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Abstract. Herbrand’s Theorem for ���� , i.e., Gödel logic enriched by the pro-
jection operator � is proved. As a consequence we obtain a “chain normal form”
and a translation of prenex � �� into (order) clause logic, referring to the classical
theory of dense total orders with endpoints. A chaining calculus provides a basis
for efficient theorem proving.

1 Introduction

Fuzzy logic formalizes reasoning in the context of vague (imprecise) information. (See
the introduction of [21].) Automated reasoning in first order fuzzy logic(s) is a big
and important challenge. Among the three fundamental fuzzy logics — Łukasiewicz
logic Ł, Product logic � , and Gödel logic 	�
 — only 	�
 (also called “intuitionistic
fuzzy logic”[26]) is recursively axiomatizable (see [21]). In fact, even Gödel logic is
incomplete if either certain “0-1-relativizations” are added to the language (see [4]) or
the topological structure of the truth value is changed (see [8]). In any case, in contrast
to propositional logics, efficient proof search at the (general) first order level seems to
be beyond the current state of the art, if possible at all. Thus it is reasonable to consider
natural, non-trivial fragments.

Here we focus on the prenex fragment of 	�
 ; i.e., 	 
 enriched by the relativisa-
tion operator � . � allows to make “fuzzy” statements “crisp” by mapping ��� to the
distinguished truth value � if the value of � equals � , and to � otherwise. (See [4, 11]
and Section 2, below, for more information about � .)

We demonstrate (in Section 3) that Herbrand’s Theorem holds for 	�
 . This has
important consequences not only from a theoretical point of view, but also for auto-
mated proof search. Indeed, we will use Herbrand’s Theorem to show (in Section 5)
that all prenex formulas � from 	�
 can be translated faithfully and efficiently (in lin-
ear time) into corresponding sets of “order clauses”. The latter are classical clauses
with predicate symbols � and � interpreted as total dense orders (strict and reflexive,
respectively). “Chaining calculi” for efficient deduction in such a context have been in-
troduced (among others) in [13, 14]. We will focus on one of these calculi (in Sections 6)
and argue (in Section 7) that it is a suitable basis for handling translated formulas from
prenex 	�
 ; in particular for the monadic fragment of prenex 	�
 , which we will also
show to be undecidable. See [20] for another approach applying chaining techniques to
deduction in many-valued logics.

Another consequence of Herbrand’s Theorem for 	�
 is the existence of a “chain
normal form” for prenex formulas. This is investigated in Section 4.
�
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2 Preliminaries

First-order Gödel logics 	�
 , sometimes also called intuitionistic fuzzy logic [26] or
Dummett’s LC (eg. in [1, 19], referring to [16]), arises from intuitionistic logic by
adding the axiom of linearity � ���������	�
��� ��� and the axioms ���� ������������������������� ��������������� �!� and "#��� ���������$�%���!�����&�
"'� �����������(������� ( � -shift), where the nota-
tion ) ����� indicates that � does not occur free in ) . Semantically Gödel logic is viewed
as infinite-valued logic with the real interval * �,+ �.- as set of truth values1 .

An interpretation / consists of a non-empty domain 0 and a valuation func-
tion val1 that maps constants and object variables to elements of 0 and 2 -ary function
symbols to functions from 0(3 into 0 . val 1 extends in the usual way to a function
mapping all terms of the language to an element of the domain. Moreover, val 1
maps every 2 -ary predicate symbol 4 to a fuzzy relation, i.e., a function from 053 into* �6+ �.- . The truth-value of an atomic formula (atom) )	784���9;:<+>=!=>=�+�9 3 � is thus defined as

val1 �?)@�A7 val1 �B4�.� val 1 ��9 : �C+!=>=>=D+ val1 ��9 3 �E�C=
For the truth constants F and G we have val 1 �HF��I7 � and val 1 �JG��K7 � .

