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Abstract. In this paper we investigate the tableau systems correspond-
ing to hypersequent calculi. We call these systems hypertableau calculi.
We define hypertableau calculi for some propositional intermediate log-
ics. We then introduce path-hypertableau calculi which are simply de-
fined by imposing additional structure on hypertableaux. Using path-
hypertableaux we define analytic calculi for the intermediate logics Bdk,
with k ≥ 1, which are semantically characterized by Kripke models of
depth ≤ k. These calculi are obtained by adding one more structural rule
to the path-hypertableau calculus for Intuitionistic Logic.

1 Introduction

Hypersequent calculi are a simple and natural generalization of Gentzen sequent
calculi to sets of sequents (see [4] for an overview). Hypersequents allow to for-
malize logics of a different nature ranging from modal to many-valued logics.

In this paper we are concerned with intermediate logics, that is, logics be-
tween Intuitionistic and Classical Logic. In [4, 3, 9, 8] cut-free hypersequent cal-
culi have been defined for:

1. the logics Bwk, with k ≥ 1, which are semantically characterized by Kripke
models of width ≤ k;

2. the logics Bck, with k ≥ 1, which are semantically characterized by Kripke
models of cardinality ≤ k;

3. the logics Gk+1, with k ≥ 1, which are semantically characterized by linearly
ordered Kripke models of cardinality ≤ k;

4. LQ logic (also known as Jankov logic [18]).

In particular Bw1 coincides with infinite-valued Gödel (Dummett) logic G∞,
while for k ≥ 2, Gk is k-valued Gödel logic. Bc2 is identical with Sm logic [7].

In the literature, there do exist sequent or tableau calculi for some of these
logics. For instance, in [1] duplication-free tableau calculi for Sm, LQ and G∞

have been defined (see also [10] for a deterministic terminating sequent calculus
for G∞). Analytic calculi for finite-valued Gödel logics, based on their many-
valued semantics, can be found, e.g., in [19, 14, 6]. Nevertheless all these calculi
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are so much tailored to their corresponding logic that they hardly give infor-
mation on the existing connections with other logics. In particular, they cannot
help to define analytic calculi for related logics.

Hypersequent calculi for all the above logics are simply obtained by adding
just one structural rule to a common system, namely the hypersequent calculus
for Intuitionistic Logic [4, 3, 9, 8]. This structural rule reflects in a natural way
the characteristic semantical features of the corresponding logic.

In this paper we introduce the notion of hypertableau1. Hypertableau calculi
stand to hypersequent calculi as tableau systems stand to sequent calculi.

By dualizing the hypersequent calculi of [4, 3, 9, 8] we define hypertableau
calculi for the logics Bwk,Bck,Gk and LQ. Then, by simply generalizing the
peculiar rule of LQ logic, we obtain a hypertableau calculus for the family of
intermediate logics semantically characterized by rooted posets with at most
k final states. Although hypertableaux (hypersequents) turn out to be more
expressive than tableaux (sequents), there do exist intermediate logics with a
simple Kripke semantics for which such calculi seem to be hardly definable. An
important example of a logic for which no hypertableau (hypersequent) systems
have been devised so far is the logic Bd2. This logic is semantically character-
ized by the class Fd≤2 of all rooted posets whose depth is at most 2 (see [7]).
As is well known, like LQ, Sm and G∞, Bd2 is one of the seven interpolable
propositional logics [15]. More generally, for each k > 2, the intermediate logic
Bdk semantically characterized by Kripke models of depth ≤ k does not have
any tableau (sequent)-style formalization yet.

In Section 4 we introduce a new hypertableau framework, called path-hyperta-
bleaux. The notion of path-hypertableau naturally arises by introducing addi-
tional structure on hypertableaux. Using path-hypertableaux we define uniform
analytic calculi for the Bdk logics, with k ≥ 1. This is done by adding one more
structural rule to the path-hypertableau calculus for intuitionisticlogic.

We assume familiarity with intermediate logics and Kripke models. Intro-
ductory material can be found, e.g., in [7]. Henceforth we shall denote by Int
and Cl the set of valid well-formed formulas (wffs for short) of propositional
intuitionistic logic and classical logic, respectively.

2 Hypersequent calculi

Hypersequent calculi [17, 2] are a simple and natural generalization of Gentzen
calculi. See [4] for an overview.

Definition 1. A hypersequent is an expression of the form

Γ1 ⊢ ∆1 | . . . | Γn ⊢ ∆n,

where, for all i = 1, . . . n, Γi ⊢ ∆i is an ordinary sequent. Γi ⊢ ∆i is called a
component of the hypersequent.

