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Abstract. This paper presents an overview of the methods of hypersequents and display
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1. Introduction

It is well-known that Gerhard Gentzen’s motivation to introduce the sequent
calculus1 arose from his investigations into natural deduction. As Gentzen
[50, p. 289] explains:

A closer investigation of the specific properties of the natural calculus
has finally led me to a very general theorem which will be referred to
below as the “Hauptsatz.” . . . In order to be able to enunciate and
prove the Hauptsatz in a convenient form, I had to provide a logical
calculus especially suited to the purpose. For this the natural calculus
proved unsuitable. For, although it already contains the properties
essential to the validity of the Hauptsatz, it does so only with respect
to its intuitionistic form.

Gentzen then developed the sequent calculi LK and LJ for first-order classi-
cal logic and first-order intuitionistic logic. A crucial rule in sequent calculi
is the cut-rule. It may be thought of as corresponding to the transitivity of
deduction or the introduction of lemmas into proofs. While (cut) is useful
for shortening proofs and proving completeness relative to Hilbert calculi, it
greatly hinders proof search and the extraction of useful information from

Presented by Name of Editor; Received at some time , 2013
1When we refer to the sequent calculus, the hypersequent calculus or the display

calculus, we refer to the respective proof-theoretic framework and not to any particular
proof system within this framework.
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proofs. A calculus not containing the cut-rule is said to be cut-free. Cut-
free proof systems are helpful for proving various results for logical systems,
including consistency, interpolation and decidability. To obtain a cut-free
calculus, Gentzen proved the cut-elimination theorem (his Hauptsatz, main
theorem) which shows how to eliminate instances of the cut-rule from a given
derivation.

Whereas classical and intuitionistic logic were the central systems of for-
mal logic at the time Gentzen completed his dissertation, the importance of
non-classical logics other than intuitionistic logic emerged only in the sec-
ond half of the 20th century. Logics intermediate between intuitionistic and
classical logic, substructural logics, many-valued logics, paraconsistent log-
ics, modal, epistemic, deontic, temporal, dynamic, non-monotonic and other
logics nowadays are of focal interest, both from a purely theoretical perspec-
tive and from the point of view of applications in linguistics, philosophy and
computer science. Subsequently cut-free sequent calculi have been presented
for various non-classical logics.

However, there are many logics for which there is no known standard
cut-free sequent calculus (e.g., the modal logic S5 [71] or first-order Gödel
logic [4,26]) and some logics provably cannot have such a calculus [98]. More-
over, the sequent calculus suffers from a lack of modularity in the sense that
it is often difficult to construct cut-free sequent systems for seemingly simple
extensions of logics for which a cut-free sequent calculus exists. These con-
siderations have prompted the search for new proof formalisms (see Section 5
for a brief overview of some of these). Most new formalisms are obtained as
generalizations of Gentzen’s sequent calculi.

A sequent has the form X ⇒ Y where X and Y are comma-separated
lists (or multisets) of formulae. The comma is the sole structural connective
(aside from the sequent symbol ⇒). It is not a connective of the logical
language, and it is typically interpreted as conjunction in the antecedent
and disjunction in the succedent. We consider two natural generalizations.

1. Hypersequents are obtained from ordinary sequents by the addition of a
single new structural connective | used to separate the sequents.

2. Display sequents introduce (many) new structural connectives and ex-
plicit rules that govern the interaction between these connectives in order
to obtain what is called the display property.

This paper presents an overview2 of the methods of hypersequents and
display sequents in the proof theory of non-classical logics. In contrast with

2We show only sketches of the proofs and provide references to the original papers.
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existing surveys dedicated to hypersequent calculi (e.g. [4,6,76]) or to display
calculi (e.g. [53, 103, 105, 108]) our aim is to provide a unified perspective
of these two formalisms showing differences and similarities, and to discuss
some of their applications as well as recent results connecting and comparing
them.

2. Hypersequents

Hypersequent calculi have been introduced in [2] (and independently in [84]).

Definition 1. A hypersequent is a sequence, written as

Γ1 ⇒ Π1 | . . . |Γn ⇒ Πn

where, for all i = 1, . . . , n, Γi ⇒ Πi is an ordinary sequent 3 called a com-
ponent of the hypersequent.

A hypersequent is single-conclusioned if, for every i = 1, . . . , n, Πi con-
sists of at most one formula and is called multiple-conclusioned otherwise.

The “|” symbol is usually interpreted as a disjunction. As explained in [4],

although a hypersequent is certainly a more complex data structure
than an ordinary sequent, it is not much more complicated, and goes
in fact just one step further.

As with ordinary sequent calculi, the inference rules of hypersequent cal-
culi consist of initial hypersequents (i.e., axioms), the cut-rule as well as
logical and structural rules. These inference rules are usually presented as
rule schemata. A concrete instance of a rule is obtained by instantiating the
schematic variables with concrete formulae. In the case of hypersequents,
the rule schema may also contain schematic context variables or side hyper-
sequents, denoted by G and H, representing (possibly empty) hypersequents.
The logical and structural rules are divided into internal and external rules.
The internal rules deal with formulae within one component of the conclu-
sion. Examples of internal structural rules are the ordinary rules of weaken-
ing, exchange and contraction of the sequent calculus (augmented with the
side hypersequents). Examples of external structural rules include external
weakening (ew), external exchange4 (ee) and external contraction (ec) (see

3In this paper we consider only commutative logics, hence Γi and Πi are finite multisets
of formulae (Πi is either a formula or empty in single-conclusioned calculi).

4The usual interpretation of the “|” symbol is the standard disjunction, and the (ee)
rule is omitted by considering hypersequents to be multisets of sequents.
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Table 1). These behave like weakening, exchange and contraction over whole
components of hypersequents.

A derivation is defined in the usual way as a finite tree of hypersequents
constructed using the axioms and rules. Let H be a hypersequent calculus.
We write `H P to mean that H derives the formula P .

As an example, we now present the hypersequent version of the proposi-
tional sequent calculus LJ for intuitionistic logic, which we call HIL. Note
that all hypersequents below are single-conclusioned (Π and Π′ are schematic
variables to be replaced by the empty set or a single formula).

Axioms Cut Rule

A⇒ A ⊥⇒ A

G |Γ′ ⇒ A G′ |A,Γ⇒ Π

G |G′ |Γ,Γ′ ⇒ Π
(cut)

External Structural Rules

G
G |Γ⇒ Π

(ew)
G |Γ⇒ Π |Γ⇒ Π

G |Γ⇒ Π
(ec)

G |Γ′ ⇒ Π′ |Γ⇒ Π |G′

G |Γ⇒ Π |Γ′ ⇒ Π′ |G′
(ee)

Internal Structural Rules

G |Γ⇒ Π

G |Γ, A⇒ Π
(w, l)

G |Γ⇒
G |Γ⇒ Π

(w, r)
G |Γ, A,A⇒ Π

G |Γ, A⇒ Π
(c, l)

Logical Rules

G |Γ, A⇒ B

G |Γ⇒ A→B
(→, r)

G |Γ⇒ A G |B,Γ⇒ Π

G |Γ, A→B ⇒ Π
(→, l)

G |Γ⇒ A G |Γ⇒ B

G |Γ⇒ A ∧B
(∧, r)

G |Γ, Ai ⇒ Π

G |Γ, A1 ∧A2 ⇒ Π
(∧i, l)i=1,2

G |Γ⇒ Ai

G |Γ⇒ A1 ∨A2

(∨i, r)i=1,2

G |Γ, A⇒ C G |Γ, B ⇒ Π

G |Γ, A ∨B ⇒ Π
(∨, l)

G |Γ, A⇒
G |Γ⇒ ¬A

(¬, r)
G |Γ⇒ A

G |Γ,¬A⇒
(¬, l)

Table 1. Hypersequent Calculus HIL for Intuitionistic Logic

As usual, the formula introduced by a logical rule in the conclusion is
called the principal formula. For example, the principal formula of the rule
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(→, r) and (¬, l) is, respectively, A→ B and ¬A.
The “hyperlevel” of this calculus is in fact redundant since a hyperse-

quent Γ1 ⇒ Π1 | . . . |Γk ⇒ Πk is derivable in HIL if and only if Γi ⇒ Πi

is derivable for some i ∈ {1, . . . , k}. Indeed, any sequent calculus can be
viewed trivially as a hypersequent calculus. The added expressive power of
the latter is due to the possibility of defining new rules which act simultane-
ously on several components of one or more hypersequents. Table 2 displays
some examples of such rules.

G |Γ,Γ′ ⇒ Π

G |Γ⇒ |Γ′ ⇒ Π
(cl)

G |Γ,Γ′ ⇒
G |Γ⇒ |Γ′ ⇒

(lq)
G |Γ1,Γ

′
1 ⇒ Π G |Γ2,Γ

′
2 ⇒ Π′

G |Γ1,Γ
′
2 ⇒ Π |Γ2,Γ

′
1 ⇒ Π′

(com)

Table 2. Some external structural rules

The addition of these rules to the calculus HIL leads, respectively, to
cut-free calculi for classical logic (HCL), Jankov’s logic LQ (HLQ) and
Gödel(-Dummett) logic (HG) [3,25]. As an aside note that classical logic can
also be regained from HIL by removing the restriction that hypersequents
are single-conclusioned.

Example 2 ([3]). A proof of (A→B) ∨ (B→A) in HG is as follows:

A⇒ A B ⇒ B
(com)

A⇒ B |B ⇒ A
2x(→,r)

⇒ A→B | ⇒ B→A
2x(∨i,r)

⇒ (A→B) ∨ (B→A) | ⇒ (A→B) ∨ (B→A)
(ec)

⇒ (A→B) ∨ (B→A)

Soundness and completeness for hypersequent calculi are often proved
using the Hilbert system of the considered logic and the standard5 interpre-
tation below of hypersequents as formulae.

Definition 3. The interpretation of a sequent Γ ⇒ ∆, denoted by I(Γ ⇒
∆), is defined as

∧
Γ→

∨
∆, where

∧
Γ stands for the conjunction of the

formulae in Γ (> if Γ is empty), and
∨

∆ for the disjunction of the formulae
in ∆ (⊥ if ∆ is empty). The standard interpretation of a hypersequent
Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n is I(Γ1 ⇒ ∆1) ∨ · · · ∨ I(Γn ⇒ ∆n).

5For logics lacking some of the internal structural rules the interpretation is more
involved, see [27].
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We sketch below the proofs of soundness, completeness and cut-elimi-
nation for HCL, HLQ and HG. Recall that Hilbert calculi for the above
logics are obtained via the addition of the following schemas to any Hilbert
calculus for intuitionistic logic, see, e.g., [100] for the latter:

• axiom (schema) (em) A ∨ ¬A, for classical propositional logic CL

• axiom (schema) (wem) ¬A ∨ ¬¬A, for Jankov logic LQ

• the linearity axiom (schema) (lin) (A→B) ∨ (B→A), for Gödel logic G.

Proposition 4 (Soundness and Completeness). A formula P is derivable
in a Hilbert calculus for L if and only if `HL P , for L ∈ {CL,LQ,G}.

Proof. (Soundness). The interpretation of the axioms of HL has the form
A→A and ⊥→A. It easy to verify that these are derivable in the Hilbert
calculus hL for L. It remains to show for each rule (below left) of HL that
its interpretation below right is admissible in hL, that is if I(S1) . . . I(Sn)
are derivable in hL then so is I(S0):

S1 . . . Sn (r)
S0

I(S1) . . . I(Sn)
I(r)

I(S0)

For example, the interpretations of (ew) and (ee) are respectively:

I(G)

I(G) ∨ I(Γ⇒ Π)

I(G) ∨ I(Γ′ ⇒ Π′) ∨ I(Γ⇒ Π) ∨ I(G′)

I(G) ∨ I(Γ⇒ Π) ∨ I(Γ′ ⇒ Π′) ∨ I(G′)

Verifying the admissibility of these derivations in hL is straightforward. The
case of the rules (cl), (lq) and (com) is handled by making use of the corre-
sponding axiom schema.

(Completeness). First show that `HL Pi for all schemas Pi of hL. This
is straightforward. It remains to show that the rule of modus ponens in hL
can be simulated in HL. This amounts to deriving ⇒ B from ⇒ A and
⇒ A → B. Since A,A → B ⇒ B is derivable in HL, this follows from two
applications of the cut-rule.

The completeness proof for HCL, HLQ and HG relies on the presence
of the cut-rule. We show below that this rule is in fact eliminable from
HL-derivations, for L ∈ {CL,LQ,G}.

Remark 5. The rules (cl), (lq) and (com) are a reformulation of the axiom
schemas (em), (wem) and (lin), respectively. An algorithm to automatedly
extract these rules out of the corresponding axioms was introduced in [26]
and is sketched in Section 4.2.1.
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Cut-elimination is a central result to be proved for hypersequent calculi,
and the proof usually proceeds similarly to the sequent calculus case.Various
methods to remove applications of the cut-rule have been introduced start-
ing with Avron’s “history method” [2] – a rather complicated variant of
Gentzen-style cut-elimination. We sketch below a proof that works for a
large class of calculi obeying the syntactic conditions of substitutivity and
reductivity first introduced in [22]. These conditions were inspired by the re-
formulation [90] for sequent calculi of Belnap’s conditions C1-C8 for display
calculi (see Section 3).