The semantics of propositional connectives is given by

val 1L� �M�N���I7
O
� if val1 � ��� � val1 �J���
val1 �J��� otherwise +

val 1 � �QP5���I7�R%S TL� val1 � ���C+ val 1 �
���E�
val 1 � �Q�5���I7�R�U<VW� val 1 � ���C+ val 1 �
���E�C=X ) and )	Y[Z are abbreviations for )&�\F and �?)]�NZ^�WP_�?Z`��)@� , respectively.

To assist a concise formulation of the semantics of quantifiers we define the
distribution of a formula � and a free variable � with respect to an interpretation / as

Distr 1�� ���?��E�ba>cHd7fe val1'g�� ���?����@h./Ii�j � /�k , where /Kij � / means that /Ki is exactly as/ with the possible exception of the domain element assigned to � . The semantics of
quantifiers is given by the infimum and supremum of the corresponding distribution:

val1 �E������ ���?�����7�S T'l Distr1 � ��������� val1 �E�
"#��� ���?�����7\mEn,o Distr1 � ���������C=
Following [4] we extend 	�
 with the “projection modalities” p and � :

val1q�Jp����b7
O
� if val1L� ���K7 �
� if val1L� ���sr7 �

val1�� �����b7
O
� if val1�� ���I7 �
� if val1�� ���@r7 �

A formula � is called valid in 	�
 — we write: h 7st�uv�� — if val1 � ���(7 � for all
interpretations / .

Whereas p�� can already be defined in 	 
 as X � , the extension including � ,
called 	�
 here, is strictly more expressive. � allows to recover classical reasoning
inside “fuzzy reasoning” in a very simple and natural manner: If all atoms are prefixed
by � then 	 
 coincides with classical logic. However, the expressive power of � goes
much beyond this. In particular, observe that �5"'� �������^��"#� � ������� is not valid in
	�
 . In fact, as shown in [4], 	�
 is not even recursively axiomatizable if a certain

1 For more information about Gödel logic—its winding history, importance, variants, alternative
semantics and proof systems—see, e.g., [1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 16, 17, 18, 21, 22, 26].



“relativization operator” is present. (The recursive axiomatizability of 	�
 itself still
seems to be an open problem; compare [4].) This motivates the interest in fragments of
	 
 in the context of effective theorem proving. A natural (syntactically simple) and
non-trivial (see below) fragment of 	�
 is prenex 	�
 , i.e., all quantifiers in a formula
are assumed to occur at the left hand side of the formula.

Remark 1. Whereas the prenex fragment of intuitionistic logic is PSPACE-complete
[15], prenex 	 
 is undecidable. In fact, we will show in Section 7 that prenex 	 
 is
already undecidable for signatures with only monadic predicate symbols and no func-
tion symbols. On the other hand — like in intuitionistic logic — quantifiers cannot be
shifted arbitrarily in 	 
 and 	�
 . In other words, arbitrary formulas cannot be reduced
to provably equivalent prenex formulas (in contrast to classical logic).

3 Herbrand’s Theorem

In this section we show how to effectively associate with each prenex formula � of 	 

a propositional (variable free) formula ��� which is valid if and only if � is valid.

Definition 2. Let
� :�� : =!=>= � 3 � 3 � , with

����� e.��+;"k be a (prenex) formula, where
� is quantifier free. Its Skolem form, denoted by " � �
	 � ��� 2, is obtained by rewriting" � ������ �'+���� to " � ��� �6+��q� � ��� as often as possible.

Lemma 3. Let � be a quantifier free formula:h 7 t uv � : � : =>=>= � 3 � 3 ��� � : +!=>=>=!+ � 3 ��� h 7 t uv " � � 	 � ��.=
Proof. Follows from the usual laws of quantification. ��

Let � be a formula. The Herbrand universe ��� ��� of � is the set of all ground terms
(those with no variables) which can be constructed from the set of function symbols
occurring in � . To prevent �%� ��� from being finite or empty we add a constant and a
function symbol of positive arity if no such symbols appear in � . The Herbrand base� � ��� is the set of atoms constructed from the predicate symbols in � and the terms of
the Herbrand universe. A Herbrand expansion of � is a disjunction of instances of �
where free variables are replaced with terms in �%� ��� .
Remark 4. We make use of the fact that the truth-value of any formula � of 	�
 under
a given interpretation only depends on the ordering of the respective values of atoms
occurring in � .