1 The name “hypertableau” was already used in [5] in the context of a different kind
of calculus.
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The intended meaning of the symbol | is disjunctive.
Like in ordinary sequent calculi, in a hypersequent calculus there are axioms

and rules, which are divided into logical and structural rules. The logical rules are
the same as in sequent calculi but for the presence of dummy contexts, denoted
byG and G′, that are called side hypersequents. For instance, in the hypersequent
calculus for Intuitionistic Logic, the rules for the → connective are:

(→, l)
G | Γ ⊢ A G′ | Γ,B ⊢ C

G | G′ | Γ,A → B ⊢ C
(→, r)

G | Γ,A ⊢ B

G | Γ ⊢ A → B

The structural rules can either be internal or external. The internal rules deal
with wff’s within components. They are the same as in ordinary sequent calculi.
The external rules manipulate whole components within a hypersequent. They
are external weakening (EW), exchange (EE) and contraction (EC):

(EW )
G

G | G′
(EE)

G | G′

G′ | G
(EC)

G | G′ | G′

G | G′

In hypersequent calculi it is possible to define new kind of structural rules which
simultaneously act on several components of one or more hypersequents. It is
this type of rule which increases the expressive power of hypersequent calculi
with respect to ordinary sequent calculi. See [2–4, 9, 8] for some examples of
hypersequent calculi ranging from modal to many-valued logics.

3 Hypertableau calculi

It is well known that tableau calculi can be easily obtained by dualizing sequent
calculi (see, e.g., [20, 11]). Here we define the tableau systems corresponding to
hypersequent calculi. We call these systems hypertableau calculi.

As usual, a signed formula (swff for short) is an expression of the form TX or
FX where X is any wff. The meaning of the signs T and F is as follows: Given
a Kripke model K = 〈P,≤, v〉 and a swff H, we say that α ∈ P realizes H (in
symbols α�H) if H ≡ TX and α‖−−X, or H ≡ FX and α‖−/−X.

A set S of swff’s is realized in K (in symbols α�S) if there exists an element
α realizing all the swff’s in S. S is contradictory if it contains either T⊥ or both
TX and FX for some wff X2.

Definition 2. An h-set is an expression of the form

S1 | . . . | Sn

where, for all i = 1, . . . , n, Si is a set of swff’s. Si is called a component of the
h-set. An h-configuration is an expression of the form

Ψ1 ‖ . . . ‖ Ψm

where, for all i = 1, . . . , n, Ψi is an h-set called component of the h-configuration.

2 This condition can be equivalently reformulated by requiring X to be a propositional
variable.
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As shown by the following definition the intended meaning of the symbol | is
conjunctive while the one of the symbol ‖ is disjunctive.

Definition 3. We say that an h-set S1 | . . . | Sn is realized in K, if all the
sets Sj, with j = 1, . . . , n, are realized in K.

An h-configuration Ψ1 ‖ . . . ‖ Ψm is realized in K, if there exists j ∈
{1, . . . ,m} such that Ψj is realized in K.

Definition 4. An h-set is contradictory if at least one of the Si, with i =
1, . . . , n, is contradictory.

Hypertableau calculi are defined by dualizing hypersequent calculi as follows:
Given a hypersequent Γ1 ⊢ ∆1 | . . . | Γn ⊢ ∆n, each component Γi ⊢ ∆i

translates into the set of swff’s T(Γi) ∪ F(∆i) where T(Γi) = {TA | A ∈ Γi}
and F(∆i) = {FA | A ∈ ∆i}. Thus the above hypersequent translates into the
h-set

T(Γ1) ∪ F(∆1) | . . . | T(Γn) ∪ F(∆n).

Clearly, the axioms of hypersequent calculi are translated into contradictory h-
sets. As for the tableau rules, the hypertableau ones are obtained by simply
reversing the corresponding hypersequent rules.

Definition 5. A hypertableau for Ψ1 ‖ . . . ‖ Ψm is a finite sequence of h-
configurations obtained by applying the rules of the calculus to Ψ1 ‖ . . . ‖ Ψm.

A hypertableau is said to be closed if all the h-sets in its final configuration
are contradictory.

In Table 1 one can find the rules of the hypertableau calculus t-Int for Intuition-
istic Logic coming from the above translation. The notation S,H with S set of
swff’s and H swff will denote the set S ∪ {H}.

We remark that, as in the hypersequent calculus for Intuitionistic Logic, in
t-Int the external structural rules are redundant.

Section 3.1. To simplify the notation, in the above rules we omitted the com-
ponents of the h-configurations not involved in the derivation. E.g., the schema

Ψ1 ‖ . . . ‖ Ψ | Φ ‖ . . . ‖ Ψn

Ψ1 ‖ . . . ‖ Ψ ‖ . . . ‖ Ψn

HEW

illustrates the external weakening rule HEW spelt out in more detail, and simi-
larly for the other rules.

