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Abstract. We perform a proof-theoretical investigation of two modal predicate
logics: global intuitionistic logic GI and global intuitionistic fuzzy logic GIF.
These logics were introduced by Takeuti and Titani to formulate an intuitionistic
set theory and an intuitionistic fuzzy set theory together with their metatheories.
Here we define analytic Gentzen style calculi for GI and GIF. Among other things,
these calculi allows one to prove Herbrand’s theorem for suitable fragments of GI

and GIF.

1. Introduction

Intuitionistic fuzzy logic IF was introduced in [19] by Takeuti and Titani
as the logic corresponding to intuitionistic fuzzy set theory ZFIF . (IF also
coincides with first-order Gödel logic [12] based on the truth-values set [0, 1]
– one of the basic t-norm logics, see [13]). Global intuitionistic logic GI and
global intuitionistic fuzzy logic GIF are predicate modal logics extending
intuitionistic logic IL and IF with an additional logical symbol �, called
globalization (�A equals 1 if the value of A equals 1, and 0 otherwise). GI
and GIF were introduced in [22] and [20], respectively, to formulate an
intuitionistic set theory and an intuitionistic fuzzy set theory together with
their metatheories.

Both GI and GIF are defined by extending Gentzen’s LJ sequent calcu-
lus for IL with a number of extra axioms. (An alternative sequent calculus
for GI that makes no use of these additional axioms is contained in [22]).
The resulting calculi are not analytic, i.e., their derivations do not proceed
by stepwise decomposition of the formulas to be proved. As is well known,
analytic calculi are a basic prerequisite for developing automated reasoning
methods and a key to a profound understanding of the relation between
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the logic’s syntax and its semantics. In the literature there do exist analytic
calculi for fragments of GI and GIF. E.g. cut-free sequent calculi for some
modal logics properly contained in the propositional fragment of GI can be
found in [14] (see [1]). Moreover, a resolution-like calculus for the prenex
fragment of GIF was outlined in [6] while cut-free Gentzen style calculi
for IF and propositional GIF were defined in [8,7]. The latter calculi use
hypersequents, a simple and natural generalization of Gentzen sequents to
multisets of sequents (see [3] for an overview on hypersequent calculi).

In this paper we provide analytic hypersequent calculi for GI and GIF
and use them to analyze these logics. Our calculi are defined by extending
the hypersequent version of LJ, with the (hyper)sequent rules for � in
modal logic S4 together with suitable rules that allow the “exchange of
information” between different sequents. In the resulting calculi the cut-
elimination theorem holds. Among other things, this ensures that GI and
GIF are conservative extensions of IL and IF respectively. Using these
calculi: (1) we prove Herbrand’s theorem for suitable fragments of GI and
GIF (2) we define alternative axiomatizations for GIF that make no use
of either Barcan’s axiom ∀x�A(x) ⇒ �∀xA(x) or of the shifting law of
universal quantifier w.r.t. ∨, i.e. ∀x(A(x) ∨ B) ⊃ (∀xA(x) ∨ B), where x
does not occur in B (3) we prove that if P is a quantifier-free formula and
�∃xP (x) is valid in GIF, then ∃x�P (x) is valid in GIF too and (4) we
show that Takeuti and Titani’s density rule — used in [19,20] to define IF
and GIF — is syntactically eliminable from derivations in GIF.

2. Global Intuitionistic Logic (GI)

2.1. Preliminaries

Each logic has its corresponding set theory in which each logical operation
is translated into a basic operation for set theory; namely, the relations
⊆ and = on sets are translation of the logical operations ⊃ and ↔ . In
order to define an intuitionistic set theory in which global concepts such as
“check sets” and “truth values” can be expressed, in [21] Takeuti and Titani
extended intuitionistic logic IL by a new operator �. Following [1], we refer
to this extended intuitionistic logic as GITT.

A deductive system for GITT was defined in [21] by extending LJ with
the following axioms1 and inference rules:

(G1) �A ⇒ A, (G2) ∀x�A(x) ⇒ �∀xA(x), (G3) �A ⊃ �B ⇒ �(�A ⊃ B)

�A1, . . . , �An ⇒ B

�A1, . . . , �An ⇒ �B
(G4)

Remark 1. As observed in [1], the propositional fragment of GITT is closely
related to some of Ono’s systems of intuitionistic modal logic considered in
[14].

1 In this paper, axioms will be always considered as schemata. (I.e. all instances
are axioms too.)
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However, the intuitionistic set theory corresponding to GITT does not have
a real equality. To overcome this problem, in [22] Titani extended GITT

with
(G5) ⇒ �A ∨ ¬�A

She called the resulting logic Global Intuitionistic logic GI. In GI the se-
mantics of the modality � (called globalization) is defined as: For any in-
terpretation vD, on a domain D, on a complete Heyting algebra (cHa) Ω
with a globalization � (Ω = (H,∧,∨,⊃,¬, �, 0, 1,

∧

,
∨

))

(∗) vD(�A) =

{

1 if vD(A) = 1

0 if vD(A) 6= 1

We say that a formula P is valid in GI iff for all such interpretations vD ,
vD(P ) = 1.

Henceforth we abbreviate “P is derivable in the deductive system D”, “P is
valid in the logic L” and “D extended with the axiom/rule (∗)” with `D P ,
|=L P and D +(∗), respectively.

2.2. An Analytic Calculus for GI

A sequent formulation for GI that makes no use of axioms (G1)− (G3) and
(G5) was introduced in [22]. This calculus –we refer to it as scGI– is ob-
tained by adding natural rules for introducing � to (a suitable modification
of) Maehara’s LJ′. Recall that LJ′ is an equivalent version of Gentzen’s LJ
where the restriction to at most one formula in the succedent of sequents
applies not generally but only in the case of the right rules for ⊃,¬ and ∀
(see [18]). In scGI, these three rules can be applied when the succedent of
the lower sequent contains at most one formula that is not �-closed, where
a �-closed formula is inductively defined as:

1. If Φ is a formula, then �Φ is a �-closed formula.
2. If Φ and Ψ are �-closed formulas, then so are ¬Φ, Φ ∧ Ψ , Φ ∨ Ψ and

Φ ⊃ Ψ .
3. If Φ(x) is a �-closed formula with free variable x, then so are ∀xΦ(x)

and ∃xΦ(x).

Let us denote with Σ and Γ sets of �-closed formulas. The right rules for
⊃,¬ and ∀ in scGI are:

Γ, A ⇒ B, Σ

Γ ⇒ A ⊃ B, Σ
(⊃, r)′

Γ, A ⇒ Σ

Γ ⇒ ¬A,Σ
(¬, r)′

Γ ⇒ A(a),Σ

Γ ⇒ ∀xA(x),Σ
(∀, r)′

where in (∀, r)′ the free variable a does not occur in the lower sequent.
Moreover, the following rules for introducing � are part of scGI

Γ, A ⇒ Σ

Γ, �A ⇒ Σ
(�, l)′

Γ ⇒ A, Σ

Γ ⇒ �A,Σ
(�, r)′
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Proposition 1 ([1]). |=GI P if and only if `scGI P .

However scGI does not admit the elimination of cuts. E.g. the sequent
⇒ ∀x¬�A(x), ∃xA(x) is provable in scGI but is not provable in scGI
without applying the cut rule.

In this section we introduce a cut-free calculus HGI for GI. This calculus
uses hypersequents, a simple and natural generalization of Gentzen sequents.

Definition 1. A hypersequent is an expression of the form

Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn

where for all i = 1, . . . n, Γi ⇒ Πi is an ordinary sequent. Γi ⇒ Πi is called
a component of the hypersequent.

The symbol “|” is intended to denote disjunction at the meta-level (see
Definition 2 below).

