
Under consideration for publication in Math. Struct. in Comp. Science

Towards an Algorithmic Construction of

Cut-Elimination Procedures

A G A T A C I A B A T T O N I1† and A L E X A N D E R L E I T S C H2†

1 Institut für Diskrete Mathematik und Geometrie, TU Wien Austria.
2 Institut für Computersprachen, TU Wien Austria.

Received 26 March 2009

We investigate cut-elimination in propositional substructural logics. The problem is to

decide whether a given calculus admits (reductive) cut-elimination. We show that, for

commutative single-conclusion sequent calculi containing generalized knotted structural

rules and arbitrary logical rules, the problem can be decided by resolution-based

methods. A general cut-elimination proof for these calculi is also provided.

1. Introduction

Gentzen sequent calculi have been the central tool in many proof-theoretical investiga-

tions and applications of logic in algebra and computer science. A key property of these

calculi is cut-elimination (Gentzen’s Hauptsatz), first established by Gentzen (1935) for

the sequent calculi LK and LJ for classical and intuitionistic first-order logic. The re-

moval of cuts corresponds to the elimination of intermediate statements (lemmas) from

proofs resulting in calculi in which proofs are analytic in the sense that all statements

in the proofs are subformulae of the result. Analytic proof calculi for logics are not only

an important theoretical tool, useful for understanding relationships between logics and

proving metalogical properties like consistency, decidability, admissibility of rules and

interpolation, but also the key to develop automated reasoning methods. These calculi

also provide an alternative representation of varieties of algebras (see e.g. (Galatos and

Ono 2006)) which can then be used to give syntactic proofs of algebraic properties, e.g.

amalgamation, for which (in particular cases) semantic methods are not known. Cut-

elimination is also a powerful tool to prove the completeness of a given analytic sequent

calculus with respect to a logic formalized using Hilbert style systems, as the cut rule

simulates modus ponens.

Cut-elimination proofs have been provided for very many sequent calculi, mainly on a

case by case basis (even when the arguments for a given calculus are similar to that

of another) and using heavy syntactic arguments usually written without filling in the

details. This renders the proof checking difficult and the whole process of eliminating

cuts rather opaque.

† This work was supported by FWF Projects P18731 and P17995.

A. Ciabattoni and A. Leitsch 2

In this paper we perform a resolution-based analysis of cut-elimination in knotted com-

mutative calculi. These are propositional single-conclusion sequent calculi containing ar-

bitrary logical rules (satisfying suitable conditions), the permutation rule and (possibly)

unary structural rules generalizing both the weakening and contraction rules in Gentzen’s

LJ. The considered structural rules are a generalization of the knotted structural rules

in (Hori, Ono and Schellinx 1994), whose (n, k) type is of the form: from Γ, A, . . . , A (n

times) → C infer Γ, A, . . . , A (k times)→ C, for all n ≥ 0 and k ≥ 1. The (n, k) rule is a

restricted form of weakening when n < k, and of contraction when k < n. In (Hori, Ono

and Schellinx 1994) extensions of intuitionistic linear logic without the exponential con-

nectives ILL and of its implicational fragment BCI with (n, k) have been investigated

from the syntactic and semantic point of view. It was shown that BCI extended with

the (n, k) rule admits cut-elimination if and only if k = 1. Moreover BCI extended with

both weakening and the (n + 1, n) rule admits cut-elimination if and only if n = 1 while

BCI extended with contraction and the (n, n+1), if and only if n = 0. A cut-elimination

proof working for these cases was also presented. Hori and other’s analysis applies only

to calculi consisting of one knotted structural rule and a fixed set of connectives: those

of ILL.

A larger class of single-conclusion calculi, containing arbitrary structural rules and logical

rules satisfying some restrictions, was considered in (Ciabattoni and Terui 2006), where

necessary and sufficient conditions for reductive cut-elimination were provided. Reduc-

tive cut-elimination is a naturally strengthened version of cut-elimination in presence of

axioms (see e.g. (Buss 1998)) which encompasses the ”standard” cut-elimination meth-

ods working by 1. shifting up cuts and 2. replace them with smaller cuts, when the cut

formula is introduced by logical rules in both premisses. The syntactic conditions defined

there (reductivity and weak substitutivity) formalize the steps 1. and 2. above. No decision

procedure to check whether a calculus admits reductive cut-elimination was defined in

(Ciabattoni and Terui 2006).

A decision procedure for cut-elimination is instead contained in (Avron and Lev 2005)

for multiple-conclusion calculi with all structural rules (weakening, exchange and con-

traction). Each calculus belonging to this class admits cut-elimination if and only if its

logical rules are coherent, i.e. for each set of rules introducing a connective, the formulae

in their premisse(s) from which the principal formula derives form an inconsistent set of

clauses. E.g, the set of clauses {⊢ α1; ⊢ α2; α1, α2 ⊢}, corresponding to the rules for con-

junction in LK is inconsistent. The analysis in (Avron and Lev 2005), based on semantic

techniques (non-deterministic matrices), strongly relies on the presence of all structural

rules. The same holds for Basin and Ganzinger (2001) that use ordered resolution to

prove cut-elimination and decide rule dependency in LK.

Miller and Pimentel (2002;2005) Extended Avron and Lev’s analysis to first-order sequent

calculi possibly without the weakening rules and/or the contraction rules. In particular,

they introduced a sufficient condition for any such a calculus to admit cut-elimination

together with an algorithm (based on the encoding of the considered calculi into a linear

logic based framework) to check them. Moreover, they provided a decision procedure for

derivability of rules in these calculi. Their analysis does not apply however to calculi

Towards an Algorithmic Construction of Cut-Elimination Procedures 3

with additional structural rules other than standard weakening and contraction, and in

particular fails in case of knotted structural rules (even of the form (n, 1) for some n > 2).

In this paper we provide tools for deciding whether a knotted commutative calculus ad-

mits reductive cut-elimination and for automating cut-elimination proofs in these calculi.

We define algorithms to check whether rules of knotted commutative calculi satisfy re-

ductivity and weak substitutivity – the necessary and sufficient conditions in Ciabattoni

and Terui (2006). To decide reductivity we develop a substructural resolution calculus

and make use of normalization of clauses and of subsumption, while for weak substitu-

tivity we use combinatorial arguments; the latter also serve to decide the dependency

(derivability) of structural rules, thus obtaining a method to transform knotted commu-

tative calculi which (by their form) do not admit reductive cut-elimination into others

which do. Finally we provide a constructive proof of reductive cut-elimination for knotted

commutative calculi satisfying reductivity and weak substitutivity.

The long range aim is to develop a uniform method to prove (or disprove) cut-elimination

for a wide class of substructural logics. The advantage of such a method would be a

twofold one: 1. it becomes easier to prove (or disprove) cut-elimination theorems for new

sequent type logic calculi and 2. the construction of the cut-elimination methods can be

automatized - provided the general method is computational.

2. Basic Notions

Let us indicate with ⋆1, ⋆2, ⋆3, . . . logical connectives of suitable arity. A formula A is

either a propositional variable or a compound formula of the form ⋆(A1, . . . , Am) where

A1, . . . , Am are formulae. Let Γ, ∆, Π, Σ, . . . stand for (possibly empty) multisets of for-

mulae and S, T for arbitrary sequents. To specify inference rules as rule schemata we will

use meta-variables (or formula-variables) α, β, . . ., standing for arbitrary formulae, and

(possibly empty) multisets Θ, Ξ, Φ, Ψ, Υ, X, Y, x, y, . . . of meta-variables. ǫ will always

denote the empty multiset (of formulae or meta-variables).

When n ≥ 0, Γn and xn denote Γ, . . . , Γ and x, . . . , x (n times), respectively.

Given a (meta)sequent Γ ⇒ ∆ (Θ ⇒ Ξ)

— Γ (Θ) is called antecedent, while ∆ (Ξ) consequent

— the (meta)sequent is said to be single-conclusion if its consequent contains at most

one formula (meta-variable).

— the (meta)sequent is called a clause if it does not contain logical connectives. A single-

conclusion clause is called Horn clause. A clause with at most two atoms is called

Krom clause.

A sequent calculus is single-conclusion if so are all its sequents.

