is a sequent Γ ⇒ A, where Γ is a
set of formulas. Henceforth, we denote with {S1} ∪ ... ∪ {Sn} a hypersequent in
HIFset whose components are S1, . . . , Sn. Rules, are then changed accordingly.
Moreover, we only consider atomic axioms, that is of the form

A ⇒ A and ⊥ ⇒ where A is an atomic formula

Lemma 1. In HIFset non atomic axioms can be derived from atomic axioms.

A derivation d in HIF (or HIFset) is considered, as usual, as an upward rooted
tree of hypersequents generated from subtrees by applying the inference rules.
This allows for the following definitions:

Definition 4. The length |d| of d is the maximal number of inference rules (but
weakenings) + 1 occurring on any branch of d.

Remark 2. A different way to avoid counting the number of applications of (in-
ternal and external) weakening rules while counting the length of a derivation,
is to internalize these rules into axioms. This is done by considering axioms of
the form G | Γ,A⇒ A. Then |d| can be simply defined as the maximal number
of hypersequents occurring on any branch of d. However, in this case one has to
use the multiplicative version of (com), namely (com′), that affects both Lemma
2.2 (see Remark 3) and Definition 7 below.

Definition 5. Let di, with i < k, be the direct subderivations of d. The cut-rank
ρ(d) of d is defined by induction as:

– ρ(d) = 0 if d is cut-free
– ρ(d) = maxi<k ρ(di) if the last inference of d is not a cut;
– ρ(d) = max(|A| + 1,maxi<k ρ(di)), where A is the cut formula, otherwise.

Henceforth we write d `′ H (resp. d ` H) if d is a derivation in HIF (resp.
HIFset) of H .

Definition 6. We say that a sequent is n-reduced if every formula in the an-
tecedent occurs at most n times. A hypersequent is said to be n-m-reduced if it
is n-reduced and every component in it occurs at most m times.



Note that a derivation in HIFset only contains 1-1-reduced hypersequents.
Let d be a derivation in HIFset. Henceforth we will indicate with w(d) (resp.

W(d)) the maximal number of applications of internal weakening (resp. external
weakening) occurring on any branch of d.

Lemma 2. Let H be a 1-1-reduced hypersequent.

1. If d `′ H, one can find a proof d′ ` H such that |d′| ≤ |d|.
2. If d′ ` H one can find a proof d `′ H such that |d| ≤ 2|d′| + w(d′).

Proof. 1. Straightforward.
2. We show that d does not contain more than two applications of (c, l)

and/or (EC) after each inference step in d′ (but weakenings). The proof proceeds
by induction on |d′|. The claim is trivial if H is an axiom. Suppose that the last
rule applied in d′ is (⊃, l) and d′ ends as follows

··· d′
1

G ∪ {Γ ⇒ A}

··· d′
2

G ∪ {Γ, B ⇒ C}
(⊃,l)

G ∪ {Γ, A ⊃ B ⇒ C}

By induction hypothesis one can find two proofs d′′1 and d′′2 in HIF with the
required properties of the 1-1-reduced hypersequents (G | Γ ⇒ A)# and
(G | Γ,B ⇒ C)#. Applying to them the (⊃, l) rule one obtains the hypersequent
G# ∪ Γ#, A ⊃ B ⇒ C that can have at most two equal formulas (if A ⊃ B ∈
Γ#) and two equal components (if the component Γ#, A ⊃ B ⇒ C is in G#).
With at most one application of (c, l) and of (EC), one obtains a 1-1-reduced
contraction of G | Γ,A ⊃ B ⇒ C. The cases involving the remaining logical
rules as well as the cut rule are analogous.

Suppose the last rule applied in d′ is (com) and d′ ends as follows

··· d′
1

G ∪ {Γ, Σ ⇒ A}

··· d′
2

G ∪ {Γ, Σ ⇒ B}
(com)

G ∪ {Γ ⇒ A} ∪ {Σ ⇒ B}

By induction hypothesis one can find two proofs d′′1 and d′′2 in HIF with the
required properties of the 1-1-reduced hypersequents (G | Γ,Σ ⇒ A)# and
(G | Γ,Σ ⇒ B)#. Applying the (com) rule to them one obtains the hyper-
sequent G# | Γ# ⇒ A | Σ# ⇒ B in which there can be at most two pair-
wise equal components (if both the components Γ# ⇒ A and Σ# ⇒ B are in
G#). Applying (EC) at most twice, one obtains a 1-1-reduced contraction of
G | Γ ⇒ A | Σ ⇒ B.