Lemma 5. Let � be a quantifier-free formula. If h 7 t�uv " � ��� ��� then there exist tuples9E: +>=!=>= 9 3 of terms in �%� ��� , such that h 7 t uv�� 3��� : ��� 9 � � .
2 The notation hides the fact that the Skolem form also depends on the quantifier prefix. How-

ever, below, the context will always provide the relevant information.



Proof. Let )�: +E)���+!=>=>= be a non-repetitive enumeration of (the infinite set)
� � ��� . We

construct a “semantic tree”
�

; i.e., a systematic representation of all possible order
types of interpretations.

�
is a rooted tree whose nodes appear at levels. Each node at

level � is labelled with an expression, called constraint, of form���� a>cHd7 �	�
��@) � � : � � 
 : =>=!=�
 ��� : ) � � � � � 
 � � +
where � 
 is either 7 or � and � is a permutation of e � +>=!=>=�+��<k . We say that an
interpretation / of ��� ��� fulfills the constraint � �� if

�	�
 � val 1L�?) � � : � ���
A:@=!=>=�
 ��� : val1L�
) � � � � ���
 � �
holds. We say that the constraint � � g��� : a>cHd7 ���
 � ) � g � : � � 
A:(=>=!=��
 � ) � g � ��� : � � 
 ��� : �
extends � �� if every interpretation fulfilling � � g��� : also fulfills � �� .�

is constructed inductively as follows:
– The root of

�
is at level � and is labelled with the constraint ��� � .

– Let � be a node at level � with label � �� . If for all interpretations / that fulfill � �� we
have val 1 � ��� 9 ���I7 � for some instance ��� 9�� of ��� ��� , where the atoms of ��� 9�� are
among ) : +!=>=>=�+ ) � , then � is a leaf node of

�
. Otherwise, for each constraint � � g��� :

that extends � �� a successor node �,i labelled with this constraint is appended to �
(at level ��� � ).

Observe that for all interpretations / of
� � ��� there is branch of

�
such that / fulfills

all constraints at all nodes of this branch. Two cases arise:
1.
�

is finite. Let � : +!=>=>=�+���� be the leaf nodes of
�

. Then h 7�t�uv � ���� : ��� 9 � � , where
��� 9 � � is an instance of ��� ��� such that val 1L� ��� 9 � ���A7 � for all interpretations / that
fulfill the constraint at � � .

2.
�

is infinite. By König’s lemma,
�

has an infinite branch. This implies that there is
an interpretation / such that val 1L� ��� 9 � �E� � � for every tuple 9 � of terms of ��� ��� .
Now we use the following

Claim. For every propositional formula � of 	�
 and interpretation / such that
val 1 � ��� � � , one can find an interpretation / � such that val 1"! � ��� � � , for an
arbitrary constant � � � � � .
The claim is easily proved by structural induction on � . It follows that there is an
interpretation /Ki with val 1#g �J" � ��� ����� � � . This contradicts the assumption thath 7 t uv " � ��� �� . ��
The following lemma establishes sufficient conditions for a logic to allow reverse

Skolemization. By this we mean the re-introduction of quantifiers in Herbrand expan-
sions. Here, by a logic # we mean a set of formulas that is closed under modus ponens,
generalization and substitutions (of both formulas and terms). We call a formula �
valid in # — and write: h 7%$�� — if � � # .