Definition 2.1. A basic calculus is a single-conclusion sequent calculus that consists of

— axiom schema of identity α ⊢ α

— the (multiplicative version of the) cut rule (CUT) and the permutation (left) rule

Θ ⊢ α α Θ1 ⊢ Ξ

Θ1 Θ ⊢ Ξ
(CUT)

Θ β α Θ′ ⊢ Ξ

Θ α β Θ′ ⊢ Ξ
(e, l)

A. Ciabattoni and A. Leitsch 4

where Θ, Θ1, Θ′ and Ξ are arbitrary (thus (CUT) and (e, l) actually consist of count-

able sets of inference rules)

— possibly weakening (w, l) and/or generalized knotted structural rules

Θ′ ⊢ Ξ′

Θ′ Θ′′ ⊢ Ξ′
(w, l)

Θ αn1
1 . . . α

nj

j ⊢ Ξ

Θ αk1
1 . . . α

kj

j ⊢ Ξ
((n1, k1), . . . (nj , kj))

for any k1, . . . kj , n1, . . . , nj ≥ 1, Θ, Θ′, Ξ, Ξ′ 6= ǫ, l ≥ 1 and Ξ 6∈ Θ

— for each logical connective ⋆, left logical rules {(⋆, l)j}j∈Λ1 and right logical rules

{(⋆, r)k}k∈Λ2 (Λ1, Λ2 can be empty):

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Θ ⋆ (~α) ⇒ Ξ
(⋆, l)j

Υ1 ⇒ Ψ1 · · · Υn◦ ⇒ Ψn◦

Θ ⇒ ⋆(~α)
(⋆, r)k

(where ~α ≡ α1, . . . , αl and n, n◦ ≥ 0) satisfying the following conditions:

(log0) Any meta-variable in Υ1, . . . , Υn(◦) (resp. Ψ1, . . . , Ψn(◦)) is either an αi, with

i = 1, . . . l, or it does occur in Θ (resp. Ξ).

(log1) Each meta-variable occurs at most once in Θ.

Instances of the identity axiom schema and rules are obtained by substituting arbitrary

formulae for meta-variables.

In logical rules the meta-variables (formulae) of the form αi are called active meta-

variables (active formulae) and the introduced ⋆(~α) (or the formula of the form ⋆(A1, . . . , Al))

is called principal formula, the remaining meta-variables (formulae) are called contexts.

In the generalized knotted structural rules the meta-variable (or their instances) in Θ

are called contexts. Moreover, the two occurrences of the formula instantiating the meta-

variable α in (CUT) are called left and right cut formulae.

Remark: Henceforth, we will identify (meta)sequents differing only in the order of (meta)

formulas in their antecedents and we will therefore not consider explicitly anymore the

permutation rule (e, l).

To formalize the class of calculi we will deal with, let us define the closure under cuts of

two (meta)sequents. Let S, T be sequents of the form S = Γ ⊢ A and T = Am, Π ⊢ Λ.

Then we define

Cut0
l (S, T) := {T },

Cut i+1
l (S, T) := Cut i

l(S, T) ∪ {Am−i−1, Γi+1, Π ⊢ Λ},

Cut∗l (S, T) := Cutm
l (S, T)

We may cut also from the other side. In this case we define

Cut i
r(S, T) := Cut i

l(T, S), i = 0, 1

Cut∗r(S, T) := Cut1
l (T, S).

The definition above also applies to meta-sequents.

Definition 2.2. Let R be a set of unary structural rules and ρ ∈ R. We define S →ρ S′

Towards an Algorithmic Construction of Cut-Elimination Procedures 5

if S′ can be obtained from S by one application of ρ. We define S →R S′ if there exists

a ρ ∈ R s.t. S →ρ S′. →∗
ρ defines the reflexive transitive closure of →ρ, →∗

R that of →R.

Definition 2.3. A knotted commutative calculus K is a basic calculus in which each

instance of a logical rule ρ with premisses S1, . . . , Sn, conclusion S and principal formula

A, satisfies the additional conditions: for each single conclusion sequent T

(log2) and each S′ ∈ Cut∗l (T, S) such that the principal formula A ∈ S′ there are

S′
1 ∈ Cut∗l (T, S1), . . . , S′

n ∈ Cut∗l (T, Sn) such that S′
1, . . . , S

′
n →ρ S′

(log3) and each S′ ∈ Cut∗r(T, S) such that the principal formula A ∈ S′ there are

S′
1 ∈ Cut∗r(T, S1), . . . , S′

n ∈ Cut∗r(T, Sn) such that S′
1, . . . , S

′
n →ρ S′

Remark: Condition (log0) ensures that logical rules satisfy the subformula property and

do not allow meta-variables (that are not active meta-variables) to move from antecedent

to consequent of sequents and vice versa. Conditions (log2) and (log3) ensure that logi-

cal rules allow any (CUT) on a context formula be replaced by (CUT) on its premisse(s)

(and one application of the rule).

Definition 2.4. Let R the set of structural rules of a knotted commutative calculus.

Each ρ ∈ R is called regular and R is called regular set. If R contains (w, l) then it is

called w-regular, otherwise wf-regular (weakening free regular).

Notice that each generalized knotted structural rule ((n1, k1), . . . (nj , kj)) can be simu-

lated by j knotted structural rules (ni, ki), for i = 1, . . . , j

Example 2.1 (Knotted commutative calculi). Many well known sequent calculi

fit into our framework. Among them, propositional LJ (Gentzen 1935) and the calculi

investigated in (Hori, Ono and Schellinx 1994), that are intuitionistic linear logic without

the exponentials ILL and its implicational fragment extended with the knotted structural

rules of the form (n, k) and both (n, k) and (k, n). Notice that (2, 1) is the contraction

rule left in LJ, (1, 2) is expansion (see (van Benthem 1991)) and (n + 1, n) the so-called

n-contraction rule. The latter, investigated in (Prijatelj 1996), is sound for the logic of

 Lukasiewicz with n truth-values.

Further examples of knotted commutative calculi are, e.g.

— the calculus LBC- of Baaz, Ciabattoni and Montagna (2004) whose axioms and rules

are exactly those of ILL but for the right rule of the ∧ connective that, in the case

of LBC-, is splitted into the following rules:

Θ ⊢ α1 Θ′ α1 ⊢ α2

Θ Θ′ ⊢ α1 ∧ α2
(∧, r)1

Θ ⊢ α2 Θ′ α2 ⊢ α1

Θ Θ′ ⊢ α1 ∧ α2
(∧, r)2

— the calculus K1 consisting of the following rules

Θ ⊢ α1 Θ ⊢ α2

Θ ⊢ α1∧̄α2
(∧̄, r)

Θ α1 α2 ⊢ Ξ

Θ α1∧̄α2 ⊢ Ξ
(∧̄, l)

A. Ciabattoni and A. Leitsch 6

Definition 2.5. canonic ⋆ cut-derivation schema ϕ:

Θ1 ⊢ Ξ1 . . . Θn ⊢ Ξn

γ ⊢ ⋆(ᾱ)
(⋆, r)j

Φ1 ⊢ Ξ′
1 . . . Φm ⊢ Ξ′

m

⋆(ᾱ) γ′ ⊢ δ
(⋆, l)i

γ γ′ ⊢ δ
(CUT)

The set {Θi ⊢ Ξi, Φj ⊢ Ξ′
j} for i = 1, . . . , n and j = 1, . . . , m is called the reduction

set of ϕ. A canonic ⋆ cut-derivation ϕ′ corresponding to a ⋆ cut-derivation schema ϕ is

an instance of the schema where the (instances of) Θi ⊢ Ξi, Φj ⊢ Ξ′
j are replaced by

derivations.

2.1. Conditions for (reductive) cut-elimination

For a large class of propositional single-conclusion sequent calculi Ciabattoni and Terui

(2006) provide a characterization of the cut-elimination methods that proceed following

the ”standard” steps: (1) locate canonic cut-derivations and replace them by derivations

with ”smaller” cuts and (2) shift inferences to achieve canonic cut-derivations. (A different

cut-elimination method is e.g. CERES, see (Baaz and Leitsch 2000).)

Necessary and sufficient conditions have been defined for these calculi to admit reductive

cut-elimination – a naturally strengthened version of cut-elimination in presence of ax-

ioms (see e.g. (Buss 1998)) which in addition aims to shift upward non-eliminable cuts as

much as possible. The defined conditions (reductivity and weak substitutivity) are recalled

below and applied to knotted commutative calculi. Intuitively, logical rules are reductive

if they allow the replacement of cuts by “smaller” cuts (this formalizes the step 1. above),

and a structural rule is weakly substitutive when any cut can be permuted upward (cf.

step 2.). Note that logical rules of knotted commutative calculi are weakly substitutive

by definition.

Let K be a knotted commutative calculus and S a set of sequents (considered as non-

logical axioms). A derivation in K of a sequent S0 from S is a labeled tree whose root is

labeled by S0, the leaves are labeled by an instance of an identity axiom, by an instance of

a logical K-rule without premisses or by a sequent in S, and the inner nodes are labeled

in accordance with the instances of the K-rules. A derivation in K of a meta-sequent σ

from a set of meta-sequents is defined similarly. When there exists such a derivation, we

say that S0 (or σ) is derivable from S in K.