Remark 1. In the above calculus the internal structural rules are internalized
into logical rules, for the former are playing no semantical rôle.

Remark 2. By reversing the (∨, l), (∧, r), (→, l) rules of the hypersequent calcu-
lus for Intuitionistic Logic one would obtain the following hypertableau rules:

Ψ | Ψ ′ | S,T(A ∨B)

Ψ | S,TA ‖ Ψ ′ | S,TB

Ψ | Ψ ′ | S,F(A ∧B)

Ψ | S,FA ‖ Ψ ′ | S,FB

Ψ | Ψ ′ | S,T(A→B)

Ψ | S,T(A→B),FA ‖ Ψ ′ | S,TB
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External Structural Rules

Ψ | Φ

Ψ
HEW

Ψ | S

Ψ | S | S
HEC

Ψ | S1 | S2 | Φ

Ψ | S2 | S1 | Φ
HEE

Logical Rules

Ψ | S,T(A1 ∧A2)

Ψ | S,TAi

T∧i for i = 1, 2
Ψ | S,F(A ∧B)

Ψ | S,FA ‖ Ψ | S,FB
F∧

Ψ | S,T(A ∨B)

Ψ | S,TA ‖ Ψ | S,TB
T∨

Ψ | S,F(A1 ∨A2)

Ψ | S,FAi

F∨i for i = 1, 2

Ψ | S,T(A→B)

Ψ | S,T(A→B),FA ‖ Ψ | S,TB
T→

Ψ | S,F(A→B)

Ψ | ST,TA,FB
F→

ST = {TX | TX ∈ S}

Table 1. Hypertableau calculus t-Int for Intuitionistic Logic

Nevertheless, these rules introduce non-determinism in proof search. It is easy
to see that using the external rules, these rules are interderivable with the rules
T∨,F∧ and T→ of t-Int, respectively.

Any hypertableau rule coming from the above translation is correct, i.e., when
its premise is realized, so is the conclusion. This immediately follows from the
correctness of the corresponding hypersequent rule. Thus, the proof of the sound-
ness theorem for the hypersequent calculus can be translated into a proof of the
soundness theorem for the corresponding hypertableau calculus. Accordingly,
one can look at the proof of the completeness theorem given for the hyper-
sequent calculus as a completeness proof for the corresponding hypertableau
calculus. Indeed, each proof of a valid hypersequent directly translates into a
closed hypertableau.

Theorem 1. A wff A is intuitionistically valid iff there exists a closed hyper-
tableau for {FA} in t-Int.

3.1 On Hypertableaux for Intermediate Logics

The hypertableau framework is stronger than that of tableau. Intuitively, the
former allows to formalize logics whose properties can be simply expressed in a
disjunctive form. This section is devoted to define hypertableau calculi for some
families of intermediate logics and to give some insights on the expressive power
of hypertableaux (hypersequents).
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In [4, 3, 9, 8] cut-free hypersequent calculi have been defined for the intermediate
logics Bwk, Bck, Gk+1 and LQ, whose semantics are given by

Bwk : the class of finite trees not containing k+1 pairwise incomparable nodes
(for short, finite trees of width ≤ k);

Bck : the class of trees containing at most k nodes;
Gk+1 : the class of trees of width ≤ 1 and with at most k nodes;
LQ : the class of finite posets with a single final node.

By dualizing these calculi as described in the previous section, one gets sound
and complete hypertableau calculi for Bwk,Bck,Gk+1 and LQ. All these logics
share the property that their Kripke models K can be described by disjunctively
combining “basic” conditions of the form:

(a) αi ≤ αj or αj ≤ αi (b) αi = αj (c) ∃αk ∈ K : αi ≤ αk and αj ≤ αk

Indeed, the Kripke models of the Bwk logic can be characterized as follows: For
every k + 1 elements α0, . . . , αk,

∨

i6=j∈{0,...,k}

αi ≤ αj or αj ≤ αi.

The Kripke models of the Bck logic have the following property: For every k+1
elements α0, . . . , αk,

∨

i6=j∈{0,...,k}

αi = αj .

Finally, the Kripke models of the LQ logic satisfy (c).
The above conditions can be formalized in the hypertableau framework. In-

deed, consider the following rule, originally defined in [4] in the context of cut-free
hypersequent calculi

Ψ | T(Γ0),FA0 | T(Γ1),FA1

Ψ | T(Γ0),T(Γ1),FA1 ‖ Ψ | T(Γ0),T(Γ1),FA0

(≤)

By adding this rule to t-Int one gets a hypertableau calculus for infinite-valued
Gödel logic.