If the last rule applied in d′ is (EW) then the corresponding proof in HIF
does not contain any additional application of (EC) or (c, l). While in the case
of internal weakening one can need an additional application of (EC).

Remark 3. Using multiplicative rules in defining HIF and HIFset, the bound
on |d| in Lemma 2.2 does not hold anymore.



3.1 A Schütte-Tait style cut-elimination proof

Let d(s) and H(s) denote the result of substituting the term s for all free occur-
rences of x in the proof d(x) and in the hypersequent H(x), respectively.

Lemma 3 (Substitution). If d(x) ` H(x), then d(s) ` H(s), with |d(s)| =
|d(x)| and ρ(d(s)) = ρ(d(x)), where s only contains variables that do not occur
in d(x).

We introduce the notion of decorated formulas in a derivation d of HIFset. This
notion is intended to trace the cut-formula through d.

Definition 7. Let d ` H and A be a formula in H that is not the cut-formula
of any cut in d. The decoration of A (in d) is inductively defined as follows: we
denote by A∗ a decorated occurrence of A. Given a hypersequent H ′ in d with
some (not necessarily all) decorated A. Let R be the rule introducing H ′. We
distinguish some cases according to R.

1. R is a logical rule, e.g.,
G ∪ {Γ ′ ⇒ C ′}

G ∪ {Γ ⇒ C}

(a) A is principal in R. Suppose A∗ ∈ Γ . In the active component, A∗ ∈ Γ ′ if
and only if A is a side formula of the inference. Moreover, the decoration
in the not-active components of the premise of R is as in the conclusion.
That is, for each such a component {Σ ⇒ B} ∈ G, A∗ ∈ Σ if and only
if A∗ ∈ Σ of the corresponding component belonging to the conclusion of
R.
Suppose C is A∗. The decoration of the not-active components of the
premise of R is as in the conclusion.

(b) A is not principal in R. If A∗ ∈ Γ (resp. C) then A∗ ∈ Γ ′ (resp. C ′) in
the active component. Moreover, the decoration of the not-active compo-
nents of the premise of R is as in the conclusion.

If R is a two premises rule, the definition is analogous.
2. R is (EW). The decoration of the components in the premise of R is as in

the conclusion.
3. R is (w, l) or (w, r). Analogous to case 1.
4. R is (com).

G ∪ {Γ,Σ ⇒ C} G ∪ {Γ,Σ ⇒ C ′}

G ∪ {Γ ⇒ C} ∪ {Σ ⇒ C ′}

Suppose A∗ ∈ Γ . If A 6∈ Σ (or A∗ ∈ Σ), then A∗ ∈ Γ,Σ of both the active
components in the premises of R. If A occurs in Σ, then A∗ ∈ Γ,Σ of only
one active component in the premises of R. Suppose A∗ 6∈ Γ . If A 6∈ Γ and
A∗ ∈ Σ, then A∗ ∈ Γ,Σ of both the active components in the premises of R.
If A ∈ Γ and A∗ ∈ Σ, then A∗ ∈ Γ,Σ of only one active component in the
premises of R. The decoration in the not-active components in the premises
of R is as in the conclusion.
If C (and/or C ′) is A∗, then so is in the active component {Γ,Σ ⇒ C}
(and/or {Γ,Σ ⇒ C ′}). The decoration in the not-active components of the
premises of R is as in the conclusion.



5. R is (cut). Analogous to case 1(b).

Remark 4. Due to the (com) rule, the decoration of A (in d) is not unique.

Lemma 4 (Inversion).

(i) If d ` G ∪ {Γ,A ∨ B ⇒ C} then one can find d1 ` G ∪ {Γ,A ⇒ C} and
d2 ` G ∪ {Γ,B ⇒ C}

(ii) If d ` G ∪ {Γ,A ∧ B ⇒ C} then one can find d1 ` G ∪ {Γ,A,B ⇒ C}
(iii) If d ` G ∪ {Γ ⇒ A ∧ B} then one can find d1 ` G ∪ {Γ ⇒ A} and

d2 ` G ∪ {Γ ⇒ B}
(iv) If d ` G ∪ {Γ ⇒ A ⊃ B} then one can find d1 ` G ∪ {Γ,A ⇒ B}
(v) If d ` G ∪ {Γ, ∃xA(x) ⇒ C} then one can find d1 ` G ∪ {Γ,A(a) ⇒ C}
(vi) If d ` G ∪ {Γ ⇒ ∀xA(x)} then one can find d1 ` G ∪ {Γ ⇒ A(a)}

such that ρ(di) ≤ ρ(d) and |di| ≤ |d|, for i = 1, 2.