Definition 2.6. An occurrence of (CUT) in a derivation is said to be reducible if one of

the following holds:

(i) Both cut formulae are the principal formulae of logical rules.

(ii) At least one of the two cut formulae is a context formula of a rule other than (CUT)

or an identity axiom.

We say that a knotted commutative sequent calculus K admits reductive cut-elimination

if whenever a sequent S0 is derivable in K from a set S of non-logical axioms, S0 has a

derivation in K from S without any reducible cuts.

Towards an Algorithmic Construction of Cut-Elimination Procedures 7

Notice that in a derivation without non-logical axioms, uppermost cuts are always re-

ducible. Hence reductive cut-elimination implies the usual cut-elimination.

Definition 2.7. Let K be a knotted commutative sequent calculus, and (⋆, l)i and (⋆, r)j

rules of K introducing a connective ⋆ on the left and right respectively. These rules are

pairwise reductive in K if for each canonic ⋆ cut-derivation schema Φ, there exists a

derivation µ in K of its conclusion γ γ′ ⊢ δ (see Def. 2.5) from the reduction set of Φ

using no logical rules and all cut-formulae appearing in µ are the active meta-variables

of ⋆(ᾱ). The rules for ⋆ are reductive in K, if each left and right rule for ⋆ is pairwise

reductive.

Remark: Reductivity corresponds to the principal formula condition in (Restall 1999)

and to the coherence criterion of Miller and Pimentel (2002;2005).

Proposition 2.1. If rules for ⋆ are reductive in K, then the end sequent of any canonic

⋆ cut-derivation Φ′ can be derived in K from the instances of the reduction set of Φ using

no logical rules and all cut-formulae appearing in the derivation are among the active

formulas instantiating ⋆(ᾱ).

Proof. The required derivation is an instance of the derivation µ of Def. 2.7.

Definition 2.8. Let K be any knotted commutative calculus with structural rules R.

ρ ∈ R is said to be weakly substitutive in K if for all sequents S, S1, S2 ∈ K s.t. S1 →ρ S2

then (∗) for all S′ ∈ Cut∗c(S, S2), c ∈ {l, r}, there exists an S′′ ∈ Cut∗c(S, S1) s.t. S′′ →∗
R

S′. R is said to be weakly substitutive if so are all ρ ∈ R.

Proposition 2.2. Let K be a knotted commutative calculus with structural rules R.

ρ ∈ R is weakly substitutive if and only if for all S, S1, S2 ∈ K s.t. S1 →ρ S2,

(∗)′ for all S′ ∈ Cut∗l (S, S2) there exists an S′′ ∈ Cut∗l (S, S1) s.t. S′′ →∗
R S′

Proof. Trivially follows by the presence of the “passive” contexts Θ or Θ′ in the consid-

ered structural rules (Definition 2.1).

Remark: Weak substitutivity was equivalently defined by Ciabattoni and Terui (2006)

using rule schemas instead of rule instances.

Theorem 2.1. A knotted commutative calculus admits reductive cut-elimination if and

only if its logical rules are reductive and its structural rules are weakly substitutive.

Proof. Follows by (Ciabattoni and Terui 2006).

Given any sequent calculus K ′. It is easy to see whether K ′ belongs to our framework.

This can be checked by eye for structural rules and the conditions (log0) and (log1)

of logical rules. Moreover, conditions (log2) and (log3) for logical rules of K ′ can be

checked in finite time since Cut∗l (T, S) and Cut∗l (T, Si), i = 1, . . . , n, are finite sets.

A. Ciabattoni and A. Leitsch 8

3. On Regular Sets

Consider the following problem: Let K be a single conclusion calculus and R = {ρ1, . . . , ρn}

a set of unary (i.e. one premiss) structural rules of K. Is a unary structural rule ρ depen-

dent on (or, equivalently, derivable from) R? More formally: the unary rule ρ depends on

R if for any S1 and S2 s.t. S1 →ρ S2 we have S1 →∗
R S2.

Since rules in R can be formulated as Horn/Krom clauses, this problem corresponds to

the problem whether a set of Krom clauses S implies another Krom clause. The latter

was shown to be undecidable by Schmidt-Schauss (1988) when S contains at least two

elements.

Using combinatorial arguments, we prove below that when K is a knotted commutative

calculus with regular set R and ρ any regular rule, the problem above is decidable. Using

this result we define a procedure to decide whether a regular set is weakly substitutive.

A characterization of weakly substitutive regular sets is also provided.

Definition 3.1. Two regular sets R and R′ are equivalent (in symbols R ∼ R′) if each

ρ ∈ R depends on R′ and each ρ′ ∈ R′ depends on R.

Our analysis proceeds by cases according to whether the weakening rule belongs to the

regular set R or it does not.

3.1. W-regular systems

Let us assume that R = {(w, l), ρi}, for i = 1, . . . , n, where ρi is

xkiy ⊢ z

xliy ⊢ z
ρi

Lemma 3.1. Let w.l.o.g. be l1 = min{l1, . . . , ln}. Then a knotted structural rule (k, l),

k 6= l, is derivable from R iff l ≥ l1.

Proof. Consider R. Let p1 = k1 − l1. We may assume that ki > li for all i, otherwise ρi

is the identity or an instance of weakening.

l ≥ l1:

Then there exists a number r s.t. l + r ∗ p1 > k. We define the derivation

xky ⊢ z

xl+r∗p1y ⊢ z
w: l

xly ⊢ z
ρ∗1

As a consequence all rules ρ2, . . . , ρn are themselves dependent on ρ1. If l1 = 1 then

ordinary contraction can be simulated and then all unary structural rules!

l < l1:

By the presence of weakening we can derive xkiy ⊢ z from xliy ⊢ z as well. So the rules

can be represented by an equational theory

E = {xk1 = xl1 , . . . , xkn = xln ,

xy = yx, x(yz) = (xy)z, xǫ = x, ǫx = x}.

Towards an Algorithmic Construction of Cut-Elimination Procedures 9

There exists a model of E with the domain D = {ǫ, d1, . . . , dl1} s.t. di = di for i < l1
and di = dl1 for i ≥ l1. In this interpretation the equation dl = dk does not hold. In

particular xly = xky is falsified in this model of E . Clearly the derivability of xly from

xky implies the equation xly = xky; therefore the rule is not derivable.

Proposition 3.1. Let ρ be a unary rule of the form

x
p1

1 . . . xpr
r y∗ ⊢ z′

xm1
1 . . . xmr

r y∗z∗ ⊢ z′

where y∗ denotes either y or ǫ (the same for z∗). Then it is decidable whether ρ depends

on R.

Proof. Clearly ρ depends on R iff

(+) min{m1, . . . , mr} ≥ l1.

Indeed, if (+) holds then we simulate the rule r-times as in Lemma 3.1; otherwise, for

mi < li we create a rule instance where all xj are set to ǫ for j 6= i. Then the result

follows from Lemma 3.1.

Remark: In the proposition’s claim we do not ask for the existence of an i = {1, . . . , r}

such that pi = mi and hence ρ might not be a general knotted structural rule.

3.2. Wf-regular systems

Let us assume that R = {ρi}, for i = 1, . . . , n, where each ρi is (ki, li). W.l.o.g. we can

assume that ki 6= li for all i ∈ {1, . . . , n}, otherwise the corresponding rule is redundant.

We distinguish 3 cases:

(1) li < ki for all i = 1, . . . , n (that is all the rules are contractive),

(2) li > ki for all i = 1, . . . , n,

(3) there exist i, j < n and i 6= j s.t. li < ki and lj > kj .

The decidability of rule dependency in cases (1) and (2) is easy: in case (1) only finitely

many derivations are possible on any sequent; in case (2) we observe the following feature:

Let ρ be the rule

x
q1

1 . . . xqm
m ⊢ y

x
p1

1 . . . xpm
m ⊢ y

First of all note that any rule with different sets of meta-variables on the left side in

premiss and conclusion is not derivable: clearly no meta-variable may vanish, and there

is no weakening producing additional ones. Thus we may indeed restrict our analysis to

rules ρ of the form above. According to the structure of rules in case (2), the sum of

powers of the xi in sequents are strictly increasing with every rule application. So let us

assume we have derived

s: xr1
1 . . . xrm

m ⊢ y

A. Ciabattoni and A. Leitsch 10

from x
p1

1 . . . xpm
m ⊢ y s.t.

n∑

i=1

ri >

n∑

i=1

qi.