Below we present these conditions for single-conclusioned calculi and use
them for HCL, HLQ and HG. Henceforth we write Xn to mean X, . . . ,X
(n occurrences). Now define the set CUT(G,H) consisting of all hyperse-
quents that are obtained by applying (cut) between one component in H and
one or more components in G, in parallel, in all possible ways. More pre-
cisely, CUT(G,H) is the set of hypersequents obtained by saturating {G,H}
under the following two operations:

1. if G = (G′ |Γ1, A
λ1 ⇒ ∆1 | . . . |Γn, Aλn ⇒ ∆n) and H = (H ′ |Σ ⇒ A),

then, for all 0 ≤ µi ≤ λi and i = 1, . . . , n it is the case that CUT(G,H) 3

G′ |H ′ |Γ1,Σ
µ1 , Aλ1−µ1 ⇒ ∆1 | . . . |Γn,Σµn , Aλn−µn ⇒ ∆n

2. if G = (G′ |Γ1 ⇒ A | . . . |Γn ⇒ A) and H = (H ′ |Σ, A ⇒ Π) then it is
the case that CUT(G,H) 3

G′ |H ′ |Γ1,Σ⇒ Π | . . . |Γn,Σ⇒ Π

Definition 6. A hypersequent rule (r) is substitutive if for any:

• instance
G1 . . . Gn

G of (r);

• single-conclusioned hypersequent H;

• G′ ∈ CUT(G,H) (with the condition that if (r) is a logical rule then G′

contains its principal formula) there exist G′i ∈ CUT(Gi, H) for i = 1, . . . , n

such that

G′
1 . . . G′

n

G′ is an instance of (r).

Intuitively, substitutivity ensures that (parallel) cuts over formulae that are
not principal in the rule can be shifted upwards over the premises.

For the next definition we assume that logical rules introduce only one
connective and are divided into left and right rules according to whether this
connective is on the left or on the right hand side of the turnstile.
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Definition 7. The logical rules for any n-ary connective ? are reductive if
for all instances of left and right rules for ?:

G |S1 . . . G |Sl

G |Γ, ?(A1, . . . , An)⇒ Π

G′ |S′
1 . . . G′ |S′

k

G′ |Σ⇒ ?(A1, . . . , An)

G′ |G |Γ,Σ⇒ Π is derivable from (G |S1), . . . (G |Sl), (G′ |S′1), . . . , (G′ |S′k)
using only (cut) with cut-formulae from A1, . . . , An.

Intuitively, reductivity ensures that when both premises introduce the
cut-formula, we can replace the original cut with cuts on its subformulae.
The sequent version of reductivity is called coherence in [5].

Theorem 8 ([30,31,76]). A hypersequent calculus consisting of (i) the iden-
tity axiom A⇒ A and possibly the usual axioms for constants, (ii) the rules
(cut), (ew), (ee) and (ec), (iii) a set of substitutive and reductive logical
rules, and (iv) a set of substitutive structural rules admits cut-elimination.

Proof. A Gentzen-style proof6 of this theorem proceeds by eliminating a
topmost cut in a derivation by primary induction on the complexity of the
cut-formula and secondary induction on the sum of the lengths of its left and
right derivations. In his original proof Gentzen [50] encountered the following
problem: if the cut-formula is derived by contraction ((c, l) or (c, r) in Table
1), the permutation of cut with contraction does not necessarily move the
cut up in the derivation. His solution was to introduce the multicut-rule –
a derivable generalization of cut – that, e.g., for LJ has the following form:

Γ⇒ A Γ′, An ⇒ B

Γ,Γ′ ⇒ B
(mcut)

i.e., we cut the single formula A with possibly multiple occurrences. In the
multiple-conclusion calculus LK the multicut-rule removes possibly many
formulae in both premises. In hypersequent calculi a similar problem arises
when permuting cut with the external contraction rule ((ec) in Table 1). In
analogy with Gentzen’s solution, a solution is to consider suitable (derivable)
generalizations of the multicut-rule, that in our case cut one component in
H with possibly many components in G.

The cut-elimination proceeds by shifting a topmost cut upwards in a
specific order: first along the premise in which the cut-formula appears on
the right (equivalently: left). If the cut-formula is principal in that premise,

6An alternative proof that makes no use of the multicut-rule, along the line of Belnap’s
cut-elimination theorem (Theorem 22), is contained in [21].
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shift the cut upwards over the other premise. Replace by cuts on formulae
with smaller complexity if the cut-formula is principal in both premises.
Substitutivity ensures that all the rules allow multicuts to be shifted upwards
in derivations until the cut-formula is principal in both premises. Reductivity
ensures that cuts can be replaced by (smaller) cuts on subformulae.

Corollary 9. Cut-elimination holds for HCL, HLQ and HG.

Proof. The rules of HIL are clearly reductive and substitutive. It is easy
to check that (cl), (lq) and (com) are substitutive. The claim follows from
Theorem 8.

2.1. Modal logics

Hypersequent calculi were successfully used to define cut-free calculi for vari-
ous modal logics [4,31,57,65,69,73,81,84,91]. For example, the hypersequent
calculus for S5 due to Avron [4] consists of the hypersequent version of the
sequent calculus for S4 (see, e.g., [100]) with the following additional rule
(“modalized splitting rule”)

G |�Γ1,Γ2 ⇒ �∆1,∆2

G |�Γ1 ⇒ �∆1 |Γ2 ⇒ ∆2
(MS)

We call the resulting calculus HS5. Note that this calculus is built on the
hypersequent calculus for classical logic that is obtained by considering the
hypersequent version of LK. Alternative hypersequent calculi for S5 can be
found, e.g., in [81,84].

Definition 10. The interpretation of the HS5-hypersequent Γ1 ⇒ ∆1 | . . . |
Γn ⇒ ∆n is the formula �I(Γ1 ⇒ ∆1)∨ · · · ∨�I(Γ1 ⇒ ∆1), where I(Γi ⇒
∆i) is as in Definition 3.

Proposition 11 ([4]). A formula A is valid in S5 if and only if `HS5 A.

Proposition 12. Cut-elimination holds for HS5.

Proof. Observe that the (MS) rule is not substitutive (and neither are the
modal rules for S4). Hence cut-elimination needs a different proof method.
The Gentzen-style method presented in [4] makes use of the complicated
multicut-rule below, that allows parallel cuts between many components
and many cut-formulae in both premises: If H |Γ1 ⇒ ∆1, A

n1 | . . . |Γp ⇒
∆p, A

np and G |Σ1, A
m1 ⇒ Π1 | . . . |Σk, A

mk ⇒ Πk are cut-free provable in
HS5, then so are
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1. H |G |Γ1 ⇒ ∆1 | . . . |Γp ⇒ ∆p |Σ1 ⇒ Π1 | . . . |Σk ⇒ Πk, if A = �B

2. H |G |Γ1, . . . ,Γp ⇒ ∆1, . . . ,∆p, otherwise

It is not difficult, though tedious, to check that the inductive hypothesis
above works in all cases.

The hypersequent calculi we have seen thus far were obtained by consid-
eration of the Hilbert calculi for the logics of interest. A different approach
is explored, e.g., in [69] where hypersequent calculi for a large class of modal
logics are obtained by transforming their frame conditions into suitable rules.
The approach in [69] applies to a variety of modal logics including KT, KD,
S5, K4D, K4.2, K4.3, KBD, KBT, as well as logics characterized by frames
of bounded cardinality, bounded width and bounded top width. Soundness
and cut-free completeness (or completeness with analytic cuts, in the case of
symmetric Kripke frames) are also provided. The method works for frame
conditions having a certain shape (simple frame properties) defining a proper
subclass of the geometric formulae handled in [78] using labelled calculi (see
Section 5).

2.2.  Lukasiewicz logic

Thus far we have extended a base hypersequent version of a sequent calculus
by the addition of structural or modal rules. There also exist hypersequent
calculi having logical rules with no obvious sequent counterpart. Exam-
ples include the hypersequent calculi for the infinite-valued product [74] and
 Lukasiewicz [75] logic, or for the intermediate logic BD2 [28] which is seman-
tically characterized by Kripke frames with depth at most 2.

We describe below the hypersequent calculus for  Lukasiewicz logic  L. The
semantics of  L was introduced in the 1920’s and the logic is now recognized
as one of the main formalizations of fuzzy logic [62,76]. An interpretation v
for  L is a function from the set of formulae7 to [0, 1] such that v(⊥) = 0
and v(A → B) = min(1, 1 − v(A) + v(B)). As usual, a formula is valid in
 Lukasiewicz logic if it takes value 1 under all interpretations.

A Hilbert system for  Lukasiewicz logic is obtained by the addition of
the schema ((A → B) → B) → ((B → A) → A) to any axiomatization of
the multiplicative additive fragment of affine linear logic aMALL (that is
MALL with weakening rules). Ideally we would like to extend the (hyperse-
quent version of the) calculus for aMALL with further structural rules that
capture the additional axiom schema. However it is known that no such

7{⊥,→} is a functionally complete set of basic connectives for  Lukasiewicz logic.
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structural hypersequent rule exists (see, e.g., Example 7.4 of [26]). To define
a hypersequent calculus for  Lukasiewicz logic, Metcalfe et al. [75, 76] used
a different approach based on hypersequents that have no interpretation in
the language of the logic. The resulting (multiple-conclusion) calculus HL
consists of the following axioms and rules:
Axioms

(ID) A⇒ A (Λ) ⇒ (⊥) ⊥ ⇒ A

Internal structural rules

G |Γ⇒ ∆

G |Γ, A⇒ ∆
(WL)

G |Γ1 ⇒ ∆1 G |Γ2 ⇒ ∆2

G |Γ1,Γ2 ⇒ ∆1,∆2
(M)

External structural rules

G
G |Γ⇒ ∆

(ew)
G |Γ⇒ ∆ |Γ⇒ ∆

G |Γ⇒ ∆
(ec)

G |Γ′ ⇒ ∆′ |Γ⇒ ∆ |G′

G |Γ⇒ ∆ |Γ′ ⇒ ∆′ |G′ (ee)
G |Γ1,Γ2 ⇒ ∆1,∆2

G |Γ1 ⇒ ∆1 |Γ2 ⇒ ∆2
(S)

Logical rules

G |Γ, B ⇒ A,∆ |Γ⇒ ∆

G |Γ, A→ B ⇒ ∆
(→, l)

G |Γ⇒ ∆ G |Γ, A⇒ B,∆

G |Γ⇒ A→ B,∆
(→, r)

Example 13. Here is a proof in HL of the characteristic axiom schema for
 Lukasiewicz logic:

⇒

⇒
(A→ B)→ B ⇒

(WL)

B ⇒ B A⇒ A
B,A⇒ A,B

(M)

B,A⇒ A,B|B ⇒ A
(EW )

B,B → A⇒ A
(→, l)

B ⇒ B A⇒ A
B,A⇒ A,B

(M)

B,B → A,A⇒ A,B
(WL)

B,B → A⇒ A,A→ B
(→, r)

B,B → A⇒ A,A→ B|B → A⇒ A
(EW )

(A→ B)→ B,B → A⇒ A
(→, l)

(A→ B)→ B ⇒ (B → A)→ A
(→, r)

⇒ ((A→ B)→ B)→ ((B → A)→ A)
(→, r)

The following semantic criterion for validity of HL hypersequents is de-
fined in [75]: we say that Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n is valid, in symbols
|=∗ L Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n, iff for all interpretations v for  Lukasiewicz
logic there exists i such that 1 +

∑
A∈Γi

[v(A) − 1] ≤ 1 +
∑

B∈∆i
[v(B) − 1].
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We emphasize that for formulae, this interpretation gives the usual notion
of validity, i.e., a formula A is valid in  Lukasiewicz logic iff |=∗ L⇒ A.

Note that under this interpretation, axiom (Λ) simply means 1 ≤ 1.

Proposition 14. If `HL A then the formula A is valid in  Lukasiewicz logic.

Proof. The proof is by induction of the length on the derivation of A in
HL. See [75,76] for details.

The converse of this result (completeness) was proved in [75] using a
semantic argument. The proof also shows that the cut-rule is admissible.
A constructive proof that this rule can be removed from HL derivations is
delicate. Note indeed that the logical rules of HL are not reductive and none
of the general cut-elimination proofs in [22, 26, 31, 34, 76] work for HL. The
special cut-elimination method, sketched below, was first introduced in [29].

Proposition 15. HL admits cut-elimination.

