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Abstract

We introduce a Curry–Howard correspondence for a large class of intermediate logics
characterized by intuitionistic proofs with non-nested applications of rules for classical
disjunctive tautologies (1-depth intermediate proofs). The resulting calculus, we call it
λ‖, is a strongly normalizing parallel extension of the simply typed λ-calculus. Although
simple, the λ‖ reduction rules can model arbitrary process network topologies, and encode
interesting parallel programs ranging from numeric computation to algorithms on graphs.

1 Introduction

The fundamental connection between logic and computation, known as Curry–Howard corre-
spondence, relates logics and computational systems. Originally introduced for intuitionistic
logic IL and simply typed λ-calculus, it has been extended to many different logics (classical [26],
linear [9, 5], modal [25]. . . ) and notions of computation, see, e.g., [30] for an overview.

A recent addition to them is the discovery in [4] of the connection between propositional
logics intermediate between classical logic and IL, and concurrent extensions of the simply
typed λ-calculus. More precisely, the considered logics extend IL with the classical disjunctive
tautologies interpreted as synchronization schemata in [14], i.e. axiom schemata of the form (F1 →
G1) ∨ . . . ∨ (Fm → Gm). This general result was preceeded by Curry–Howard correspondences
for the particular cases of Gödel-Dummett logic (IL with LIN = (A → B) ∨ (B → A)) and
classical logic (IL with EM = A ∨ ¬A) in [2, 3]. All these logics possess cut-free hypersequent
calculi – a generalization of sequent calculi consisting of parallel compositions of sequents that
can “communicate”; our results confirmed Avron’s conjecture [7] of the connection between
(intermediate logics characterized by cut-free) hypersequent calculi and concurrency. Although
the resulting typed concurrent λ-calculi provided an adequate computational interpretation of
these logics, they are quite sophisticated and not easy to use as programming languages. Their
main reductions are: intuitionistic reductions – which are the usual computational rules for the
simply typed λ-calculus [16], permutation reductions – needed to prove weak normalization, and
the reductions implementing communications among simply typed λ-terms; these are divided into
basic cross reductions – simple reductions for the natural deduction version of the characteristic
hypersequent rules, and full cross reductions – needed for the subformula property – which
enable the transmission of messages that depend on their computational environment by using
code mobility concepts [15] such as that of closure [20].

The aim of this work is to present a version of the calculi in [4, 2, 3] suitable for programming.
We show that a simplified version of these calculi is expressive enough to model arbitrary process
network topologies and to encode interesting parallel algorithms taken from [22]. Inspired
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by [12, 13] we base our Curry–Howard correspondence on 1-depth1 intermediate proofs, i.e.,
IL proofs with non-nested applications of the rules for classical disjunctive tautologies. This
leads to λ‖, an easy-to-use and yet expressive parallel extension of the simply typed λ-calculus.
Consisting only of intuitionistic reductions and (a simplified version of) basic cross reductions,
the reduction rules of λ‖ always terminate, regardless of the reduction strategy.

Motivated by the tool Grace2 [19] which allows programmers in the parallel functional
language Eden to specify a network of processes as a directed graph and provides special
constructs to generate the actual network topology, we also provide an automatic procedure to
extract λ‖ typing rules from any communication topology in such a way that the typed terms
can only communicate according to the topology. The idea of enforcing network topologies with
types is also present in [10] in the different context of the π-calculus [24] – the most widespread
formalism for modeling concurrent systems.

We consider classical disjunctive tautologies in the (intuitionistically equivalent) form
(A1 → A1 ∧ B1) ∨ . . . ∨ (Am → Am ∧ Bm) (1)

such that all Bi are either ⊥ or a conjunction of some A1, . . . ,Am. These axioms can indeed
encode any reflexive directed graphs as follows: Ai represents a process in the network specified
by the graph, and Bi is the list of processes that are connected to Ai by an outgoing arc, or ⊥ if
there are no such processes. The intuitive reading of (Ai → Ai ∧ Bi) is that all conjuncts in Bi,
as well as Ai itself, can send messages to Ai. We allow Ai to send a message to itself in case Ai

wants to save it for later use, thus simulating a memory mechanism.
We establish a Curry–Howard correspondence between λ‖ terms and (fragments of) the

intermediate logics obtained from the intuitionistic natural deduction calculus NJ by allowing a
non-nested use of the rules corresponding to axioms of the form (1). The terms typed using
these natural deduction rules contain as many parallel processes as the number of premises. For
instance, the decorated version of the rules for the axiom schema em = (A→ A∧⊥)∨(B→ B∧A)
and C3 = (A→ A∧B)∨ (B→ B∧C)∨ (C→ C∧A), intuitionistically equivalent to the excluded
middle law and C3 [23] are

[a : A→ A ∧ ⊥]
....

u : C

[a : B → B ∧A]
....

v : C

a(u ‖ v) : C
(em)

[a : A→ A ∧B]
....

t : D

[a : B → B ∧ C]
....

u : D

[a : C → C ∧A]
....

v : D

a(t ‖ u ‖ v) : D
(C3)

with the (1-depth) restriction: t, u and v are a parallel composition of simply-typed λ-terms
that cannot communicate with each other. The variable a represents a private communication
channel that behaves similarly to the π-calculus operator ν. The typing rules establish how
the communication channels connect the terms. For example, (em) encodes the fact that the
process v can receive a message of type A from the process u, while the rule (C3) that t can
receive a message from u, u from v and v from t. The behavior of these channels during the
actual communications is defined by the reduction rules of the calculus. If we omit reflexive
edges, the communication topologies corresponding to the reductions for the above rules are

(em) (C3)

In particular, (em) implements the simplest message-passing mechanism, similar to that of the
asynchronous π-calculus [18], and (C3) cyclic communication among three processes.

The restriction (1-depth) enables us to define simple and yet expressive reduction rules and
to prove the strong normalization of λ‖. The resulting calculus is strictly more expressive than

1[12, 13] Introduced the concept of bounded depth proofs to approximate classical logic with nested applications
of the structural rule expressing the excluded middle axiom EM limited by a fixed natural number.

2Grace stands for GRAph-based Communication in Eden.
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xA : A
u : ⊥

u efqP : P
with P atomic, P 6= ⊥

u : A t : B

〈u, t〉 : A ∧B
u : A ∧B
uπ0 : A

u : A ∧B
uπ1 : B

[xA : A]
....

u : B

λxAu : A→ B

t : A→ B u : A
tu : B

Table 1: Type assignments for the simply typed λ-calculus.

the simply typed λ-calculus, and can be used for interesting computational tasks (Sec. 6).

2 The Typing System of λ‖

λ‖ extends the simply typed λ-calculus with channels for multi-party communication and
reduction rules for message exchange. Table 1 contains the type assignments for λ-terms, see
e.g. [16] for details. Terms typed by such rules are called simply typed λ-terms and are
denoted here by t, u, v . . . Terms may contain variables xA

0 , x
A
1 , x

A
2 , . . . of type A for every formula

A. Free and bound variables of a proof term are defined as usual. We assume the standard
renaming rules and α-equivalences that avoid the capture of variables during reductions.

The typing rules of simply typed λ-calculus, stripped of λ-terms, are the inference rules of
Gentzen’s natural deduction system NJ for IL. Actually, if Γ = x1 : A1,..., xn : An, and all free
variables of a term t : A are in x1,..., xn, from the logical point of view, t represents an NJ
derivation of A from the hypotheses A1,..., An. We will thus write Γ ` t : A.
Notation. → and ∧ associate to the right. 〈t1, t2, . . . , tn〉 stands for 〈t1, 〈t2, . . . 〈tn−1, tn〉 . . .〉〉,
and 〈t1, t2, . . . , tn〉πi, (i = 0, . . . , n) for 〈t1, t2, . . . , tn〉π1 . . . π1π0 containing the projections that
select the (i+ 1)th element of the sequence. ¬A is A→ ⊥ and > is ⊥ → ⊥.

To type parallel terms that interact according to possibly complex communication mechanisms,
we build on ideas from [4, 12, 14, 11] and base the Curry–Howard correspondence for λ‖ on
a fragment of the axiomatic extensions of IL with (intuitionistically equivalent versions of)
classical disjunctive tautologies [14]. These axioms can be transformed into rules involving
parallel communicating sequents (i.e., hypersequents [7]), and as shown in [4] they lead to various
communication schemata. The fragment considered in this paper consists of 1-depth proofs,
whose notion is adapted from [12, 13]. These are NJ proofs with non-nested applications of
the natural deduction version of the corresponding hypersequent rules, see [11]. The use of this
fragment drastically simplifies the reduction rules of λ‖ w.r.t. the calculi in [4, 2, 3] and enables
us to type channels with input/output directions, as in the π calculus.