Proof. (i) Let us consider the decoration of A∨B in d starting from G ∪ {Γ, (A∨
B)∗ ⇒ C}. To obtain the required derivation d1 ` G ∪ {Γ,A ⇒ C} (resp.
d2 ` G ∪ {Γ,B ⇒ C}), we delete all the right (resp. left) subderivations above
any application of (∨, l) in which the decorated formula (A∨B)∗ is principal and
we replace every component ψ, (A ∨ B)∗ ⇒ D in the derivation with ψ,A ⇒ D
(resp. ψ,B ⇒ D). (Recall that all axioms are atomic). Clearly |di| ≤ |d| and
ρ(di) ≤ ρ(d), for i = 1, 2.

The remaining cases are analogous.

Remark 5. (⊃, l), (∀, l) and (∃, r) are not invertible. Concerning (∨, r), one has
G ∪ {Γ ⇒ A ∨ B} can be inverted to G ∪ {Γ ⇒ A} ∪ {Γ ⇒ B} (slightly
changing the above bounds). The Schütte-Tait style cut-elimination procedure
presuppose that at least one of the two premises of the cut rule is invertible. As
we shall see, we will use (i), (iii), (iv), (v) and (vi). Of course we could choose
(ii) instead of (iii) or the inversion of (∨, r) instead of (i). However, the latter
choice will transform LJ-derivations into derivations containing hypersequents
with more than one component.

In the following we write d,H ` G if d is a proof in HIFset of G from the
assumption H . Moreover, H [B/A] will indicate the hypersequent H in which we
uniformly replace A by B.

Lemma 5. Let d ` G ∪ {Γ,A∗ ⇒ B}, where A∗ is an atomic formula decorated
in d that is not the cut formula of any cut in d. One can find a proof d′, {Σ ⇒
A} ` G ∪ {Γ,Σ ⇒ B} such that |d′| ≤ |d| and ρ(d′) = ρ(d).

Proof. We replace A∗ everywhere in d with Σ. The decorated formula originates

1. in an axiom. Then the axiom is transformed into Σ ⇒ A,
2. by an internal weakening. The weakening on A∗ is replaced by stepwise

weakenings of formulas B, where B ∈ Σ. Note that this does not affect the
length of the resulting proof,



3. by an external weakening. The weakening in the component C is replaced
by a weakening on C[Σ/A∗ ].

The resulting proof d′ is correct as it can be shown by induction on |d′|+w(d′)+
W (d′).

Lemma 6 (Reduction). Let d0 ` G ∪ {Γ ⇒ A} and d1 ` G ∪ {Γ,A ⇒ C}
both with cut-rank ρ(di) ≤ |A|. Then we can find a derivation d ` G ∪ {Γ ⇒ C}
with ρ(d) ≤ |A| and |d| ≤ 2(|d0| + |d1|).

Proof. If A is ⊥ the proof is trivial. Suppose A atomic (6= ⊥). The claim follows
by Lemma 5 and subsequent concatenation with the proof d0. Suppose A not
atomic.

– A = B ⊃ D. Let us consider the decoration of A in d1 starting from G ∪
{Γ, (B ⊃ D)∗ ⇒ C}. We first replace in d1 all the components {Ψ, (B ⊃
D)∗ ⇒ C ′} by {Ψ, Γ ⇒ C ′}. Note that this does not result in a correct
proof anymore. We have then to consider the following “correction steps”
according to the cases in which the decorated formula originates:
(i) as principal formula of a logical inference,
(ii) by an internal weakening,
(iii) by an external weakening.
(i) We replace every original inference step of the kind

···
G′ ∪ {Ψ ⇒ B}

···
G′ ∪ {Ψ, D ⇒ C′}

(⊃,l)

G′ ∪ {Ψ, (B ⊃ D)∗ ⇒ C′}

by (let G′′ = G′ ∪ G)
···

(G′′ ∪ {Ψ, Γ ⇒ B})[Γ /A∗ ]

··· d′
0

G′′ ∪ {Γ, Ψ, B ⇒ D}

G′′ ∪ {Ψ, Γ ⇒ D}

···
(G′′ ∪ {Ψ, Γ, D ⇒ C′})[Γ /A∗ ]