Here we consider sequents (resp. hypersequents) as multisets of formulas
(resp. sequents)2. Moreover we deal only with single-conclusioned hyperse-
quents, i.e. hypersequents with at most one formula in succedents of each
component.

Like ordinary sequent calculi, hypersequent calculi consist of initial hy-
persequents (i.e., axioms) as well as logical and structural rules. The latter
are divided into internal and external rules. The internal structural rules
deal with formulas within components while the external ones manipulate
whole components of a hypersequent. Axioms, logical and internal struc-
tural rules are essentially the same as in sequent calculi. The only difference
is the presence of a side hypersequent G representing a (possibly empty) hy-
persequent. The standard external structural rules are external weakening
(ew) and external contraction (ec)

G

G | Γ ⇒ A
(ew)

G | Γ ⇒ A | Γ ⇒ A

G | Γ ⇒ A
(ec)

In hypersequent calculi it is possible to define additional external structural
rules which simultaneously act on several components of one or more hy-
persequents. It is this type of rule which increases the expressive power of
hypersequent calculi compared to ordinary sequent calculi.

A derivation in a hypersequent calculus is a labeled finite tree with a
single root (called the end hypersequent), with axioms at the top nodes, and
each node-label connected with the label of the (immediate) successor nodes
(if any) according to one of the rules.

Definition 2. The generic interpretation of a sequent Γ ⇒ B, denoted by
I(Γ ⇒ B), is defined as

∧

Γ ⊃ B, where
∧

Γ stands for the conjunction of
the formulas in Γ (> if Γ is empty), or ¬

∧

Γ , if B is empty. The generic
interpretation of a hypersequent Γ1 ⇒ A1 | . . . | Γn ⇒ An is defined as
I(Γ1 ⇒ A1) ∨ . . . ∨ I(Γn ⇒ An).

2 If one prefers sequences over multisets as basic objects of inference then per-
mutation rules have to be added to the calculus.
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Let HIL be the hypersequent calculus for IL whose rules are those of LJ
augmented with side hypersequents and with in addition (ew) and (ec).
More precisely, HIL consists of

Axioms Cut Rule

A ⇒ A

G | Γ ⇒ A G | A, Γ ⇒ C

G | Γ ⇒ C
(cut)

(Internal and External) Structural Rules

G | Γ ⇒ C

G | Γ, A ⇒ C
(iw, l)

G | Γ ⇒

G | Γ ⇒ C
(iw, r)

G | Γ, A, A ⇒ C

G | Γ, A ⇒ C
(ic)

(ec) (ew)

Logical rules

G | Γ, A ⇒ B

G | Γ ⇒ A ⊃ B
(⊃, r)

G | Γ ⇒ A G | B, Γ ⇒ C

G | Γ, A ⊃ B ⇒ C
(⊃, l)

G | Γ, A ⇒

G | Γ ⇒ ¬A
(¬, r)

G | Γ ⇒ A

G | Γ,¬A ⇒
(¬, l)

G | Γ ⇒ A G | Γ ⇒ B

G | Γ ⇒ A ∧ B
(∧, r)

G | Γ, Ai ⇒ C

G | Γ, A1 ∧ A2 ⇒ C
(∧i, l)i=1,2

G | Γ ⇒ Ai

G | Γ ⇒ A1 ∨ A2
(∨i, r)i=1,2

G | Γ, A ⇒ C G | Γ, B ⇒ C

G | Γ, A ∨ B ⇒ C
(∨, l)

Quantifier rules

G | A(t), Γ ⇒ B

G | (∀x)A(x),Γ ⇒ B
(∀, l)

G | Γ ⇒ A(a)

G | Γ ⇒ (∀x)A(x)
(∀, r)

G | A(a), Γ ⇒ B

G | (∃x)A(x),Γ ⇒ B
(∃, l)

G | Γ ⇒ A(t)

G | Γ ⇒ (∃x)A(x)
(∃, r)

The rules (∀, r) and (∃, l) must obey the eigenvariable condition: the free
variable a must not occur in the lower hypersequent.

Remark 2. In the above two-premise rules, side hypersequents in both premises
are the same. Because of the presence of (ew) and (ec), one can derive equiv-
alent versions of these rules where the side hypersequents of both premises
are simply joined together in the conclusion.

HGI is defined by adding to HIL the following rules for �:
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G | Γ, A ⇒ C

G | Γ, �A ⇒ C
(�, l)

G | �Γ ⇒ A

G | �Γ ⇒ �A
(�, r)

G | �Γ, Γ ′ ⇒ A

G | �Γ ⇒ | Γ ′ ⇒ A
(cl�)

where �Γ denotes any set of �-formulas, i.e., formulas prefixed by �.

Remark 3. The above rules for � were introduced in [7] to define a hyperse-
quent calculus for the logic considered in [4], namely, LC (i.e., intuitionistic
propositional calculus with axiom (Lin) (A ⊃ B) ∨ (B ⊃ A), see [9]) ex-
tended with � (called ∆ there). This logic coincides with propositional
GIF.

Note that (�, l) and (�, r) are the (hypersequent versions of the) usual S4-
sequent rules for �, while (cl�) says that �-formulas behave like boolean
formulas (as established by axiom (G5)). Indeed, replacing �Γ with Γ in
(cl�), one obtains the following rule

G | Γ, Γ ′ ⇒ A

G | Γ ⇒ | Γ ′ ⇒ A
(cl)

defining a single-conclusioned calculus for classical logic once it is added to
HIL (see, e.g., [7]).

Lemma 1. If `HGI Γ1 ⇒ A1 | . . . | Γn ⇒ An then `scGI⇒ � I(Γ1 ⇒
A1), . . . , � I(Γn ⇒ An).

Proof. By induction on the length of the proof. The claim is true for axioms
since `scGI⇒ �(A ⊃ A). We have to prove that this holds for each rule of
HGI. Here below we show some relevant examples.

(∀, r): By induction hypothesis we have `scGI⇒ � I(G), �(
∧

Γ ⊃ A(a)),
where a does not occur in G, Γ and A. Therefore applying (∀, r)′ we get
⇒ � I(G), �(

∧

Γ ⊃ A(a)) `scGI⇒ � I(G), ∀x�(
∧

Γ ⊃ A(x)). The claim
follows by cut being `scGI ∀x�(

∧

Γ ⊃ A(x)) ⇒ �(
∧

Γ ⊃ ∀xA(x)).
(�, r): By induction hypothesis we have `scGI⇒ � I(G), �(

∧

�Γ ⊃ A).
Since `scGI �(

∧

�Γ ⊃ A) ⇒ �(
∧

�Γ ⊃ �A), the claim follows by cut.
(cl�): By induction hypothesis we have `scGI⇒ � I(G), �(

∧

�Γ∧
∧

Γ ′ ⊃
A). Since `scGI �(

∧

�Γ ∧
∧

Γ ′ ⊃ A),
∧

�Γ ⇒ �(
∧

Γ ′ ⊃ A), by cut we
have ⇒ � I(G), �(

∧

�Γ∧
∧

Γ ′ ⊃ A) `scGI

∧

�Γ ⇒ � I(G), �(
∧

Γ ′ ⊃ A).
The claim follows applying (¬, r)′ and (�, r)′.

Theorem 1. `HGI⇒ P if and only if |=GI P .

Proof. (=⇒) If `HGI⇒ P , by Lemma 1, `scGI⇒ �P . But `scGI �P ⇒ P .
Hence `scGI⇒ P . The claim follows by Proposition 1.