Proof. The cut-elimination proof makes use of the following two cut-rules:

G |Γ, A⇒ ∆ G′ |Π⇒ A,Σ

G |G′ |Γ,Π⇒ ∆,Σ
(cut)

G |Γ, A⇒ A,∆

G |Γ⇒ ∆
(gencut)

First observe that the above cut-rules are interderivable in HL:

Γ, A⇒ A,∆

Γ⇒ ∆ |Γ, A⇒ A,∆
(EW )

Γ, A→ A⇒ ∆
(→, l) ⇒ A⇒ A

⇒ A→ A
(→, r)

Γ⇒ ∆
(cut)

Γ, A⇒ ∆ Π⇒ A,Σ

Γ,Π, A⇒ A,∆,Σ
(M)

Γ,Π⇒ ∆,Σ
(gencut)

Elimination [29] is proved for HL+(gencut)+(cut)-on atomic cut-formulae.
Cut-elimination for HL + (cut) is then immediate due to the interderiv-
ability of (cut) and (gencut). To prove elimination, it is first shown that
applications of (cut) on atomic cut-formulae can be eliminated. This fact
is then used to show the elimination of (gencut) as follows: it is proved
that the logical rules of HL are all invertible (i.e., that the premises of each
rule are derivable if the conclusion is derivable); this allows us to reduce
all applications of (gencut) to applications of (gencut) on atomic formulae.
Finally, applications of (gencut) on atomic formulae p are eliminated. Note
that when (gencut) is preceded by an application of rule (M) such that the
atomic gencut-formula p occurs in both premises of (M), then (gencut) can-
not be shifted upward; in this case the identical conclusion can be obtained
by applying (cut) on the premises of (M) with cut-formula p. Since this is
a cut on the atomic cut-formula p it can be eliminated.
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2.3. First-order quantifiers

A cut-free hypersequent calculus for first-order intuitionistic logic is obtained
by adding to HIL the following natural rules for quantifiers [12,22,76]:

G | A(t),Γ⇒ Π

G | (∀x)A(x),Γ⇒ Π
(∀, l)

G | Γ⇒ A(a)

G | Γ⇒ (∀x)A(x)
(∀, r)

G | A(a),Γ⇒ Π

G | (∃x)A(x),Γ⇒ Π
(∃, l)

G | Γ⇒ A(t)

G | Γ⇒ (∃x)A(x)
(∃, r)

where the rules (∀, r), (∃, l) must obey the eigenvariable condition: the free
variable a must not occur in the lower hypersequent. Henceforth we refer to
this calculus as HILfo .

Soundness is immediate because Γ1 ⇒ Π1 | . . . |Γk ⇒ Πk is derivable in
HILfo if and only if Γi ⇒ Πi is derivable for some i ∈ {1, . . . , k}. Com-
pleteness and cut-elimination are also easy. However, the addition of new
external structural rules to HILfo may have side-effects. To see this, let
HGfo be the calculus obtained by extending HILfo with the communi-
cation rule (com) (see Table 2). HGfo is a calculus for first-order Gödel
logic Gfo (also known as Intuitionistic Fuzzy Logic [97]), axiomatized by
adding to any Hilbert axiom for first-order intuitionistic logic not only the
schema (lin) (A→B) ∨ (B→A) but also the quantifier shift8 schema (cd)
∀x(A(x) ∨B)→ (∀xA(x) ∨B), where x is not free in B.

Remark 16. The eigenvariable condition in (∀, r) and (∃, l) cannot be weak-
ened to apply to just one component (i.e., “a must not occur in the instan-
tiation of Γ,Π, A”) as otherwise, e.g., in HGfo using (com) we could derive
∃xA(x)⇒ ∀xA(x) for each formula A.

Proposition 17 (Soundness and Completeness [12]). A formula P is deriv-
able in a Hilbert calculus for Gfo if and only if `HGfo P .

Proof. (Soundness) By Proposition 4 we only have to show the soundness
of the quantifier rules. This is easy in the case of (∀, l) and (∃, r). For
(∀, r) we may argue as follows: If I(G) ∨ (

∧
Γ→A(a)) is derivable in the

Hilbert calculus for Gfo , so is ∀x(I(G) ∨ (
∧

Γ→A(x))). Since a did not
occur in G or in Γ, A by the eigenvariable condition, we may now assume
that x does not either. Using (cd) we obtain I(G) ∨ ∀x(

∧
Γ→A(x)). Since

∀x(
∧

Γ→A(x))→(
∧

Γ→∀xA(x)) is derivable in first-order Gödel logic we

8Gfo is indeed both a many-valued and an intermediate logic semantically characterized
by the class of all rooted linearly ordered Kripke models with constant domains.
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can derive I(G) ∨ (
∧

Γ→∀xA(x)) as required. The soundness of (∃, l) can
be proved in a similar way.

(Completeness) (lin) and the schemata of first-order intuitionistic logic
are easily derivable. A derivation of (cd) is the following:

A(a)⇒ A(a)

A(a)⇒ A(a) B ⇒ B
(com)

B ⇒ A(a) |A(a)⇒ B B ⇒ B
2x(∨,l)+(ew)′s

A(a) ∨B ⇒ A(a) |A(a) ∨B ⇒ B
2x(∀,l)

∀x(A(x) ∨B)⇒ A(a) | ∀x(A(x) ∨B)⇒ B
(∀,r)

∀x(A(x) ∨B)⇒ ∀xA(x) | ∀x(A(x) ∨B)⇒ B
2x(∨,r)

∀x(A(x) ∨B)⇒ ∀xA(x) ∨B | ∀x(A(x) ∨B)⇒ ∀xA(x) ∨B
(ec)

∀x(A(x) ∨B)⇒ ∀xA(x) ∨B
(→,r)

⇒ ∀x(A(x) ∨B)→ (∀xA(x) ∨B)

The proof that Gfo admits cut-elimination9 is easy as the propositional
proof in Theorem 8 easily extends to quantifiers, see e.g. [30].

To define a cut-free hypersequent calculus for Gfo without (cd) (this logic
is known in the literature as Corsi’s logic [38] or Dummett’s logic quanti-
fied) Tiu [99] introduced a variant of hypersequents in which eigenvariables
form an explicit part of the syntactic structure. The quantifier rules in this
calculus differ from the rules above and are based on the new structure of
hypersequents, whose components have the form Σ; Γ ⇒ Π, where Γ ⇒ Π
is a ordinary single-conclusioned sequent and Σ is a set of eigenvariables.
These hypersequents have no formula-interpretation in the logic (see Sec-
tion 3.4 for a similar phenomenon in first-order display calculi) and do not
easily generalize to other logics.

3. Display calculi

Belnap’s [15] display logic generalizes Gentzen’s sequent calculus by supple-
menting the structural connective (,) and the turnstile (⇒) with a host of
new structural connectives and rules manipulating these connectives. Since
it is not really a logic but instead a framework for presenting proof-systems
for logics, it makes sense to use the term “display calculi”. The framework

9Note that the original proof [12] does not work as it incorrectly bounds the number
of applications of (ec) in cut-free derivations.
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is a powerful formalism that has been used to capture a variety of different
logics including resource-oriented logics [18], substructural [53], construc-
tive [109], as well as modal and temporal logics [41,68,103,105]. The beauty
of display calculi lies to a large extent in a general cut-elimination theorem
for all calculi obeying eight easily verifiable syntactic conditions.

A structure is built from formulae using the structural connectives. We
write X,Y, . . . for structures, A,B, . . . for formulae and p, q, . . . for proposi-
tional variables.

Definition 18. A (display) sequent X ⇒ Y is built from structures X
and Y . The X (resp. Y ) is called an a-part structure ( s-part structure).

A characteristic feature of the display calculus is the display property,
which states that every occurrence of a substructure in a sequent can be
written (displayed) as the entire antecedent or succedent (but not both).
Rules enabling the display property are called display rules or display equiv-
alences. These rules are invertible and hence a sequent can be identified
with the class of its display-equivalent sequents.

Example 19. Consider structures given by the following grammar.

X ::= A is a formula | I | (X ◦X) | ∗X | •X

Then the sequent (•p)◦ (∗q)⇒ p◦ (••r) contains the following substructures
(note that p appears as a substructure in the antecedent and the succedent
and that some outermost brackets have been inserted for better readability).

(•p) ◦ (∗q) • p p ∗ q q p ◦ (• • r) • •r • r r

The structures given by the above grammar come from the display calcu-
lus δKt [68, 103] described in Section 3.1. Using the display rules for this
calculus (Table 3) we demonstrate how to display the substructures q (below
left) and •r (below right) in the sequent (•p) ◦ (∗q)⇒ p ◦ (• • r).

(•p) ◦ (∗q)⇒ p ◦ (• • r)
∗q ⇒ ∗(•p) ◦ (p ◦ (• • r))
∗(∗(•p) ◦ (p ◦ (• • r)))⇒ q

(•p) ◦ (∗q)⇒ p ◦ (• • r)
(∗p) ◦ ((•p) ◦ (∗q))⇒ • • r
•((∗p) ◦ ((•p) ◦ (∗q)))⇒ •r

A structural rule is constructed from schematic structure variables and
structure constants using the structural connectives. Typically, a display
calculus consists of some structural rules (these include the display rules),
logical rules introducing the logical connectives, initial sequents (axioms)
and the cut-rule (below). Here the formula A is called the cut-formula:
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X ◦ Y ⇒ Z ‖X ⇒ Z ◦ ∗Y X ◦ Y ⇒ Z ‖Y ⇒ ∗X ◦ Z
X ⇒ Y ◦ Z ‖X ◦ ∗Z ⇒ Y X ⇒ Y ◦ Z ‖ ∗Y ◦X ⇒ Z
∗X ⇒ Y ‖ ∗Y ⇒ X X ⇒ ∗Y ‖Y ⇒ ∗X
∗∗X ⇒ Y ‖X ⇒ Y X ⇒ ∗∗Y ‖X ⇒ Y

A further display rule for δKt: X ⇒ •Y ‖ •X ⇒ Y .

Table 3. The display rules for δCL and δKt.

X ⇒ A A⇒ Y (cut)
X ⇒ Y

A derivation is defined in the usual way as a finite tree of display sequents
constructed using the axioms and rules. Let δC be a display calculus. We
write `δC P to mean that δC derives the formula P .

The display property was utilized by Belnap to prove a general cut-
elimination theorem that applies whenever a display calculus satisfies the
display conditions C1–C8. These conditions state restrictions on the in-
ference rules of the calculus presented as rule schemata constructed from
schematic variables for structures and formulae. A concrete instance of a
rule schema is obtained by the uniform substitution of concrete structures
(formulae) for corresponding schematic variables. A parameter is an occur-
rence of a schematic structure variable in a rule schema. Here we follow
later presentations [68] of the display conditions which combine C6 and C7
to obtain the condition C6/7.

(C1) Each formula occurring in a premise of a rule instance is a sub-
formula of some formula in the conclusion.

(C2) Congruent parameters are occurrences of the same structure.
(C3) Each parameter is congruent to at most one structure variable in

the conclusion. That is, no two structure variables in the conclusion
are congruent to each other.

(C4) Congruent parameters are all either a-part or s-part structures.
(C5) A schematic formula variable in the conclusion of an inference rule ρ

is either the entire antecedent or the entire succedent. This formula
is called a principal formula of ρ.

(C6/7) Each inference rule is closed under simultaneous substitution of
arbitrary structures for congruent parameters.

(C8) For inference rules ρ and σ with respective conclusions X ⇒ A and
A ⇒ Y with formula A principal in both inferences in the sense
of C5 (‘principal cut’): if cut is applied to yield X ⇒ Y , then
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(i) X ⇒ Y is identical to either X ⇒ A or A ⇒ Y , or (ii) there is
a derivation of X ⇒ Y from the premises of ρ and σ such that the
cut-formula of every cut is a proper subformula of A.

Remark 20. Notice that C8 is simply the reductivity condition in hyperse-
quent calculi (cf. Definition 7) while conditions C2-C7 imply the substitutiv-
ity condition (cf. Definition 6).

The only nontrivial display condition to verify is C8 which states that a
principal cut can be reduced to cuts on smaller formulae. Conditions C5
and C8 are not relevant for structural rules since such rules do not contain
schematic variables for formulae.

See the proof of Theorem 26 for a concrete example demonstrating how
to check the display conditions.

Example 21. The following are examples of rules that violate, respectively:
C3 (there are two occurrences of X in the conclusion), C4 (X is a-part and
s-part; indeed so is Y ) and C5 (A is not the whole of the antecedent).

X ⇒ Y
X ◦X ⇒ Y

X ⇒ Y
Y ⇒ X

A⇒ Y
A ◦X ⇒ Y

Theorem 22 (Belnap). If a display calculus satisfies C1 then it has the
subformula property, that is every formula occurring in a cut-free deriva-
tion appears as a subformula of some formula in the conclusion. A display
calculus satisfying C2–C8 has cut-elimination.

Proof. The proof proceeds Gentzen-style, successively eliminating top-
most10 instances of the cut-rule by tracing the cut-formula upwards until
the cut is a principal cut. There is a subtlety here that is worth pointing
out. Unlike in Gentzen’s [50] proof, the multicut-rule is not required to
resolve the difficulties arising from a contraction rule applied to the cut-
formula. Belnap’s proof avoids the use of an explicit multicut-rule in this
situation by computing the set of ‘ancestor’ occurrences of the cut-formula
and essentially applying the cut-rule to each member in that set.