G′′ ∪ {Ψ, Γ ⇒ C′}

(adding some internal and external weakenings) where d′0 ` G ∪ {Γ,B ⇒ D}
is obtained by the Inversion Lemma.
(ii)The weakening on (B ⊃ D)∗ is replaced by stepwise weakenings of for-
mulas X , where X ∈ Γ . Note that this does not affect the length of the
resulting proof.
(iii) The weakening on the component C is replaced by a weakening on
C[Γ /(B⊃D)∗ ].
The replacement of components containing decorated formulas B ⊃ D does
not change the length of the proof tree wich remains ≤ |d1| and the cut-
rank, which remains ≤ ρ(A). This holds also for the correction steps (ii)
and (iii), since only weakenings are added. Correction step (i) uses d′0 (with
suitable weakenings) as subproof deriving the missing premise of the cut
rules replacing (⊃, l) inferences of (B ⊃ D)∗. Therefore |d| ≤ |d′0|+ |d1|+2 ≤
|d0| + |d1| + 2 ≤ 2(|d0| + |d1|).



– Cases A = B ∧D and A = ∀xA(x) are treated analogously.
– A = ∃xA(x). Let us consider the decoration of A in d0 starting from
G ∪ {Γ ⇒ (∃xA(x))∗}. We first replace in d0 all the components
{Ψ ⇒ (∃xA(x))∗} by {Ψ ⇒ C}. As in the previous case, this does not result
in a correct proof anymore. Correction steps (ii) and (iii) are as above. While
if ∃xA(x) originates as principal formula of a logical inference, we replace
every original inference step of the kind···

G′ ∪ {Ψ ⇒ A(t)}
(∃,l)

G′ ∪ {Ψ ⇒ (∃xA(x))∗}

by
···

G ∪ (G′ ∪ {Ψ, Γ ⇒ A(t)})[C/(∃xA(x))∗ ]

··· d′
1(t)

G ∪ G′ ∪ {Γ, Ψ, A(t) ⇒ C}
(cut)

G′ ∪ G ∪ {Ψ, Γ ⇒ C}

(adding some external weakenings) where d′1(t) ` G ∪ {Γ,A(t) ⇒ C} is
obtained by the Inversion Lemma (and Substitution Lemma).
Correction step (i) uses d′1(t) (with suitable weakenings) as subproof deriving
the missing premise of the cut rules replacing (∃, r) inferences of (∃xA(x))∗ .
Therefore |d| ≤ |d0| + |d′1(t)| + 1 ≤ |d0| + |d1| + 1 ≤ 2(|d0| + |d1|).

– Case A = B ∨D is treated analogously.

Theorem 1 (Cut-elimination). If d ` H and ρ(d) > 0, then we can find a
derivation d′ ` H with ρ(d′) < ρ(d) and |d′| ≤ 4|d|.

Proof. Proceeds by induction on |d|. We may assume that the last inference of
d is a cut

··· d0

G ∪ {Γ ⇒ A}

··· d1

G ∪ {Γ, A ⇒ C}

G ∪ {Γ ⇒ C}

(eventually with subsequent weakenings) with ρ(d) = |A|+ 1. For otherwise the
result follows by the induction hypothesis (making use of the fact that our rules
all have finitely many premises).

By the induction hypothesis we have d′0 ` G ∪ {Γ ⇒ A} and d′1 ` G ∪
{Γ,A ⇒ C} both with cut rank ρ(d′i) ≤ |A| and |d′i| ≤ 4|di|, with i = 1, 2.
The Reduction Lemma gives a derivation d′ with ρ(d′) ≤ |A| < ρ(d) and |d′| ≤
2(|d′0| + |d′1|) ≤ 2(4|d0| + 4|d1|) ≤ 4max(d0,d1)+1 = 4|d|.

Let 4n
0 = n, 4n

k+1 = 44n
k .

Corollary 1. If d ` H, one can find a cut-free proof d′ ` H with |d′| ≤ 4
|d|
ρ(d).

Corollary 2. If d′ ` H, one can find a cut-free derivation d of H in HIF such

that |d| ≤ 2 · 4
|d′|
ρ(d′) +w(d′′), where d′′ is the corresponding cut-free derivation in

HIFset.



Proof. Immediately follows by Corollary 1 together with Lemma 2.

Note that w(d′′) can be easily bounded, e.g., by the total number of occurrences
of formulas in d′′.

Remark 6. Substitution, Inversion and Reduction Lemma, as well as Lemma
5 transform proofs in HIFset without applications of (com) and only contain-
ing singleton hypersequent, into proofs with the same properties. Therefore the
above Schütte-Tait style cut-elimination proof, with the given bound, also holds
for LJ in the set theoretic notation.