The class Ax of axiom schemata that we consided here, that will be shown in Sec. 4 to encode
all communication topologies represented as reflexive directed graphs, is

A (A1 → A1 ∧ B1) ∨ . . . ∨ (Am → Am ∧ Bm)
where Ai 6= Aj whenever i 6= j; and for any i ∈ {1, . . . ,m}, either Bi = ⊥ or Bi = Ak1

∧ . . .∧Akp
,

with k1 < . . . < kp.

Remark 1. Each disjunct Ai → Ai ∧ Bi is logically equivalent to Ai → Bi. The redundant
occurrence of Ai is kept to type a memory mechanism for input channels.

As usual, an instance of an axiom schema A ∈ Ax is a formula obtained from A by
uniformly replacing each propositional variable with an actual formula. λ‖ is obtained by the
Curry–Howard correspondence applied to NJ extended with non-nested applications of the
natural deduction rules for the axioms in Ax. The type assignment for λ‖ terms comprises
the rules for the simply typed λ-calculus in Table 1 and those for the parallel operators in
Table 2. We denote the variables of simply typed λ-calculus as xA, yA, zA, . . . , aA, bA, cA, . . . ,
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t1 : A . . . tn : A

t1 ‖ . . . ‖ tn : A
(contr ) where t1, . . . , tn are simply typed λ-terms

[aA1→A1∧B1 , aA1→A1∧B1 : A1 → A1 ∧B1]
....

u1 ‖ . . . ‖ un : B ...

[aAm→Am∧Bm , aAm→Am∧Bm : Am → Am ∧Bm]
....

up ‖ . . . ‖ uq : B

A
a((u1 ‖ . . . ‖ un) ‖ . . . ‖ (up ‖ . . . ‖ uq)) : B

(A)

where (A1 → A1 ∧B1) ∨ . . . ∨ (Am → Am ∧Bm) is an instance of A ∈ Ax

Table 2: Type assignments for λ‖.

a A, b A, c A . . . , a A, b A, c A . . . and, whenever the type is not important, as x, y, z, . . . , a, b, c . . .
We call intuitionistic variables the variables x, y, z, . . . , which stand for terms; they are bound
by the λ operator. The variables a, a , a , . . . are called channels or communication variables
and represent communication channels between parallel processes: a, b, c, . . . are used as channel
binders, a , b , c , . . . represent output channels that can transmit messages, while a , b , c , . . .
input channels that can receive messages. We denote Aa(u1 ‖ . . . ‖ um) by a(u1 ‖ . . . ‖ um)
when A is clear from the context or irrelevant. All free occurrences of a and a in u1, . . . , um
are bound in a(u1 ‖ . . . ‖ um) and must have the types indicated by the inference rule (A).

The rule (contr) is useful for representing parallelism without communication. It is logically
redundant, though, since it is an instance of (A) with no channel occurrence.

From a computational perspective the rules (A) produce terms of the shape Aa(v1 ‖ . . . ‖ vm)
that put in parallel v1, . . . , vm, which we call the processes of this term; each vi in turn has
the shape u1 ‖ . . . ‖ uk, where u1, . . . , uk are simply typed λ-terms called the threads of vi.
Processes can communicate through the channel a, whereas their threads represent parallel
independent subprograms that cannot interact with each other. Informally, in order to establish
a communication channel connecting two terms vi and vj , we require that a Ai→Ai∧Bi occurs in
vi, a

Aj→Aj∧Bj occurs in vj and Ai is in Bj .
On one hand, the argument w of a channel application a Ai→Ai∧Bi w will be interpreted as

a message of type Ai that must be transmitted ; on the other hand, the channel application
a Aj→Aj∧Bj t will receive a batch of messages of type Bj containing w that will replace the whole
channel application a Aj→Aj∧Bj t upon reception. This is the reason why the direction of the
communication and the direction of → are reversed. In general, each channel application a v
first transmits v and, immediately after that, starts to listen on the same channel by reducing
to a v and waiting for a message that will replace the whole term a v. To formalize the relation
between a process vi and all the processes vj such that vi can send messages to vj , we need to
look at the structure of the axiom schema A, because its instances may lose information about
its general shape. For this purpose, we introduce the concept of outlink.

Definition 2 (Outlinks). Let Aa(v1 ‖ . . . ‖ vm) be a term, where A = (A1 → A1∧B1)∨...∨(Am →
Am ∧Bm). For any i, j ∈ {1,...,m} and i 6= j, we say that the term vi is outlinked to the term
vj if Bj = Ak1

∧... ∧ Ai ∧... ∧ Akp
.

Remark 3. The restriction of (1-depth) proofs forces the derivations of the premises of the
rule (A) to be IL proofs; by removing this restriction, the rule is equivalent to an (unrestricted)
instance of the axiom A, see [11].

3 Communications in λ‖

In Sec. 2 we showed how to install communication channels connecting processes, we present now
the reduction rules of λ‖ that implement the actual communications. Since these communications
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are higher-order, they can transmit arbitrary simply typed λ-terms as messages, provided their
free variables are not bound in the surrounding context. Unlike in [4], messages are thus not
restricted to values and communication channels have directions. The reduction rules of λ‖
comprise two groups of rules: those for the simply typed λ-calculus (intuitionistic reductions),
and those that deal with process communication (cross reductions).
Intuitionistic Reductions. The usual computational rules for the simply typed λ-calculus
represent the operations of applying a function to an argument and extracting a component
from a pair [16]. From the logical point of view, they are the standard Prawitz’ reductions [27]
of the natural deduction calculus NJ for IL.
Cross Reductions. Their goal is to implement communication, namely to transmit programs
in the form of simply typed λ-terms. A very simple example of cross reduction for the (em)
topology shown in Section 1 is the following:

a(C[a v] ‖ D[aw]) 7→ a(C[a v] ‖ D[〈w, v〉])
where C[ ],D[ ], v and w contain no channels. In general, since λ‖ terms may contain more than
one output channel application, we first have to choose which application will transmit the next
message. For example, here we have two communicating processes, each containing two threads:

(∗) a( (a r ‖ a (x(a s))) ‖ (a u ‖ a (y(aw))) )

where r, s, u, w are simply typed λ-terms not containing a. The first process a r ‖ a (x(a s))
contains two occurrences of the output channel a . Let us focus on its second thread a (x(a s)).
The channel application a (x(a s)) cannot transmit the message x(a s), because the channel a
might be used with a different type in the second process, so type preservation after reduction
would fail. Hence the only possibility here is to choose the second channel application a s as the
one containing the output message, in this case s. In general, to make sure that the message
does not contain the channel a, it is enough to choose as application occurrence that contains
the output message the rightmost occurrence of the channel a in the whole process, provided it
occurs as an actual output channel a . Hence, in any process, the rightmost thread that contains
the channel a may contain the message. If instead the rightmost occurrence of a is of the form
a , the process has no message to send.

The second choice is which occurrence of an input channel application should receive the
current message. For example, in the term (∗) above, the second process a u ‖ a (y(aw))
contains three occurrences of a . Since a channel can both send and receive, and has usually sent
something before receiving, we are led to choose again the rightmost occurrence of a channel
application as receiver, provided it is an input channel. Nonetheless, since the threads of a single
process do not communicate with each other, it is best to let all of them receive the message in
correspondence of their locally rightmost channel application. Thus in the example, both a u
and a w will receive messages.

The third choice is what to do with the arguments of a receiving channel. After a few
programming examples, as those in Section 6, it is natural to convince oneself that it is better
to keep the arguments, a feature that we call memory. In the previous term, when a u and a w
receive s, they will be replaced respectively, with 〈u, s〉 and 〈w, s〉.

Continuing our example and summing up, we will have the following reduction of (∗):
a( (a r ‖ a (x(a s))) ‖ (a u ‖ a (y(aw))) ) 7→ a( (a r ‖ a (x(a s))) ‖ (〈u, s〉 ‖ a (y〈w, s〉)) )

As we can see, the message s in correspondence of the rightmost occurrence of a in a (x(a s)) is
transmitted by the first process to the rightmost application of a in each one of the two threads
a u and a (y(aw)) of the second process; at the same time, the output channel application a s
has turned into the input channel application a s.