Intuitively, the display conditions ensure that the calculus is sufficiently
“well-behaved” to permit Gentzen’s arguments to go through.

Remark 23. Although a display calculus satisfying C1 has the subformula
property, note that a structure occurring in a derivation need not appear as
a substructure in the conclusion, i.e., there is no substructure property.

10A proof of strong normalization for properly displayable logics where cuts may be
eliminated in any order has been formally verified in the proof-assistant Isabelle [39, 40].
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3.1. Classical logic and the normal tense logic Kt

We introduce the display calculus by reconstructing in steps the display
calculus δKt [68, 103] for the basic normal tense logic Kt, starting from a
sequent calculus for propositional classical logic CL [100]. The logic Kt [17]
extends a Hilbert calculus for CL with the modal and tense operators ♦,�,_
and �, the necessitation rules A/�A, A/�A, the normality axioms �(A→
B) → (�A → �B), �(A → B) → (�A → �B), converse axioms p →
�_p, p → �♦p, and duality axioms ♦A ↔ ¬�¬A and _A ↔ ¬�¬A. We
will motivate the addition of new structural connectives representing certain
logical connectives and constants of Kt and the addition of display rules
(sound for Kt) to manipulate these structural connectives in order to obtain
the display property.

Let us first obtain a display calculus δCL for CL. It is well-known that
in Gentzen’s sequent calculus LK for CL, the comma in the antecedent
represents conjunction and the comma in the succedent represents disjunc-
tion — indeed, a sequent X ⇒ Y in LK is interpreted as the formula∧
A∈X A→

∨
A∈Y A (cf. Definition 3). So let us introduce11 a new structural

connective ◦ and logical introduction rules satisfying C5 that interpret ◦ as
conjunction (resp. disjunction) in the antecedent (succedent).

A ◦B ⇒ X (∧l)
A ∧B ⇒ X

X ⇒ A Y ⇒ B (∧r)
X ◦ Y ⇒ A ∧B

A⇒ X B ⇒ Y (∨l)
A ∨B ⇒ X ◦ Y

X ⇒ A ◦B (∨r)
X ⇒ A ∨B

In the sequent calculus LK just two structural connectives suffice but here
we introduce another structural connective ∗, representing negation in the
antecedent and the succedent.

∗A⇒ X (¬l)¬A⇒ X
X ⇒ ∗A (¬r)
X ⇒ ¬A

Since → is definable in classical logic in terms of ¬ and ∨, we can state left
and right rules for → using ∗ and ◦:

X ⇒ A B ⇒ Y (→l)
A→ B ⇒ ∗X ◦ Y

X ◦A⇒ B (→r)
X ⇒ A→ B

The structural constant I stands for > (⊥) in the antecedent (succedent).

I⇒ X (>l)> ⇒ X
X ⇒ I (⊥r)
X ⇒ ⊥

11Instead of introducing ◦ we could continue to use the comma for this purpose. We
use ◦ to distinguish the display calculus notation from that of the sequent calculus.
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X ⇒ Z ‖ I ◦X ⇒ Z X ⇒ Z ‖X ⇒ I ◦ Z I⇒ Y ‖ ∗I⇒ Y

X ⇒ I ‖X ⇒ ∗I X ⇒ Z /Y ◦X ⇒ Z X ⇒ Z /X ◦ Y ⇒ Z

X ◦ Y ⇒ Z /Y ◦X ⇒ Z Z ⇒ X ◦ Y /Z ⇒ Y ◦X X ◦X ⇒ Z /X ⇒ Z

Z ⇒ X ◦X /Z ⇒ X

X1 ◦ (X2 ◦X3)⇒ Z / (X1 ◦X2) ◦X3 ⇒ Z

Z ⇒ X1 ◦ (X2 ◦X3) /Z ⇒ (X1 ◦X2) ◦X3

Further structural rules for δKt: I⇒ Y / •I ⇒ Y and X ⇒ I /X ⇒ •I.

Table 4. Structural rules for δCL and δKt.

Now every logical formula has a structural analogue. The calculus also
contains the initial sequents A⇒ A, ⊥ ⇒ I, I⇒ > and the cut-rule.

The display rules for δCL appear in Table 3. For brevity, we use a vertical
slanted line / instead of a horizontal line to separate the premises of a rule
from the conclusion. The / is replaced with ‖ to denote that the rule holds
in both directions.

In addition to the display rules, we need further structural rules (see
Table 4) to specify properties of the new structural connectives such as
commutativity and associativity, and also weakening and contraction.

A formula in the language of CL is called a classical formula. A sequent
in δCL has the form X ⇒ Y where X,Y belong to the following grammar.

X ::= A is a classical formula | I | (X ◦X) | ∗X

We interpret the sequent X ⇒ Y as the classical formula l(X) → r(X)
where the functions l and r map structures to classical formulae :

l(A) = A r(A) = A

l(I) = > r(I) = ⊥
l(∗X) = ¬r(X) r(∗X) = ¬l(X)

l(X ◦ Y ) = l(X) ∧ l(Y ) r(X ◦ Y ) = r(X) ∨ r(Y )

Let A ∈ L denote that formula A is a theorem of the logic L.

Proposition 24 (Soundness). For any classical formula A: if I ⇒ A is
derivable in δCL then A ∈ CL.
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Proof. The idea is to show for every rule ρ ∈ δCL that if the interpretation
l(X)→ r(Y ) of each premise X ⇒ Y of ρ is a theorem of CL then so is the
interpretation of the conclusion.

For example, let ρ be the display rule X ◦ Y ⇒ Z ‖X ⇒ Z ◦ ∗Y . Recall
that the double line indicates that there are actually two rules here. Let us
demonstrate for the rule in the left-to-right direction. Suppose that l(X ◦
Y ) → r(Z), i.e., l(X) ∧ l(Y ) → r(Z) is a theorem of CL. Then, arguing
in classical logic it may be verified that l(X) → r(Z ◦ ∗Y ), i.e., l(X) →
r(Z) ∨ ¬r(Y ) is a theorem of CL.

Proposition 25 (Completeness). For any classical formula A: if A ∈ CL
then I⇒ A is derivable in δCL.

Proof. Completeness can be shown with respect to a standard Hilbert
axiomatization for CL. For each axiom schema A, it can be shown that
I ⇒ A is derivable. Now suppose that `δCL I ⇒ A and `δCL I ⇒ A → B.
Since `δCL A ◦ (A → B) ⇒ B, using (cut) and the structural rules we get
`δCL I⇒ B. Thus δCL can simulate the rule of modus ponens.

From the above two results it follows that δCL is a calculus for CL. Now
let us obtain a calculus for Kt. It is easy to verify (for example, arguing via
the Kripke semantics [17]) that

_A→ B ∈ Kt if and only if A→ �B ∈ Kt (I)

A rule of the form _A⇒ B ‖A⇒ �B, although sound, would break the sub-
formula property (and in any case is too weak). Nevertheless, this motivates
the introduction of a new structural connective • interpreted as _ in the
antecedent and � in the succedent to get _l and �r. Next, add rules _r
and �l so that _l and �r become invertible and C8 holds.

•A⇒ X
_l

_A⇒ X
X ⇒ A

_r•X ⇒ _A
A⇒ X

�l
�A⇒ •X

X ⇒ •A
�r

X ⇒ �A
Because ♦A↔ ¬�¬A and _A↔ ¬�¬A and since ∗ represents ¬ we obtain:

∗ • ∗A⇒ X ♦l
♦A⇒ X

X ⇒ A ♦r∗ • ∗X ⇒ ♦A
A⇒ X

�l
�A⇒ ∗ • ∗X

X ⇒ ∗ • ∗A
�r

X ⇒ �A
See Tables 3 and 4 for the display rules and structural rules of δKt. A
sequent has the form X ⇒ Y for structures X,Y from the grammar

X ::= A is a tense formula | I | (X ◦X) | ∗X | •X
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The sequent X ⇒ Y is interpreted as the formula l(X)→ r(Y ) where l
and r (page 19) are extended by l(•X) = _l(X) and r(•X) = �r(X). We
need to show that the new rules are sound in Kt. As before, it suffices to
show that if the interpretations of the premises are theorems of Kt, then so
is the conclusion. It is helpful here to argue via the Kripke semantics for Kt.
Completeness can be verified with respect to the Hilbert axiomatization.

Proposition 26. δKt admits cut-elimination and the subformula property.

Proof. Cut-elimination and the subformula property follow from Theorem
22. Conditions C1–C7 can be verified on sight. Condition C8 concerns only
the logical rules and corresponds to the case considered by Gentzen [50] for
reducing cuts when the cut-formula is the principal formula in the last rule
in each of the premise derivations.

Let us demonstrate verification of C1–C8 for rules (♦l) and (∗r) in δKt:

∗ • ∗A⇒ X (♦l)
♦A⇒ X

X ◦ Y ⇒ Z (∗r)
X ⇒ Z ◦ ∗Y

Consider arbitrary instances of these rules. It is easy to see that any for-
mula occurring in the premise must occur as a subformula of some formula
in the conclusion. Thus C1 is satisfied. As for C2, notice that the sym-
bol X occurs in the premise and conclusion of (♦l). These occurrences are
congruent. Similarly, the occurrences of X (also Y, Z) in the premise and
conclusion of (∗r) are congruent. Each distinct schematic structure variable
in (♦l) and (∗r) appears exactly once in the conclusion, so C3 holds. C4
can be verified by using the display rules to display every occurrence of a
schematic structure variable. In the conclusion of (♦l): ♦A is the whole of
the antecedent, so C5 holds. Since (∗r) is a structural rule, conditions C5
and C8 are not relevant for this rule. There are no side-conditions restrict-
ing instantiation of structures in the rules, so C6/C7 holds immediately. C8:
Observe that (♦l) makes ♦A principal in the antecedent. Now the only rule
in δKt (see the rules following equation (I) on page 20) that can make ♦A
principal in the succedent is (♦r). This is the situation below left. To show
C8 it suffices to derive the same sequent using (cut) on proper subformulae
of ♦A (below right). Here drs denotes some number of display rules.

X ⇒ A ♦r∗ • ∗X ⇒ ♦A
∗ • ∗A⇒ Y ♦l
♦A⇒ Y

∗ • ∗X ⇒ Y

X ⇒ A
∗ • ∗A⇒ Y

drs
A⇒ ∗ • ∗Y

X ⇒ ∗ • ∗Y
drs∗ • ∗X ⇒ Y
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Since the tense logic Kt is conservative over the basic normal modal
logic K, from cut-elimination it is easy to see that the calculus obtained
from δKt by deleting the introduction rules for _ and � is a display cal-
culus δK for K. Notice that in general, a sequent appearing in a derivation
from δK will be interpreted as a tense (not necessarily modal) formula.

Remark 27. If C is a display calculus for a logic in the language L, calculi
for fragments L′ of L can be obtained by deleting the rules introducing the
other logical connectives. If the original calculus satisfies C1–C8, then any
subcalculus C′ will also satisfy C1–C8. Observe that in general, a sequent
in C′ will be interpreted as a formula from the larger language L.

3.2. How to use residuation to construct a display calculus

In the previous section we motivated the construction of a display calcu-
lus δKt for Kt starting from a sequent calculus for CL. The intention was
to give a “hands-on” introduction to the display calculus and its main fea-
tures (display property, display conditions). This construction gives rise to
various questions. How many new structural connectives do we need and
which logical connectives should these represent? How are we to choose the
display rules? Could we directly construct a display calculus for the modal
logic K instead of taking a detour via the tense logic Kt?

To address these questions, recall first how we added the modal and tense
operators to get δKt from δCL. We began by identifying the property (I).
This immediately suggested the introduction of a new structural connective •
to stand for _ in the antecedent and � in the succedent. The rules _l and �r
were immediate. Although we did not discuss it there, the rule for _r (the
case of �l is similar) could be obtained by considering what rule is needed
to satisfy condition C8 and to make _l invertible: given _A ⇒ X we want
to derive •A ⇒ X. Arguing backwards from the conclusion, consider the
introduction of a cut (below left). How to derive •A ⇒ _A? Since A ⇒ A
is derivable, we are led to the the rule _r (below center). Now it may be
seen (below right) that _l is indeed invertible.

•A⇒ _A _A⇒ X
•A⇒ X

(cut)
X ⇒ A
•X ⇒ _A _r

A⇒ A
•A⇒ _A _r

_A⇒ X
•A⇒ X

(cut)

The property (I) also led to the display rules X ⇒ •Y ‖ • X ⇒ Y .
Finally we added further structural rules to capture the intended behavior
of • (see Table 4). A statement of the form (I) is an example of a residuation
property, see, e.g., [52]. It should now be clear why we introduced a calculus
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for Kt and not K: in order to represent the residuation property (I) we need
both � and _. We say that • is a Gentzen toggle [68] for the residuated pair
(_,�).12

It has been emphasized in [52,88,105] that residuation is the central idea
behind constructing display calculi. The residuation property is the key to
identifying new structural connectives and display rules. We may start with
the initial sequent A⇒ A and the cut-rule. Then:

1. Identify the residuation properties for the logic of interest. Let us suppose
that for binary logical connectives C,B the residuation property has the
following form:

A⇒ B B C iff ACB ⇒ C iff B ⇒ AB C

The residuated pair is (C,B).