(⇐=) Since axioms and rules of LJ (including cut) as well as (G4) are
contained in HGI, it suffices to prove that the latter derives (G1)−(G3) and
(G5). The claim then follows by [22]. Here below we display the derivations
of (G2), (G3) and (G5) (that of (G1) is straightforward).
(G2):
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A(b) ⇒ A(b)
(�,l)

�A(b) ⇒ A(b)
(cl�)

⇒ A(b) | �A(b) ⇒
(∀,l)

⇒ A(b) | ∀x�A(x) ⇒
(∀,r)

⇒ ∀xA(x) | ∀x�A(x) ⇒
(�,r)

⇒ �∀xA(x) | ∀x�A(x) ⇒
(iw,r)+(iw,l)

∀x�A(x) ⇒ �∀xA(x) | ∀x�A(x) ⇒ �∀xA(x)
(ec)

∀x�A(x) ⇒ �∀xA(x)

(G3):

�A ⇒ �A

B ⇒ B
(�,l)

�B ⇒ B
(cl�)

�B ⇒ | ⇒ B
(⊃,l)

�A ⊃ �B, �A ⇒ | ⇒ B
(cl�)

�A ⊃ �B ⇒ | �A ⇒ | ⇒ B
(ec)+(iw,r)+(iw,l)

�A ⊃ �B ⇒ | �A ⇒ B
(⊃,r)

�A ⊃ �B ⇒ | ⇒ �A ⊃ B
(�,r)

�A ⊃ �B ⇒ | ⇒ �(�A ⊃ B)
(iw,r)+(iw,l)

�A ⊃ �B ⇒ �(�A ⊃ B) | �A ⊃ �B ⇒ �(�A ⊃ B)
(ec)

�A ⊃ �B ⇒ �(�A ⊃ B)

(G5):

�A ⇒ �A
(cl�)

⇒ �A | �A ⇒
(¬,r)

⇒ �A | ⇒ ¬�A
(∨,r)′s

⇒ �A ∨ ¬�A | ⇒ �A ∨ ¬�A
(ec)

⇒ �A ∨ ¬�A

Remark 4. In (�, r) and (cl�) one can replace �Γ with Γ , i.e. the corre-
sponding set of �-closed formulas. The resulting rules are easily seen to be
equivalent to the original ones since, on the one hand, each �-formula is a
�-closed formula, on the other hand �Γ `HGI Γ and Γ `HGI �Γ .

The proof of Theorem 1 relies on the fact that (cut) is one of the rules of
HGI. In the following section we give a constructive proof that (cut) is in
fact eliminable from HGI-derivations.
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2.3. Cut-elimination and Consequences

Recall that Gentzen’s cut-elimination method proceeds by eliminating the
uppermost cut in a derivation by a double induction on the complexity of
the cut formula and on the sum of its left and right ranks, where the right
(left) rank of a cut is the number of consecutive (hyper)sequents containing
the cut formula, counting upward from the right (left) upper sequent of the
cut. In his original proof of the cut-elimination theorem for sequent calculus
[11], Gentzen met the following problem: If the cut formula is derived by
contraction (here called (ic)), the permutation of cut with (ic) does not
necessarily move the cut higher up in the derivation. To solve this problem,
he introduced the multi-cut rule – a derivable generalization of cut.

In hypersequent calculus a similar problem arises when one tries to per-
mute cut with (ec), see e.g. [2]. In analogy with Gentzen’s solution, a way to
overcome this problem is to introduce a suitable (derivable) generalization of
Gentzen’s multi-cut rule allowing certain cuts to be reduced in parallel. E.g.
to prove cut-elimination in the hypersequent calculus for LC (i.e. propo-
sitional IF), Avron used the following induction hypothesis [2] (“extended
multi-cut rule”):

If H | Γ1 ⇒ A | . . . |Γn ⇒ A and H | Σ1, A
n1 ⇒ B1 | . . . |Σk, Ank ⇒ Bk,

where Ani stands for A, . . . , A, ni times, are cut-free provable, so is
H | Γ, Σ1 ⇒ B1 | . . . |Γ, Σk ⇒ Bk, where Γ = Γ1, . . . , Γn.

Nevertheless, this extended multi-cut rule works only for hypersequent cal-
culi in which one can derive the following generalized left rules for ∨ and
∃:

G | A, Γ1 ⇒ C1 | . . . | A,Γn ⇒ Cn G | B, Γ1 ⇒ C1 | . . . | B, Γn ⇒ Cn

G | A ∨ B, Γ1 ⇒ C1 | . . . | A ∨ B,Γn ⇒ Cn

(∨, l)∗

G | A(a), Γ1 ⇒ C1 | . . . | A(a), Γn ⇒ Cn

G | ∃xA(x), Γ1 ⇒ C1 | . . . | ∃xA(x), Γn ⇒ Cn

(∃, l)∗

((∨, l)∗ and (∃, l)∗ are indeed needed in permuting upward a cut with (∨, l)
and (∃, l), see [7]). These generalized rules are not derivable in HGI. For,
assume otherwise that (∨, l)∗ is derivable in HGI. Then, in HGI one could
prove the linearity axiom (Lin) (A ⊃ B) ∨ (B ⊃ A) as follows:

B ⇒ B
(∨,r)

B ⇒ A ∨ B

A ⇒ A
(ew)

A ⇒ A | A ⇒ B

B ⇒ B
(ew)

B ⇒ A | B ⇒ B
(∨,l)∗

A ∨ B ⇒ A | A ∨ B ⇒ B
(iw,l)+(cut)

B ⇒ A | A ∨ B ⇒ B

A ⇒ A
(∨,r)

A ⇒ A ∨ B
(iw,l)+(cut)

A ⇒ B | B ⇒ A
2x(⊃,r)

⇒ A ⊃ B | B ⊃ A
2x(∨,r)

⇒ (A ⊃ B) ∨ (B ⊃ A) | (A ⊃ B) ∨ (B ⊃ A)
(ec)

⇒ (A ⊃ B) ∨ (B ⊃ A)
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while (Lin) is not valid in GI (a counterexample can be easily constructed
in any not linearly ordered cHa). This would contradict Theorem 1.

A different solution to the problem due to (ec) is to eliminate cuts —
starting from a largest one (w.r.t. the number of connectives, modalities and
quantifiers) — without shifting them upward. This cut-elimination method
was introduced by Schütte-Tait [15,16] for sequent calculus and used in [5]
for the hypersequent calculus for IF. Following [5], to eliminate a cut with
non-atomic cut formula here we proceed as follows: we invert one of the two
premises of the cut and we use it to replace the cut by smaller ones exactly
in the place(s) in which the cut formula (of the remainig premise of the cut)
is introduced. This requires us to trace up the occurrences of the cut formula
through the derivation ending in a premise of the cut. To this purpose we
introduce below the notion of decoration of a formula in a derivation d. This
essentially amounts in the (marked) derivation obtained by following up and
marking in d all occurrences of the considered formula starting from the end
hypersequent of d: If at some stage any marked occurrence of the formula
is contracted by (ic) or it belongs to a component contracted by (ec), we
mark (and trace up) both occurrences of the formula from the premise.

Henceforth we write d, S1 . . . Sn `HGI H if d is a derivation in HGI of H
from the premises S1 . . . Sn. The introduced formulas in logical and quanti-
fier rules as well as in (�, r) and (�, l) will be called principal formulas.

Definition 3. Let d `HGI H and A be a formula in H that is not the cut
formula of any cut in d. The decoration of A in d is inductively defined
as follows: we denote by A∗ any marked occurrence of A. Given a hyperse-
quent H ′ in d with some (not necessarily all) marked A’s. Let R be the rule
introducing H ′. We divide some cases according to R.