Example 1. We display a proof of axiom (q→p)∨ (p→q) in the above calculus.

F(q→p) ∨ (p→q)
HEC

F(q→p) ∨ (p→q) | F(q→p) ∨ (p→q)
F∨

F(q→p) ∨ (p→q) | F(p→q)
F→

F(q→p) ∨ (p→q) | Tp,Fq
HEE

Tp,Fq | F(q→p) ∨ (p→q)
F∨

Tp,Fq | F(q→p)
F→

Tp,Fq | Tq,Fp
(≤)

Tp, Tq , Fq ‖ Tq, Tp , Fp
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As is well known, in every Kripke model K of G∞ for all αi, αj ∈ K, either
we have αi ≤ αj or αj ≤ αi. Thus a hypertableau calculus for the Bwk logic
is simply defined by adding to t-Int the following generalization of the (≤) rule
(see [8])

Ψ | T(Γ0),FA0 | . . . | T(Γk),FAk

. . . ‖ Ψ | T(Γi),T(Γj),FAi ‖ for every 0≤i6=j≤k . . .
(Bwk)

As an example we show a proof of axiom (p0→p1 ∨ p2) ∨ (p1→p0 ∨ p2) ∨ (p2→
p0 ∨ p1) in the above calculus for Bw2.

Example 2. Let H = (p0→p1∨p2)∨(p1→p0∨p2)∨(p2→p0∨p1). The derivation
proceeds as follows:

FH
HEC

FH | FH
HEC

FH | FH | FH
·
·
·
·
·
by several applications of F∨ and HEE

F(p0→p1 ∨ p2) | F(p1→p0 ∨ p2) | F(p2→p0 ∨ p1)
·
·
·
·
·
by several applications of F→ and HEE

Tp0,F(p1 ∨ p2) | Tp1,F(p0 ∨ p2) | Tp2,F(p0 ∨ p1)
(Bw2)

Tp0,Tp1,F(p1 ∨ p2) ‖ Tp0,Tp2,F(p1 ∨ p2) ‖ Tp1,Tp0,F(p0 ∨ p2) ‖
Tp1,Tp2,F(p0 ∨ p2) ‖ Tp2,Tp0,F(p0 ∨ p1) ‖ Tp2,Tp1,F(p0 ∨ p1)

·
·
·
·
·
by several applications of F∨ and HEE

Tp0, Tp1,Fp1 ‖ Tp0, Tp2,Fp2 ‖ Tp1, Tp0,Fp0 ‖

Tp1, Tp2,Fp2 ‖ Tp2, Tp0,Fp0 ‖ Tp2, Tp1,Fp1

By extending the hypertableau calculus for Intuitionistic Logic with the following
rule

Ψ | T(Γ0),FA0 | T(Γ1)

Ψ | T(Γ0),T(Γ1),FA0

(=)

one gets a calculus for Classical Logic (see [9]). As is well known, in this logic
for every two states αi, αj ∈ K, αi = αj . A hypertableau calculus for the Bck
logic is simply defined by adding to t-Int the following generalization of the (=)
rule (see [8])

Ψ | T(Γ0),FA0 | . . . | T(Γk)

. . . ‖ Ψ | T(Γi),T(Γj),FAi ‖ for every 0≤i≤k−1 and i+1≤j≤k . . .
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To obtain a hypertableau calculus for Gk+1 it suffices to extend t-Int with both
the (≤) rule and the above rule. However, an alternative hypertableau calculus
for Gk+1 can be defined by replacing these two rules with the following one (see
[8])

Ψ | T(Γ0),FA0 | . . . | T(Γk)

. . . ‖ Ψ | T(Γi),T(Γi+1),FAi ‖ for every 0≤i≤k−1 . . .

Finally, the (c) condition exactly corresponds to the following rule defined for
LQ logic (see [9])

Ψ | T(Γ0) | T(Γ1)

Ψ | T(Γ0),T(Γ1)
(∃≤)

thus, for each k ≥ 1, adding to t-Int the following generalization of the (∃ ≤)
rule

Ψ | T(Γ0) | . . . | T(Γk)

. . . ‖ Ψ | T(Γi),T(Γj) ‖ for every 0≤i6=j≤k . . .

one gets a calculus for the logic which is semantically characterized by Kripke
models with at most k final states.

However, there do exists intermediate logics characterized by simple semantical
conditions that cannot be described only combining the (a)-(c) conditions above.
Let us consider, for instance, the Bd2 logic which is semantically characterized
by the class Fd≤2 of all rooted posets with depth at most 2 (see [7]). To describe
its models one needs to express the condition: for all αi, αj , αk

αi ≤ αj ≤ αk =⇒ αi = αj or αj = αk.