2. Add a new structural connective ? to represent the connective C in the
antecedent and B in the succedent.

3. This leads to the following logical ‘rewrite’ [52] rules.

A ? B ⇒ X Cl
ACB ⇒ X

X ⇒ A ? B Br
X ⇒ ABB

4. We are missing the logical rules Cr and Bl. Choose the form of these rules
so that Cl and Br become invertible and C8 is satisfied; see [52] for the
technical procedure. Typically such ‘decoding’ rules are not invertible.

5. Use the residuation property to read off the display rules. For the resid-
uation property under consideration we get the following display rules:

X ⇒ Y ? Z

X ? Y ⇒ Z

Y ⇒ X ? Z

6. Finally, introduce (where necessary and possible) further structural rules
manipulating ? to capture the logic of interest. A method for introducing
structural rules from suitable axioms is given in Section 4.2.2.

These ideas were introduced in [52] where it is shown how to construct a
display calculus δL satisfying C1–C8 from a logic L that is defined by resid-
uation and satisfying certain other properties. The construction was used to
systematically construct display calculi for various substructural logics [53].
Indeed, this approach can be applied to rich vocabularies, including, for
example, the language of dynamic epistemic logic, see [47].

12See, e.g. [49] for an algebraic account of residuated pairs in the context of the sequent
calculus.
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3.3. Case study: Bi-intuitionistic logic

Let us demonstrate how to construct a display calculus δBi-IL [109] for Bi-
intuitionistic logic Bi-IL following the above approach. The logic Bi-IL is an
extension of propositional intuitionistic logic IL with the dual←d connective
of → and Rauszer’s axioms [87], see also [111]. It is an extension of non-
associative non-commutative Bi-Lambek logic Bi-FL with the axioms for
exchange, contraction, weakening and associativity. Strictly speaking, to
follow the approach above we should first obtain a display calculus for Bi-
FL and then add structural rules corresponding to the axioms. However,
to simplify matters13 we will state the residuation properties as they hold
in Bi-IL:

A⇒ (B → C) iff A ∧B ⇒ C iff B ⇒ (A→ C)

(C ←d A)⇒ B iff C ⇒ A ∨B iff (C ←d B)⇒ A

Assign the structural connective ◦ for (∧,→) and • for (←d,∨). Then we
have the following rewrite rules:

A ◦B ⇒ Y ∧l
A ∧B ⇒ Y

X ⇒ A ◦B →r
X ⇒ A→ B

B •A⇒ Y ←dl
B ←d A⇒ Y

X ⇒ A •B ∨r
X ⇒ A ∨B

The following decoding rules yield invertibility of the rewrite rules and com-
pliance with condition C8.

X ⇒ A Y ⇒ B
X ◦ Y ⇒ A ∧B

X ⇒ A B ⇒ Y →l
A→ B ⇒ X ◦ Y

X ⇒ B A⇒ Y ←dr
X • Y ⇒ B ←d A

A⇒ X B ⇒ Y
A ∨B ⇒ X • Y

Lemma 28. The rules ∧l, →r, ←dl and ∨r are invertible.

Using the residuation properties we obtain the display rules:

X ⇒ Y ◦ Z
X ◦ Y ⇒ Z

Y ⇒ X ◦ Z

X • Y ⇒ Z

X ⇒ Y • Z
X • Z ⇒ Y

13The language of Bi-FL contains the following logical connectives and constants:
∧,>,⊗,1,∨,⊥,⊕,0,→,←,→d,←d. The residuation properties take the following form:

A⇒ (C ← B) iff A⊗B ⇒ C iff B ⇒ (A→ C)

(A→d C)⇒ B iff C ⇒ A⊕B iff (C ←d B)⇒ A

In Bi-IL the following pairs conflate: ∧,⊗; ∨,⊕; →,←; →d,←d; >,1; ⊥,0.
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We add rewrite rules for the structural constant I and their decoding rules:

I⇒ X >l> ⇒ X
X ⇒ I ⊥r
X ⇒ ⊥

>r
I⇒ > ⊥l⊥ ⇒ I

The constants > and ⊥ are characterized by the axioms >∧A↔ A↔ A∧>
and ⊥ ∨ A ↔ A ↔ A ∨ ⊥ respectively. The corresponding structural rules
are the following (these can be obtained using the method of Section 4.2.2):

I ◦X ⇒ Y

X ⇒ Y

X ◦ I⇒ Y

X ⇒ Y • I

X ⇒ Y

X ⇒ I • Y

It remains to add the structural rules for exchange, associativity, weakening
and contraction. It is easy to see that the following suffice

X ⇒ Y
X ⇒ Y • Z

X ⇒ Y
X ◦ Z ⇒ Y

X ⇒ Y • Z
X ⇒ Z • Y

X ◦ Z ⇒ Y
Z ◦X ⇒ Y

X ⇒ Y • Y
X ⇒ Y

X ◦X ⇒ Y
X ⇒ Y

X ⇒ (Y • Z) • U
X ⇒ Y • (Z • U)

(X ◦ Y ) ◦ Z ⇒ U

X ◦ (Y ◦ Z)⇒ U

Remark 29. In this particular case, we can make the rules introducing ∧
(resp. ∨) in the succedent (antecedent) invertible by adapting them slightly:

X ⇒ A X ⇒ B ∧r
X ⇒ A ∧B

A⇒ X B ⇒ X ∨l
A ∨B ⇒ X

It is easy to verify that δBi-IL satisfies C1–C8. The construction immediately
suggests interpreting a sequent X ⇒ Y as the formula l(X)→ r(Y ).

l(A) = A r(A) = A

l(I) = > r(I) = ⊥
l(X ◦ Y ) = l(X) ∧ l(Y ) r(X ◦ Y ) = l(X)→ r(Y )

l(X • Y ) = l(X)←d r(Y ) r(X • Y ) = r(X) ∨ r(Y )

Since the logic Bi-IL is conservative over IL, deleting the rules←dl and←dr
from δBi-IL yields a calculus δIL for IL satisfying C1–C8.

3.4. First-order quantifiers

It appears that [105, Chapter 12], [107] is the only investigation into first-
order display calculi that goes beyond certain comments by Belnap [15,
p. 408], who remarks that “the obvious rules:

(UQ)
Aa ` X

(x)Ax ` X
X ` Aa

X ` (x)Ax
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provided, for the right rule, that a does not occur free in the conclusion”
together with the dual rules for the existential quantifier provide “no extra
illumination”. According to Belnap,

that is because these rules for quantifiers are “structure free” (no
structure connectives are involved; . . .). One upshot is that adding
these quantifiers to modal logic brings along Barcan and its converse
. . . willy-nilly, which is an indication of an unrefined account; alter-
natives need investigating.

Structure-involving left and right introduction rules for the quantifiers are
obtained in [105,107] by regarding predicate logic as a kind of propositional
modal logic, see [70, 101]. The key observation is that (∃x,∀x), like (_,�),
forms a residuated pair of operations. Adjointness between ∃x and ∀x has
been highlighted by Goldblatt [51, Chapter 15]. Let Rx be a binary relation
on some non-empty set of states S. Define functions on the powerset of S:

∀xA := {a | ∀b (aRxb implies b ∈ A)}
∃xA := {a | ∃b (aRxb and b ∈ A)}
∀x̆ A := {a | ∀b (bRxa implies b ∈ A)}
∃x̆ A := {a | ∃b (bRxa and b ∈ A)}

These functions satisfy:

∃x̆ A ⊆ B iff A ⊆ ∀xB, ∃xA ⊆ B iff A ⊆ ∀x̆ B.

Van Benthem [101] suggests viewing variable assignments α, β, . . . in first-
order models M as elements of a non-empty set of states S. The binary
relation =x that holds between two variable assignments α and β if and only
if they are x-variants of each other, i.e., if and only if they are identical
up to possibly assigning different individuals to variable x, allows one to
write Tarski’s satisfaction clauses for universally and existentially quantified
formulae in the style of the truth clauses for ♦, � in Kripke models:

M, α |= ∃xA iff there is a β ∈ S with α =x β and M, β |= A
M, α |= ∀xA iff for every β ∈ S: if α =x β, then M, β |= A

Since =x is symmetric, there is no distinction between backward-looking and
forward-looking quantifier prefixes, as in the general case of relations Rx.
The general case gives rise to a decidable minimal first-order modal logic
Kfo . Display calculi for extensions of Kfo are considered in [105,107].

We consider a first-order language without function symbols and individ-
ual constants. The idea now is to introduce for every individual variable x a
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structure connective •x. These denumerably many structure connective are
assumed to satisfy the following display equivalence: X ⇒ •xY ‖ •xX ⇒ Y .
The left and right introduction rules for ∀x and ∃x are:

A⇒ X
∀xA⇒ •xX ∀xl

X ⇒ •xA
X ⇒ ∀xA ∀xr

∗ •x ∗A⇒ X
∃xA⇒ X

∃xl
X → A

∗ •x ∗X ⇒ ∃xA ∃xr

So far, the treatment of the quantifiers takes into account only the adjoint-
ness between ∃x and ∀x but in no way their variable-binding. We therefore
extend the operation [y/z]A of substituting y for every free occurrence of
z in A to arbitrary structures by stipulating [y/z]I = I and letting [y/z]
commute with ∗, ◦ and •x, for every variable x.

As additional structural rules we assume the structural counterparts of
necessitation, I ⇒ Y / •x I ⇒ Y , X ⇒ I /X ⇒ •xI together with the
following rules:

r1.3 X ⇒ Y /X ⇒ •xY , if x does not occur free
in any formula in Y

r1.4 X ⇒ •xY /X ⇒ [y/x]Y , if y is free for x in every
formula in Y

Let δCLfo be the result of adding the above sequent rules to δCL, including
(cut) and initial sequents A⇒ A, for atomic formulae A. It follows by
induction on the structure of A that A⇒ A is provable in δCLfo for arbitrary
A. Moreover, it can be shown that δCLfo is sound and complete with respect
to classical first-order logic CLfo .

Proposition 30 (Soundness). For any classical first-order formula A: if
I→ A is derivable in δCLfo then A ∈ CLfo.

Proof. We extend the translation of display sequents into classical formulae
by setting l(•xX) = ∃xl(X) and r(•xX) = ∀xr(X) and show that the rules
of δCLfo that are not already rules of δCL are validity-preserving under this
extended translation. Display equivalences: Assume that (i) the universal
closure of l(X)→ r(•xY ) is valid, but the universal closure of l(•xX)→ r(Y )
is not. Then there is a first-order modelM and an assignment α inM with
M, α |= ∃xl(X) and (ii) M, α 6|= r(Y ). Therefore, there is an assignment
β of which α is an x-variant with M, β |= l(X). By (i), for every x-variant
γ of β, M, γ |= r(Y ), in contradiction with (ii). Conversely, assume that
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(i) the universal closure of l(•xX)→ r(Y ) is valid, but the universal closure
of l(X) → r(•xY ) is not. Then there is a first-order model M and an
assignment α in M with M, α 6|= ∀xr(Y ) and (ii) M, α |= l(X). Therefore,
there is an x-variant β of α with M, β 6|= r(Y ). By (i), M, β |= ¬∃xl(X).
Thus, for every assignment γ inM of which β is an x-variant,M, γ 6|= l(X),
and we obtain a contradiction with (ii). The right and left rules for ∀x
and ∃x and the rules r1.3 and r1.4 are either obvious or require only simple
calculation (as in the case of the display equivalences).

Proposition 31 (Completeness). For any classical first-order formula A:
if A ∈ CLfo, then I→ A is derivable in δCLfo.

Proof. We consider the axiomatization of CLfo in [44], which is particularly
apt from our modal perspective:

1.1 all universal closures of instances of tautology schemata and of
instances of the following schemata 1.2–1.4.

1.2 ∀x(A→ B)→ (∀xA→ ∀xB)
1.3 A→ ∀xA, if no occurrence of x is free in A
1.4 ∀xA→ [y/x]A, if y is free for x in A
1.5 modus ponens

Modus ponens is dealt with as in the case of δCL. To derive the axioms
according to 1.1, the structural necessitation rule I ⇒ Y / •x I ⇒ Y may
be used. The distribution axiom 1.2 is derived as follows; we highlight some
applications of structural rules:

A⇒ A
∀xA⇒ •xA

∀x(A→ B) ◦ ∀xA⇒ •xA
weakening

•x(∀x(A→ B) ◦ ∀xA)⇒ A B ⇒ B

A→ B ⇒ ∗ •x (∀x(A→ B) ◦ ∀xA) ◦B
∀x(A→ B)⇒ •x(∗ •x (∀x(A→ B) ◦ ∀xA) ◦B)

∀x(A→ B) ◦ ∀xA⇒ •x(∗ •x (∀x(A→ B) ◦ ∀xA) ◦B)
weakening

•x(∀x(A→ B) ◦ ∀xA)⇒ ∗ •x (∀x(A→ B) ◦ ∀xA) ◦B
•x(∀x(A→ B) ◦ ∀xA) ◦ •x(∀x(A→ B) ◦ ∀xA)⇒ B

•x(∀x(A→ B) ◦ ∀xA)⇒ B
contraction

∀x(A→ B) ◦ ∀xA⇒ •xB
∀x(A→ B) ◦ ∀xA⇒ ∀xB
∀x(A→ B)⇒ (∀xA→ ∀xB)

I ◦ ∀x(A→ B)⇒ (∀xA→ ∀xB)

I⇒ ∀x(A→ B)→ (∀xA→ ∀xB)
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The axiom schemata 1.3 and 1.4 can be proved straightforwardly using the
rules r1.3 and r1.4.