1. R is a logical rule, a quantifier rule, (�, r) or (�, l):
1.1 A is principal in R, e.g.,

G | Γ ′ ⇒ C′

G | Γ ⇒ C
(R)

(a) Suppose that A∗ ∈ Γ . A∗ ∈ Γ ′ if and only if A∗ is an occurrence of a
formula in Γ which is not the principal formula. Moreover, the marked
formulas of G in the premise of R, are as in the conclusion. That is, for
each {Σ ⇒ B} ∈ G, A∗ ∈ Σ if and only if A∗ ∈ Σ of the corresponding
component belonging to the conclusion of R.
(b) Suppose that C is A∗. The marked formulas of G in the premise of
R are as in the conclusion.
1.2 A is not principal in R. The marked formulas of the premise of R
are as in the conclusion.
If R is a two premises rule, the definition is analogous.

2. R is (ew), (cut) or (cl�). The marked formulas of the premise(s) of R
are as in the conclusion.

3. R is (ic).
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3.1 A∗ is the contracted formula, then A∗, A∗ belongs to the premise of
R. The remaining formulas in the premise of R are marked as in the
conclusion.
3.2 A∗ is not the contracted formula. Analogous to case 2.

4. R is (iw, l), (iw, r). Analogous to case 1.
5. R is (ec). Similar to case 3.

Definition 4. The complexity |A| of a formula A is inductively defined as:

– |A| = 0 if A is atomic
– |A ∧ B| = |A ∨ B| = |A ⊃ B| = max(|A|, |B|) + 1
– |�A| = |∀xA(x)| = |∃xA(x)| = |A| + 1

The length |d| of a derivation d is the maximal number of inference rules
+ 1 occurring on any branch of d. The cut-rank ρ(d) of d is the maximal
complexity of cut formulas in d + 1. (ρ(d) = 0 if d is cut-free).

Let d(s/x) and H(s/x) denote the result of substituting the term s for all
free occurrences of x in the derivation d(x) and in the hypersequent H(x),
respectively.

Lemma 2 (Substitution). If d(x)`HGIH(x), then d(s/x)`HGIH(s/x), with
|d(s/x)| = |d(x)| and ρ(d(s/x)) = ρ(d(x)), where s only contains variables
that do not occur in d(x).

Lemma 3 (Inversion).

(i) If d `HGI G | Γ, A ∨ B ⇒ C then one can find d1 `HGI G | Γ, A ⇒ C
and d2 `HGI G | Γ, B ⇒ C

(iii) If d `HGI G | Γ ⇒ A ∧ B then one can find d1 `HGI G | Γ ⇒ A and
d2 `HGI G | Γ ⇒ B

(iv) If d `HGI G | Γ ⇒ A ⊃ B then one can find d1 `HGI G | Γ, A ⇒ B
(v) If d `HGI G | Γ ⇒ ¬A then one can find d1 `HGI G | Γ, A ⇒
(vi) If d `HGI G | Γ ⇒ �A then one can find d1 `HGI G | Γ ⇒ A
(vii) If d `HGI G | Γ, ∃xA(x) ⇒ C then one can find d1 `HGI G | Γ, A(a) ⇒

C, for any a that does not occur free in G, Γ, A or C
(viii) If d `HGI G | Γ ⇒ ∀xA(x) then one can find d1 `HGI G | Γ ⇒ A(a),

for any a that does not occur free in G, Γ or A

such that ρ(di) ≤ ρ(d) and |di| ≤ |d|, for i = 1, 2.

Proof. The proof is by induction on |d|. We outline (i) and (vi).
We consider the last inference R in d.

(i) R is a logical rule, a quantifier rule, (�, r) or (�, l)
(a) The indicated occurrence of A∨B is the principal formula of R. E.g.

··· d′

G | Γ, B ⇒ C

··· d′′

G | Γ, A ⇒ C

G | Γ, A ∨ B ⇒ C



A Proof-theoretical Investigation of Global Intuitionistic (Fuzzy) Logic 11

The required derivations d1 and d2 are just d′′ and d′.
(b) The indicated occurrence of A∨B is not the principal formula of R.
Suppose e.g. that d ends in a rule (⊃, l) whose premises are

d′ `HGI G | Γ, Y, A ∨ B ⇒ C and d′′ `HGI G | Γ, A ∨ B ⇒ X

and the conclusion is G | Γ, X ⊃ Y, A∨B ⇒ C. Applying the induction
hypothesis to d′ and d′′ we obtain d′

1 `HGI G | Γ, Y, A ⇒ C and d′
2 `HGI

G | Γ, Y, B ⇒ C as well as d′′
1 `HGI G | Γ, A ⇒ X and d′′

2 `HGI

G | Γ, B ⇒ X, respectively, with |d′

i|, |d
′′

i | < |d| and ρ(d′

i), ρ(d′′i ) ≤ ρ(d),
for i = 1, 2. Then (⊃, l) can be applied to d′

1 and d′′1 (resp. d′2 and d′′2 )
to obtain the derivation d1 (resp. d2) with the required properties.
If R is (cl�) the claim trivially follows by induction and subsequent
application of (cl�).
R is a(n internal or external) structural rule. If R is (ew) or (ec) and the
indicated occurrence of A∨B is in G, or if R is an internal weakening or
(ic) and A ∨ B is not the contracted formula, the claim trivially follows
by induction hypothesis and subsequent application(s) of R. Assume
R is (ec) and the indicated occurrence of A ∨ B is in the contracted
component. E.g. d ends as follows

··· d′

G | Γ, A ∨ B ⇒ C | Γ, A ∨ B ⇒ C

G | Γ, A ∨ B ⇒ C

By induction hypothesis one obtains the derivations d′
1 `HGI G | Γ, A ⇒

C | Γ, A ∨ B ⇒ C and d′
2 `HGI G | Γ, B ⇒ C | Γ, A ∨ B ⇒ C with

|d′i| < |d| and ρ(d′

i) ≤ ρ(d), for i = 1, 2. The required derivations d1 and
d2 are obtained by applying again the induction hypothesis to d′

1 and d′2
followed by an application of (ec). The remaining case is similar.
If R is cut. Analogous to case i(b).

(vi) We illustrate the case in which R is a logical inference. The remaining
cases are handled as in (i).
(a) If the indicated occurrence of �A is the principal formula of R. E.g.

··· d′

G | �Γ ⇒ A

G | �Γ ⇒ �A

The required derivation d1 is just d′.
(b) The indicated occurrence of �A is not the principal formula of R.
Suppose e.g. that d ends in a rule (∨, l) whose premises are

d′ `HGI G | Γ, X ⇒ �A and d′′ `HGI G | Γ, Y ⇒ �A

and the conclusion is G | Γ, X ∨ Y ⇒ �A. Applying the induction
hypothesis to d′ and d′′ we obtain the derivations d′

1 `HGI G | Γ, X ⇒
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A and d′′1 `HGI G | Γ, Y ⇒ A with |d′
1|, |d

′′
1 | < |d|. Then (∨, l) can

be applied to d′
1 and d′′1 to obtain the derivation d1 with the required

properties.

In the following H [B/A] will indicate the hypersequent H in which we uni-
formly replace each occurrence of A by B.

Lemma 4. Let d `HGI G | Γ, A ⇒ C, where A is an atomic formula that is
not the cut formula of any cut in d. One can find a derivation d′, G | Γ ⇒
A `HGI G | Γ ⇒ C with ρ(d′) = ρ(d).

Proof. Let us consider the decoration of A in d starting from Γ, A∗ ⇒
C. We first replace A∗ everywhere in d with Γ and we add G to all the
hypersequents in d (previously applying the Substitution Lemma, if needed).
For each hypersequent G | B ⇒ B, we add an application of (ew) to recover
the original axiom B ⇒ B of d. Note that A∗ can originate
1. in an axiom. Then the axiom is transformed into G | Γ ⇒ A,
2. by an internal weakening. The weakening on A∗ is replaced by stepwise

weakenings of formulas B ∈ Γ .
3. by an external weakening. The weakening of the component S is replaced

by a weakening on S[Γ /A∗ ].