We believe that this condition is hardly formalizable in the hypertableau (hyper-
sequent) framework.

In the next section we will show how to suitably modify hypertableaux in
order to define an analytic calculus for this logic.

4 Path-Hypertableau Calculi

In this section we introduce path-hypertableaux. Whereas hypertableaux are
based on h-sets with explicit external rules for manipulating the order and the
number of their components, the idea behind path-hypertableaux is to consider
the components of h-sets as suitable ordered sequences. This eliminates the ex-
ternal exchange rule. Thus path-hypertableaux can be seen as substructural
hypertableaux.

Let us call a path of a Kripke model K any sequence α = α1, . . . , αn ∈ K
such that α1 ≤ . . . ≤ αn.
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Definition 6. We say that an h-set S1 | . . . | Sn is path-realized (p-realized
for short) in a Kripke model K, if there exists a path α = α1, . . . , αn ∈ K such
that αi � Si, for every 1 ≤ i ≤ n. In this case we say that the path α realizes
the h-set S1 | . . . | Sn. An h-configuration Ψ1 ‖ . . . ‖ Ψm is p-realized in K, if
there exists j ∈ {1, . . . ,m} such that Ψj is p-realized in K.

A p-hypertableau is a finite sequence of h-configurations obtained by applying the
rules of the p-hypertableau calculus. The closure condition for a p-hypertableau
is the same as that we gave for a hypertableau (see Definition 5).

Intuitively, each component of an h-set describes a particular state of a Kripke
model. Thus path-hypertableaux allow to simultaneously explore all the states
constituting an ascending chain.

It is immediate to verify that the following proposition holds:

Proposition 1. If an h-set is contradictory then it is not p-realizable.

In Table 2 we display the p-hypertableau calculus pt-Int for Intuitionistic Logic.

External Structural Rules

Ψ | Φ

Ψ
HEWr

Ψ | Φ

Φ
HEWl

Ψ | Φ

Ψ | Φ | Φ
HECr

Ψ | Φ

Ψ | Ψ | Φ
HECl

Logical Rules

Ψ | S,T(A1 ∧A2) | Ψ
′

Ψ | S,TAi | Ψ
′

T∧i for i = 1, 2
Ψ | S,F(A ∧B) | Ψ ′

Ψ | S,FA | Ψ ′ ‖ Ψ | S,FB | Ψ ′

F∧

Ψ | S,T(A ∨B) | Ψ ′

Ψ | S,TA | Ψ ′ ‖ Ψ, S,TB | Ψ ′

T∨

Ψ | S,F(A1 ∨A2) | Ψ
′

Ψ | S,FAi | Ψ
′

F∨i for i = 1, 2

Ψ | S,T(A→B) | Ψ ′

Ψ | S,FA,T(A→B) | Ψ ′ ‖ Ψ | S,TB | Ψ ′

T→

Ψ | S,F(A→B) | Ψ ′

Ψ | ST,TA,FB
F→

ST = {TX | TX ∈ S}

Table 2. Path-hypertableau calculus pt-Int for Intuitionistic Logic

Remark 3. In the new interpretation of h-sets the external exchange rule does
not hold. This entails the splitting of the external rules of weakening and con-
traction into left and right rules, according to the part of the h-set they modify.

As usual, the main step of the Soundness Theorem is to prove that the rules of
the calculus preserve p-realizability.
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Lemma 1. The rules of pt-Int preserve p-realizability.

Proof. As an example, we shall give the proof for the F→ rule. Suppose that
α1, . . . , αn, β, γ1, . . . , γm is a path of a modelK p-realizing S1 | . . . | Sn | S,F(A→
B) | S′

1 | . . . | S′
m. Thus, there exists an element δ in K such that β ≤ δ and

δ�TA,FB. Hence the path α1, . . . , αn, δ p-realizes S1 | . . . | Sn | ST,TA,FB.

Remark 4. The absence of the right context Ψ ′ in the consequent of the F →
rule is essential to preserve p-realizability of F→. Indeed the p-realizability of
F(A→B) in a state β requires the existence in the model of a state δ ≥ β p-
realizing TA and FB. However nothing is known about the relationship between
δ and the path p-realizing Ψ ′.

Theorem 2 (Soundness). If there exists a closed p-hypertableau for {FA} in
pt-Int, then A is valid in Intuitionistic Logic.

Proof. Let us suppose, by way of contradiction, that there are a Kripke model
K = 〈P,≤, v〉 and α ∈ P such that α�FA. By the previous lemma the final h-
configuration of the closed p-hypertableau for {FA} is p-realizable. This means
that a contradictory h-set is p-realizable, contradicting Proposition 1.