Lemma 6. Let # be a logic satisfying the following properties:

1. h 7%$ ����� � h 7�$��N�5� (commutativity of � )
2. h 7%$ �J�Q� ���W�'& � h 7�$5��� � �N�'& � (associativity of � )
3. h 7 $ �����N��� � h 7 $ ��� � (idempotency of � )
4. h 7%$ ��� � � � h 7�$����* ���?��H-J�)(.�
5. h 7%$ ���?9�� � h 7�$5"#� ������



6. h 7%$����L� ���?��W�5��� �!� � � h 7�$ � �� ������E�D�5�������
7. h 7%$ "#��� ���?��D�5��� �!� � � h 7�$ �J"#� ���?��E�L�5������� .

Let " � � 	 � ��� be the Skolem form of
� : � :�=>=!= � 3 � 3 ��� � : +!=>=!=>+ � 3 � . For all tuples of

terms 9 : +>=!=>=W+ 9 � of the Herbrand universe of �
	 � ���
h 7�$ ��

� � : � 	 � 9 � � � h 7�$ � : � :L=>=!= � 3 � 3 ��� � : +!=>=!=W+ � 3 �.=
Proof. To re-introduce quantifiers we proceed as follows. Every instance of a Skolem
term �s7 �q�?9�i : +!=>=!=�+�9�i ��� in � �� � : � 	 � 9 � � is replaced by a new variable ��� . We denote the
resulting formula by � ���� : � 	 � 9 � �.* ��� ��� - . Let 	�
� be the set of such new variables. We
define ��� � ��� iff either � is a subterm of 9 or �s7��q��9 :�+>=!=>=�+�9��<� and 9I7����?9�i : +!=>=>=�+E9�i �;�
and � ��� .

Starting with the innermost quantifier occurrence
� 3 we re-introduce all quantifiers

in � steps from �57 2 down to � 7 � . We use
� � � � �� to denote the result of applying

the substitutions from step 2 down to � � � to the disjunct �
	 � 9 � �>* � � � � - and prefixing
it with

� � � : � � � : =>=>= � 3 � 3 . � � is the number of disjuncts remaining before step � is
applied.

If
� � � � 7	" � � : Re-substitute � � for the variable ��� � 	�
�� that occurs in

� � � � �� at the
positions where � has replaced � � in � 	 � 9 � � . By hypothesis 5 we obtain

h 7 $ " � � �
� � � � :�
� � :

� � � � �� � � � � � �� * ( � ��! -#�
� � � ��
��� �

� � � � �� �
By hypotheses 1, 2, and 7 one has

h 7�$_�
��� � � :�
��� :

� � � � �� �5" � � � � � � �� * ( � � ! -#�
� � � ��
��� �

� � � � �� �
This is repeated for all � � disjuncts until " � � is re-introduced everywhere.

If
� � � � 7N� � � : First eliminate redundant copies of identical disjuncts. This can be

done by hypotheses 1, 2 and 3. Observe that, by the special form of Skolem
terms, any maximal variable �"� � 	�
� can now occur only in a single disjunct� � � � �� . Analogously to the case above, we can apply hypotheses 1, 2, 4 and 6 to
re-introduce

� � and shift it to the appropriate disjunct to obtain:

h 7 $ �
��� � � :�
��� :

� � � � �� ��� � � � � � � �� * ( � ��! -#�
� � � ��
��� �

� � � � �� �
This is repeated for all � � disjuncts until � � � is re-introduced everywhere.

Finally, h 7 $ � : � : =!=>= � 3 � 3 ��� � : +>=!=>=�+ � 3 � follows from contracting identical disjuncts
(i.e., applying hypotheses 1, 2, and 3). ��
Corollary 7. Let " � � 	 � ��� be the Skolem form of

� : � :�=>=!= � 3 � 3 ��� � : +!=>=>=!+ � 3 � . For
all tuples 9E:<+>=>=!= 9 � of terms of the Herbrand universe of �
	 � ��� :

h 7 t uv ��
� � : � 	 � 9 � � � h 7 t uv � : � :�=>=!= � 3 � 3 ��� � :<+>=>=!=�+ � 3 �.=