Then s is a dead end, as there is no way to reach the rule consequent x
q1

1 . . . xqm
m ⊢ y from

s, as the sum of the powers increases strictly. On the other hand there are only finitely

many derivations ending in sequents xr1
1 . . . xrm

m ⊢ y with

n∑

i=1

ri ≤

n∑

i=1

qi.

So rule dependency is decidable also in case (2).

It remains to investigate case (3):

Definition 3.2. Let Q: {q1, . . . , qn} be a set of integers s.t. qi 6= 0 for all i. We call a

number r representable by Q if there exist non-negative integers k1, . . . , kn s.t.

r = k1 ∗ q1 + . . . + kn ∗ qn.

Proposition 3.2. Let R be any regular system of rules fulfilling restriction (3) above.

Then a rule of the form

xs1
1 . . . xsm

m ⊢ y

xr1
1 . . . xrm

m ⊢ y

is derivable from R iff ri − si = 0 mod q for all i = 1, . . . , m and a number q depending

on R.

Proof. Let R = {ρ1, . . . , ρn} where each ρi is a knotted structural rule of the form (ki, li).

Assume w.l.o.g. that l1 < k1 and l2 > k2, and let q be the greatest common divisor of

the set Q: {q1, . . . , qn} for qi = li−ki (i = 1, . . . , n). Then, by elementary number theory,

a number r is representable by {q1, . . . , qn} iff r = 0 mod q. Note that, if all qi were

positive or all negative, then the representability would hold only above a certain bound.

But, due to the presence of different signs, every r with the appropriate modularity is

representable.

Now let σ be a generalized knotted structural rule ((s1, r1), . . . (sm, rm)). Then σ is a

derivable rule iff ri − si = 0 mod q. Due to the existence of contexts in the rules of R,

we can restrict the problem of derivability to simpler rules of the form

xs ⊢ y

xr ⊢ y

Obviously the conclusion is derivable from the premiss via the rules in R iff r = s + k1 ∗

q1 + . . .+kn ∗qn for non-negative numbers ki. But this is the case iff r−s is representable

by Q. We have seen above that r − s is representable by Q iff r − s = 0 mod q.

Example 3.1. Let R = {(3, 1), (1, 5)}. Then Q = {−2, 4} and gcd({−2, 4}) = 2. So the

Towards an Algorithmic Construction of Cut-Elimination Procedures 11

rule (1, 3) is derivable from R (note that 2 = 0 mod 2) by

xy ⊢ z

x5y ⊢ z
(1, 5)

x3y ⊢ z
(3, 1)

On the other hand the rule (6, 1) is not derivable from R, as 5 6= 0 mod 2.

For R = {(1, 3), (6, 1)} we obtain gcd({2,−5}) = 1. Therefore all rules (n, k), with n ≥ k

can be simulated. We show the simulation of ordinary left-contraction:

x2y ⊢ z

x4y ⊢ z
(1, 3)

x6y ⊢ z
(1, 3)

xy ⊢ z
(6, 1)

Theorem 3.1. Let R be a set of structural rules of a knotted commutative calculus.

Then rule dependency from R is decidable.

Proof. Follows from Sections 3.1 and 3.2.

As a consequence of this result follows a decision procedure for shifting up (possibly

multiple) cuts over regular rules (cf. condition (∗)′ in Proposition 2.2). Indeed

Theorem 3.2. Let K be a knotted commutative calculus whose set of structural rules is

R and let ρ ∈ R. Let S, S1, S2 be sequents in K and S1 →ρ S2. For each S′ ∈ Cut∗l (S, S2)

one can decide whether there exists S′′ ∈ Cut∗l (S, S1) such that S′′ →∗
R S′.

Proof. First notice that Cut∗l (S, S1) is a finite set. The claim follows by Theorem 3.1.

3.3. Deciding Weak Substitutivity

Theorem 3.2 ensures that for each regular rule ρ and sequent S condition (∗)′ in Proposi-

tion 2.2 can be checked. However, to conclude that ρ is weakly substitutive, such checking

should be done for all instances of the rule and all sequents S ∈ K. This “brute force”

approach results in a semi-decision procedure that eventually finds out if ρ is not weakly

substitutive and does not terminate otherwise. To avoid checking possibly infinite in-

stances of regular rules, we introduce below the notion of most general instance of a

generalized knotted structural rule ρ consisting in a rule schema σ1 →ρ σ2 such that,

(⋆) for each instance S1 →ρ S2 and sequent S, for each S′ ∈ Cut∗l (S, S2) obtained via

cut(s) with (at least a) cut-formula not in the context, there exists σ′ ∈ Cut∗l (σ, σ2)

where σ is a meta-sequent and S1, S2, S and S′ are obtained by suitably replacing in

σ, σ1, σ2, σ
′ meta-variables with formulae, where common meta-variables in σ, σ1, σ2, σ

′

are substituted consistently.

Let ρ be the rule (m, l), and σ a meta-sequent w ⊢ x. E.g. the rule schema

xmy ⊢ z

xly ⊢ z
(m, l)

A. Ciabattoni and A. Leitsch 12

does not satisfy condition (⋆). For, let S1 = Am+1 Γ ⊢ ∆, S2 = Al+1 Γ ⊢ ∆, S = Σ ⊢ A

and S′ = Σl+1 Γ ⊢ ∆.

Definition 3.3. The most general instance of ρ = (m, l) is obtained by setting σ1 =

xm+Ky ⊢ z and σ2 = xl+Ky ⊢ z where σ1, σ2 represent a sequence of meta-sequents for

K ranging over IN. Corresponding to σ = w ⊢ x, σ1, σ2 we define

τ1 : cuts(σ, σ1) = wIxm+K−Iy ⊢ z, I ≤ m + K,

τ2 : cuts(σ, σ2) = wJxl+K−Jy ⊢ z, J ≤ l + K.

cuts(σ, σ1) and cuts(σ, σ2) are schemata representing sequences in CUT ∗
l (σ, σ1) and

CUT ∗
l (σ, σ2), where m, l are fixed and I, J,K range over IN with the indicated con-

straints. We call cuts(σ, σ1) the first and cuts(σ, σ2) the second cut-schema w.r.t. ρ. An

instance of the schema is a (meta-) sequent obtained by instantiating I, J,K.

Definition 3.4. Let R be a regular set and τ1, τ2 be two meta-sequents. We define

τ1 ≤R τ2 if for every instance τ ′
2 of τ2 there exists an instance τ ′

1 of τ1 s.t. τ ′
1 →∗

R τ ′
2 (where

the common meta-variables of τ1, τ2 have to be substituted consistently). Otherwise, we

call τ ′
2 a counterexample schema and write τ1 6≤R τ2.

Proposition 3.3. Let ρ be a rule in R. Then ρ is weakly substitutive iff cuts(σ, σ1) ≤R

cuts(σ, σ2).

Proof. By Prop. 2.2 and the presence of Θ (see Def. 2.1), ρ is weakly substitutive iff for

all S, S1, S2 ∈ K s.t. S1 →ρ S2, for each S′ ∈ Cut∗l (S, S2) obtained via cut(s) with (at

least a) cut-formula not in the context, there exists an S′′ ∈ Cut∗l (S, S1) s.t. S′′ →∗
R S′.

Each instance of ρ has the form Am+p Γ ⊢ ∆ →ρ Al+p Γ, for some p ∈ IN. Hence let S be

Σ ⊢ A, each such S′ and S′′ have the form Σi Al+p−i Γ ⊢ ∆ and Σj Al+p−j Γ ⊢ ∆ for some

i, j ∈ IN. The claim then follows by replacing K with p in cuts(σ, σ1) and cuts(σ, σ2).

To find out which regular rules are “good” for reductive cut-elimination (i.e. weakly

substitutive) and which are “bad”, we distinguish two cases according to whether the

regular system R contains weakening or it does not. We start considering the latter case

that requires an analysis of the subcases (1)-(3) identified in Section 3.2.

Every regular set of rules can be transformed to an equivalent set of rules in “minimal

form”. These minimal representations will be needed in the proofs of the propositions

characterizing weak substitutivity.

Definition 3.5. We define an ordering on rules of type (n, m): let ρ1 = (n1, m1) and

ρ2 = (n2, m2) We say that ρ1 is smaller than ρ2 (notation ρ1 < ρ2) if the following two

conditions hold:

(a) n1 ≤ n2 and m1 ≤ m2, and

(b) either n1 < m1 or n2 < m2.

Let R′ be a finite set of rules. We say that R′
< ρ if for all ρ′ ∈ R′: ρ′ < ρ.