Theorem 3 (Completeness). If a wff A is valid in Intuitionistic Logic, then
there exists a closed p-hypertableau for {FA} in pt-Int.

Proof. Straightforward since the logical rules of pt-Int are essentially the same
as in ordinary tableau calculi for Intuitionistic Logic (see, e.g., [11]) with in
addition the contexts Ψ and Ψ ′.

4.1 Logics of Bounded Depth Kripke Models

In the following we define path-hypertableau calculi for the intermediate logics
of bounded depth Kripke models Bdk, with k ≥ 1. Our calculi are uniform, and
are simply obtained by adding a suitable structural rule to pt-Int (see Table 2).

Bdk is characterized by the class Fd≤k of rooted posets with depth ≤ k. In
other words, every chain of its models has at most k elements. Thus Bd1 co-
incides with Classical Logic. A Hilbert style axiomatization of Bdk is obtained
by extending the axioms of Intuitionistic Logic with the axiom scheme (Bdk)
recursively defined as follows (see [12]):

(Bd1) A1 ∨ ¬A1

(Bdi+1) Ai+1 ∨ (Ai+1→(Bdi))

For k ≥ 1, the p-hypertableau calculus pt-Bdk is simply obtained by adding to
pt-Int the following structural rule:

Ψ | S0 | . . . | Sk | Ψ ′

Ψ | S0, S1 | Ψ ′ ‖ Ψ | S0 | S1, S2 | Ψ ′ ‖ . . . ‖ Ψ | S0 | . . . | Sk−2 | Sk−1, Sk | Ψ ′
(≤k)
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Remark 5. The (≤ k) rule resembles the n-Shifting restart rule introduced in
[13] in order to define goal-oriented deduction methods for Bdk.

We prove that pt-Bdk is sound and complete with respect to the Bdk logic.

Lemma 2. The rules of pt-Bdk preserve p-realizability.

Proof. By Lemma 1 we only have to show that the (≤ k) rule preserves p-
realizability over the frames for Bdk. Indeed, if its premise is realized in a model
K built on a frame of Fd≤k, then there exists a path β0 ≤ . . . ≤ βp ≤ α0 ≤ . . . ≤
αk ≤ γ0 ≤ . . . ≤ γq in K such that β = β0, . . . , βp realizes the h-set Ψ , αi � Si

for every i = 0, . . . , k, and γ = γ0, . . . , γq realizes the h-set Ψ ′. Since any path in
K has depth at most k, there exists h ∈ {0, . . . , k} such that αh = αh+1. Thus
the sequence β, α0, . . . , αh, γ realizes the h-set Ψ | S0 | . . . | Sh, Sh+1 | Ψ ′.

Theorem 4 (Soundness). If there exists a closed p-hypertableau for {FA} in
pt-Bdk, then A is valid in Bdk.

Proof. The proof proceeds as in Theorem 2.

Definition 7. An h-set Φ is Bdk-consistent if it has no closed p-hypertableau
in pt-Bdk.

The completeness theorem has the following form: If a wff A is valid in every
Kripke model of depth ≤ k, then there is a closed p-hypertableau for {FA} in
pt-Bdk. According to the semantical interpretation of the swff’s, it suffices to
prove that: If an h-set S of swff’s is Bdk-consistent then there is a Kripke model
K built on a poset in Fd≤k realizing it.

Our proof is based on a general method allowing to built up a rooted Kripke
model K(S) realizing each Bdk-consistent h-set S (see, e.g., [1, 16]). We start by
defining the basic notions of node set and successor set.

Let Φ | S be any Bdk-consistent h-set with S = {A1, . . . , An}. We define the
sequence {Si}i∈ω of sets of swff’s as follows:

– S0 = S;
– Let Si = {H1, . . . , Hq}; then Si+1 =

⋃

Hj∈Si
U(Hj , i)

where, setting S′
j =

⋃j−1
k=1 U(Hk, i) ∪

⋃q

k=j+1 Hk, U(Hj , i) is defined as follows:

1. If Hj ≡ T(A ∨ B) and Φ | (S′
j ∪ {TA}) is Bdk-consistent, then U(Hj , i) =

{TA}, otherwise U(Hj , i) = {TB};
2. If Hj ≡ F(A ∧ B) and Φ | (S′

j ∪ {FA}) is Bdk-consistent, then U(Hj , i) =
{FA}, otherwise U(Hj , i) = {FB};