3.2 A Gentzen style cut-elimination proof

In this section we describe, for comparison, a Gentzen style cut-elimination proof
for HIF.

Recall that the cut-elimination method of Gentzen proceeds by eliminating
the uppermost cut by a double induction on the complexity c of the cut formula
and on the sum r of its left and right ranks. In fact, in LJ, by the presence of
the internal contraction rule one has to consider a derivable generalization of the
cut rule, namely, the multi-cut rule

Γ ⇒ A Γ ′, An ⇒ B

Γ, Γ ′ ⇒ B
(mcut)

where An stands for A, . . . , A (n times), see, e.g., [15].
Due to the presence of (EC), in hypersequent calculi (and, in particular, in

HIF) one cannot directly apply Gentzen’s argument to show that (∗) if G | Γ ⇒
A andG | Γ,An ⇒ B are cut-free provable in HIF, so isG | Γ ⇒ B. A simple way
to overcome this problem, is to modify Gentzen’s original Hauptsatz allowing to
reduce certain cuts in parallel. E.g., in [2], Avron has used the following induction
hypothesis:

(∗∗) If both the hypersequents G := G′ | Γ1 ⇒ A | . . . | Γn ⇒ A and
H := H ′ | Σ1, A

n1 ⇒ B1 | . . . | Σk, A
nk ⇒ Bk are cut-free provable in GLC,

then so is H ′ | G′ | Γ,Σ1 ⇒ B1 | . . . | Γ,Σk ⇒ Bk where Γ = Γ1, . . . , Γn. It is
not hard to see that this formulation is, in fact, equivalent to (∗). As we shall
see, Avron’s induction hypothesis also works for HIF.

In analogy with Lemma 2.10 of [15], one can show

Lemma 7. Let d(a) be a proof in HIF of a hypersequent S containing the vari-
able a. If throughout the proof, we replace a by a term t, containing only variables
that do not occur in d(a), we then obtain a proof d(t) ending with the hyperse-
quent S′ obtained by replacing a by t in S.

Theorem 2 (Cut-elimination). If a hypersequent H is derivable in HIF then
it is derivable in HIF without using the cut rule.

Proof. We show (∗∗) by induction on the pair (c, r). In addition to Avron’s proof
in [2], we have to consider the cases involving quantifiers. More precisely, let γ
and δ be the proofs of G and H , respectively. We consider the following cases:



1. both γ and δ end in some rules for quantifiers such that the principal formula
of both rules is just the cut formula;

2. either γ or δ ends in a rule for quantifiers whose principal formula is not the
cut formula.

1. Suppose that both γ and δ end in a rule for ∀ and the principal formulas of
both rules is the cut formula. For instance, δ is

··· δ1

H ′ | Σ1, A(a), (∀xA(x))n1−1 ⇒ B1 | . . . | Σk, (∀xA(x))nk ⇒ Bk

(∀,l)

H ′ | Σ1, (∀xA(x))n1 ⇒ B1 | . . . | Σk, (∀xA(x))nk ⇒ Bk

and γ is

··· γ1

G′ | Γ1 ⇒ A(a) | . . . | Γn ⇒ ∀xA(x)
(∀,r)

G′ | Γ1 ⇒ ∀xA(x) | . . . | Γn ⇒ ∀xA(x)

Applying the induction hypothesis to both γ and δ1 one gets a proof δ′ of
H ′ | G′ | Σ1, Γ, A(a) ⇒ B1 | . . . | Σk, Γ ⇒ Bk, where Γ = Γ1, . . . , Γn, while
applying the induction hypothesis to γ1 and δ one gets a proof γ ′ ofH ′ |G′ | Γ1 ⇒
A(a) | Σ1, Γ2, . . . , Γn ⇒ B1 | . . . | Σk, Γ2, . . . , Γn ⇒ Bk. We now apply again
the induction hypothesis, based on the reduced complexity of the cut formula,
to γ′ and δ′. The desired result is obtained by several applications of (c, l), (w, l)
and (EC).