One can check that this procedure results in a derivation d1, G | Γ ⇒
A `HGI G | G | Γ, Γ ⇒ C with ρ(d1) = ρ(d). d′ is therefore obtained by
applying (ec) and (ic), as necessary.

Lemma 5. In HGI non-atomic axioms can be derived from atomic axioms.

Lemma 6 (Reduction). Let d0 `HGI G | Γ ⇒ A and d1 `HGI G | Γ, A ⇒
C both with cut-rank ρ(di) ≤ |A|. Then we can find a derivation d `HGI

G | Γ ⇒ C with ρ(d) ≤ |A|.

Of course, one could derive G | Γ ⇒ C by an application of the cut rule,
but the resulting derivation would then have cut-rank |A| + 1.

Proof. By Lemma 5 we can assume d0 and d1 have atomic axioms. If A
is atomic, by Lemma 4 one can find a derivation d′, G | Γ ⇒ A `HGI

G | Γ ⇒ C such that ρ(d′) = ρ(d1). The required derivation d is obtained
by concatenating the derivations d0 and d′.

Suppose that A is not atomic.

– A = B ⊃ D. Let us consider the decoration of A in d1 starting from
G | Γ, (B ⊃ D)∗ ⇒ C. We first replace (B ⊃ D)∗ everywhere in d1 with
Γ and we add G to all the hypersequents in d1 (previously applying the
Substitution Lemma, if needed). For each hypersequent G | B ⇒ B, we
add an application of (ew) to recover the original axiom B ⇒ B of d1.
Note that the resulting tree is not a derivation anymore. We have then
to consider the following “correction steps” according to the cases in
which the marked occurrence of B ⊃ D originated:
(i) as principal formula of a logical inference. We replace (⊃, r) inferences

of B ⊃ D by cut rules as follows: every “inference step” of the kind
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···
G

′ | G | Ψ ⇒ B

···
G

′ | G | Ψ, D ⇒ C
′

(⊃,l)

G
′ | G | Ψ, Γ ⇒ C

′

is replaced by (let G
′′

= G | G′)
···

G
′′

| Ψ ⇒ B
(iw,l)

G
′′

| Ψ, Γ ⇒ B

··· d′
0

G | Γ, B ⇒ D
(ew)+(iw,l)

G
′′

| Γ, Ψ, B ⇒ D
(cut)

G
′′

| Ψ, Γ ⇒ D

···
G

′′

| Ψ, D ⇒ C
′

(iw,l)

G
′′

| Ψ, Γ, D ⇒ C
′

(cut)

G
′′

| Ψ, Γ ⇒ C
′

where the missing premise of the first cut rule (i.e. G
′′

| Γ, Ψ, B ⇒ D)
is obtained from d0 using the Inversion Lemma.

(ii) By an internal weakening: The weakening on (B ⊃ D)∗ is replaced
by stepwise weakenings of formulas X ∈ Γ .

It is easy to check that this procedure results in a derivation d′ `HGI

G | G | Γ, Γ ⇒ C with ρ(d′) ≤ |A|. Hence, the required derivation is
obtained by applying (ec) and (ic), as necessary.

– Cases A = B ∧ D, A = ¬B and A = ∀xA(x) are treated analogously.
– A = ∃xA(x). Let us consider the decoration of A in d0 starting from

G | Γ ⇒ (∃xA(x))∗. We first replace in d0 all the components {Ψ ⇒
(∃xA(x))∗} by {Ψ, Γ ⇒ C} and we add G to all the hypersequents in
d0 (previously applying the Substitution Lemma, if needed). For each
hypersequent G | B ⇒ B, we add an application of (ew) to recover the
original axiom B ⇒ B of d0. This does not result in a correct deriva-
tion anymore. Correction step (ii) is handled by stepwise weakenings of
formulas X ∈ Γ and C. While if (∃xA(x))∗ originated as the principal
formula of (∃, r), we replace every “inference step” of the kind

···
G

′ | G | Ψ ⇒ A(t)
(∃,r)

G
′ | G | Ψ, Γ ⇒ C

by ···
G

′ | G | Ψ ⇒ A(t)
(iw,l)

G | G
′ | Ψ, Γ ⇒ A(t)

··· d′
1(t)

G | Γ, A(t) ⇒ C
(ew)+(iw,l)

G | G
′ | Γ, Ψ, A(t) ⇒ C

(cut)

G
′ | G | Ψ, Γ ⇒ C

where d′1(t) `HGI G | Γ, A(t) ⇒ C is obtained by the Inversion Lemma
and the Substitution Lemma. Let us call d′ the obtained tree. One can
check that d′ `HGI G | G | Γ, Γ ⇒ C with ρ(d′) ≤ |A|. Hence, the
required derivation is finally obtained by applying (ec) and (ic), as nec-
essary.

– Case A = B ∨ D is treated analogously.
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– A = �B. Let us consider the decoration of A in d0 and d1 starting
from G | Γ ⇒ (�B)∗ and G | Γ, (�B)∗ ⇒ C, respectively. If Γ is a
set of �-formulas then the proof proceeds similarly as for A = B ⊃ D.
Suppose that Γ is not a set of �-formulas. We first replace in d0 all
the components {Ψ ⇒ (�B)∗} by {Ψ, Γ ⇒ C} and we add G to all
the hypersequents in d0 (previously applying the Substitution Lemma,
if needed). For each hypersequent G | B ⇒ B, we add an application of
(ew) to recover the original axiom B ⇒ B of d0. As usual, this does not
result in a correct derivation anymore. Correction step (ii) is handled
by stepwise weakenings of formulas X ∈ Γ and C. Correction step (i)
amounts in applying repeatedly the following procedure: Let us consider
a “subderivation” of this tree ending in an uppermost application of
(�, r) introducing (�B)∗ in d0, i.e.,

··· di
0

Gi | G | �Γi ⇒ B
(�,r)

Gi | G | �Γi, Γ ⇒ C

(Note that in the above “subderivation” the only incorrect step is the
last one, namely the application of (�, r)). The whole “subderivation”
above is replaced by di

1 `HGI Gi | G | �Γi, Γ ⇒ C obtained similarly to
the derivation d′ in the case A = B ⊃ D. Indeed, we first replace (�B)∗

everywhere in d1 with �Γi and we add Gi | G to all the hypersequents in
d1, previously applying the Substitution Lemma, if needed, together with
suitable applications of internal and external weakening. Applications of
(�, l) that introduced (�B)∗ in d1 are replaced by suitable cuts (on B)
in which the missing premise of the cut rule is di

0 `HGI Gi | G | �Γi ⇒ B.
di
1 is then obtained by applying (ec) as necessary.

Theorem 2 (Cut-elimination). If a hypersequent H is derivable in HGI
then H is derivable in HGI without using the cut rule.

Proof. Let d `HGI H and ρ(d) > 0. The proof proceeds by a double induc-
tion on (ρ(d), nρ(d)), where nρ(d) is the number of cuts in d with cut-rank
ρ(d). Indeed, let us take in d an uppermost cut with cut-rank ρ(d). By ap-
plying the Reduction Lemma to its premises either ρ(d) or nρ(d) decreases.

As an immediate consequence of the above theorem one has the subformula
property: every formula P valid in GI has a derivation in HGI which only
contains subformulas of P . Among other things, this ensures that GI is a
conservative extension of IL (i.e., for each formula P not containing �, |=GI

P if and only of |=IL P ). Another important corollary of cut-elimination
is (a version of) the mid-(hyper)sequent theorem. Indeed, Gentzen showed
that a certain separation between propositional and quantifier inferences
can be achieved in deriving a prenex formula in the sequent calculus LK for
classical logic (see, e.g., [18]). In the case of LJ, this theorem only holds for
the fragment of the calculus without the rule (∨, l). Here below we prove
the mid-(hyper)sequent theorem for a fragment of HGI properly including
LJ without (∨, l).
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Theorem 3. Any HGI-derivation d of a hypersequent H s.t.