3. If Hj ≡ T(A→B) and Φ | (S′
j ∪ {TB}) is Bdk-consistent, then U(Hj , i) =

{TB}, otherwise U(Hj , i) = {FA,T(A→B)};
4. If Hj ≡ F(A→B), then U(Hj , i) = {F(A→B)}.
5. Otherwise, U(Hj , i) is the set of h-configurations obtained by applying the

rule in pt-Bdk for Hj to the h-configuration {Hj}.
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Since each step in the construction of Si+1 corresponds to the application of a
rule of pt-Bdk, it is easy to see (by induction on i) that every Φ | Si is Bdk-
consistent. The finiteness of each Si directly follows for S being finite. Thus there
exists k ≥ 0 such that Sk = Sk+1. We call Sk the node set of S w.r.t. Φ and we
denote it with S. We call the set S∗ =

⋃

i≥0 Si the saturated set related to S.
Given an h-set Φ | S, for every F(A → B) ∈ S we call path-extension of

Φ | S (w.r.t. F(A→B)) the path Φ | S | (ST ∪ {TA,FB}). Moreover, we call
ST ∪ {TA,FB} the successor set of S (w.r.t. F(A→B)).

Using the rules HECr and F→, one can easily check that every path-extension
of a Bdk-consistent h-set is Bdk-consistent.

Henceforth, we shall consider trees T whose nodes are sets of swff’s and we shall
identify each path Γ0, . . . , Γm of these trees with the h-set Γ0 | . . . | Γm.

To help the reader, we first give an overview on the construction of K(S).
Let T 0 be the tree only containing a node set of S (w.r.t. the empty h-set) as
root. Our aim is to build up a sequence of trees T 1, . . . , T t having depth ≤ k.
This shall be done in the following steps:

Step 1: Expansion. For every leaf ∆ of depth j in T i, with j < k + 1, the nodes
of depth j + 1 in T i+1 are obtained by adding, as the immediate descendent
of ∆, the node sets of its successor sets. If T i+1 has depth ≤ k go to Step 3.
Otherwise, go to Step 2.

Step 2: Contraction. The contraction of T i results in a tree of depth ≤ k obtained
by deleting some subtrees of T i. This shall be essentially done by using the (≤ k)
rule. Go to Step 1.

Step 3: Model construction. K(S) is built on the last tree T last of the sequence
and for every element α of T last, v(α) is defined as {p : Tp ∈ α}.

Expansion step

First we define an invariant on the trees T that we shall consider hereafter

T.1 For each internal node Γ , the path Γ 0 | . . . | Γ is Bdk-consistent and each
set occurring in it is a node set;

T.2 For every leaf ∆, the path Γ 0 | . . . | Γm | ∆ is Bdk-consistent (possibly, ∆
is not a node set);

T.3 The depth of T is at most k + 1.

Let T be a tree satisfying the above conditions. The sequence {Si}
T
i≤k+1 gener-

ated by T is defined as follows:

- S0 = T ;
- Given Si with i ≤ k+1, let V1, . . . , Vq be the leaves of depth ≤ k. For every
j = 1, . . . , q let V j be the node set with respect to the h-set Φj (corresponding

to the path from the root of Si to the parent of Vj). Let U
j
1 , . . . , U

j
lj

be the

successor sets of V j . For every U j
g , let U

j

g be its node set w.r.t. Φj | V j .
Si+1 is the tree obtained by substituting the node Vj in Si with the subtree

of depth 2 having V j as root and as leaves the node sets U
j

1, . . . , U
j

lj
.
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It is easy to check that Si+1 satisfies the conditions (T.1)-(T.3).

Contraction

We call cut of the sequence {Si}
T
i≤k+1 the tree T defined as follows:

- If the depth of Sk+1 is ≤ k + 1, then T = Sk+1;

- Otherwise, let π0, . . . , πr be the paths in Sk+1 with length k + 1. Since any
πj = Γ 0 | . . . | Γ k is Bdk-consistent, the application of the (≤ k) rule to
this h-set yields an h-configuration

Γ 0, Γ 1 ‖ Γ 0 | Γ 1, Γ 2 ‖ . . . ‖ Γ 0 | . . . | Γ k−2 | Γ k−1, Γ k

that contains at least a Bdk-consistent h-set. Let π+
j be the first Bdk-

consistent h-set in this h-configuration, i.e., the one corresponding to the
shortest path. Consider the paths π+

0 , . . . , π
+
r together with the ordering in-

duced on this set from the sub-path relation. Let us denote with π̃0, . . . , π̃z

the minimal elements of this ordered set. For every j = 0, . . . , z, if

π̃j = Γ
j

0 | . . . | Γ
j

p−1 | Γ
j

p, Γ
j

p+1 and Hj is the swff used to build up the

successor node Γ
j

p+1 of Γ
j

p, we define πj = Γ
j

0 | . . . | Γ
j

p−1 | Γ
j

p, Γ
j

p+1\{Hj}.
We remark that the Bdk-consistency of π̃j immediately implies the Bdk-

consistency of πj . Let ∆j be the node set of (Γ
j

p \{Hj})∪Γ
j

p+1 with respect

to Γ
j

0 | . . . | Γ
j

p−1. We define T as the tree obtained by replacing the subtree

of root Γ
j

p in Si+1 with the subtree only consisting of the node set ∆j .