The fourth choice to make is which processes should receive messages and which processes
should send them. As anticipated in the previous section, we are guided by the typing. Let
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us consider for instance the term a( x (a A→A∧B s) ‖ y (a B→B∧A t) ), where s and t are specific
simply typed λ-terms not containing a, while x : A ∧ B → C and y : B ∧ A → C. A cross
reduction rule corresponding to this typing rule admits communication in two directions, from
left to right and from right to left, because, according to the types, the second process can
receive messages from the first and viceversa. The actual direction of the message is determined
however by the rightmost occurrences of the channel a in the two processes. In this case, the
rightmost occurrence of a in the first process is an input channel, while the rightmost occurrence
of a in second process is an output channel. Hence the reduction is from right to left and is

a( x (a A→A∧B s) ‖ y (a B→B∧A t) ) 7→ a( x 〈s, t〉 ‖ y (a B→B∧A t) )
To define communication reductions, we need to introduce two kinds of contexts: one for

terms that can communicate, one for terms which are in parallel but cannot communicate.

Definition 4 (Simple Parallel Term). A simple parallel term is a λ‖ term t1 ‖ . . . ‖ tn,
where each ti, for 1 ≤ i ≤ n, is a simply typed λ-term.

Definition 5. A context C[ ] is a λ‖ term with some fixed variable [ ] occurring

• A simple context is a context which is a simply typed λ-term.

• A simple parallel context is a context which is a simple parallel term.

For any λ‖ term u of the same type of [ ], C[u] denotes the term obtained replacing [ ] with u in
C[ ], without renaming bound variables.

We explain the general case of the cross reduction. The rule identifies a single process as the
receiver and possibly several processes as senders. Once the receiving process is fixed, the senders
are determined by the axiom schema A, that is instantiated by the type of the communication
channel occurring in the receiving process. In particular, in the term

(?) A
a(...‖ C1[aw1] ‖...‖ (... ‖ D1[a v1] ‖...‖ Dn[a vn] ‖ ...) ‖...‖ Cp[awp] ‖...)

the processes C1[aw1 ], . . . , Cp[awp ] are the senders and (... ‖ D1[a v1] ‖...‖ Dn[a vn] ‖ ...) in
its entirety is the receiver. Formally, C1[aw1 ], . . . , Cp[awp ] are all the process outlinked to
the process (... ‖ D1[a v1] ‖...‖ Dn[a vn] ‖ ...), see Definition 2. In this latter process, we have
displayed the threads that actually contain the channel a: all of them will receive the messages.
Consistently with our choices, the displayed occurrences of a are rightmost in each Dj [a vj ] and
in each Cj [a wj ]. The processes containing w1, . . . , wp send them to all the rightmost occurrences
of a v1, . . . , a vn in the processes D1, . . . ,Dn:

(?) 7→ A
a(...‖C1[aw1] ‖...‖(...‖D1[〈v1, w1,..., wp〉] ‖...‖Dn[〈vn, w1,..., wp〉] ‖...)‖...‖Cp[awp] ‖...)

provided that, for each wj , its free variables are free in Cj [awj ]: this condition is needed to
avoid that bound variables become free, violating the Subject Reduction. Whenever wj is a
closed term – executable code – the condition is automatically satisfied. As we can see, the
reduction retains all terms v1, . . . , vn occurring in D1, . . . ,Dn before the communication.

Remark 6. Unlike in π-calculus, channel occurrences that send messages are not immediately
consumed in λ‖, because cross reductions adopt the perspective of the receiver rather than that
of the senders. However, after transmission, the output channel occurrence will be turned
immediately into an input channel occurrence, which will be consumed when the process is
selected as current receiver.

The last choice is what to do with the threads or processes that do not contain any
communication channel. The idea is that whenever a term contains no channel occurrence, it
has already reached a result, as it does not need to interact with the context. Hence at the
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Intuitionistic Reductions (λxA u)t 7→ u[t/xA] 〈u0, u1〉πi 7→ ui for i = 0, 1

Cross Reductions: Communication
A
a(...‖ C1[aw1] ‖...‖(...‖ D1[a v1] ‖...‖ Dn[a vn] ‖...)‖...‖ Cp[awp] ‖...) 7→

A
a(...‖C1[aw1] ‖...‖(...‖D1[〈v1, w1,..., wp〉] ‖...‖Dn[〈vn, w1,..., wp〉] ‖...)‖...‖Cp[awp] ‖...)

where C1[a w1], . . . , Cp[a wp] are all the processes outlinked to the process (... ‖ D1[a v1] ‖ ... ‖ Dn[a vn] ‖ ...);
the displayed occurrences of a are rightmost in each Dj [a vj ] and in each Cj [a wj ]; each Dj is a simple context
and each Cj is a simple parallel context; the free variables of each wj are free in Cj [a wj ];

Cross Reductions: Simplification
A
a((u1 ‖...‖ un) ‖...‖ (um ‖...‖ up)) 7→ ui1 ‖...‖ uiq

whenever ui1 ,..., uiq do not contain a and 1 ≤ i1 <...< iq ≤ p.
Table 3: Reduction Rules for λ‖.

end of the computation we select some of the processes that have reached their own results
and consider them all together the global result of the computation. Thus we introduce the
simplification reduction in Table 3, which also displays all the reduction rules of λ‖. As usual,
we adopt the reduction schema: C[t] 7→ C[u] whenever t 7→ u and for any context C. We denote
by 7→∗ the reflexive and transitive closure of the one-step reduction 7→.

Theorem 7 (Subject Reduction). If t : A and t 7→ u, then u : A and all the free variables of u
appear among those of t.

Proof. The only not trivial case is that of cross reductions. Assume the step is as follows:

A
a(...‖ C1[aw1] ‖...‖(...‖ D1[aAi→Ai∧Bi v1] ‖...‖ Dn[aAi→Ai∧Bi vn] ‖...)‖...‖ Cp[awp] ‖...)

7→
A
a(...‖C1[aw1] ‖...‖(...‖D1[〈v1, w1,..., wp〉] ‖...‖Dn[〈vn, w1,..., wp〉] ‖...)‖...‖Cp[awp] ‖...)

As the type of the channel a is an instance (A1 → A1 ∧ B1) ∨...∨ (Am → Am ∧ Bm) of the
schema A = (A1 → A1 ∧ B1) ∨ ... ∨ (Am → Am ∧ Bm) where Bi = Ak1 ∧ ... ∧ Akp , and as w1 :
Ak1

,..., wp : Akp
where Ak1

,..., Akp
instantiate Ak1

,...,Akp
, then (...‖D1[〈v1, w1,..., wp〉] ‖...‖

Dn[〈vn, w1,..., wp〉] ‖...) is well defined and its type is the same as that of (...‖ D1[a Ai→Ai∧Bi v1] ‖
...‖ Dn[a Ai→Ai∧Bi vn] ‖...). Hence the term type term does not change.

Since the displayed occurrences of a are rightmost in each Cj [a wj ] and thus a does not
occur in wj , no occurrence of a with type different from Ai → Ai ∧ Bi occurs in the terms
D1[〈v1, w1,..., wp〉],...,Dn[〈vn, w1,..., wp〉]. Finally, the free variables of each wj are free also in
Cj [a wj ], and thus no new free variable is created by the reduction.

Remark 8. The communication reductions of λ‖ allow processes to communicate independently
of their order, and hence the parallel composition needs not to be commutative.

4 From Communication Topologies to Programs

We present a method for automatically extracting λ‖ typing rules from graph-specified com-
munication topologies. Given a directed, reflexive graph G whose nodes and edges represent
respectively processes and communication channels, we describe how to transform it into an
axiom schema A ∈ Ax corresponding to a typing (A) rule for λ‖ terms. We will show that
this typing rule encodes a process topology which exactly mirrors the graph G: two processes
may communicate if and only the corresponding graph nodes are connected by an edge and the
direction of communication follows the edge. In other words, the edges of the graph correspond
to the outlinked relation between processes of Definition 2.
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Procedure 1. Given a directed reflexive graph G = (V,E) with k = |V |, the axiom schema A
encoding G is C1 ∨ · · · ∨ Ck such that for each n ∈ {1, . . . , k}:

• Cn = An → An ∧ Ai1 ∧ . . . ∧ Aim , if the n-th node in G has incoming edges from the
non-empty list of pairwise distinct nodes i1, . . . , im 6= n;

• Cn = An → An ∧ ⊥, if the n-th node in G has only one incoming edge.

We show an example and then state the correspondence between graphs and λ‖ reductions.

Example 9. Consider the axiom below corresponding to the graph

4 3

21

(A1 → A1 ∧ A2 ∧ A4) ∨ (A2 → A2 ∧ A1) ∨ (A3 → A3 ∧ A1 ∧ A2) ∨ (A4 → A4 ∧ ⊥)

The rule extracted from a graph forces communications to happen as indicated by the edges
of the graph. Indeed the following holds.

Proposition 10 (Topology Correspondence). For any directed reflexive graph G and term
t := a(u1 ‖ . . . ‖ um) typed using the rule corresponding to the axiom extracted from G by
Procedure 1, there is a cross reduction for t that transmits a term w from ux to uy if and only
if G contains an edge from x to y.