Let δKfo be the result of dropping r1.3 and r1.4 from δCLfo . Cut-
elimination for δKfo follows from Belnap’s general cut-elimination result.
The rules r1.3 and r1.4, however, contain side-conditions that result in a
violation of constraint (C6/7).

Example 32. To give another example of a derivation in δCLfo, we prove
the constant domain schema ∀x(A(x)∨B)→ (∀xA(x)∨B), where x does not
occur free in B. We may apply the rule r1.3 to prove ∀x(A(x)∨B)∨¬B ⇒
∀x(∀x(A(x) ∨B) ∨ ¬B):

∀x(A(x) ∨B) ∨ ¬B ⇒ ∀x(A(x) ∨B) ∨ ¬B
∀x(A(x) ∨B) ∨ ¬B ⇒ •x(∀x(A(x) ∨B) ∨ ¬B)

r1.3

∀x(A(x) ∨B) ∨ ¬B ⇒ ∀x(∀x(A(x) ∨B) ∨ ¬B)

Let us refer to this derivation as D. Moreover, we need rule r1.4:

D

A(x)⇒ A(x) B ⇒ B

A(x) ∨B ⇒ A(x) ◦B
∀x(A(x) ∨B)⇒ •x(A(x) ◦B)

∀x(A(x) ∨B)⇒ A(x) ◦B r1.4

∀x(A(x) ∨B) ◦ ∗B ⇒ A(x)
...

∀x(A(x) ∨B) ∧ ¬B ⇒ A(x)

∀x(∀x(A(x) ∨B) ∧ ¬B)⇒ •xA(x)

∀x(∀x(A(x) ∨B) ∧ ¬B)⇒ ∀xA(x)

∀x(A(x) ∨B) ∧ ¬B ⇒ ∀xA(x)
cut

...
∀x(A(x) ∨B) ◦ ∗B ⇒ ∀xA(x)

∀x(A(x) ∨B)⇒ ∀xA(x) ◦B
∀x(A(x) ∨B)⇒ ∀xA(x) ∨B

I ◦ ∀x(A(x) ∨B)⇒ ∀xA(x) ∨B
I⇒ ∀x(A(x) ∨B)→ (∀xA(x) ∨B)

Note that the earlier mentioned Barcan formula and its converse,

(BF ) ∀x�A→ �∀xA, (BFc) �∀xA→ ∀x�A

cannot be proved in the modal extension of δKfo obtained by adding the
rules �r, �l and the display and structural rules for •. These schematic
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formulae correspond to the structural rules

rBF X ⇒ •x • Y /X ⇒ • •x Y, rBFc X ⇒ • •x Y /X ⇒ •x • Y

respectively, in the sense that BF (BFc) is provable in the presence of
rBF (rBFc) and rBF (rBFc) is validity preserving on a first-order Kripke
frame under the translation of display sequents if the frame satisfies anti-
monotonicity (monotonicity) of domains, the frame condition corresponding
with BF (BFc).

4. Comparing hypersequent and display calculi

We have seen that the hypersequent and display calculus can be viewed as
extensions of the sequent calculus obtained via the addition of structural
connectives. In the case of hypersequents, the generalisation is minimal;
instead of using a single sequent, multiple sequents are used, separated by
the structural connective | . For this reason, the simplicity of the sequent
calculus largely carries over to the hypersequent calculus, resulting in a range
of applications.

Nevertheless, powerful as it is, the hypersequent calculus cannot capture
all interesting logics in a cut-free manner. Sometimes ad hoc generalizations
of hypersequents are enough, cf. [99] for Corsi’s logic (see Section 2.3) or the
machinery in [82] for modal logics (tree hypersequents, see Section 5), while
often this does not seem to be the case, e.g., for bi-intuitionistic logic (Section
3.3) or for the family of Bunched Logics [18]. The display calculus extends
the sequent calculus in a different direction, and much further, by adding a
number of structural connectives – instead of just one – and new rules in
order to obtain the display property. This feature supports the development
of a proof-theoretic semantics of the logical operations (Section 4.3) and
makes it possible to give analytic calculi for larger14 classes of logics.

Notice that in contrast to hypersequents where the structural connec-
tive | is used (‘externally’) to separate the sequents, in the display calculus
new structural connectives are added (‘internally’) to the formulae. The
latter leads to greater expressiveness but the price to pay is that there is no
real subformula property, as expressed in [4]. This renders the extraction

14Translations of hypersequents into display sequents were first considered in [105, Chap-
ter 11], [106]. Recent results [86] show that the hypersequent calculus can be embedded
in the display calculus. I.e., the latter framework is expressive enough to allow the con-
struction of a display calculus from any concrete hypersequent calculus. The construction
preserves proof-theoretic properties such as cut-elimination and the subformula property.
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of information from cut-free display calculi more difficult than in standard
sequent or hypersequent calculi.

In this section we illustrate these facts by reviewing some applications
of the two frameworks (Section 4.1) and describing recent methods to define
modular cut-free hypersequent and display calculi for large classes of logics.
Although these methods are essentially the same, we capture more axiomatic
extensions via structural rule extension starting from a display calculus.

4.1. Some applications

Cut-free hypersequent and display calculi provide a suitable framework for
presenting a wide range of logics. These frameworks permit better proof
search than Hilbert systems and make it easier to prove various properties
of these logics. For instance, consistency is often an easy corollary of the
redundancy of the cut-rule. We recall below a number of applications of
cut-free hypersequent (HC) and display calculi (DC).

(HC) Admissible rules: The admissible rules of a logic (understood
as a structural consequence relation) may be described as rules that can be
added to the logic without producing any new theorems. Cut-free hyper-
sequent calculi have been used to prove the admissibility of various rules
in a number of logics. For instance, the admissibility of the disjunctive
syllogism (if ` ¬A and ` A ∨ B then ` B) has been considered as one of
the major problems in the family of logics known as relevance logics. The
first constructive proof for the relevant logic RM is a simple corollary of the
cut-elimination theorem for its hypersequent calculus, see [2, 4].

Furthermore, the hypersequent calculi for various modal and intermedi-
ate logics have been used in [63, 64] to define proof systems for deriving all
the admissible rules of the formalized logics.

(HC) Standard Completeness: A logic is standard complete when
it is complete with respect to algebras based on truth values in the real
unit interval [0, 1]. Standard complete logics have been receiving increasing
attention in the last years as the formal counterpart of Fuzzy Logic, see
[62]. Given a logic L described as a Hilbert system, discovering whether
L is standard complete can be a challenging task using a model theoretic
approach (see e.g. [35]), and the proof is inherently logic-specific. On the
other hand if L possesses a suitable cut-free calculus, say CL, the main step
in the proof of standard completeness is to show that a special rule called
density15 is admissible in CL. In hypersequent calculi (an instance of) this

15The density rule was introduced by Takeuti and Titani in their axiomatization of first-
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rule has the form:

G′ |Σ, p⇒ Π |Λ⇒ p

G′ |Σ,Λ⇒ Π
(D)

(where p is a propositional variable not occurring in Σ,Λ,Π or G′) and the
proof of its redundancy (in fact, of its elimination) proceeds in a similar
manner to a proof of cut-elimination [13, 30, 72]. In contrast with the alge-
braic proofs of standard completeness, the proofs using hypersequents apply
to large classes of logics provided that their calculi satisfy suitable syntactic
conditions [13, 30] that can be easily verified on sight or checked using the
program AxiomCalc, see Section 4.2.1. Furthermore, for logics whose alge-
braic models are not integral (or equivalently, in which the usual weakening
rules are not sound) this is the only known approach, see [30,72].

(HC) Herbrand theorem: The hypersequent calculi for Gödel logic
and for its contraction-free counterpart (i.e., monoidal t-norm based logic
MTL [45]) have been used in [7, 12] to prove Herbrand’s theorem for their
prenex fragment. In both cases the key result is the proof that in these cal-
culi a certain separation between propositional and quantifier inferences can
be achieved in deriving a prenex hypersequent (mid-hypersequent theorem).
Note that the analogous result does not hold for Gentzen’s LJ [96] and for its
contraction-free counterpart, and it is achieved in the hypersequent calculi
of Gödel logic and MTL using the communication rule (com) (see Table 2).

(DC) Interpolation: Unlike in the case of the sequent calculus, due
to the presence of the (ec) rule, cut-elimination for a hypersequent calculus
does not usually imply the Craig interpolation theorem [4]. For example,
it is not known whether first-order Gödel logic interpolates, despite of its
cut-free calculus. Display calculi have instead been used in [19] to give
alternative proofs of the Craig interpolation theorem for multiplicative linear
logic, multiplicative additive linear logic and classical logic. Though there
exist sequent calculi with interpolation for these logics, [19] shows that when
well-designed, display calculi can be used to prove interpolation.

(DC) Decidability: In general, the presence of many structural connec-
tives and display equivalences detracts from the usefulness of cut-elimination
in display calculi, because the subformula property is not accompanied by
a substructure property. Nevertheless, some new decidability results have

order Gödel logic [97]. Ignoring Σ, in semantic terms (D) can be read contrapositively as
saying (very roughly) that there exists an assignment of truth values such that for some
propositional variable p the value of p is strictly between the values of Λ and Π; hence the
name “density”.
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been obtained using display calculi. For instance, Restall [89] proved decid-
ability of various properly displayable extensions of the weak relevant logic
DW by defining a notion of semi-reduced display sequents and irredundant
semi-reduced proofs. In [104], [105, Chapter 6] display calculus presentations
are used to show decidability of the modal logic of functional accessibility
relations and deterministic propositional dynamic logic without the Kleene-
star. More recently, decidability and complexity of Full Intuitionistic Linear
Logic have been settled [36] starting from a display calculus for this logic,
thus solving a problem open since 1994. Note that Kracht [68] proved that
it is undecidable whether or not a properly displayable logic is decidable.

4.2. Structural rule extensions

A common feature of hypersequent and display calculi is the existence of
algorithms to transform large classes of Hilbert axioms into equivalent struc-
tural rules that preserve cut-elimination when added to a suitable base calcu-
lus [26,33,34,68]. This permits the automated introduction of hypersequent
and display calculi for large classes of logics in a modular and systematic
way. Since the rules to be added are devoid of any logical connectives, this
fulfils a desideratum in [4] for good proof systems. The results [26, 34, 68]
start with a specific logic and introduce cut-free calculi for (some of) its
axiomatic extensions, e.g., intuitionistic logic without weakening and con-
traction for the hypersequent calculi in [26], its involutive counterpart [34],
and the tense logic Kt for the display calculi in [68]. The recent result [33]
generalizes and abstracts the algorithms for hypersequent calculi in [26, 34]
to extract display calculi from suitable Hilbert axioms starting from any
“well-behaving” display calculus (amenable calculus, see Definition 41).

Section 4.2.1 presents the idea behind the algorithm in [26,34] for single-
conclusioned and multiple-conclusioned hypersequent calculi, while Section
4.2.2 its adaptation in [33] for the display calculus.

4.2.1. From axioms to hypersequent rules

To simplify the presentation we sketch below the algorithm in [26] (and [34])
taking HIL as base calculus.16 Its key ingredients are: (1) a syntactic
classification of Hilbert axioms in the language of intuitionistic logic that
accounts for the intuitive difficulty to deal with them proof theoretically
(substructural hierarchy); (2) the invertibility of some of the rules of HIL

16The algorithm was introduced in [26] for extensions of intuitionistic linear logic without
the exponentials (and in [34] for its involutive counterpart MALL).



34 A. Ciabattoni, R. Ramanayake and H. Wansing

(3) Ackermann’s Lemma [37], below, which permits formulae to ‘change the
side’ of the (hyper)sequent going from the conclusion to the premises.

Lemma 33 ( [26, 34]). The rule
G1 · · · Gm

G |G′ |A1, . . . , An ⇒ B
(r) derives (and is

derivable from) each of the rules

~G G |Γ1 ⇒ A1 · · · G |Γn ⇒ An

G |G′ |Γ1, . . . ,Γn ⇒ B

~G G |Σ, B ⇒ ∆

G |G′ |A1, . . . , An,Σ⇒ ∆

where ~G abbreviates the premises G1 · · · Gm, and Γ1, . . . ,Γn,Σ,∆ are new
variables for multisets of formulae (in case of ∆: at most one formula).