1. H only contains prenex formulas
2. in d, the rule (∨, l) is applied only to formulas in which (at least) one of

the disjuncts is a �-formula

can be transformed into a derivation of H in which no propositional rule is
applied below any application of a quantifier rule.

Proof. Theorem 2 and Lemma 5 provide us with a cut-free derivation d′ of
H from atomic axioms. Note that the (∨, l) rule with a principal formula of
the kind �A∨B can be simulated, without using cuts, by the following one

G | �A, Γ ⇒ C1 G | B, Γ ⇒ C2

G | �A ∨ B, Γ ⇒ C1 | �A ∨ B, Γ ⇒ C2
(∨�, l)

This rule can be derived in HGI as follows:

G | �A,Γ ⇒ C1

(cl�)

G | �A ⇒ | Γ ⇒ C1

(iw,l)′s+(iw,r)

G | �A, Γ ⇒ C2 | Γ ⇒ C1 G | B, Γ ⇒ C2

(∨,l)

G | �A ∨ B, Γ ⇒ C2 | Γ ⇒ C1

(iw,l)

G | �A ∨ B, Γ ⇒ C1 | �A ∨ B, Γ ⇒ C2

We define the order of a quantifier inference in d′ as the number of propo-
sitional inferences under it, and the order of d′ as the sum of the orders of
its quantifiers inferences. The proof proceeds by induction on the order of
d′ as follows: In d′ we replace all the applications of (∨, l) by applications
of (∨�, l). It is easy to check that the rule (∨�, l) can be shifted upward
over any quantifier inference. As an example we outline a case that does
not work in LJ. Thus suppose d′ contains a (∃, r) inference above a (∨�, l)
inference and so that all the inferences in between are structural, e.g.,·

·
·
·
γ′

G
′ | Γ

′ ⇒ A(t)
(∃,r)

G
′ | Γ

′ ⇒ ∃xA(x)
·
·
·
·
γ

G | �B, Γ ⇒ ∃xA(x) G | A, Γ ⇒ C
(∨�,l)

G | A ∨ �B, Γ ⇒ ∃xA(x) | A ∨ �B, Γ ⇒ C

where γ contains structural inferences. We reduce the order of d′ as follows:
·
·
· γ′

G
′ | Γ

′ ⇒ A(t)
·
·
· γ

G | �B, Γ ⇒ A(t) G | A, Γ ⇒ C
(∨�,l)

G | A ∨ �B,Γ ⇒ A(t) | A ∨ �B, Γ ⇒ C
(∃,r)

G | A ∨ �B,Γ ⇒ ∃xA(x) | A ∨ �B, Γ ⇒ C
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The cases involving the rules for introducing � are straightforward.

Corollary 1. Herbrand’s theorem holds for the prenex fragment of GI in
which each disjunctive (sub)formula with negative polarity has at most one
disjunct that is not a �-formula.

3. Global Intuitionistic Fuzzy Logic (GIF)

3.1. Preliminaries

Intuitionistic Fuzzy Logic IF was defined by Takeuti and Titani in [19] to
be the logic of the complete Heyting algebra [0, 1]. IF also coincides with
first-order Gödel logic [12] based on the truth-values set [0, 1]. Takeuti and
Titani characterized IF by a calculus which extends LJ by several axioms
as well as the following rule, expressing the density of the ordered set of
truth-values:

Γ ⇒ C ∨ (A ⊃ p) ∨ (p ⊃ B)

Γ ⇒ C ∨ (A ⊃ B)
(TT )

where p is a propositional eigenvariable (i.e., it does not occur in the con-
clusion).

In the following we use the deductive system for IF, defined in [17],
consisting of LJ with axioms (Lin) ⇒ (A ⊃ B) ∨ (B ⊃ A) and (∨∀)
⇒ ∀x(A(x) ∨ B) ⊃ (∀xA(x) ∨B), where x does not occur in B. (Note that
(Lin) and (∨∀) say that Kripke models for IF are linearly ordered and with
constant domains, see [10].) In [20] IF was extended with the operator � of
GI. The resulting logic was called Global Intuitionistic Fuzzy logic GIF. A
formula P is valid in GIF iff for all interpretations vD on the [0, 1]-Heyting
algebra with a globalization � satisfying (∗) (see Section 2.1), vD(P ) = 1.

A deductive system for GIF was defined in [20] by adding to the one
of IF the axioms and rules (G1)− (G4) (see Section 2.1) together with the
following axioms:

(G5′) ¬¬�A ⇒ �A, (G6) ¬¬A ⇒ �¬¬A, (G7) ⇒ �(A ⊃ B)∨�(B ⊃ A)

We refer to this system as scGIF.

Proposition 2 ([20]). |=GIF P if and only if `scGIF P .

3.2. An Analytic calculus for GIF

Let HGIF be the hypersequent calculus obtained by adding to HGI Avron’s
rule:

G | Γ, Γ ′ ⇒ A G | Γ, Γ ′ ⇒ A′

G | Γ ⇒ A | Γ ′ ⇒ A′
(com)

Remark 5. As discussed in [3], using (ic) and (iw, l), (com) is inter-derivable
with the communication rule

G | Γ, Γ ′ ⇒ A G | Γ1, Γ
′
1 ⇒ A′

G | Γ, Γ1 ⇒ A | Γ ′, Γ ′
1 ⇒ A′

(com′)
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introduced in [2] to define a hypersequent calculus for propositional IF.
Hence HGIF coincides with Baaz and Zach’s calculus HIF for IF (see [8])
extended with the rules for � introduced in [7] (see Remark 3).

In the following we refer to the fragment of HGIF consisting of HIL+(com)
as HIF.

Lemma 7. If `HGIF Γ1 ⇒ A1 | . . . | Γn ⇒ An then `scGI+(G7)⇒ �I(Γ1 ⇒
A1), . . . , �I(Γn ⇒ An).

Proof. By Lemma 1 we only have to check the case involving the (com) rule.
By induction hypothesis `scGI+(G7)⇒ P1 and `scGIF+(G7)⇒ P2, where P1

and P2 abbreviate �I(G)∨�(
∧

Γ ∧
∧

Γ ′ ⊃ A) and �I(G)∨�(
∧

Γ ∧
∧

Γ ′ ⊃
A′), respectively. Since ⇒ P1,⇒ P2 `scGI �(

∧

Γ ⊃
∧

Γ ′) ∨ �(
∧

Γ ′ ⊃
∧

Γ ) ⇒ �I(G), �(
∧

Γ ⊃ A), �(
∧

Γ ′ ⊃ A′) the claim follows by (cut) with
axiom (G7).

Theorem 4. `HGIF P if and only if P is valid in GIF.

Proof. (=⇒) Similar to the proof of Theorem 1, using Lemma 7.
(⇐=) By Proposition 2 we have to show that (Lin), (∨∀) and (G1) −

(G4), (G5′) − (G7) are derivable in HGIF. See the proof of Theorem 1 for
the derivations in HGI (and therefore in HGIF) of (G1)−(G4). Derivations
in HIF (and therefore in HGIF) of (Lin) and (∨∀) can be found in [8,7].
The derivation of (G5)′ is straightforward. That of (G6) uses (com).

Using HGIF one can define an alternative axiomatization for GIF. Indeed

Corollary 2. An alternative deductive system for GIF is obtained by adding
(G7) to any deductive system for GI.

Proof. Follows by Lemma 7 and Proposition 1.

Note that in the above axiomatization for GIF, (∨∀) turns out to be re-
dundant.

In fact, part (=⇒) of Theorem 4 can be proved in a more direct way.
This proof leads to a different deductive system for GIF that makes no use
of Barcan’s axiom (G2).