5 The Strong Normalization Theorem

We prove the strong normalization theorem for λ‖: any reduction of every λ‖ term ends in a finite
number of steps into a normal form. This means that the computation of any typed λ‖ term
always terminates independently of the chosen reduction strategy. Instead of struggling directly
with the complicated combinatorial properties of process communication, as done for the weak
normalization in [3, 2], we reduce the strong normalization of λ‖ to the strong normalization
of a non-deterministic reduction relation over simply typed λ-terms. The idea is to simulate
communication by non-determinism, a technique inspired by [6].

Definition 11 (Normal Forms and Strongly Normalizable Terms).

• A redex is a term u such that u 7→ v for some v and reduction in Table 3. A term t is
called a normal form or, simply, normal, if t is not a redex.

• A finite or infinite sequence of terms u1, u2, . . . , un, . . . is said to be a reduction of t, if
t = u1, and for all i, ui 7→ ui+1. A term u of λ‖ is normalizable if there is a finite
reduction of u whose last term is normal and is strong normalizable if every reduction
of u is finite. With SN we denote the set of the strongly normalizable terms of λ‖.

5.1 Non-deterministic Reductions

Strong normalization for parallel λ-calculi is an intricate problem. Decreasing complexity
measures are quite hard to find and indeed those introduced in [3, 2] for proving normalization
of fragments of λ‖ fail in case of strong normalization. Given a term a(u1 ‖ . . . ‖ un), one would
like to measure its complexity as a function of the complexities of the terms ui, for example
taking into account the number of channel occurrences and the length of the longest reduction
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of λ-redexes in ui. However, when ui receives a message its code may drastically change and
both those numbers may increase. Moreover, there is a potential circularity to address: channels
send messages and may generate new λ-calculus redexes in the receivers; λ-calculus redexes may
duplicate channel occurrences, generating even more communications.

To break this circularity, we use a radically different complexity measure. The complexity
of a process ui should take into account all the possible messages that ui may receive. If
ui = D[a t], after receiving a message it becomes D[〈t, s〉], where s is an arbitrary simply typed
λ-term from the point of view of ui. We thus create a reduction relation over simply typed
λ-terms that simulates the reception “out of the blue” of this kind of messages. Namely, we
extend the reduction relation of λ-calculus by two new rules: i) a T  a T ; ii) a T t for every
channel aT and simply typed λ-term t : T that does not contain channels. In order to simulate
the reception of an arbitrary batch w of messages, t will be instantiated as λx 〈x,w〉 in the
proof of Th. 24. With these reductions, λ-terms that do not contain channels are the usual
deterministic ones.

Definition 12 (Deterministic simply typed λ-terms). A simply typed λ-term t is called deter-
ministic, if t does not contain any channel occurrence.

Definition 13 (The non-deterministic reduction relation  ). The reduction relation  over
simply typed λ-terms is defined as extension of the relation 7→ as follows:

(λxA u) t u[t/xA] 〈u0, u1〉πi  ui, for i = 0, 1 a T  a T

a T  t, for every channel aT and deterministic simply typed λ-term t : T

and as usual we close by contexts: C[t] C[u] whenever t u and C[ ] is a simple context. We
denote by  ∗ the reflexive and transitive closure of the one-step reduction  .

The plan of our proof will be to prove the strong normalization of simply typed λ-calculus
with respect to the reduction  (Corollary 23) and then derive the strong normalization of λ‖
using  as the source of the complexity measure (Theorem 22). The first result will be proved
by the standard Tait–Girard reducibility technique (Definition 14).

We define SN? to be the set of strongly normalizing simply typed λ-terms with respect to
the non-deterministic reduction  . The reduction tree of a strongly normalizable term with
respect to  is no more finite, but still well-founded. It is well-known that it is possible to
assign to each node of a well-founded tree an ordinal number, in such a way that it decreases
passing from a node to any of its children. We will call the ordinal size of a term t ∈ SN? the
ordinal number assigned to the root of its reduction tree and we denote it by h(t); thus, if t u,
then h(t) > h(u). To fix ideas, one may define h(t) := sup{h(u) + 1 | t u}.

5.2 Reducibility and Properties of Reducible Terms

We define a notion of reducibility for simply typed λ-terms with respect to the reduction  . As
usual, we prove that every reducible term is strongly normalizable w.r.t.  and afterwards that
all simply typed λ-terms are reducible. The difference with the usual reducibility proof is that
we first prove that deterministic simply typed λ-terms are reducible (Th. 19), which makes it
possible to prove that channels are reducible (Prop. 21) and finally that all terms are reducible
(Th. 22). This amounts to prove the usual Adequacy Theorem twice. This stratification of the
proof reminds of the reducibility technique employed in [1] for proving weak normalization of a
concurrent λ-calculus with shared memory.

Definition 14 (Reducibility). Assume t : C is a simply typed λ-term. We define the relation
t r C (“t is reducible of type C”) by induction and by cases according to the form of C:
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1. t r P, with P atomic, if and only if t ∈ SN?

2. t r A ∧B if and only if t π0 r A and t π1 r B
3. t r A→ B if and only if for all u, if u r A, then tu r B

We show that the set of reducible terms for a formula C is a reducibility candidate [16].
Neutral terms are defined as terms that are not “values” and need to be further reduced.

Definition 15. A simply typed λ-term not of the form λxu or 〈u, t〉 is neutral.

Definition 16 (Reducibility Candidates). Extending the approach of [16], we define three
properties of reducible terms t: (CR1) If t r A, then t ∈ SN?, (CR2) If t r A and t ∗ t′, then
t′ r A, and (CR3) If t is neutral and for every t′, t t′ implies t′ r A, then t r A.

We show that every term t possesses the reducibility candidate properties. The arguments
for (CR1), (CR2), (CR3) are standard (see [16]).

Proposition 17 ([16]). Every simply typed λ-term satisfies (CR1), (CR2), (CR3).

The next task is to prove that all introduction rules of simply typed λ-calculus define a
reducible term from a list of reducible terms for all premises.

Proposition 18. (1) If for every t r A, u[t/x] r B, then λxu r A → B and (2) If u r A and
v r B, then 〈u, v〉 r A ∧B.

Proof. As in [16], using (CR1), (CR2) and (CR3).

5.3 The Mini Adequacy Theorem

We prove that simply typed λ-terms that do not contain channels are reducible.

Theorem 19 (Mini Adequacy Theorem). Suppose that w : A is a deterministic simply typed
λ-term, with intuitionistic free variables among x1 : A1, . . . , xn : An. For all terms t1, . . . , tn
such that for i = 1, . . . , n, ti r Ai we have w[t1/x1 · · · tn/xn] r A

Proof. As the proof of Th. 22 without case 2., which concerns channels.

Corollary 20 (Mini Strong Normalization of  ). If t : A is a deterministic simply typed λ
term, then t r A and t ∈ SN?.

Proof. Assume x1 : A1, . . . , xn : An are all the intuitionistic free variables of t and thus all its
free variables. By (CR3), one has xi r Ai, for i = 1, . . . , n. From Theorem 19, we derive t r A.
From (CR1), we conclude that t ∈ SN?.

By the Mini Adequacy Theorem we can prove that channels are reducible.

Proposition 21 (Reducibility of Channels). i) For every input channel a : T , a r T , and ii)
For every output channel a : T , a r T

Proof. i) Since a is neutral, by (CR3) it is enough to show that for all u such that a  u, it
holds that u r T . Indeed, let us consider any u such that a  u; since u must be a deterministic
simply typed λ-term, by Corollary 20 u r T .

ii) Since a neutral, by (CR3) it is enough to show that for all u such that a  u, it holds
u r T . Indeed, let us consider any u such that a  u; since u = a , by i) we have u r T .

10
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We can finally prove that all simply typed λ-terms are reducible.

Theorem 22 (Adequacy Theorem). Suppose that w : A is any simply typed λ-term, with
intuitionistic free variables among x1 : A1, . . . , xn : An. For all terms t1, . . . , tn such that for
i = 1, . . . , n, ti r Ai

we have w[t1/x1 · · · tn/xn] r A

Proof. Notation: for any term v and formula B, we denote

v[t1/x1 · · · tn/xn]

with ~v. We proceed by induction on the shape of w.

1. If w = xi : Ai, for some i, then A = Ai. So ~w = ti r Ai = A.

2. If w = a : Ai, for some i and channel a, then A = Ai. By Prop. 21, ~a = a r A.

3. If w = ut, then u : B → A and t : B. So ~w = ~u~t r A, for ~u r B → A and ~t r B by induction
hypothesis.

4. If w = λxB u, then A = B → C. So, ~w = λxB ~u, since we may assume xB 6= x1, . . . , xk.
For every t r B, by induction hypothesis on u, ~u[t/x] r C. Hence, by Proposition 18,
λxB ~u r B → C = A.