Definition 3.6. Let R be a regular system.

Towards an Algorithmic Construction of Cut-Elimination Procedures 13

— R is called minimal if, for all finite sets of rules R′ which are derivable from R, there

exists no ρ ∈ R s.t. R′
< ρ and ρ is derivable from R′.

— R is called normal contractive if all structural rules (but (e, l)) are of the form (m1, 1),

. . . (mn, 1).

Note that any regular system R can be algorithmically transformed into an equivalent

minimal system R0. Indeed, for all ρ ∈ R, the set of rules R′ with R′
< ρ is finite, and

the derivability of rules is decidable by Theorem 3.1.

Example 3.2. Let R = {(w, l), (4, 1)}. Then R is not minimal as (2, 1) is derivable from

R, (2, 1) < (4, 1) and (4, 1) is derivable from (2, 1). The corresponding minimal system

R0 is {(w, l), (2, 1)}.

Henceforth we will only consider minimal regular sets.

Proposition 3.4 (type-1-bad). Let R be a system of type (1) with the following

properties:

(a) There exists a rule (m, l) ∈ R, with l > 1.

(b)R is minimal.

(c) No rule (r, s) with r < m and s > 1 is derivable in R

Let σ1 = xm+Ky ⊢ z, σ2 = xl+Ky ⊢ z, σ = w ⊢ x, and

τ1 = cuts(σ, σ1) = wIxm+K−Iy ⊢ z, I ≤ m + K,

τ2 = cuts(σ, σ2) = wJxl+K−Jy ⊢ z, J ≤ l + K.

(see Definition 3.3). Then τ1 6≤R τ2.

Proof. Let σ, σ1, σ2 as above. We instantiate τ2 to τ ′
2 by setting K = 0 and J = l − 1.

Then

τ ′
2 = wl−1xy ⊢ z.

We have to consider the instance

τ ′ = τ1{K → 0} = wIxm−Iy ⊢ z

We prove that τ ′ 6≤R τ ′
2 and then τ ′

2 is a counterexample schema.

Let (m, l) ∈ R with l > 1 (such a rule exists by (a)). We distinguish two cases:

(1) l = 2: Then τ ′
2 = wxy ⊢ z. As R contains no weakening, I > 0 and I < m are

necessary constraints for the substitution of I.

If I = 1 then necessarily xm−1 →∗
R x and, therefore (m − 1, 1) would be a derivable

rule. But (m−1, 1) < (m, 2) and (m, 2) is derivable from (m−1, 1) contradicting (b).

So let I = i for i > 1. Then necessarily wi →∗
R w and xm−i →∗

R x. But this is only

possible if the rules (i, 1) and (m− i, 1) are derivable; But for R′ = {(i, 1), (m− i, 1)}

we have R′
< (m, 2) and (m, 2) is derivable from R′; again this contradicts (b).

(2) l > 2. We check whether there is a i s.t.

Si: wixm−iy ⊢ z →∗
R wl−1xy ⊢ z.

First of all i ≥ l − 1 as R is of type (1).

A. Ciabattoni and A. Leitsch 14

So let i = l − 1. Then Sl−1 = wl−1xm−l+1y ⊢ z. Sl−1 →∗
R wl−1xy ⊢ z requires

xm−l+1 →∗
R x. But this implies that ρ′: (m− l+1, 1) is derivable in R. But ρ′ < (m, l)

and (m, l) is derivable from ρ′, contradicting (b).

Assume i > l − 1. Then Si →
∗
R wl−1xy ⊢ z requires wi →∗

R wl−1. But then the rule

(i, l − 1) is a derivable rule with l − 1 > 1; as i < m this contradicts (c).

Proposition 3.5 (type-1-good). Let R be a normal contractive system of type (1).

Let ρ ∈ R and τ1, τ2 be the cut-schemata corresponding to ρ. Then τ1 ≤R τ2.

Proof. ρ must be of the form (m, 1). Let σ, σ1, σ2, τ1, τ2 as in Definition 3.3 (with l = 1).

Then for every instance {J → i,K → k} we get

wixm+k−iy ⊢ z →∗
R wix1+k−iy ⊢ z

for i ≤ k (setting I to i), and for i = k + 1 we substitute I by m + k and so obtain

wm+ky ⊢ z, but

wm+ky ⊢ z →∗
R wk+1y ⊢ z.

Proposition 3.6 (type-2-bad). Let R be a minimal system of type (2), ρ ∈ R where

ρ = (m, l) s.t. m = min{k | (k, k′) ∈ R}, m < l and no rule (r, s) with r < m is derivable

in R. Let τ1, τ2 be the cut-schemata corresponding to ρ. Then τ1 6≤R τ2.

Proof. Let σ, σ1, σ1, τ1, τ2 as in Definition 3.3.

(1) m = 1. We instantiate τ2 by {K → 0, J → 1}. The corresponding instance is

S′: wxl−1y ⊢ z (note that l > 1). The only possible instances of τ1 under K = 0

are

xy ⊢ z, wy ⊢ z

Let S be one of these two sequents. Then, clearly S 6→∗
R S′ ((w, l) 6∈ R).

(2) m > 1. Then as S′ = wxl−1y ⊢ z, we must instantiate I to 1 (there is no contractive

rule in R). But then

S′′: τ1{K → 0, J → 1} = wxm−1y ⊢ z.

If S′′ →∗
R S′ then (m − 1, l − 1) must be derivable in R; but (m − 1, l − 1) < (m, l)

and (m, l) is derivable from (m − 1, l − 1), contradicting the minimality of R.

Proposition 3.7 (type-3-bad). Let R be a minimal system of type (3). Let ρ ∈ R s.t.

ρ = (1, k) for k > 1. Let τ1, τ2 be the cut-schemata corresponding to ρ. Then τ1 6≤R τ2.

Proof. Like in Proposition 3.6 (type-2-bad) we select the instance

S′: wxk−1y ⊢ z

from the schema τ2. Again τ1 gives only

S1: xy ⊢ z, S2: wy ⊢ z

Towards an Algorithmic Construction of Cut-Elimination Procedures 15

Clearly Si 6→
∗
R S′ for i = 1, 2.

Corollary 3.1. A wf-regular set R is weakly substitutive if and only if R is normal

contractive.

Proof. Note that every regular system R of type (1) can be transformed to R′ s.t. R ∼ R′

and either R′ is normal contractive or R′ satisfies the properties (a)-(c) of Proposition

3.4. Moreover if (m, l) ∈ R for some m < l then the rule (1, l − m + 1) is derivable in

R by the existence of a characteristic number q (Proposition 3.2). Hence we can always

assume that a system of type (3) contains a rule (1, k) for k > 1. The claim then follows

by Propositions 3.4 - 3.7.

We consider now the case (w, l) ∈ R.

Proposition 3.8. A w-regular set R is weakly substitutive if and only if (a) R = {(w, l)}

or (b) R contains at least a rule (n, 1), with n > 1.

Proof. (=⇒) Note that in case (b) by Lemma 3.1 ordinary contraction can be derived.

(⇐=) Assume that R does not contain any (n, 1) rule, with n > 1. By Lemma 3.1 the

rules in R are interderivable with those in R′ = {(w, l), (l + 1, l), for some l > 1. In R′

no rule (k + 1, k) for k < l is derivable. It is not hard to see that (l + 1, l) is not weakly

substitutive. Indeed, let

τ1 : cuts(σ, σ1) = wIxl+1+K−Iy ⊢ z, I ≤ (l + 1) + K,

τ2 : cuts(σ, σ2) = wJxl+K−Jy ⊢ z, J ≤ l + K.

Select the instance S′ = wxl−1y ⊢ z by instantiating {K → 0, J → 1} in τ2. Then from

K → 0 in τ1 we obtain S = wIx(l+1)−Iy ⊢ z from τ1. There is no instance S′′ofS such

that S′′ →∗
R S′. Indeed I → 1 is necessary as wi+1 6→∗

R w in R′. But with I = 1 we

obtain wxly ⊢ z and xl 6→∗
R xl−1 and hence S′′ 6→∗

R S′.

Remark: Being weakly substitutivity a necessary condition for reductive cut-elimination

in knotted commutative calculi (Proposition 2.1), if a regular set cannot be transformed

into an equivalent one that is either normal contractive or of the form (a) or (b) (see

Theorem 3.8) the corresponding calculus does not admit reductive cut-elimination, no

matter which are its logical rules. However, this only says that in such a calculus cuts

cannot be removed following the steps 1. and 2. described in Section 2.1 and not that

applications of (CUT) cannot be removed at all. For instance, consider a calculus whose

only structural rule (beside, of course, (e, l)) is (3, 2) and whose logical rules are

⊢
Θ α1 ⋆ α2 ⊢ Ξ

(⋆, l) ⊢
Θ ⊢ α1 ⋆ α2

(⋆, r)

The only sequents provable in this calculus are instances of the identity axiom schema.