Corollary 8. Let � be a quantifier free formula of 	�
 :h 7 tLuv " � � 	 � ��� � h 7 t�uv � : � :�=!=>= � 3 � 3 ��� � :<+>=!=>=�+ � 3 �C=
Proof.

h 7 t uv " � � 	 � ���
� h 7stLuv � 3� � : � 	 � 9 � � for appropriate 9 : +>=!=>=�+ 9�� by Lemma 5

� h 7 tLuv � : � : =>=!= � 3 � 3 ��� � : +!=>=!=.+ � 3 � by Corollary 7 ��
Proposition 9. For all formulas � and � of 	�

1. h 7�tLuv ��� h 7stLuv ���
2. h 7 t uv �_� �N� ����� h 7 t uv � ���N� �5� � .

Theorem 10. Let � be a quantifier-free formula of 	�
 and
� � � e>��+ "�k

h 7 t uv � : � :�=>=!= � 3 � 3 ��� � :<+>=>=!=>+ � 3 �
tif and only if there exist tuples 9 : +!=>=>= 9 � of terms of the Herbrand universe of " � ��� ��� ,
such that h 7stLuv ��

��� : ��� 	 � 9 � �C=
Proof.� � � h 7 t uv � : � :�=!=>= � 3 � 3 ��� � :<+>=!=>=.+ � 3 �

� h 7 t uv " � � 	 � � � by Lemma 3

� h 7stLuv�� ���� : � 	 � 9 � � by Lemma 5

� h 7 tLuv �_� � ���� : � 	 � 9 � �E� by Proposition 9.1

� h 7stLuv�� ���� : ��� 	�� 9 � � by Proposition 9.2

��� � h 7st�uv � ���� : ��� 	 � 9 � �
� h 7stLuv �_� � ���� : � 	 � 9 � �E� by Proposition 9.2

� h 7stLuv � ���� : � 	 � 9 � � by Proposition 9.1

�	h7 t uv � : � :�=>=!= � 3 � 3 ��� � : +!=>=!=.+ � 3 � by Corollary 7 ��
Remark 11. For 	 
 (without � ), an alternative proof of Herbrand’s theorem can be
obtained using the analytic calculus HIF (“Hypersequent calculus for Intuitionistic
Fuzzy logic”) introduced in [12].

Corollary 12. Let � be a quantifier-free formula of 	�
 :

h 7stLuv � : � : =>=!= � 3 � 3 ��� � : +>=>=!=>+ � 3 � � h 7st�uv � : � : =!=>= � 3 � 3 � ��� � : +>=!=>=!+ � 3 �C=
Proof.

h 7 t uv � : � :q=>=>= � 3 � 3 ��� � : +!=>=>=>+ � 3 �
� h 7 t uv � �� � : ��� 	A� 9 � � for appropriate 9 : =>=>= 9 3 by Theorem 10

� h 7stLuv � : � : =>=!= � 3 � 3 � ��� � : +>=>=!=.+ � 3 � by Corollary 7 and Lemma 3 ��



4 A Chain Normal Form for Prenex
����

We define a normal form for formulas � of prenex 	�
 , that is based on the fact that
the truth-value of � under a given interpretation only depends on the ordering of the
respective values of atoms occurring in � . We exploit the fact that the corresponding
order relation is expressible in 	�
 . (This is not true for 	 
 .) More formally, we use

� ��� � as an abbreviation for X � �
��� ���.+ and
���  � as an abbreviation for �_� � �����WP �_�
� � ���.=

These formulas express strict linear order and equality, respectively, in the following
sense. For every interpretation / of 	�
 one has

val1�� � ��� ��� iff val 1L� ��� � val 1L�
���.+ and
val1�� �	�  ��� iff val 1L� ���K7 val 1L�
���.=

Definition 13. Let � be a quantifier-free formula of 	 
 and ) : +>=!=>=�+E) 3 the atoms
occurring in � except F and G . A � -chain over � is any formula of the form

�JF � 
 � ) � � : � �WP �?) � � : � � 
A:�) � � � � �WP
�����!P_�?) � ��3 � : � � 
 3 � :�) � � 3�� �WP_�?) � ��3�� � 
 3 G��
where � is a permutation of e � +!=>=>=>+�2qk , � 
 � is either ��� or �  , and at least one of the
� 
 � ’s stands for ��� .