5. The cases of pairs and projections are straightforward.

Corollary 23 (Strong Normalization of  ). For any simply typed λ-term t : A, then t ∈ SN?.

Proof. Let x1 : A1, . . . , xn : An be all the intuitionistic free variables of t. (CR3) leads to
xi r Ai. From Th. 22, we derive t r A. t ∈ SN? follows from (CR1).

Theorem 24 (Strong Normalization of λ‖). For any λ‖ term t, t ∈ SN.

Proof. Assume t = a(u1 ‖ . . . ‖ um) and u1 = v1 ‖ . . . ‖ vn, . . . , um = vp ‖ . . . ‖ vq. Define
ρi, for i ∈ {1, . . . , q}, as the ordinal size h(vi) of vi with respect to the reduction relation  .
We proceed by lexicographic induction on the sequence ρ = (ρ1, . . . , ρq), which we call the
complexity of t. Let t′ be any term such that t 7→ t′: to prove the thesis, it is enough to show
that t′ ∈ SN. Let ρ′ the complexity of t′. We must consider three cases.
1. t′ = a(u1 ‖ . . . ‖ u′k ‖ . . . ‖ um) and in turn u′k = vi ‖ . . . ‖ v′r ‖ . . . ‖ vj with vr 7→ vr′ by
contraction of an intuitionistic redex. Then also vr  v′r. Hence ρ′ is lexicographically strictly
smaller than ρ and we conclude by the i.h. that t′ ∈ SN.
2. t′ = a(u

′
1 ‖ ... ‖ u′k ‖ ... ‖ u′m) uk = ... ‖ vi ‖ ... ‖ vj ‖ ... u′k = ... ‖ v′i ‖ ... ‖ v′j ‖ ...

vi = D1[a w1],..., vj = Dn[a wn] v′i = D1[〈w1, w〉],...vj = Dn[〈wn, w〉]
where w is the sequence of messages transmitted by cross reduction. Being for each l

Dl[a wl] Dl[(λx 〈x,w〉)wl] Dl[〈wl, w〉]
we obtain vi  ∗ v′i, . . . vj  

∗ v′j . Moreover, for each l 6= k, either ul = u′l or
ul =... ‖ si ‖... ‖ sj ‖... u′k =... ‖ si ‖... ‖ s′j ‖... sj = C[a r] s′j = C[a r]

Hence ρ′ is lexicographically strictly smaller than ρ and by i.h. t′ ∈ SN.
3. t′ = vi1 ‖ . . . ‖ vik . As vi1 , . . . , vik all belong to SN, we easily obtain t′ ∈ SN.
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6 Computing with λ‖

We illustrate the expressive power of λ‖ with examples of parallel programs from [21].
Reductions are performed according to the principles (a)–(c) below, that make programming in

λ‖ as efficient and deterministic as possible. Indeed, as put by Harper [17], whereas concurrency
is concerned with nondeterministic composition of programs, parallelism is concerned with
asymptotic efficiency of programs with deterministic behavior.

(a) Messages should be normalized before being sent. This property is fundamental for
efficient parallel computation. Indeed, for instance, a repeatedly forwarded message can be
duplicated many times inside a process network; hence if the message is not normal, each
process may have to normalize it, wasting resources. This implies in particular that message
transmission cannot be triggered according to a call-by-value strategy.

(b) The senders and the receiver of the message should be normalized before the communi-
cation. Indeed, the communication behaviour depends on the syntactic shape of a process: it
is the rightmost occurrence of the channel in a λ‖ term to determine what message is sent or
received. Hence, a term might send a message, whereas its normal form another. For example
(λx y x (an))(am) would transmit m, while its normal form y (am) (an) would transmit n. We
want to avoid this kind of unpredictable behaviour due to the non-confluence of the calculus and
make clear what channel is supposed to be the active one, which sends or receives a message.

(c) When no communication nor intuitionistic reduction is possible, we extract the desired
result of the computation by a suitable simplification reduction.

Informally, our normalization strategy consists in iterating the basic reduction relation �
defined below, that takes a term t = a(u1 ‖ . . . ‖ um) and performs the following operations:

1) We select all the threads of u1, . . . , um that will send or receive the next message and we
let them complete their internal computations.

2) We let the selected threads transmit their message.
3) While executing 1) and 2), to avoid inactivity we let the other threads perform some other

independent calculations that may be carried out in parallel.
4) If the previous operations are not possible, we extract the results, if any.

Definition 25 (Reduction Strategy �). Let t = a(u1 ‖ ... ‖ um) be a λ‖ term. We write t � t′
whenever t′ has been obtained from t by applying on of the following:

1. We select a receiver ui for the next communication. We normalize, among the threads
that contain a, those that are rightmost in ui or in a process outlinked to ui. If now it is
possible, we apply a cross reduction

a(u1 ‖ . . . ‖ ui ‖ . . . ‖ um) 7→ a(u1 ‖ . . . ‖ u′i ‖ . . . ‖ um)

followed by some intuitionistic reductions.

2. Provided that by 1. we can only obtain the trivial reduction t 7→∗ t, we apply, if possible, a
simplification reduction. We then normalize the remaining simply typed λ-terms.

We can reduce every λ‖-term in normal form just by iterating the reduction relation �.
Indeed, if a communication is possible, by 1. we can select a suitable receiver and apply a cross
reduction. If no communication is possible but a simplification can be done, 2. applies and we
can simplify the term. Otherwise, we can just normalize the simply typed λ-terms by 1. or 2.

This normalization strategy leaves some room for non-determinism: it prescribes when a
communication reduction should be fired, but does not select a process out of those that can
potentially receive messages, thus leaving a number of possible ways of actually performing the
communication. To limit this non-determinism, before the beginning of the computation we select
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one process and we impose that only the selected process can receive messages. Immediately
after the reception of the messages, we select the next process to the right, if any, or the first
process from left otherwise. Another source of non-determinism is due to cross reductions of the
form

A
a((um1

‖ . . . ‖ un1
) ‖ . . . ‖ (ump

‖ . . . ‖ unp
)) 7→ uj1 ‖ . . . ‖ ujq

In this case, we impose that uj1 ‖ . . . ‖ ujq results by selecting from each (umi
‖ . . . ‖ uni

), with
1 ≤ i ≤ p, the leftmost thread not containing a.

Before presenting some examples of parallel programs in λ‖, we show that λ‖ is more
expressive than simply typed λ calculus.

Example 26 (Parallel OR). Berry’s sequentiality theorem [8] implies that there is no simply
typed λ-term O : Bool → Bool → Bool such that Off ff 7→∗ ff , Ou tt 7→∗ tt, O ttu 7→∗ tt
for every λ-term u, where tt,ff are the boolean constants. As a consequence, there cannot be
a λ-term O such that O[ff/x][ff/y] 7→∗ ff , O[u/x][tt/y] 7→∗ tt, O[tt/x][u/y] 7→∗ tt for every
λ-term u. To implement a λ‖-term with the above property we process the two inputs in parallel.
If both inputs evaluate to ff , though, at least one process needs to have all the information in
order to output the result ff . Hence the simple topology is enough. Proc. 1 extracts
from this graph the axiom schema (A→ A ∧ ⊥) ∨ (B→ B ∧ A) with reduction

a(C[aw] ‖ (D1[a v1] ‖...‖ Dn[a vn])) 7→ a(C[aw] ‖ (D1[〈v1, w〉] ‖...‖ Dn[〈vn, w〉]))

We add to λ‖ the boolean type, tt,ff and an if then else construct [16]. We define in λ‖
O := a(if x then tt else a ff π0 ‖ if y then tt else a (λx⊥ x)π1)

where we assume a : Bool → Bool ∧ ⊥ in the first process and that a : > → > ∧ Bool in the
second one. Now, on one hand

O[u/x][tt/y] = a(if u then tt else a ffπ0 ‖ if tt then tt else a (λx⊥ x)π1) 7→∗ a(if u then tt else a ffπ0 ‖ tt) 7→ tt

and symmetrically O[tt/x][u/y] 7→∗ tt. On the other hand, O[ff/x][ff/y] 7→∗ ff .