Hence (CUT) in this calculus is trivially admissible, even though its structural rules are

not weakly substitutive.

Note that the counterexample schemas in the propositions above can be turned into

counterexamples to cut admissibility along the line of Hori, Ono and Schellinx (1994), if

the calculus contains e.g. the implication connective of ILL.

A. Ciabattoni and A. Leitsch 16

4. Deciding Reductivity

A knotted commutative calculus K admits reductive cut-elimination if and only if (a) its

structural rules are weakly substitutive and (b) its logical rules are reductive. Given K,

a decision procedure for establishing whether (a) holds is contained in the previous sec-

tion. Here we investigate knotted commutative calculi whose structural rules are weakly

substitutive and provide algorithms to decide whether (b) holds, thus deciding the ad-

missibility of reductive cut-elimination for knotted commutative calculi. Our approach is

based on substructural (propositional) resolution.

Given a regular set R, we define a structural resolution calculus based on an operator

RR.

Definition 4.1. Let S1: X ⊢ α and S2 = α, Y ⊢ z be Horn clauses, where α is a formula

variable and X, Y, z multisets of formula variables (z contains at most one element). Then

the clause

XY ⊢ z

is called the resolvent of S1, S2 and is denoted by Res(S1, S2).

Definition 4.2. Let R be a system of unary structural rules and S be a set of clauses.

Then we define

XR(S) = {S′ | there exists an S ∈ S s.t. S →R S′},

Res(S) =
⋃

{Res(S1, S2) | S1, S2 ∈ S},

RR(S) = S ∪ XR(S) ∪Res(S).

The deductive closure under RR is defined by

R0
R(S) = S,

Ri+1
R (S) = RR(Ri

R(S)),

R∗
R(S) =

⋃

i∈IN

Ri
R(S).

Remark: If S is a set of clauses R∗
R(S) is the set of all clauses derivable by cut (on formula

variables) and the structural rules of R.

We distinguish two cases according to whether the weakening rule is in R or it is not.

4.1. (w, l) 6∈ R

Let R be a normal contractive system (otherwise, by Corollary 3.1 R is not weakly

substitutive). As the permutation rules are always available we define two clauses as

equal if they are permutation variants of each other.

Definition 4.3. Let C1, C2 be Horn clauses where C1 = U ⊢ α and C2 = α, V ⊢ γ.

Then we write the resolvent

C: U, V ⊢ γ

Towards an Algorithmic Construction of Cut-Elimination Procedures 17

of C1, C2 as C1C2. We say that C is the product of C1, C2. C1 is called the active clause

of the product, C2 the passive one. If C1, C2 have no resolvent with C1 as active clause

then we say that C1C2 is undefined.

Remark: The multiplication defined above is neither associative nor commutative: If

C1 = β ⊢ α and C2 = α, α ⊢ γ. Then C1(C1C2) is defined and is β, β ⊢ γ, but (C1C1)C2

is undefined. Clearly C1C2 is defined, but C2C1 is not.

On the other hand C1C2 is unique if it exists; that justifies the notation as binary function.

Though the product is not associative it is semi-associative in the following sense:

Lemma 4.1. Let C1, C2, C3 Horn clauses s.t. (C1C2)C3 is defined. Then

(C1C2)C3 = C1(C2C3).

Proof. The product (C1C2)C3 is only defined if the clauses are of the following form

C1 = U ⊢ α,

C2 = α, V ⊢ β,

C3 = β, W ⊢ γ.

But then (C1C2)C3 = C1(C2C3) = UV W ⊢ γ.

Note that the product of Horn clauses represents resolution without structural rules

(except permutation which is built in).

Definition 4.4. Let S be a set of Horn clauses. Then we define

R(S) = {C1C2 | C1, C2 ∈ S and C1C2 is defined}.

Furthermore we define the deductive closure:

R0(S) = S,

Ri+1(S) = R(Ri(S)) ∪ Ri(S),

R∗(S) =
⋃

i∈IN

Ri(S).

The following lemma shows that every derivable Horn clause is a product of another

derivable clause and an input clause. This is a standard result in automated deduction

implying that there is always an input refutation of a set of Horn clauses, see e.g. (Leitsch

1997).

Definition 4.5. A product of clauses C1, . . . , Cn is called in right-parenthesis form if

C = C1(C2 . . . (Cn−1Cn)).

Lemma 4.2. Every product of Horn clauses can be transformed into right-parenthesis

form.

Proof. By induction on the number n of clauses occurring in the product. The case n = 1

is trivial.

(IH) Assume the lemma holds for n.

A. Ciabattoni and A. Leitsch 18

Let C be a product of n + 1 Horn clauses which is defined. Then C = DE, where D, E

are products of ≤ n Horn clauses D1, . . . , Dk and E1, . . . , Em with k + m = n + 1.

By (IH) D = D1D
′ for some D′ (which is a product of k − 1 Horn clauses) and so

C = (D1D
′)E. By semi-associativity we obtain C = D1(D′E). But D′E is a product

of n Horn clauses and we apply (IH) again. By iteration of the argument we eventually

obtain

C = D1(D2 . . . (E1(E2 . . . (Em−1Em) . . .)

Corollary 4.1. Let S be a set of Horn clauses and C ∈ R∗(S). Then C can be repre-

sented in right-parenthesis form over clauses in S.

Proof. By Lemma 4.2 every C ∈ R∗(S) can be represented in right-parenthesis form.

Clearly all the clauses appearing in the product occur in S.

Definition 4.6. Let R be a normal contractive system. A clause C is in R normal form

if no rule in R is applicable to C.

Let S be a set of Horn clauses. Then νR(S) is the set of clauses in normal form which

can be obtained by reduction via R.

Note that for normal contractive systems νR(S) is always finite for finite S. But there is

even more:

Proposition 4.1. Let R a normal contractive system and S be a (possibly infinite) set of

Horn clauses over a finite set of variables (formula- and/or multisets of formula-variables).

Then νR(S) is finite.

Proof. Let V : {x1, . . . , xn} be the set of all variables in S. Then every clause over V is

of the form

C: xk1
1 . . . xkn

n ⊢ x
p
j

for ki ∈ IN and p ∈ {0, 1} (if ki = 0 we omit the element xki

i from the sequent). Now let

k be the maximal number s.t. (k, 1) ∈ R. Then ν(C) consists only of clauses

D: xr1
1 . . . xrn

n ⊢ x
p
j

for ri ≤ k for i = 1, . . . , n. Indeed any larger power of an xi can be reduced via R. But

the number of such clauses is finite and ≤ kn+1.

Lemma 4.3. Let R be a normal contractive system and S be a set of Horn clauses.

Then

νR(R∗
R(S)) = νR(R∗(S)).

Proof. It is enough to show that for all C ∈ R∗
R(S) there exists a D ∈ R∗(S) with

D →∗
R C (then, clearly, νR(C) ⊆ νR(D)). We prove this property for C ∈ Ri

R(S) by

induction on i. The case i = 0 is trivial, as S ⊆ R∗(S).

(IH) Assume that for all C ∈ Ri
R(S) there exists a D ∈ R∗(S) with D →∗

R C.

Now let C ∈ Ri+1
R (S) − Ri

R(S).

Towards an Algorithmic Construction of Cut-Elimination Procedures 19

(a) If C′ →R C for C′ ∈ Ri
R(S) then, by (IH), there exists a D′ ∈ R∗(S) s.t. D′ →∗

R C′.

But then clearly D′ →∗
R C.

(b) Let C = C1C2 for C1, C2 ∈ Ri
R(S) and

C1 = U ⊢ α, C2 = αmY ⊢ z for some α ∈ FV

and α not in Y . By (IH) there exist clauses D1: U0 ⊢ α and D2: αMY0 ⊢ z with D1, D2 ∈

R∗(S) and D1 →∗
R C1, D2 →∗

R C2. In particular we have

U0 →∗
R U, αM →∗

R αm and Y0 →∗
R Y.

(b1) m > 1. Then C = αm−1UY ⊢ z. Clearly αM−1 →∗
R αm−1 and so the product D of

D1, D2 fulfills

D = αM−1U0Y0 ⊢ z →∗
R C.

So D ∈ R∗(S) and D →∗
R C.