Every � -chain describes a possible ordering of the values of atoms of � . By �,� ���
we denote the set of all � -chains over � . For any � � �,� ��� , we define

e ��k� a>cHd7 � G if val1 � ���I7 �F if val1 � ��� � �
for all interpretations / that satisfy the ordering conditions expressed by � . Observe
that e ��k  is always defined.

Proposition 14. For all quantifier free formulas � , � and � of 	�

h 7 t uv �&Y � � h 7 t uv ��* �s-�Y���* �s-H+

where ��* �s- denotes the formula arising from ��* �s- by replacing some occurrences of
the subformula � by � .

Lemma 15. For every quantifier free formula � and � -chain � � �,� ���
h 7stLuv�� �&� ���&Y e ��k�I�C=

Proof. By induction on the structure of � using the following tautologies of 	 
 :

� � ��� ����� �_��� � ��� �qY G�� �
� ��� ����� �_�E� ���N���IY � �� ���  ����� �_��� � ��� �qY G�� � � ��� � ��� �_�E� ��� � �IY ����
� ��� ����� �_��� �N�5���IY ��� �J�	�  ����� �_�E� ��� � �IY ���� � ��� ����� �_��� �NP5���IY ��� �
� ��� ����� �_�E� ��P � �IY ����
���  ����� �_��� �NP5���IY ��� � � ���'G���� �_� ��� Y F��� ���  G���� �_� ���	Y G��
as well as h 7 tLuv �_� �&Y ����� � ��� Y �5��� together with Proposition 14. ��



Lemma 16. For every quantifier free formula � and � � �,� ���
h 7 tLuv � ��P �����bY � ��P]e ) k�I�.=

Proof. It is easy to check that h 7�tLuv � � : P � � �bP � � : � � � � Y � � ����� � � : P � � � .
We instantiate the above formula by setting � : 7 � , � � 7 ��� and � � 7 e ��k  . By
using Lemma 15 we obtain h 7 tLuv � �5P �����A�&� �5P e ��k  � . The converse implication
follows analogously. ��
Theorem 17. For every quantifier free formula � there exists

� � ����� �,� ��� such that

h 7 t uv ��� Y �

���� �
	W� �
Proof. First note that h 7�tLuv � ��� �
	W� � . Therefore we have

h 7 t uv ��� Y *�� �

��� �
	W� � � P ���s-J=
By moving ��� into the disjunction and using Lemma 16, one obtains

h 7 t uv ��� Y * �

��� �
	W� � ��P]e ��k�L-
The claim follows by Proposition 14 since for every � � �,� ���E� we have either h 7 t uv� ��P]e ��k  �KY � ��P5G�� or h 7�t uv � ��P]e ��k  �IY � �NP F�� . ��
Remark 18. A related normal form has been introduced for propositional Gödel logic
without � in [11]. There, the total order of the truth values is expressed using the
formulas )	Y[Z and )���Z , where the latter abbreviates �?)]�NZ^� P����
Z �N)@����)@� .

As a corollary to this normal form theorem and Herbrand’s theorem (Theorem 10)
we obtain:

Corollary 19. Let � be a quantifier-free formula of 	�
 . There exist tuples of terms9E: +>=!=>=W+ 9 3 of the Herbrand universe of � ,

h 7 t uv � : � :�=!=>=;� 3 � 3 ��� � : +>=!=>=.+ � 3 � � h 7 3�
��� :

�

���� ��	��,� �%* ��� � ( � -
where �%* � � � ( � - is the chain obtained by substituting 9 � for � � .
5 Translation into Order Clauses

The chain normal form for prenex formulas � of 	 
 , introduced in Section 4 above,
can be used to reduce the validity problem for � into the problem of detecting unsatisfi-
ability of a corresponding set of “order clauses” with respect to the (classical) theory of
dense total orders with endpoints � and � . However, the computation of the chain nor-
mal form is quite inefficient in general. Therefore we use properties of � to introduce
also a “definitional normal form”, similar to the one for classical or intuitionistic logic
(see, e.g., [6]).