Example 27 (Buyer and Vendor). We model the following transaction: a buyer tells a
vendor a product name prod : String, the vendor computes the monetary cost price : N of prod
and communicates it to the buyer, the buyer sends back the credit card number card : String
which is used to pay. We introduce the following functions: cost : String → N with input a
product name prod and output its cost price; pay for : N→ String with input a price and output
a credit card number card; use : String → N that produces money using as input a credit card
number card : String. The buyer and the vendor are the contexts B and V of type Bool. The
communication channel a is typed using the instance (String→ N) ∨ (N→ String) of the axiom
(A→ B) ∨ (B → A). The program is:

a(B[a (pay for(a (prod)))] ‖ V[use(a (cost(a 0)))])

7→ a(B[a (pay for(a (prod)))] ‖ V[use(a (cost(prod)))])

7→ a(B[a (pay for(a (prod)))] ‖ V[use(a (price))])

7→ a(B[a (pay for(price))] ‖ V[use(a (price))])

7→ a(B[a (card)] ‖ V[use(a (price))]) 7→ a(B[a (card)] ‖ V[use(card)])

Finally 7→ V[use(card)]: the buyer has performed its duty and the vendor uses the card number
to obtain the due payment.

Example 28 (A Parallel Program for Computing π). We implement in λ‖ a parallel program
for computing arbitrary precise approximations of π. As is well known, π can be computed as

follows: π = liml→∞
1
l

∑l
i=1 f(

i− 1
2

l ) where f(x) = 4
1+x2 . For any given l, instead of calculating

sequentially the whole sum
∑l

i=1 f( i−1/2
l ) and then dividing it by l, it is more efficient to

distribute different parts of the sum to p parallel processes. When the processes terminate, they
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can send the results m1, . . . ,mp, as shown below, to a process which computes the final result
1
l (m1 + . . .+mp) (see also [21]). The graph in the following figure, in which we omit reflexive

edges, is encoded by the axiom A = (A1 → A1∧⊥)∨ . . .∨(Ap → Ap∧⊥)∨B→ (B∧A1∧ . . .∧Ap).

l/p∑
i=1

f(
i− 1

2

l )

2(l/p)∑
i=l/p+1

f(
i− 1

2

l )
3(l/p)∑

i=2(l/p)+1

f(
i− 1

2

l )

. . .

l∑
i=(p−1)(l/p)+1

f(
i− 1

2

l )

1
l (m1 + . . .+mp)

m1
m2

m3

mp

To write the program, we add to λ‖ types and constants for rational numbers, together with
function constants f1, . . . , fp, sum such that

fk l 7→∗
(kl/p)∑

i=(k−1)l/p+1

f(
i− 1

2

l
) and sum 〈n1, . . . , ni〉 l 7→∗

1

l
(n1 + . . .+ ni)

thus computing respectively the p partial sums and the final result. The λ‖ term that takes as
input the length l of the summation to be carried out and yields the corresponding approximation
of π is: a( a (f1 l)π0 ‖ . . . ‖ a (fp l)π0 ‖ sum (a (λx⊥ x)π1) l ) . By instantiating A1, . . . ,Ap in
the extracted A with the type Q of rational numbers, we type all displayed occurrences of a in
the first p threads by Q→ Q ∧ ⊥, and the last by > → (> ∧ Q ∧ . . . ∧ Q). Given any multiple n
of p, we have
(a( a (f1 l)π0 ‖...‖a (fp l)π0 ‖sum (a (λx⊥ x)π1) l ))[n/l] = a( a (f1 n)π0 ‖...‖a (fp n)π0 ‖ sum (a (λx⊥ x)π1)n )

7→ a( a (

(n/p)∑
i=1

f(
i− 1

2

l
))π0 ‖ . . . ‖ a (

n∑
i=(p−1)n/p+1

f(
i− 1

2

l
))π0 ‖ sum (a (λx⊥ x)π1)n )

7→∗ sum (〈
(n/p)∑
i=1

f(
i− 1

2

l
))), . . . ,

n∑
i=(p−1)n/p+1

f(
i− 1

2

l
))〉n 7→∗

1

n

n∑
i=1

f(
i− 1

2

n
)

Example 29 (A Parallel Floyd–Warshall Algorithm). We define a λ‖ term that implements
a parallel version of the Floyd–Warshall algorithm. The algorithm takes as input a directed
graph and outputs a matrix containing the length of the shortest path between each pair of nodes.
Formally, the input graph is coded as a matrix I(0) and the nodes of the graphs are labeled
as 1, 2, . . . , n. Then the sequential Floyd–Warshall algorithm computes a sequence of matrixes
I(1), . . . , I(n), representing closer and closer approximations of the desired output matrix. In
particular, the entry (i, j) of I(k) is the length of the shortest path connecting i and j such that
every node of the path, except for the endpoints, is among the nodes 1, 2, . . . k. Now, each matrix
I(k) can be easily computed from I(k − 1). The idea is that passing through the node k might
be better than passing only through the first k − 1 nodes, or not. Hence in order to compute
I(k + 1) from I(k), one only needs to evaluate the right-hand side of the following equation:

Ii,j(k) = min(Ii,j(k − 1), Ii,k(k − 1) + Ik,j(k − 1)) (1)

Indeed, Ii,j(k − 1) represents the shortest path between i, j passing only through the first k − 1
nodes, while Ii,k(k − 1) + Ik,j(k − 1) computes the shortest path between i, j that passes through
k and the first k − 1 nodes. To speed-up this computation, we create a parallel process for each
row I(k) of the matrix and put the process in charge of computing the row. We say that the i-th
process has to compute the i-th row Ii(k). Which information does it need? Actually, only two
rows: Ii(k − 1) and Ik(k − 1). Hence at each round k the process-i only lacks the row Ik(k − 1)
to perform its computation. This row can be communicated to process-i by the process-k, in
charge to compute that row. These considerations lead to a well-known parallel algorithm.
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The ring Floyd–Warshall algorithm

1. Take the input n× n-matrix I(0) and distribute the i-th row Ii(0) to process-i. Organize the
n processes in a ring structure such as the following (see [21]), omitting reflexive edges:

(∗)
. . .

I1( )
I2( )

I3( )

I4( )
I5( )

I6( )

I7( )

2. For k = 1 to n, starting from process-k, let all the processes forward the row Ik(k − 1) to
their successors in the ring, until the process k + 1 receives again the same row. After the row
has circulated, let the processes compute in parallel the rows of the matrix I(k).

3. Let I(n) be the output.

In this algorithm, at any stage k, communicating the required row Ik(k − 1) through the ring
structure requires less time compared to computing each row of the matrix, therefore the overhead
of the communication is compensated by the speed-up in the matrix computation.

A λ‖ program for the Floyd–Warshall algorithm

To write a λ‖ program that computes the ring Floyd–Warshall Algorithm, we add integers to
λ‖, as usual, and we denote with A the function type corresponding to the rows of the matrixes
I(k) computed by the algorithm. The expression Ix(y) represents the function computing the
xth line of the matrix at the yth stage of the algorithm. We assume that the value of Ix(y)
contains information about x and y. We also add the constant function f : A ∧ A → A such
that: f〈Ii(k − 1), Ik(k − 1)〉 = Ii(k) and f〈Iz(l), Im(n)〉 = Iz(l).

The first equation implements the calculations needed for equation (1). The second comes
into play at the end of each iteration of the algorithm, when the process that receives twice the
same row discards it, starts sending its own row, and begins the next iteration of the algorithm.

As handy notation, for any three terms u, v, s we define (u, v)1s as u(vs), and (u, v)n+1s for
n > 0 as u(v((u, v)ns)). Moreover, for any two terms u, s we define (u, πi)

1s as u(s πi), and
(u, πi)

n+1s for n > 0 as u(((u, πi)
ns)πi). Intuitively, (u, v)ns represents what we obtain if we

take a term s and then apply alternately v and u to the term resulting from the last operation.
We obtain, ultimately, a term of the form u(v(u(v(. . . u(vs) . . .)))) in which and u and v occur n
times each. The notation (u, πi)

ns is analogous, but instead of applying v we apply the projection
πi. The n processes that run in parallel during the execution of the algorithm are (1 < i < n):
Process p1: (f, a )n I1(0) ‖ ((a , π1)n a I1(0))π0 ‖ (a I1(0))π0
Process pi: (f, a )n+1 Ii(0) ‖ ((a , π1)n+1−i (a , π1)i a Ii(0))π0 ‖ (a (f, a )i Ii(0))π0 ‖ ((a , π1)i−1 a Ii(0))π0

Process pn: (f, a )n+1 In(0) ‖ (a ((f, a )n In(0)))π0 ‖ ((a , π1)n−1 a In(0))π0
For an intuitive reading of the parts of these terms, consider the notation (f, a )m t. This

notation represents a term of the form f(a (. . . f(a t) . . .)). Only one operation can be immediately
performed with a term like this: using the innermost application of a and consume at to receive
a message. The received message will be the argument of the innermost f . The value that f
computes, in turn, will be the argument of the next communication channel. Terms of this form
alternate two phases: one in which they receive, and one in which they apply f to the received
message. The terms (a , π1)m t have the form a ((. . . a (tπ1) . . .)π1). These terms project, send
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and receive; and then start over. The projections are used to select messages from the tuple of
received messages. The selected messages are not used, but forwarded to another process.