(b2) m = 1. Then C = UY ⊢ z. Note that αM →∗
R α and, more generally, XM →∗

R X

for all sequences X . Resolving D1 with D2 M -times, i.e. constructing the product

D1(D1 . . . (D1D2) . . .) with M occurrences of D1,

results in the clause D = UM
0 Y0 ⊢ z which is in R∗(S). But

UM
0 Y0 ⊢ z →∗

R U0Y0 ⊢ z →∗
R UY ⊢ z, so D →∗

R C.

Lemma 4.4. Let S be a set of Horn clauses and R be a normal contractive system.

Then there exists an algorithm constructing νR(R∗(S)).

Proof. We know that all clauses in R∗(S) can be written in right-parenthesis form

(Lemma 4.2). Let S = {C1, . . . , Cn}. We construct a search tree in the following way:

— Let T0 be the root.

— T1 is defined by n edges E1, . . . En spreading from the root and labeled with the

clauses C1, . . . , Cn. For every end-node Ni in T1 corresponding to the edge Ei we

define γ(Ni) = Ci, stop(Ni) = false.

— Let Tn be already constructed. We define Tn+1: To every end-node M of Tn for

which stop(M) = false attach n edges labeled by the clauses C1, . . . , Cn. For the

corresponding end-nodes N(M, Ci) we define

γ(N(M, Ci)) = Ciγ(N(M, Ci))

– provided the product is defined. If the product is undefined we delete N(M, Ci).

For every end-node N which is not deleted we check whether there exists a predecessor

N ′ on the path from the root to N with νR(γ(N)) = νR(γ(N ′)); if the last equation

holds we define stop(N) = true.

As νR(R∗(S)) is finite the production of the tree will stop after finitely many steps.

Indeed, an infinite path (Ni)i∈IN in the tree can only be constructed if νR(Ni) 6= νR(Nj)

for all i, j with i 6= j. This is impossible as the set of all subsets of νR(R∗(S)) is finite.

If γ(Ni) = γ(Nj) for i < j we may stop the production of new edges as no new normal

A. Ciabattoni and A. Leitsch 20

forms of clauses will be produced furthermore. The tree T ∗ produces all clauses in R∗(S)

as it produces all products in right-parenthesis form, which is sufficient.

Corollary 4.2. Let S be a set of Horn clauses and R be a normal contractive system.

Then there exists an algorithm constructing νR(R∗
R(S)).

Proof. Immediate by Lemma 4.4 and Lemma 4.3.

4.2. (w, l) ∈ R

By Proposition 3.8 R is weakly substitutive if and only if R = {(w, l)} or at least a rule

(ni, 1) ∈ R, with ni > 1. In both cases, reductivity could be checked using the results in

Miller and Pimentel (2002;2005). We give below an alternative proof using resolution.

Theorem 4.1. Let R = {(w, l), (ni, 1)} for ni > 1. Then R∗
R(S) is decidable.

Proof. We have shown in Section 3 that in this case ordinary contraction can be sim-

ulated. Thus the resolution calculus is that of ordinary classical resolution, which is

decidable. Indeed, using the contraction normal form of clauses (no repetition of occur-

ring atoms) only finitely many clauses can be derived, or more formally RN ∗(S) is finite

for the corresponding normal resolution operator RN . Then a clause C is in R∗
R(S) if

either the normal form C∗ of C occurs in RN (S), or C∗ can be obtained from RN (S)

via weakening (i.e. subsumption). Obviously this test can be done algorithmically.

For the proof of the theorem we need the subsumption principle from automated deduc-

tion adapted to our purposes:

Definition 4.7. Let S1,S2 be sets of Horn clauses. Then S1 ≤ss S2 if for every D ∈ S2

there exists a C ∈ S1 s.t. D can be obtained from C by (possibly multiple) applications

of (w, l).

Theorem 4.2. Let R = {(w, l)}. Then R∗
R(S) is decidable.

Proof.

(a) There are no positive unit clauses in S.

We check whether a clause C is in RR ∗ (S). To this aim we produce R∗
R(S) but

stop the production on clauses D s.t. l(D) > l(C) + 1 (where l(C) is the length of

C i.e. the number of variables occurring in C). Indeed, if we obtain a clause D with

l(D) > l(C) + 1 it cannot contribute to a derivation of C. Note that the length can

only be decreased by resolution with negative unit clauses; but these are only the last

elements of resolution products, reducing the length at most by one. So let S′ be the

set of clauses produced as indicated above. Then S′ is finite and can be produced in

finitely many steps. Finally C ∈ S′ iff C ∈ R∗
R(S).

(b) There are positive unit clauses in S.

Produce R∗
+(S), the set of all positive clauses in R∗(S). R∗

+(S) is finite and can be

constructed by hyperresolution (see (Leitsch 1997), chapter 3.4).

Let S1 = S0 ∪ R∗
+(S) s.t. S0 consists of the nonpositive clauses in S. Now perform

Towards an Algorithmic Construction of Cut-Elimination Procedures 21

resolution only between clauses in R∗
+(S) and S0 until all formula variables in R∗

+(S)

are cut out from (the antecedents of) the clauses in S0. The result is a finite set of

clauses

S2 = S′ ∪ R∗
+(S)

s.t. no resolvents are definable between R∗
+(S) and S′, and S′ only consists of non-

positive clauses. By definition of S2 we have

S′ ≤ss S0.

But then S2 ≤ss S1 and, by the subsumption principle in resolution (see (Leitsch

1997), chapter 4.2),

R∗(S2) ≤ss R∗(S1) = R∗(S) ≤ss R∗
R(S).

By transitivity of subsumption we obtain

R∗(S2) ≤ss R∗
R(S).

Moreover, by definition of S2, we have

R∗(S2) = R∗(S′) ∪ R∗
+(S).

Now we check whether a clause C is in R∗
R(S). Clearly R∗(S2) subsumes a clause C

if either (i) R∗
+(S) ≤ss C or (ii) R∗(S′) ≤ss C. (i) can be checked directly as R∗

+(S)

is finite, for (ii) we apply the same method as in (a) (in fact there are no positive unit

clauses in S′).

Theorem 4.3. Reductivity is decidable for knotted commutative calculi with weakly

substitutive regular sets.

Proof. Reductivity for normal contractive systems is decidable. Indeed let C(ϕ) be the

reduction set of a ⋆-cut-derivation schema (see Definition 2.5) ϕ and S(ϕ) be the end-

sequent of ϕ. Then S(ϕ) is in R-normal form. Therefore S(ϕ) ∈ νR(R∗
R(C(ϕ))) iff

S(ϕ) ∈ R∗
R(C(ϕ)).

By Lemma 4.3

νR(R∗
R(C(ϕ))) = νR(R∗(C(ϕ))).

By Lemma 4.4 the finite set νR(R∗(C(ϕ))) can be constructed algorithmically. This gives

a decision procedure for reductivity. The claim follows by Section 3.3, Theorem 4.1 and

Theorem 4.2.

Remark: If rules introducing a connective ⋆ are not reductive, then the corresponding

knotted commutative calculus does not admit reductive cut-elimination. As in the case of

weak substitutivity, this is not enough to conclude that the calculus does not admit cut-

elimination at all. E.g. the rules for ∧̄ in the calculus K1 of Example 2.1 are not reductive,

see e.g. (Ciabattoni and Terui 2006). However K1 trivially admits cut-elimination since

the rule (∧̄, l) cannot appear in any derivation and the only sequents provable in K1

are instances of the identity axiom schema.(Note that applications of (CUT) on these

sequents can be easily eliminated).

A. Ciabattoni and A. Leitsch 22

5. A General Cut-elimination Procedure

Here we provide a constructive proof of cut-elimination for knotted commutative calculi

whose structural rules are weakly substitutive and logical rules reductive. Henceforth K

will denote any such calculus.

Definition 5.1. The length |d| of a derivation d is the maximal number of inference

rules + 1 occurring on any branch of d. The complexity |A| of a formula A is defined

as the number of occurrences of its connectives. The cut rank ρ(d) of d is (the maximal

complexity of the cut-formulae in d) + 1 (ρ(d) = 0 if d has no cuts).

Our cut-elimination procedure for K proceeds by removing cuts which are topmost among
all cuts with cut rank equal to the rank of the whole deduction. Let, e.g.

·
·
·
dr

Γ ⊢ A

·
·
·
dl

Σ A ⊢ Π
(CUT)

Γ, Σ ⊢ Π

a subderivation ending in such a cut. Roughly speaking our strategy is as follows:

using the fact that rules are weakly substitutive, (1) we shift up this cut over dr as

much as possible until we meet an axiom (or a logical rule with no premiss) or a logical

rule introducing the cut formula A (Lemma 5.2). In the former case the cut is easily

eliminated. In the latter case we shift this cut upward over dl and, (2) we replace it

by cuts with smaller complexity, when we meet a rule introducing the cut formula A

(Lemma 5.1). By Proposition 2.1 this can be done since the logical rules are reductive.