Proof. Follows using the identity axiom, (cut) and (ec).

The substructural hierarchy for intermediate logics is defined by the fol-
lowing grammar: N0,P0 contain the set of atomic formulae.

Pn+1 ::= ⊥ | > | Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1

Nn+1 ::= ⊥ | > | Pn | Nn+1 ∧Nn+1 | Pn+1 → Nn+1 | ¬Pn+1

The classes Pn and Nn contain axioms with leading positive and negative
connective, respectively. A connective is positive (negative) if its left (right)
logical rule is invertible [1]; note that in HIL, ∨ is positive, → is negative
and ∧ is both positive and negative.

A graphical representation of the relationships between the classes is the
following (the arrows stand for ⊆):
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N0 N1 N2 N3
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Theorem 34 ([26]). Any axiom A ∈ P3 can be transformed into hyperse-
quent structural rules. Adding these rules to HIL preserves cut-elimination
and yields a calculus sound and complete for the intermediate logic IL +A.

Remark 35. The substructural hierarchy based on formulas of MALL is de-
fined in a similar way (see [34]) and the theorem above works for a restricted
class of axioms A ∈ P3 (acyclic axioms), whose notion in the display calculus
setting is described in STEP 4 of Section 4.2.2.

Example 36. The axioms (lin), (wem) and (em) in Section 2 are within
the class P3. The algorithm contained in the proof of the above Theorem
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in [26] generates the corresponding rules (com), (lq) and (cl). We describe
below the algorithm with the concrete case of

(wem) ¬A ∨ ¬¬A.

STEP I. (wem) is equivalent to the hypersequent G | ⇒ ¬A | ⇒ ¬¬A, i.e.,
HIL + (wem) and HIL + G | ⇒ ¬A | ⇒ ¬¬A prove the same sequents.
Note that ¬A,¬¬A ∈ N2.
STEP II (transformation into a structural rule). We remove all logical con-
nectives from the obtained hypersequent by applying upwards the invertible
logical rules of HIL as much as possible, and then using Lemma 33 to change
the side of formulae when required. This corresponds to STEP 2 and 3(a)
for display calculi (see Section 4.2.2).

Back to our example: By applying the invertible rule (¬, r) twice we
obtain the equivalent rule (with no premise) G |A ⇒ |¬A ⇒. To get rid
of the ¬ connective whose introduction rule in the succedent is invertible
and in antecedent (¬, l) is not, we first apply Lemma 33 (thus obtaining
the equivalent rule below left17) and afterwards (¬, r) upwards to obtain the
equivalent rule (below center).

To ensure that the resulting rule is substitutive (cf. Definition 6) we
apply Ackermann’s Lemma to each formula in the rule conclusion. In our
example this means to replace the formula A in the conclusion of the rule
(below center) by a multiset variable Γ′ using Lemma 33, thus obtaining the
equivalent structural rule below right.

G |Γ⇒ ¬A
G |A⇒ |Γ⇒

G |A,Γ⇒
G |A⇒ |Γ⇒

G |A,Γ⇒ G |Γ′ ⇒ A

G |Γ′ ⇒ |Γ⇒
This rule is substitutive and hence preserves cut-elimination. However it
fails the subformula property due to the occurrences of A in the premises.
STEP III (all possible cuts to get the subformula property). We close the
obtained rule under all possible applications of (cut) to its premises. This is
what is done in STEP 4 for display calculi (Section 4.2.2). The (lq) rule is
then obtained from the rightmost rule in the previous step by applying (cut)
to its premises.

G |Γ,Γ′ ⇒
(lq)

G |Γ′ ⇒ |Γ⇒

In analogy with display calculi, (for STEP III) the algorithm requires
a further condition [34] on the shape of the input axioms when the base
hypersequent calculus is multiple-conclusioned.

17Note that the component A⇒ is the G′ in Lemma 33.
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The algorithm in [26] is implemented in the PROLOG system AxiomCalc
available at http://www.logic.at/people/lara/tinc/webaxiomcalc/.
AxiomCalc takes as input any axiom in the language of intuitionistic lin-
ear logic without exponentials MAILL and indicates the class to which the
axiom belongs. For axioms within the class P3, the system generates (a
paper in pdf format that contains) the equivalent (hyper)sequent rules.

Remark 37. The algorithm in [34] can be combined with heuristic methods
to extract “good” logical rules from suitable axioms: first extract a logical
rule by applying the procedure and keeping a compound formula (that will
be the principal formula) in the rule conclusion; if the obtained rule does
not preserve cut-elimination, search (manually) for suitable formulae that
can be proved only with the use of (cut) and transform these formulae into
further structural or logical rules. This idea was used in [34] to rediscover
the hypersequent calculus for  Lukasiewicz logic presented in Section 2.2 and
in [28] to introduce a first cut-free hypersequent calculus for the intermediate
logic BD2, whose peculiar axiom belongs to the class P4 (see Example 42).
Note that when defining logical rules, the cut-admissibility of the resulting
calculus needs either an ad-hoc syntactic proof or suitable semantic methods
as in [69].

4.2.2. From axioms to display calculus rules

A structural rule satisfying C1–C8 is said to be proper. In [33] the algorithm
for hypersequent calculi sketched in the previous section is abstracted and
generalized to obtain extensions of display calculi by proper structural rules.
We sketch the algorithm and illustrate it using the calculus δBi-IL for bi-
intuitionistic logic Bi-IL (Section 3.3) as a base calculus.

To apply the algorithm we will require that the base calculus satisfies
certain conditions (amenable calculus, see Definition 41 below).

As in the hypersequent case, the algorithm is based on: (1-2) the invert-
ibility of some of the rules of the base calculus, which determines a suitable
syntactic classification of Hilbert axioms; (3) the display calculus analogue,
below, of the Ackermann Lemma (Lemma 33) that allows formulae to change
the side of the sequent going from the conclusion to the premises:

Lemma 38. Let C be an amenable display calculus for a logic L (see Defini-
tion 41 below). The following rules are pairwise equivalent in C

S ρ1
X ⇒ A

S A⇒ Z ρ2
X ⇒ Z

S δ1A⇒ X
S Z ⇒ A δ2Z ⇒ X
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where A is a formula, S is a set of display sequents and Z(6=X) is a structure
variable not in S.

STEP 1. Let C be an amenable display calculus for a logic L. Identify the
invertible rules of C.

Example 39. Every logical rule in δBiIL except →l and ←dr is invertible.
Note that we are using the invertible rules for ∧r and ∨l (cf. Remark 29).

STEP 2. Given a formula A ∈ Bi-IL, repeatedly apply the invertible
rules—and display rules where necessary—upwards (i.e., from conclusion
to premises) to I ⇒ A to obtain a finite set {Ui ⇒ Vi}i∈Ω of sequents.
C+{ρi}i∈Ω is a display calculus for L+A where ρi is the 0-premise rule with
conclusion Ui ⇒ Vi such that all variables therein are treated as schematic.
If each formula appearing in this set is a propositional variable, we say that A
is an I1 formula.

Example 39 (cont.). Let lq be the formula18 (p → ⊥) ∨ ((p → ⊥) → ⊥).
Repeatedly apply the invertible rules—and display rules—of δBiIL upwards
to this formula. Note: not all display rule applications are shown.

(I • ((p→ ⊥) ◦ I)) ◦ p⇒ I
⊥r

(I • ((p→ ⊥) ◦ I)) ◦ p⇒ ⊥
I • ((p→ ⊥) ◦ I)⇒ p ◦ ⊥

→r
I • ((p→ ⊥) ◦ I)⇒ p→ ⊥

(I • (p→ ⊥)) ◦ (p→ ⊥)⇒ I
⊥r

(I • (p→ ⊥)) ◦ (p→ ⊥)⇒ ⊥
I • (p→ ⊥)⇒ (p→ ⊥) ◦ ⊥

→r
I • (p→ ⊥)⇒ ((p→ ⊥)→ ⊥)

I⇒ (p→ ⊥) • ((p→ ⊥)→ ⊥)
∨r

I⇒ (p→ ⊥) ∨ ((p→ ⊥)→ ⊥)

So δBiIL + ρ is a calculus for BiIl + lq, where ρ is the 0-premise rule with
conclusion (I • ((p → ⊥) ◦ I)) ◦ p ⇒ I. Since the formula p → ⊥ cannot be
decomposed by invertible rules, lq is not an I1 formula.

STEP 3(a). If A is an I1 formula, then proceed to STEP 4. Otherwise,
obtain the rule ρi (i ∈ Ω) from {Ui ⇒ Vi}i∈Ω as follows. For each i, start
with the 0-ary rule with conclusion Ui ⇒ Vi. Repeatedly using Lemma
38: for each a-part (resp. s-part) occurrence of a formula B in this sequent,

18Denoting the formula p→ ⊥ as ¬p we get ¬p ∨ ¬¬p.
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replace that occurrence with a new structure variable XB and add a premise
XB ⇒ B (B ⇒ XB) to ultimately obtain the rule ρ′i. Repeatedly apply the
invertible rules—and display rules as required—upwards to each premise
of ρ′i to ultimately obtain the rule ρi. If each formula appearing in a premise
of ρi is a propositional variable, we say that A is an I2 formula.

Example 39 (cont.). Display the rightmost p in (I • ((p→ ⊥) ◦ I)) ◦ p⇒ I
to get p⇒ (I • ((p→ ⊥) ◦ I)) ◦ I. Using Lemma 38, convert this 0-ary rule
to the rule below left. The conclusion of this rule is display equivalent to
p→ ⊥⇒ (I • (Xp ◦ I)) ◦ I. Lemma 38 gives the rule below right.

Xp ⇒ p

Xp ⇒ (I • ((p→ ⊥) ◦ I)) ◦ I

Xp ⇒ p Xp→⊥ ⇒ p→ ⊥
ρ′1Xp→⊥ ⇒ (I • (Xp ◦ I)) ◦ I

Repeatedly applying the invertible rules upwards to the premises of ρ′1 we get

Xp ⇒ p Xp→⊥ ⇒ p ◦ I
ρ1

Xp→⊥ ⇒ (I • (Xp ◦ I)) ◦ I

Since every formula in the premise of ρ1 is a propositional variable, lq ∈ I2.

STEP 3(b). Suppose that A is an I2 formula. Then C + {ρi}i∈Ω is a display
calculus for the logic L+A (treat each variable in ρi as a schematic formula
variable).

It can be verified that ρi satisfies C2–C8 (C8 is not relevant for structural
rules) so C + {ρi}i∈Ω has cut-elimination. C1 does not hold since there are
schematic formulae in the premise but not in the conclusion.

Example 39 (cont.). We have that δBiIL + lq is equivalent to the display
calculus δBiIL+ρ1. Since ρ1 satisfies C2-C8 the calculus has cut-elimination.

STEP 4. (all possible cuts to get the subformula property). Suppose that
repeatedly applying (cut) on the formulae in the premises of ρi for each i ∈ Ω
ultimately leads to a finite set {Sij ⇒ T ij}j∈Ωi of sequents. If this is the case
then we say that A is acyclic. Then it can be shown that C + {ρ∗i }i∈Ω is a
proper structural rule extension for L+A, where ρ∗i is obtained by replacing
the premises of ρi with {Sij ⇒ T ij}j∈Ωi .

Example 39 (cont.). Using the display rules, the premises of ρ1 can be
written as Xp ⇒ p and p ⇒ Xp→⊥ ◦ I. Applying cut to these premises we
get Xp ⇒ Xp→⊥ ◦ I. No further cuts are possible. So δBiIL + ρ∗1 is a proper
structural rule extension for BiIL, where ρ∗1 is the rule below:

Xp ⇒ Xp→⊥ ◦ I
ρ∗1Xp→⊥ ⇒ (I • (Xp ◦ I)) ◦ I
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Recall that lq was the formula (p → ⊥) ∨ ((p → ⊥) → ⊥). Let us verify
that δBiIL + ρ∗1 derives lq. Since p ⇒ (p → ⊥) ◦ I is derivable in δBiIL,
applying ρ∗1 the sequent p → ⊥ ⇒ (I • (p ◦ I)) ◦ I is derivable. Using the
display rules derive I• ((p→ ⊥)◦I)⇒ p◦I. From the derivation in STEP 2
we can see that I⇒ lq is indeed derivable.

The main result in [33] is the following.

Theorem 40. Let C be an amenable calculus for L (Definition 41) and A
be a formula in L belonging to I2. If A is acyclic then there is a proper
structural rule extension of C for L+A.

We denote by LC the language whose connectives and constants are those
introduced by the logical rules in C.