Moreover, we say that ∆j is obtained by a cut on the set (Γ
j

p \{Hj})∪Γ
j

p+1.

By the above construction we immediately get that, if T satisfies conditions
(T.1)-(T.3), T satisfies these conditions too. Moreover T has depth ≤ k.

The sequence of trees

Given a Bdk-consistent h-set S, we define the sequence of trees {T i}i∈ω gener-
ated by S, as follows:

– T 1 is the cut of the sequence {Si}
{S}
i≤k+1 where {S} is the tree only consisting

of the root S.

– T i+1 is the cut of {S}T i

i≤k+1.

For every tree T i in the above sequence, we define a function ρi associating with
each node of T i a saturated set as follows: For every node Γ in T i (i ≥ 1):

1. If Γ is a node of the tree Sk+1 in the sequence {Si}
Ti

i≤k+1, then

ρi(Γ ) =

{

the saturated set related to Γ if i = 1
ρi−1(Γ ) otherwise
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2. If Γ is not a node of Sk+1, then it is obtained by a cut on a set Γ =
(Γ p \ {H}) ∪ Γ p+1), thus

ρi(Γ ) =

{

Γ ∗
p ∪ Γ ∗

p+1 ∪ Γ ∗ if i = 1

ρi−1(Γ p) ∪ ρi−1(Γ p+1) ∪ Γ ∗ otherwise

where Γ ∗
p , Γ

∗
p+1 and Γ ∗ are the saturated sets related to Γ p, Γ p+1 and Γ ,

respectively.

An inspection on the construction of the trees T i, easily shows that for any node
Γ of T i, the set ρi(Γ ) has the usual properties of a saturated set.

Model Construction

Being S a finite set of swff’s, one can easily prove that there exists an integer t
such that, for every i ≥ t, T i = T t. The Kripke model K(S) is defined thus:

1. 〈P,≤〉 is the poset where P contains all the nodes of T t and ≤ is the reflexive
and transitive closure of the immediate descendent relation of T t.

2. For every Γ ∈ P and for every propositional variable p, p ∈ v(Γ ) iff Tp ∈ Γ .

We associate with K(S) the function ρ = ρt. Using the construction of the trees
in {T i}i∈ω, it is easy to check that K(S) is a Kripke model built on Fd≤k.

Remark 6. The above construction shows that in pt-Bdk the HECl rule is ac-
tually redundant.

Now, it is only a matter of technicality to prove the main lemma:

Lemma 3. For each Γ ∈ K(S) and swff H ∈ ρ(Γ ), one has Γ �H in K(S).

Proof. By induction on the structure of H. The base cases H ≡ Tp and H ≡ Fp
immediately follow by definition of K(S). As for the induction step consider the
case H ≡ F(A → B). Let Γ 1, . . . , Γ t−1, Γ t = Γ be the “history” of Γ in the
sequence {T i}i≤t. That is, for every j = t− 1, . . . , 1, if Γ j is obtained by a cut
on the set (Γ p \{H})∪Γ p+1 then Γ j is Γ p, otherwise Γ j is Γ j+1. Let Γh be the
first set in this sequence not containing F(A→B). Thus there exists a node set
∆h in T h such that ∆h is an immediate descendent of Γh and TA,FB belongs
to ρh(∆h). By definition of the sequence {T i}i≤t and of the model K(S) there
exists an element ∆ ∈ P such that Γ ≤ ∆ and {TA,FB} ⊆ ρ(∆). By induction
hypothesis one has ∆�TA,FB. Therefore, Γ � F(A→B).

This immediately yields the completeness theorem:

Theorem 5 (Completeness). If a wff A is valid in Fd≤k, then there exists a
closed p-hypertableau for {FA} in pt-Bdk.

Proof. Let us suppose by way of contradiction that {FA} is Bdk-consistent. By
the above lemma, this implies that FA is p-realizable in K(S), contradicting the
assumed validity of A in Fd≤k.
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Remark 7. By dualizing pt-Bdk, with k ≥ 1, one can easily define path-hyper-
sequent calculi for the Bdk logics. However, while in path-hypertableau calculi
there is an immediate relation between the semantics of these logics and the
interpretation of h-sets, this relation is not so obvious in the corresponding path-
hypersequent calculi.
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