Each process pi (i > 1) is a parallel composition of four threads: the first and the third
compute the row Ii(k), and the second and the fourth send and forward rows. The process p1
behaves in the same way, but has three threads: the first computes the rows I1(k), the second
receives and forwards rows, and the third sends its own row. The term implementing the
algorithm is a( p1 ‖ . . . ‖ pn). The axiom extracted from the ring structure above by Proc. 1 is
A = (A1 → A1 ∧ An) ∨ (A2 → A2 ∧ A1) ∨ . . . ∨ (An−1 → An−1 ∧ An−2) ∨ (An → An ∧ An−1).
We instantiate A1, . . . ,An in A with A and type a by A→ A ∧A.

We present some steps of the execution of the instance a( p1 ‖ p2 ‖ p3). See the Appendix
for the unabridged version of this reduction. According to our normalization principles, we
normalize the threads sending messages right before they communicate; then, we normalize the
rightmost threads receiving the messages. All other IL reductions are performed in-between
communications. Finally, we make sure to contract all intuitionistic redexes before the beginning
of a new iteration of the algorithm. We start with:

7→∗a
((
f(a (f(a (f(a I1(0)))))) ‖ (a ((a ((a ((a I1(0))π1))π1))π1))π0 ‖ (a I1(0))π0

)
‖
(
f(a (f(a (f(a (f(a I2(0)))))))) ‖ (a ((a ((a ((a ((a I2(0))π1))π1))π1))π1))π0

‖ (a (f(a (f(a I2(0))))))π0 ‖ (a ((a I2(0))π1))π0
)

‖
(
f(a (f(a (f(a (f(a I3(0)))))))) ‖ (a (f(a (f(a (f(a I3(0))))))))π0 ‖ (a ((a ((a I3(0))π1))π1))π0

))
We first transmit the value I1(0) from the first process to the second process and we move the
focus to the next term. As an aid to the reader, we display between ? ? the occurrences of the
message that are involved in the reduction:

a
((
f(a (f(a (f(a I1(0)))))) ‖ (a ((a ((a ((a I1(0))π1))π1))π1))π0 ‖ (?a I1(0)?)π0

)
‖
(
f(a (f(a (f(a (f〈I2(0),? I1(0)?〉)))))) ‖ (a ((a ((a ((a (〈I2(0),? I1(0)?〉π1))π1))π1))π1))π0

‖ (a (f(a (f〈I2(0),? I1(0)?〉))))π0 ‖ (a (〈I2(0),? I1(0)?〉π1))π0
)

‖
(
f(a (f(a (f(a (f(a I3(0))))))))(a (f(a (f(a (f(a I3(0))))))))π0 ‖ (a ((a ((a (〈0, I3(0)〉π1))π1))π1))π0

))
Remark 30. I2(0) is not destroyed by the communication but saved using the memorization
mechanism. This term is needed, indeed, by the function f in order to compute I2(1).

We normalize the receiver of the previous communication and keep normalizing the other
redexes in parallel, thus the rightmost thread of the second process become ready to forward the
value I1(0) to the third thread:

7→∗a
((
f(a (f(a (f(a I1(0)))))) ‖ (a ((a ((a ((a I1(0))π1))π1))π1))π0 ‖ (a (I1(0))

)
)π0

‖
(
f(a (f(a (f(a (f〈I2(0), I1(0)〉)))))) ‖ (a ((a ((a ((a I1(0))π1))π1))π1))π0

‖ (a (f(a (f〈I2(0), I1(0)〉))))π0 ‖ ( ?a I1(0)? )π0
)

‖
(
f(a (f(a (f(a (f(a I3(0)))))))) ‖ (a (f(a (f(a (f(a I3(0))))))))π0 ‖ (a ((a ((a I3(0))π1))π1))π0

))
The third thread receives I1(0) and the computation continues: 7→ . . .
At the end of the first of the three cycles, the second process receives I1(0) again:

7→∗a
((
f(a (f(a f〈I1(0), I1(0)〉))) ‖ (a ((a (( ?a I1(0)? )π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a (f(a (f〈I2(0), ?I1(0)? 〉))))) ‖ (a ((a ((a (〈I1(0), ?I1(0)? 〉π1)π1))π1))π0

‖ (a (f〈I2(0), ?I1(0)? 〉)))π0 ‖ 〈I1(0), ?I1(0)? 〉π0
)

‖
(
f(a (f(a (f(a f〈I3(0), I1(0)〉))))) ‖ (a (f(a (f(a f〈I3(0), I1(0)〉)))))π0 ‖ (a ((a I1(0))π1))π0

))
The reception of I1(0) exhausts all forwarding channels of the second process in the rightmost
thread and triggers the communication of the I2(1) just computed, thus starting the second cycle:

7→∗a
((
f(a (f(a I1(1)))) ‖ (a ((a ((a I1(0))π1))π1))π0 ‖ (〈I1(0), I1(0)〉)π0

)
‖
(
f(a (f(a I2(1)))) ‖ (a ((a ((a I1(0))π1))π1))π0 ‖ ( ?a I2(1)? )π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a (f(a (f(a I3(1)))))) ‖ (a (f(a (f(a I3(1))))))π0 ‖ (a ((a I1(0))π1))π0

))
7→ . . .
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The reduction continues in the same fashion for two other cycles, until the third process does not
contain any occurrence of a anymore:

7→∗a
((
f〈I1(2), I3(2)〉 ‖ (a I3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I2(2), I3(2)〉 ‖ (a I3(2))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I3(2), I3(2)〉 ‖ 〈I3(2), I3(2)〉π0 ‖ 〈I2(1), I2(1)〉π0

))
We then compute all occurrences of f in parallel:

7→∗a
((
I1(3) ‖ (a I3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
I2(3) ‖ (a I3(2))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
I3(3) ‖ 〈I3(2), I3(2)〉π0 ‖ 〈I2(1), I2(1)〉π0

))
We use a simplification reduction to remove the intermediate results no more needed and only
keep the threads containing the result of the computation: 7→∗ I1(3) ‖ I2(3) ‖ I3(3) .

Conclusions and Related Work

We introduced λ‖, a simple and yet expressive typed parallel λ-calculus based on (suitable
fragments of) propositional intermediate logics. λ‖ is based on and greatly simplifies the calculi
in [4, 3, 2]. The basic communication reductions in the calculi λCL [3] and λG [2] implement
particular λ‖ communications: the message passing mechanisms based on classical logic and
on Gödel logic, respectively. λCL and λG also contain additional reductions (permutations and
full cross), needed for proving weak normalization and the subformula property. These calculi
were generalized in [4], that introduces a Curry–Howard correspondence for all propositional
intermediate logics characterized by classical disjunctive tautologies, the axioms for classical
and Gödel logic being particular cases. The reductions in [4] are the same as for λCL and λG
but their activation procedure is based on transmitting values and thus it is logic independent.
The simple(r) λ‖ reduction allows us to encode interesting parallel programs in Eden – an
extension of Haskell [21, 22], to prove strong normalization and to specify process networks in
an automated way. The price to pay is the lack of the subformula property and the fact that
well-typed λ‖-terms might contain deadlock. In a model of parallel computation the latter is
an unwanted feature, especially in absence3 of recursion or fixed points. Unlike λ‖, the typed
versions of the π-calculus, starting with the seminal work in [9], are usually deadlock free, e.g.,
[29, 28, 10].
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[22] R. Loogen, Y. Ortega-Mallèn, and R. Pena. Parallel functional programming in Eden. Journal of
Functional Programming, 15(3):431–475, 2005.
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A Appendix

We present here the unabridged version of the reduction in Example 29.