Remark: Using Theorems 3.2 and 4.3 for automating steps (1) and (2), the above strategy

(in fact, the formal proof below) can lead to a mechanical construction of a cut-free proof

from any proof in a given K.

Henceforth we write d ⊢K S if d is a derivation in K of S.

Lemma 5.1 (Logical Connectives). Let K be any knotted commutative sequent

calculus whose structural rules are weakly substitutive. Let dl ⊢K Σ A ⊢ B, and dr ⊢K

Γ ⊢ A, with ρ(dl), ρ(dr) ≤ |A|. If A = ⋆(A1, . . . , An) is the principal formula of the last

rule in the derivation dr and the rules for the connective ⋆ are reductive in K then for

all T ′ ∈ Cut∗l (Γ ⊢ A, Σ A ⊢ B), we can find a derivation d ⊢K T ′ with ρ(d) ≤ |A|.

Of course, one could derive T ′ by applying (CUT), but the resulting derivation would

then have cut rank |A| + 1.

Proof. We proceed by induction on |dl|.

Base case: |dl| = 1. Then Σ A ⊢ B is an instance of either an axiom or of a logical rule

with no premisses. In the former case Cut∗l (Γ ⊢ A, Σ A ⊢ B) = {Σ A ⊢ B, Γ ⊢ A},

and the required derivation is either dl or dr while in the latter case we distinguish two

(sub)cases: the rule does not introduces A in the antecedent or it does. In the former

(sub)case by condition (log2) the required derivation is T ′ while in the latter (sub)case

the claim follows by Proposition 2.1, as rules for ⋆ are reductive.

(IH): |dl| > 1. Let (r) be the last inference rule applied in dl. Assume w.l.o.g. that (r)

Towards an Algorithmic Construction of Cut-Elimination Procedures 23

has the form
S1 . . . Sm

S

If (r) is neither (CUT) nor a logical rule introducing A in the antecedent, by (IH)

m times for all T ′ ∈
⋃m

i=1 Cut∗l (Γ ⊢ A, Si), we can find a derivation d′ ⊢K T ′ with

ρ(d′) ≤ |A|. Now by weak substitutivity (and (log2), if (r) is a logical rule), every

T ′ ∈ Cut∗l (Γ ⊢ A, Σ A ⊢ B) is cut-free derivable from
⋃m

i=1 Cut∗l (Γ ⊢ A, Si). Hence T ′

has a derivation d in K with ρ(d) ≤ |A|.

If (r) = (CUT) the claim follows by (IH) and an application of (CUT) (note that by

hypothesis the cut-formula of this cut is of smaller complexity than A).

Suppose that (r) is a rule introducing A in the antecedent. In this case, by condition

(log2) the rule

S′
1 . . . S′

m

S′

where S′ is obtained by λ consecutive applications of (CUT) between S and Γ ⊢ A (where

λ+1 is the number of occurrences of A on the antecedent in S) and S′
i ∈ Cut∗l (Γ ⊢ A, Si),

for each 1 ≤ i ≤ m, is an instance of (r). Hence the claim follows by Proposition 2.1,

being the rules for ⋆ reductive.

Lemma 5.2 (Shifting Lemma). Let K be any knotted commutative calculus in which

(a) logical rules are reductive and (b) structural rules are weakly substitutive. Let dr ⊢K

Γ ⊢ A and dl ⊢K Σ A ⊢ B with ρ(dr), ρ(dl) ≤ |A|. For all T ′ ∈ Cut∗r(Σ A ⊢ B, Γ ⊢ A), we

can find a derivation d ⊢K T ′ with ρ(d) ≤ |A|.

Proof. Proceed by induction on |dr|, similarly to the previous proof. The main difference

is that condition (log3) is used and, when the last inference rule (r) applied is a rule

(with premisses) introducing A on the consequent the claim follows by Lemma 5.1.

Theorem 5.1 (Cut Elimination). Any knotted commutative calculus K in which

(a) logical rules are reductive and (b) structural rules are weakly substitutive, admits

cut-elimination.

Proof. Let d be a derivation in K with ρ(d) > 0. The proof proceeds by a double induction

on (ρ(d), nρ(d)), where nρ(d) is the number of cuts in d with cut rank ρ(d). Indeed, let us

take in d an uppermost cut with cut rank ρ(d). By applying Lemma 5.2 to its premisses

Γ A ⊢ ∆ and Σ ⊢ A either ρ(d) or nρ(d) decreases.

Remarkably enough our cut-elimination procedure can be applied to any single-conclusion

sequent calculus whose logical rules, satisfying conditions (log2) and (log3), are reduc-

tive and structural rules are weakly substitutive. In particular, it does work for the simple

sequent calculi considered in (Ciabattoni and Terui 2006). The same does not hold for the

well known cut-elimination procedures à la Gentzen and à la Schütte-Tait (Schütte 1960;

Tait 1968). Indeed Gentzen’s method can be applied only when suitable “ad hoc” deriv-

able generalizations of the cut rule (mix-style) are found. These generalizations, needed

to cope with rules duplicating formulas are not always easy to define. As an example

A. Ciabattoni and A. Leitsch 24

consider the calculus obtained by extending ILL with weak contraction, i.e. the rule

Θ α2 ⊢ ǫ
Θ α ⊢ ǫ

On the other hand the applicability of the Schütte-Tait cut-elimination method relies on

the inversion of (at least) one of the premises of each canonic cut-derivation. This cannot

always be done in calculi that admit reductive cut-elimination. For example, neither

of the premises of a canonic ∧ cut-derivation can be inverted in the usual way in the

calculus LBC- of Baaz, Ciabattoni and Montagna (2004) (see Example 2.1) and hence

the Schütte-Tait procedure does not apply to LBC- (although its logical rules satisfy

conditions (log2) and (log3) and are reductive while its structural rules are weakly

substitutive).

References

Avron, A. and Lev, I. (2005) Non-deterministic Multiple-valued Structures. J. of Logic and

Computation 15 (3), 241-261.
Baaz, M. Ciabattoni, A. and Montagna, F. (2004) Analytic Calculi for Monoidal T-norm Based

Logic. Fundamenta Informaticae 59 (4), 315–332.
Baaz, M. and Leitsch, A. (2000) Cut-elimination and Redundancy-elimination by Resolution.

J. Symb. Comput. 29 (2), 149–177.
Basin, D. and Ganzinger, H. (2001) Automated Complexity Analysis Based on Ordered Reso-

lution. Journal of the ACM 48 (1), 70–109.
Buss, S. (1998) An Introduction to Proof Theory. Handbook of Proof Theory, Elsevier Science,

1–78.
Ciabattoni, A. and Terui, K. (2006) Towards a semantic characterization of cut-elimination.

Studia Logica 82 (1), 95–119.
Galatos, N. and Ono, H. (2006) Algebraization, parametrized local deduction theorem and

interpolation for substructural logics over FL. Studia Logica 83, 279–308.
Gentzen, G. (1935) Untersuchungen über das Logische Schliessen. Math. Zeitschrift 39, 176–210,

405–431.
Hori, R. Ono, H. and Schellinx, H. (1994) Extending intuitionistic linear logic with knotted

structural rules. Notre Dame Journal of Formal Logic 35 (2), 219–242.
Leitsch, A. (1997) The Resolution Calculus. Springer-Verlag, Berlin.
Miller, D. and Pimentel, E. (2002) Using Linear Logic to reason about sequent systems. Pro-

ceedings of Tableaux’02. LNAI 2381, 2–23.
Miller, D. and Pimentel, E. (2005) On the specification of sequent system. Proceedings of

LPAR’05. LNCS 3835, 352–366.
Prijatelj, A. (1996) Bounded Contraction and Gentzen style Formulation of Lukasiewicz Logics.

Studia Logica 57, 437–456.
Restall, G. (1999) An Introduction to Substructural Logics. Routledge, London.
Schmidt-Schauss, M. (1988) Implication of clauses is undecidable. Theoretical Computer Science

268, 287–296.
Schütte, K. (1960) Beweistheorie. Springer Verlag.
Tait, W.W. (1968) Normal derivability in classical logic. In The Sintax and Semantics of

infinitary Languages, LNM 72, 204–236.
van Benthem, J. (1991) Language in Action: Categories, Lambdas and Dynamic Logic. Studies

in Logic 130. North-Holland, Amsterdam.