2. Suppose that δ ends as follows

··· δ1

G′ | Γ1, A(a) ⇒ C | . . . | Γn ⇒ C
(∃,l)

G′ | Γ1, ∃xA(x) ⇒ C | . . . | Γn ⇒ C

Applying the induction hypothesis to the proof γ of the hypersequent
H ′ | Σ1, C

n1 ⇒ B1 | . . . | Σk, C
nk ⇒ Bk and to δ1 one gets a proof γ ′ of

(a) H ′ | G′ | Σ1, Γ, A(a) ⇒ B1 | . . . | Σk, Γ, A(a) ⇒ Bk, where Γ = Γ1, . . . , Γn.
Due to the eigenvariable condition, one cannot directly apply the (∃, l) rule to
(a) in order to obtain the desired result, namely,

H ′ | G′ | Σ1, Γ, ∃xA(x) ⇒ B1 | . . . | Σk, Γ, ∃xA(x) ⇒ Bk.

However, the above hypersequent can be obtained from γ ′ by several applications
of (∃, l), (com′) (i.e. (com) + (w, l)) and (EC). The proof of it proceeds by
induction on k. Base case: k = 1, the claim follows applying the (∃, l) rule (and
Lemma 7). Let k > 1. From γ ′, using only (∃, l), (com) and (EC), one can
derive H ′ | G′ | Σ1, Γ, ∃xA(x) ⇒ B1 | H , where H stands for Σ2, Γ, A(a) ⇒
B2 | . . . | Σk, Γ, A(a) ⇒ Bk. Indeed, by Lemma 7 one can find a proof γ ′[b] of
(b) H ′ | G′ | Σ1, Γ, A(b) ⇒ B1 | . . . | Σk, Γ, A(b) ⇒ Bk, where b is a new variable



not occurring in γ′. The derivation of H ′ | G′ | Σ1, Γ, ∃xA(x) ⇒ B1 | H is then
as follows (we omit contexts that are not involved in the derivation)

(a) (b)
(?)

Σ1, Γ, A(b) ⇒ B1 | Σ3, Γ, A(b) ⇒ B3 | · · | Σk, Γ, A(b) ⇒ Bk | H (a)
(?)

...
...

(?)

Σ1, Γ, A(b) ⇒ B1 | H
(∃,l)

Σ1, Γ, ∃xA(x) ⇒ B1 | H

where (?) stands for (com′) and (EC).

Remark 7. In [8] the proof of the cut-elimination theorem in Gentzen style has
been formulated without using the “extended multi-cut rule” (∗∗). However, as
pointed out by Avron, in hypersequent calculi Gentzen’s argument works only
(as in the case of LJ or LK without the multi-cut rule) if a suitable notion of
decoration is formulated (see, e.g., the “history technique” in [1]).

3.3 Final Remarks

Schütte-Tait style cut-elimination methods make use of the partial (at least one
side) invertibility of all logical rules: one side of the cut is reduced immediately.
It is easy to see that these methods generally lead to smaller cut-free proofs than
the ones obtained with Gentzen style procedures, especially if we admit deletion
of subproofs ending with hypersequents containing axioms, e.g.,

··· d1

G | Π ⇒ A ⊃ B
(w,l)

G | B,A, Π ⇒ A ⊃ B

A ⇒ A B ⇒ B
(⊃,l)(EW)

G | A ⊃ B, A ⇒ B

A ⇒ A B ⇒ B
(⊃,l)(EW)

G | A ⊃ B, A ⇒ B
(∧,r)

G | A ⊃ B, A ⇒ B ∧ B
(w,l)′s

G | A ⊃ B, B, A, Π ⇒ B ∧ B
(cut)

G | B, A, Π ⇒ B ∧ B

Indeed, here the Inversion Lemma yields G | B,A,Π ⇒ B and the subproof d1

is deleted, while a Gentzen style procedure inevitably shifts the cut inside d1.
(See [7] for a comparison on the complexity of Gentzen and Schütte-Tait style
procedures in classical first-order logic).

On the other hand, Schütte-Tait style procedures are more arbitrary than
Gentzen style procedures (see, e.g., Remark 4), which use the exact properties of
the calculus under consideration. In addition, Gentzen style procedures are local
and they work even in the case of deductions from arbitrary atomic assumptions
closed under cut.

Finally, note that both Gentzen and Schütte-Tait style procedures transform
intuitionistic proofs into intuitionistic proofs (within HIF): new applications of
the (com) rule are not introduced in eliminating cuts. Therefore cut-free deriva-
tions even for propositional formulas might lead to long cut-free proofs (recall



that the validity problem in intuitionistic logic is P-space complete while the
same problem in LC is in co-NP). This is not the case, when eliminating cuts
from derivations in the sequent-of-relations calculus for LC defined in [4] (see
also [6]). In this latter calculus, all the rules are invertible. However, it cannot
be modified in a simple way in order to include quantifiers.
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