Alternative proof of part (=⇒) of Theorem 4
By induction on the length of the derivation of P . For each rule of HGIF

we show that (∗) whenever scGIF derives the generic interpretations of its
premise(s), scGIF derives the generic interpretation of its conclusion too.

The claim then follows by Proposition 2.
For the cases involving axioms, internal structural rules, (ew), (ec) and

logical rules see the analogous proof for the propositional fragment of HIL
and propositional IL outlined, e.g., in [7].

The claim is easily true in the case of the rules (∀, l), (∃, r) and (�, l).
(com): By induction hypothesis `scGIF⇒ P1 and `scGIF⇒ P2, where P1

and P2 abbreviate I(G)∨ (
∧

Γ ∧
∧

Γ ′ ⊃ A) and I(G)∨ (
∧

Γ ∧
∧

Γ ′ ⊃ A′),
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respectively. Since ⇒ P1,⇒ P2 `LJ (
∧

Γ ⊃
∧

Γ ′) ∨ (
∧

Γ ′ ⊃
∧

Γ ) ⇒
I(G) ∨ (

∧

Γ ⊃ A) ∨ (
∧

Γ ′ ⊃ A′) the claim follows by cut with (Lin).
(∀, r): By induction hypothesis `scGIF⇒ I(G)∨ (

∧

Γ ⊃ A(a)). We have
⇒ I(G) ∨ (

∧

Γ ⊃ A(a)) `LJ⇒ ∀x(I(G) ∨ (
∧

Γ ⊃ A(x))). Since a occurs
neither in G nor in

∧

Γ, A, we may assume that x occurs neither of them.
Therefore ⇒ I(G)∨ (

∧

Γ ⊃ A(a)) `LJ+(∨∀)⇒ I(G)∨∀x(
∧

Γ ⊃ A(x)). The
desired result follows since ∀x(

∧

Γ ⊃ A(x)) ⊃ (
∧

Γ ⊃ ∀xA(x)) is derivable
in LJ.

(∃, l): the proof is similar.
(�, r): First notice that `LJ+(G1)+(G4)+(G7) �(A ∨ B) ⇒ �A ∨ �B.

By induction hypothesis `scGIF⇒ I(G) ∨ (
∧

�Γ ⊃ A). Since one has ⇒
I(G) ∨ (

∧

�Γ ⊃ A) `LJ+(G1)+(G4)+(G7)⇒ �I(G) ∨ �(
∧

�Γ ⊃ A) and
`LJ+(G1)+(G4) �(

∧

�Γ ⊃ A) ⇒
∧

�Γ ⊃ �A, the claim follows applying
(G1), (G4) and the rules of LJ.

(cl�): By induction hypothesis `scGIF⇒ I(G) ∨
∧

�Γ ∧ (
∧

Γ ′ ⊃ A).
Since `LJ+(G1)+(G4)

∧

�Γ ∧ (
∧

Γ ′ ⊃ A),
∧

�Γ ∨ ¬
∧

�Γ ⇒ ¬
∧

�Γ ∨
(
∧

Γ ′ ⊃ A) and `LJ+(Lin)+(G1)+(G4)+(G5′)⇒
∧

�Γ ∨ ¬
∧

�Γ the claim
follows applying the axioms and rules of LJ + {(G1), (G4)}.

Remark 6. The claim (∗) does not hold for HGI (and GI), as (∨∀) is used
essentially for the case (∀, r).

Corollary 3. An alternative deductive system for GIF is obtained by adding
(G1), (G4), (G5′) and (G7) to Takano’s system for IF

Proof. Follows by carefully inspecting the above proof.

In the deductive system of Corollary 3, axioms (G7) and (G5′) can be
replaced by (�4) �(A ∨ B) ⊃ �A ∨ �B and (G5), respectively. (Note
that `LJ+(G4)+(Lin)+(�4) (G7) and `LJ+(G1)+(G4)+(G5) (G5′)). Moreover,
the rule (G4) can be substituted by the necessitation rule

A

�A
(�)

together with axioms (�2) �A ⊃ ��A and (�3) �(A ⊃ B) ⊃ (�A ⊃ �B).
This leads to the deductive system for GIF of [13], obtained by adding to
that of IF the axioms and rules used by Baaz in [4] (see Remark 3), namely:
(G5) as well as the axioms and rules for � in modal logic S4, i.e., (G1),
(�2), (�3) and (�) together with axiom (�4).

Theorem 5 (Cut-elimination). If a hypersequent H is derivable in HGIF
then H is derivable in HGIF without using the cut rule.

Proof. It is enough to check that the (com) rule does not spoil the cut
elimination procedure outlined in Section 2.3. We therefore have to check
that the logical rules remain invertible in HGIF and that the Substitution
Lemma holds. See the cut-elimination proof in [5] for the rules of HIF.
Cases involving the rules for � are straightforward.
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Lemma 8 [7]. The generalized rules (∨, l)∗ and (∃, l)∗ of Section 2.3 can
be derived in HGIF.

Proof. (∨, l)∗: For n = 1, the claim follows applying (∨, l). Otherwise, using
only (ec), (iw, l) and (com) one can derive G | A, Γ1 ⇒ C1 | B, Γ2 ⇒
C2 | . . . | B, Γn ⇒ Cn from the premises of (∨, l). Hence by applying
(∨, l) one obtains (a) G | A∨B, Γ1 ⇒ C1 | B, Γ2 ⇒ C2 | . . . | B, Γn ⇒ Cn.
Similarly one can derive (b) G | A∨B, Γ1 ⇒ C1 | A, Γ2 ⇒ C2 | . . . | A, Γn ⇒
Cn. The desired result follows by iteratively applying the above argument
to (a) and (b). The proof of (∃, l)∗ is similar.

Remark 7. An alternative proof – in Gentzen style – of the cut-elimination
theorem for HGIF can be formulated using (the following generalization of)
Avron’s extended multi-cut rule (see Section 2.3): if both the hypersequents
H | Γ1 ⇒ A | . . . |Γn ⇒ A and H | Σ1, A

n1 ⇒ B1 | . . . |Σk, Ank ⇒ Bk are
cut-free provable in HGIF, so is

– H | Σ1, Γ ⇒ B1 | . . . |Σk, Γ ⇒ Bk, where Γ is Γ1, . . . , Γn, if A is not a
�-formula

– H | Σ1 ⇒ B1 | . . . |Σk ⇒ Bk | Γ1 ⇒ | . . . | Γn ⇒, otherwise.

The above formulation was used in [7] to prove cut elimination in the hy-
persequent calculus for propositional GIF. It is easy to check that it works
also in presence of quantifiers rule (i.e., for HGIF).

3.3. Consequences of cut-elimination

As shown in [8], in analogy with classical logic, the mid(hyper)sequent theo-
rem holds for the prenex fragment3 of IF. This result can be easily extended
to GIF.

Theorem 6. Any HGIF-derivation d of a hypersequent H only containing
prenex formulas can be transformed into a derivation of H in which no
propositional rule is applied below any application of a quantifier rule.

Proof. Is similar to the same proof for HIF (see [8]). First observe that in
HGIF non-atomic axioms are cut-free derivable from atomic axioms. Next
note that (∨, l) can be simulated using (com) by the following one

G | A, Γ ⇒ C1 G | B, Γ ⇒ C2

G | A ∨ B,Γ ⇒ C1 | A ∨ B, Γ ⇒ C2
(∨′, l)

This rule can be derived in GIF using (iw, l), (ew), (com) and (∨, l). (∨′, l)
can be shifted upward any quantifier rule as in the case of (∨�, l) (see the
proof of Theorem 3).

Corollary 4. Herbrand’s theorem holds for the prenex fragment of GIF.

See [6] for a semantical proof of the above corollary.