Definition 41 (amenable calculus). Let C be a display calculus satisfying
C1–C8. Assume that we have two functions l and r mapping structures
into formulae such that l(A) = r(A) = A and suppose for an arbitrary
structure X that

1. X ⇒ l(X) and r(X)⇒ X are derivable in C.

2. X ⇒ Y derivable implies l(X)⇒ r(Y ) is derivable in C.

Assume there is a structure constant I and the following rules are admissible
in C for arbitrary structures X,Y such that the conclusion is well-defined:

I⇒ X
lI

Y ⇒ X
X ⇒ I

rI
X ⇒ Y

Assume binary logical connectives ∨,∧ ∈ LC such that · ∈ {∨,∧} is associa-
tive in C — A ·(B ·C)⇒ (A ·B) ·C and (A ·B) ·C ⇒ A ·(B ·C) are derivable
— and commutative in C — A ·B ⇒ B ·A is derivable. Also suppose:

(a)∨ A⇒ X and B ⇒ X implies A∨B ⇒ X

(b)∨ X ⇒ A implies X ⇒ A∨B for any formula B.

(a)∧ X ⇒ A and X ⇒ B implies X ⇒ A∧B
(b)∧ A⇒ X implies A∧B ⇒ X for any formula B.

A display calculus satisfying the above conditions is said to be amenable.

Requiring that lI and rI are admissible in C is weaker than requiring
that C contains weakening rules. Indeed, the rules lI and rI are admissible
in the Bi-Lambek calculus [53].
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Example 42. A calculus δIL for IL is obtained by deleting the rules ←dl
and ←dr from δBiIL (see Section 3.3). I2 axioms with respect to δIL can be
defined using the following grammar: I0 ::= prop. variables and

In+1 ::= ⊥ | > | In | In → In+1 | In+1 ∧ In+1 | In+1 ∨ In+1

Let δBiIL + {ρi}i∈Ω be a proper structural rule extension for BiIL + A. If
BiIL+A is conservative over IL+A, then δIL+{ρi}i∈Ω is a proper structural
rule extension for IL + A. In Section 4.2.1 we saw that structural rule ex-
tensions for hypersequent calculi can be constructed for intuitionistic axioms
within the class P3 of the substructural hierarchy. Note that P3 ⊂ I2. It has
been shown [33] that P3 axioms are acyclic for the display calculus. Thus
for any A ∈ P3 such that δBiIL + A is conservative over δIL + A we can
obtain a display calculus for IL +A. An example of a non-P3 I1-formula is
the Bd2 axiom B2 ∨ (B2 → (B1 ∨ ¬B1). We compute the structural rule

Y ⇒ X V ⇒ U ρ
I⇒ X • (Y ◦ (U • (V ◦ I)))

BiIL +Bd2 is known to be conservative over IL +Bd2 (see, e.g. [111]) so we
have that δIL+ρ is a calculus for the intermediate logic BD2 (i.e., IL+Bd2)
with cut-elimination. In contrast no hypersequent structural rule is known
for Bd2.

Remark 43. Although the above algorithm is essentially the same as for
the hypersequent calculus, the key point is that the greater expressiveness of
the display calculus often permits a base calculus with more invertible rules,
leading to uniform cut-free display calculi for more axiomatic extensions of
the base logic. For example, in δIL the ∨r rule is invertible while it is not in
HIL. The main reason for this greater expressive power is the fact that the
display calculus can operate on a conservative extension of the target logic
(see Remark 27).

A characterization for tense logics

Another procedure to define proper structural display logic rules for cer-
tain axiomatic extensions of the modal logics K and Kt was introduced by
Kracht [68]. The class of handled axioms are primitive tense axioms. Un-
like the previous algorithm, the result here gives sufficient and necessary
conditions for presenting a logic via proper structural rule extensions.

Define a primitive tense axiom as a formula A→ B where both A and B
are constructed from propositional variables and > using {∧,∨,♦,_} and A
contains each propositional variable at most once.
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Theorem 44 (Display Theorem). A tense logic L is an axiomatic extension
of Kt by primitive tense axioms iff there is a proper structural rule extension
of δKt for L.

Here is the algorithm for computing the structural rule equivalent to the
primitive tense formula A → B. Using the valid equivalences ♦(C ∨D) ↔
♦C∨♦D, _(C∨D)↔ _C∨_D and (C∨D)∧E ↔ (C∧E)∨(D∧E) we can
write A =

∨
i≤mCi and B =

∨
j≤nDj where every Ci and Dj is built up from

propositional variables and > using {∧,_,♦}. Now
∨
i≤mCi →

∨
j≤nDj is

a theorem of Kt iff Ci →
∨
j≤nDj is a theorem of Kt for all i, 1 ≤ i ≤ m.

Translate each Ci →
∨
j≤nDj into the structural rule ρi (below left) by

replacing the → with the symbol ⇒, and using the map σ (below right),
where Xp is a schematic structure variable that is uniquely assigned to the
propositional variable p and X is a new structure variable.

σ(D1)⇒ X . . . σ(Dn)⇒ X
ρi

σ(Ci)⇒ X

σ(>) = I
σ(p) = Xp

σ(A ∧B) = σ(A) ◦ σ(B)
σ(_B) = •σ(B)
σ(♦B) = ∗ • ∗σ(B)

Then δKt + {ρi}i≤m is a proper structural rule extension for Kt +A→ B.

Example 45. Consider the axioms �p → ��p and ♦�p → �♦p for tran-
sitivity and connectedness. It may be checked that these are equivalent to
the primitive tense axioms ♦♦p → ♦p and _♦p → ♦_p. Using the map σ
above, we immediately obtain the structural rules below such that δKt + ρ1

and δKt+ρ2 are proper structural rule extensions, respectively, for the logics
Kt +�p→ ��p and Kt + ♦�p→ �♦p.

(∗ • ∗)(∗ • ∗)Z ⇒ X
ρ1

(∗ • ∗)Z ⇒ X

(∗ • ∗) • Z ⇒ X
ρ2•(∗ • ∗)Z ⇒ X

Using cut-elimination and conservativity, δK + ρ1 and δK + ρ2 are calculi
for the modal logics K +�p→ ��p and K + ♦�p→ �♦p, respectively.

Remark 46. δKt is an amenable calculus and each primitive tense axiom
A → B is an acyclic I2 formula (due to the condtion on the uniqueness
of propositional variables in A). Hence the algorithm in [33] provides an
alternative proof of the “only if” direction of Theorem 44.

Kracht’s method of extracting structural rules from (primitive tense)
axioms is very different to the method [33] presented before and leads to
syntactically different structural rules. His method relies on the ability to
transform an axiom into a primitive tense axiom.
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4.3. Some brief philosophical considerations

Gentzen-style proof systems form the basis of the proof-theoretic semantics
of the logical operations, see [94, 110]. The meaning-theoretical impact of
natural deduction was elaborated by Prawitz [85], who realized the philo-
sophical significance of Gentzen’s remark that the introduction rules may be
seen as definitions of the logical operations in question, whereas the elim-
ination rules, in the final analysis, can be derived from the introduction
rules. The idea is that the formula that contains the logical operation to
be eliminated as its main logical operation may be used only as what it
means on the basis of the introduction of that operation. Dummett [42]
introduced a notion of proof-theoretic harmony in order to characterize the
relation between the introduction and elimination rules, whereas Prawitz
defined an “inversion principle”. According to Prawitz, it is the inversion
principle that guarantees that the elimination rules are semantically justified
by their introduction rules. Moreover, for Prawitz natural deduction is the
most convincing framework for defining a proof-theoretic semantics.

Although Gentzen [50] developed the sequent calculus for purely formal
reasons, namely to prove cut-elimination and the consistency of first-order
arithmetic, sequent calculi have also been proposed as a type of proof sys-
tems suitable for the development of proof-theoretic semantics. Schroeder-
Heister [93, p. 237], for example, considers the sequent calculus as a more ad-
equate formal model of hypothetical reasoning, “because it does more justice
to the notion of assumption than does natural deduction,” and Standefer [95,
p. 288] explains that “because of the importance of structure for the mean-
ing of the logical connectives, the presence of structural rules in consecution
calculi counts heavily in their favor.” An influential early source for suggest-
ing sequent calculi as a framework for meaning-theoretical analyses is [60];
more recent references include [16] and [80]. With respect to such meaning-
theoretical considerations, a divergence may be noted between hypersequent
and display calculi. Whereas hypersequents have been introduced mainly
as a formal device for obtaining cut-free sequent calculi for specific logics
(see [2] for RM and [84] for S5), display sequents have been motivated
by formal and meaning-theoretical reasons. When Belnap introduced dis-
play calculi, he was interested in a proof-theoretic framework that is flexible
enough to combine logical operations from different families of operations:
classical, relevant, intuitionistic, modal, etc. Moreover, he was interested
in a general cut-elimination theorem that covers a wide spectrum of logics
as compared with piecemeal proofs of cut-admissibility for these systems.
In [105] it is argued that the structural connectives of display calculi can
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be seen as context-dependent data structuring operations. The unary •, for
instance, may bee seen as marking a structure in its scope as modal. The
display and structural rules contribute to what Belnap [14] calls a deductive
context. Display calculi provide very rich deductive contexts in which the
introduction rules may be seen as meaning-constitutive. Different contexts,
in particular, different structural rules effect differences in meaning for a
broad range of logical operations, including modal operators. A notion of
proof-theoretic harmony between left and right introduction rules in display
calculi has been suggested in [95]. See, e.g., [5] for a discussion in the con-
text of the sequent calculus. It remains to be investigated to which extent a
proof-theoretic semantics based on hypersequent calculi can be developed.

5. Other generalizations of the sequent calculus

In addition to hypersequent and display calculi many other extensions of the
sequent calculus have been introduced. Two main approaches to generaliz-
ing Gentzen’s notion of a sequent can be distinguished: via syntax and via
semantics. In the syntactic approach sequents are generalized by allowing
extra structural connectives in addition to the sequent comma; in the se-
mantic approach, the semantic language is an explicit part of the syntax in
sequents and rules. We conclude the paper by mentioning some well-known
frameworks that use these two approaches:

Syntactic Frameworks

Dunn-Mints Systems have been developed independently by Dunn [43]
and Mints [77] (see also [79]) to provide a cut-free formulation of logics
lacking the weakening rule but satisfying the distributivity axiom (A∧ (B ∨
C)) → ((A ∧ B) ∨ (A ∧ C)). The guiding idea behind these systems is to
consider “sequents” which contain metalogical symbols for both the additive
and multiplicative conjunction (see e.g. [100] for this terminology). Deep-
inference calculi: In all the formalisms mentioned so far, rules only see
the root of formulae. The Calculus of Structures (CoS) is a framework that
uses (deep inference) rules which, instead, can rewrite at any position in the
formula tree, see [59]. E.g., the CoS rule corresponding to (∨, l) in LK is

s((Γ ∨A) ∧ (B ∨∆))

s(Γ ∨ (A ∧B) ∨∆)

where s is an additional schematic variable indicating that the inference
rule can be applied anywhere. CoS works best for logics with an involutive
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negation and has been successfully applied to many logics including classical
logic, linear logic, intuitionistic logic and some modal logics, see e.g. [56,59]
and the web page [58]. Some direct generalizations of hypersequents
are noncommutative hypersequents [24], introduced to define cut-free calculi
for the intermediate logics BDn with bounded depth Kripke models, the
hypersequents in [99] for Corsi’s logic in which eigenvariables form an explicit
part of the syntactic structure (cf. Section 2.3), and tree-hypersequents [82]
that work for a large class of modal logics. The latter calculi are a notational
variant [55] of (shallow) nested sequents [20, 66], which extend ordinary
sequents by permitting a nesting of sequents. Connections between deep
nested sequents and display calculi have been explored in [36,54].

Semantic frameworks19

Labelled calculi internalizing Kripke semantics in the sequents are the
most developed systems within the semantic approach. Modular treatments
of modal and substructural logics possessing a natural relational semantics
easily follow in this framework [46, 48, 78, 102]. Also, Rasiowa-Sikorski
systems were successfully used to define analytic calculi for various classes of
logics, see e.g. the survey in [67]. (First-order) finite-valued logics are instead
naturally characterized by calculi in which labels are interpreted as sets of
truth values [9, 11] or by n-sided sequents, each one representing a truth
value, e.g., [10, 92] or sets of truth values [61]. Sequent-of-relations [8]
(see also [32]), whose basic objects are finite sets of components of the form
A < B or A ≤ B for arbitrary formulae A and B, capture projective logics, of
which propositional finite-valued logics are particular instances. When these
components contain arbitrary sets of formulae, the resulting proof system
is that of relational hypersequents, introduced in [23] to define uniform
calculi (the logical rules are the same) for the three infinite-valued logics
formalizing Fuzzy Logic [62]: Gödel,  Lukasiewicz and product logic.

Acknowledgment. A. Ciabattoni and R. Ramanayake are supported by the
Austrian Science Fund (FWF), START project Y544.

19The distinction we are drawing between syntactic and semantic frameworks is neither
categorical nor entirely uncontroversial. Tree-hypersequents encode a semantic accessi-
bility relation, n-sided sequents represent truth values in a syntactical way as places of
derivability statements, and the semantic tableaux system for CLfo is very closely related
to Gentzen’s LK. A recent discussion of methodological issues related to the use of display
sequents, tree-hypersequents and labelled sequents in modal logic can be found in [83].
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