Full reduction of the ring Floyd–Warshall algorithm in λ‖. In this reduction, we omit
explanations but we indicate the selected process that can receive messages by underlining it.

a
((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((a(〈0, I1(0)〉π1))π1))π1))π1))π0

‖ (a(〈0, I1(0)〉π1))π0
)

‖
(
f(a(f(a(f(a(f(a〈I2(0)〉))))))) ‖ (a((a((a((a((a(〈0, I2(0)〉π1))π1))π1))π1))π1))π0

‖ (a(f(a(f(a〈I2(0)〉)))))π0 ‖ (a((a(〈0, I2(0)〉π1))π1))π0
)

‖
(
f(a(f(a(f(a(f(aI3(0)))))))) ‖ (a((a((a((a(〈0, I3(0)〉π1))π1))π1))π1))π0

‖ (a(f(a(f(a(f(aI3(0))))))))π0 ‖ (a((a((a(〈0, I3(0)〉π1))π1))π1))π0
))

7→∗a
((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (aI1(0))π0

)
‖
(
f(a(f(a(f(a(f(aI2(0)))))))) ‖ (a((a((a((a((aI2(0))π1))π1))π1))π1))π0

‖ (a(f(a(f(aI2(0))))))π0 ‖ (a((aI2(0))π1))π0
)

‖
(
f(a(f(a(f(a(f(aI3(0)))))))) ‖ (a((a((a((aI3(0))π1))π1))π1))π0

‖ (a(f(a(f(a(f(aI3(0))))))))π0 ‖ (a((a((aI3(0))π1))π1))π0
))

7→∗a
((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(I1(0)))π0

)
‖
(
f(a(f(a(f(a(f〈I2(0), I1(0)〉)))))) ‖ (a((a((a((a(〈I2(0), I1(0)〉π1))π1))π1))π1))π0

‖ (a(f(a(f〈I2(0), I1(0)〉))))π0 ‖ (a(〈I2(0), I1(0)〉π1))π0
)

‖
(
f(a(f(a(f(a(f(aI3(0)))))))) ‖ (a((a((a((aI3(0))π1))π1))π1))π0

‖ (a(f(a(f(a(f(aI3(0))))))))π0 ‖ (a((a((aI3(0))π1))π1))π0
))

7→∗a
((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(I1(0))

)
)π0

‖
(
f(a(f(a(f(a(f〈I2(0), I1(0)〉)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0

‖ (a(f(a(f〈I2(0), I1(0)〉))))π0 ‖ (aI1(0))π0
)

‖
(
f(a(f(a(f(a(f(aI3(0)))))))) ‖ (a((a((a((aI3(0))π1))π1))π1))π0

‖ (a(f(a(f(a(f(aI3(0))))))))π0 ‖ (a((a((aI3(0))π1))π1))π0
))

7→∗a
((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(I1(0)))π0

)
‖
(
f(a(f(a(f(a(f〈I2(0), I1(0)〉)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0

‖ (a(f(a(f〈I2(0), I1(0)〉))))π0 ‖ (aI1(0))π0
)

‖
(
f(a(f(a(f(a(f〈I3(0), I1(0)〉))))))) ‖ (a((a((a(〈I3(0), I1(0)〉π1))π1))π1))π0

‖ (a(f(a(f(a(f〈I3(0), I1(0)〉))))))π0 ‖ (a((a(〈I3(0), I1(0)〉π1))π1))π0
))

7→∗a
((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(I1(0)))π0

)
‖
(
f(a(f(a(f(a(f〈I2(0), I1(0)〉)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0

‖ (a(f(a(f〈I2(0), I1(0)〉))))π0 ‖ (aI1(0))π0
)

‖
(
f(a(f(a(f(a(f〈I3(0), I1(0)〉)))))) ‖ (a((a((a(I1(0)))π1))π1))π0

‖ (a(f(a(f(a(f〈I3(0), I1(0)〉))))))π0 ‖ (a((aI1(0))π1))π0
))
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7→∗a
((
f(a(f(a(f〈I1(0), I1(0)〉)))) ‖ (a((a((a(〈I1(0), I1(0)〉π1))π1))π1))π0

‖ 〈I1(0), I1(0)〉π0
)

‖
(
f(a(f(a(f(a(f〈I2(0), I1(0)〉)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0

‖ (a(f(a(f〈I2(0), I1(0)〉))))π0 ‖ (aI1(0))π0
)

‖
(
f(a(f(a(f(a(f〈I3(0), I1(0)〉)))))) ‖ (a((a((a(I1(0)))π1))π1))π0

‖ (a(f(a(f(a(f〈I3(0), I1(0)〉))))))π0 ‖ (a((aI1(0))π1))π0
))

7→∗a
((
f(a(f(aI1(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f(aI2(1)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0

‖ (a(f(aI2(1))) ‖ aI1(0))π0
)

‖
(
f(a(f(a(f(aI3(1)))))) ‖ (a((a((a(I1(0)))π1))π1))π0

‖ (a(f(a(f(aI3(1))))))π0 ‖ (a((aI1(0))π1))π0
))

7→∗a
((
f(a(f(aI1(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I2(1), I1(0)〉))))) ‖ (a((a((a(〈I1(0), I1(0)〉π1)π1))π1))π0

‖ (a(f〈I2(1), I1(0)〉)))π0 ‖ 〈I1(0), I1(0)〉π0
)

‖
(
f(a(f(a(f(aI3(1)))))) ‖ (a((a((a(I1(0)))π1))π1))π0

‖ (a(f(a(f(aI3(1))))))π0 ‖ (a((aI1(0))π1))π0
))

7→∗a
((
f(a(f(aI1(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (〈I1(0), I1(0)〉)π0

)
‖
(
f(a(f(aI2(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (a(I2(1)))π0 ‖ (〈I1(0), I1(0)〉)π0

)
‖
(
f(a(f(a(f(aI3(1)))))) ‖ (a((a((a(I1(0)))π1))π1))π0

‖ (a(f(a(f(aI3(1))))))π0 ‖ (a((aI1(0))π1))π0
))

7→∗a
((
f(a(f(aI1(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(aI2(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (a I2(1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I3(1), I2(1)〉)))) ‖ (a((a(〈I3(1), I2(1)〉π1)π1))π0

‖ (a(f(a(f〈I3(1), I2(1)〉))))π0 ‖ (a(〈I1(0), I2(1)〉π1))π0
))

7→∗a
((
f(a(f(aI1(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(aI2(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (aI2(1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I3(1), I2(1)〉)))) ‖ (a((aI2(1))π1))π0

‖ (a(f(aI(f〈I3(1), I2(1)〉))))π0 ‖ (aI2(1))π0
))

7→∗a
((
f(a(f〈I1(1), I2(1)〉)) ‖ (a((a(〈I1(0), I2(1)〉π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(aI2(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (aI2(1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I3(1), I2(1)〉)))) ‖ (a((aI2(1))π1))π0

‖ (a(f(a(f〈I3(1), I2(1)〉))))π0 ‖ (aI2(1))π0
))

7→∗a
((
f(a(f〈I1(1), I2(1)〉)) ‖ (a((aI2(1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(aI2(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (aI2(1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I3(1), I2(1)〉)))) ‖ (a((aI2(1))π1))π0

‖ (a(f(a(f〈I3(1), I2(1)〉))))π0 ‖ (aI2(1))π0
))
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7→∗a
((
f(a(f〈I1(1), I2(1)〉)) ‖ (a((aI2(1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f〈I2(1), I2(1)〉)) ‖ (a((a(〈I1(0), I2(1)〉π1))π1))π0

‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0
)

‖
(
f(a(f(a(f〈I3(1), I2(1)〉)))) ‖ (a((aI2(1))π1))π0

‖ (a(f(a(f〈I3(1), I2(1)〉))))π0 ‖ (aI2(1))π0
))

7→∗a
((
f(aI1(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI2(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(aI3(2)))) ‖ (a((aI2(1))π1))π0 ‖ (a(f(aI3(2))))π0 ‖ (aI2(1))π0

))
7→∗a

((
f(aI1(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI2(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f〈I3(2), I2(1)〉)) ‖ (a(〈I2(1), I2(1)〉π1))π0

‖ (a(f〈I3(2), I2(1)〉))π0 ‖ 〈I2(1), I2(1)〉π0
))

7→∗a
((
f(aI1(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI2(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI3(2)) ‖ (aI2(1))π0 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗a

((
f〈I1(2), I3(2)〉 ‖ (a(〈I2(1), I3(2)〉π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI2(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI3(2)) ‖ (aI2(1))π0 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗a

((
f〈I1(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI2(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI3(2)) ‖ (aI2(1))π0 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗a

((
f〈I1(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I2(2), I3(2)〉 ‖ (a(〈I2(1), I3(2)〉π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI3(2)) ‖ (aI2(1))π0 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗a

((
f〈I1(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I2(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI3(2)) ‖ (aI2(1))π0 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗a

((
f〈I1(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I2(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I3(2), I3(2)〉 ‖ 〈I2(1), I3(2)〉π0 ‖ 〈I3(2), I3(2)〉π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗a

((
I1(3) ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
I2(3) ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
I3(3) ‖ 〈I2(1), I3(2)〉π0 ‖ 〈I3(2), I3(2)〉π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗ I1(3) ‖ I2(3) ‖ I3(3)
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