3
IF does not admit equivalent prenex normal forms as in classical logic.
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Corollary 5. Let P be a quantifier-free formula of GIF and Qi ∈ {∀, ∃}
for each i = 1, . . . , n: If

|=GIF �Q1y1 . . . QnynP (y1, . . . , yn) then |=GIF Q1y1 . . . Qnyn�P (y1, . . . , yn)

Proof. Let d be the derivation of ⇒ Q1y1 . . . QnynP (y1, . . . , yn) obtained by
Theorem 6. The required derivation d′ is simply constructed by applying,
in d, the rule (�, r) to mid(hyper)sequent(s) (i.e. the hypersequent(s) in
d separating propositional and quantifier inferences). The claim follows by
Theorem 4.

Remark 8. If P is not a quantifier-free formula, the above theorem does not
hold. Indeed, let P be the formula (�∃yA(y)) ⊃ A(x). ∃x�P is not valid
in GIF. For, assume otherwise that |=GIF ∃x�P . Then ∃x((�∃yA(y)) ⊃
�A(x)) would be valid4 in GIF as shown by:

|=GIF ∃x�((�∃yA(y)) ⊃ A(x))
|=GIF ∃x((��∃yA(y)) ⊃ �A(x))
|=GIF ∃x((�∃yA(y)) ⊃ �A(x))

while |=GIF �∃xP as follows by Theorem 4 and the HGIF-derivation:

A(b) ⇒ A(b)
(iw,l)

A(b),�∃yA(y) ⇒ A(b)
(⊃,r)

A(b) ⇒ (�∃yA(y)) ⊃ A(b))
(∃,r)

A(b) ⇒ ∃x((�∃yA(y)) ⊃ A(x))
(∃,l)

∃yA(y) ⇒ ∃x((�∃yA(y)) ⊃ A(x))
(�,l)

�∃yA(y) ⇒ ∃x((�∃yA(y)) ⊃ A(x))
(�,r)

�∃yA(y) ⇒ �∃x((�∃yA(y)) ⊃ A(x))
(cl�,l)

⇒ �∃x((�∃yA(y)) ⊃ A(x)) | �∃yA(y) ⇒
(iw,r)

⇒ �∃x((�∃yA(y)) ⊃ A(x)) | �∃yA(y) ⇒ A(a)
(⊃,r)

⇒ �∃x((�∃yA(y)) ⊃ A(x)) | ⇒ (�∃yA(y) ⊃ A(a))
(∃,r)

⇒ �∃x((�∃yA(y)) ⊃ A(x)) | ⇒ ∃x((�∃yA(y)) ⊃ A(x))
(�,r)

⇒ �∃x((�∃yA(y)) ⊃ A(x)) | ⇒ �∃x((�∃yA(y)) ⊃ A(x))
(ec)

⇒ �∃x((�∃yA(y)) ⊃ A(x))

As mentioned before, Takeuti and Titani used the density rule (TT ) to
axiomatize IF. Takano [17] has later shown semantically that this rule is

4 a counterexample can be constructed considering an interpretation vD, in the
[0, 1]-Heyting algebra with �, s.t.

W

p∈D
A(p) = 1 while for each p ∈ D, A(p) < 1.
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not needed to characterize IF and he posed the question whether a syn-
tactical elimination of (TT ) is also possible. This question was answered
affirmatively in [8] where the following version of (TT )

G | Π ⇒ p | p, Γ ⇒ C

G | Π,Γ ⇒ C
(tt)

where p does not occur in the conclusion

was shown to be eliminable from HIF-derivations. The same result holds
for GIF as stated by the theorem below:

Theorem 7. Any derivation d of a hypersequent H in HGIF + (tt) can be
transformed into a derivation of H not containing applications of (tt).

This follows by induction on the number of applications of (tt) using the
following lemma.

Lemma 9. If d is a HGIF-derivation of

G | Φ1 ⇒ p | . . . | Φn ⇒ p | pk1 , Ψ1 ⇒ A1 | . . . | pkm , Ψm ⇒ Am

where p is a propositional variable not occurring in G, Φi, Ψj i and Aj (for
i = 1, . . . , n and j = 1, . . . , m), then there is a HGIF-derivation of

G | Φ1, . . . , Φn, Ψ1 ⇒ A1 | . . . | Φ1, . . . , Φn, Ψm ⇒ Am

Proof. Proceeds by induction on the length of d. By Theorem 5 we can
assume that d is cut-free. We divide cases according to the last inference I
in d.

(1) I applies to sequents in G. Then the induction hypothesis can be
applied to the premise(s) of I and appropriate inferences added below.

(2) I is a logical inference, a quantifier inference, (�, l) or (�, r).
(2.1) I has only one premise and I 6= (∃, l). Then the induction hy-

pothesis can be applied to this premise and the desired hypersequent can
be derived by applying I . Note that the case I = (�, r) can only apply to
sequents in G.

(2.2) I has two premises or I is (∃, l). If I is a right rule (i.e. I is applied
to Aj) the case is straightforward. As an example of a left rule, consider the
case in which I is (⊃, l) and its premises are, say,

G | Φ1 ⇒ p | . . . | Φn ⇒ p | pk1 , Ψ1 ⇒ A1 | . . . | pkm , Ψm ⇒ Am | Γ1 ⇒ A and

G | Φ1 ⇒ p | . . . | Φn ⇒ p | pk1 , Ψ1 ⇒ A1 | . . . | pkm , Ψm ⇒ Am | B, Γ2 ⇒ p.

Let Φ = Φ1, . . . , Φn. The induction hypothesis provides us with

G | Φ, Ψ1 ⇒ A1 | . . . | Φ, Ψm ⇒ Am | Γ1 ⇒ A and

G | B, Γ2, Φ, Ψ1 ⇒ A1 | . . . | B, Γ2, Φ, Ψm ⇒ Am.

The desired hypersequent is obtained by applying (⊃, l) successively m
times, together with some (w, l), (ew) and (ec).
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I is (∨, l). Suppose e.g. its premises are

G | A, Φ1 ⇒ p | . . . | Φn ⇒ p | pk1 , Ψ1 ⇒ A1 | . . . | pkm , Ψm ⇒ Am and

G | B, Φ1 ⇒ p | . . . | Φn ⇒ p | pk1 , Ψ1 ⇒ A1 | . . . | pkm , Ψm ⇒ Am.

Let Φ = Φ1, . . . , Φn. By induction hypothesis we obtain

G | A, Φ, Ψ1 ⇒ A1 | . . . | A, Φ, Ψm ⇒ Am and

G | B, Φ, Ψ1 ⇒ A1 | . . . | B, Φ, Ψm ⇒ Am.

The desired hypersequent follows by Lemma 8. Case I = (∃, l) is treated
analogously.

(3) I is a structural inference. If I is other than (com) and (cl�) the
proof is straightforward. The case in which I is (com) can be handled as in
[8].

I is (cl�). Suppose e.g. its premise is

G | Φ1, �Γ ⇒ p | . . . | Φn ⇒ p | pk1 , Ψ1 ⇒ A1 | . . . | pkm , Ψm ⇒ Am

Note that in the conclusion of I , �Γ can only belong to a component �Γ ⇒
in G. Let Φ = Φ1, . . . , Φn. By induction hypothesis we have

G | Φ, �Γ, Ψ1 ⇒ A1 | . . . | Φ, �Γ, Ψm ⇒ Am.

The desired hypersequent is obtained by applying (cl�) and (ec) m and
m − 1-times respectively.

Remark 9. In the proof of the above lemma for HIF outlined in [8], cases I =
(∨, l) and I = (∃, l) were handled introducing several new cuts. Therefore
Baaz and Zach’s elimination procedure of the rule (tt) does not work directly
for cut-free proofs.
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