Definition 20. For any formula � of form �I:�� � � , where � � e<P�+ ��+!��k , let

� l � ����a!cHd7[* 4 	 � ��� �  �B4 	�� � � : ���L4 	�� � � � ��� -
where 4 	 +
4 	 � +?4 	 � are new predicate symbols and �D+ �W:<+ � � are the tuples of variables
occurring in ��+ � : + � � , respectively. If � is of form � � : then

� l�� ����a>cHd7[* 4 	 � ��� �  �^4 	�� � � : � -J=
If � is atomic then 4 	 � ��� is used as an alternative denotation for ��� ��� .

For any quantifier free formula � the definitional normal form is defined as

�
	�� � ����a!cHd7[*� �
	 ������� d �
	W�

� l � ����� � �^4 	 � ���H-
where T6U m�l�� ��� denotes the set of all non-atomic subformulas of � , � is the tuple of
variables occurring in � , and 4 	 is a new predicate symbol.

Remark 21. Certain optimizations, using tautologies of 	�
 , will lead to shorter defi-
nitional normal forms in general. However, in any case the logical complexity (i.e. the
number of connectives) of

�
	�� � ��� is linear in the logical complexity of � .

Lemma 22. For all quantifier free formulas � of 	�
 :

h 7stLuv " � ��� �� � h 7st�uv " � ��	�� � ��� ��� �C=
Proof. By Corollary 12, h 7 t uv " � ��� ��� iff h 7 t uv " � � ��� ��� . For every interpretation/ : val1��?) �  Z���7 � if val1q�?)@�%7 val 1L�?Z�� and val 1L�?) �  Z^�^7 � , otherwise.
Consequently, the proof proceeds exactly as in the case for classical logic (see [24, 6]).
I.e., for all non-atomic quantifier free formulas ��� ��� , one can show by induction on the
complexity of � that val1 � � l�� ��� �����E�K7 � iff val1 � ��� �����I7 val1 � 4 	 � ����� . ��

We translate prenex 	�
 -formulas into sets of clauses of the following form.

Definition 23. Let the sign � stands for either � or � . An inequality is an expression
of form �
�89 , where � +E9 ��� ����+���� , i.e., the set of all terms over function symbols �
(including constants) and variables � . An (order) clause is a finite set of inequalities.

Definition 24. By a dense total order � we mean a (classical) interpretation of the
signature � , � , and � , where � is interpreted as strict and dense total (linear) order
over the elements assigned to

� ����+���� and � is interpreted as the reflexive closure
of � . If also the endpoint axioms ���L� � �]�� , ������ � ��� , and � � � are satisfied we
call � a DTOE-model. A set of order clauses  is DTOE-satisfiable if  has a dense
total order with endpoints � and � , respectively, as model.

In the following we also allow equalities � 7 9 to occur in clauses. However, a
clause of form e ��7�9;k"! � is considered here as an abbreviation for the two clausese ��� 9;k�! � and e!9 � � k�! � .



Remark 25. In implementing the proof procedure, equalities can and should be han-
dled more efficiently than indicated above. In particular, combinations of chaining and
superposition along the line of [13, 14] should be applied.

Definition 26. We define sets of clauses that correspond to the various forms of
formulas of type

� l�� ��� :
��� �?)��  �
Z	P � �E�(a>cHd7fe e ) �NZ�k +Ie ) � �^k +Ke )	7QZ�+ ) 7 �^k k
��� �?)��  �
Z	� � �E�(a>cHd7fe e Z � ) k +Ke � �N) k +Ke )	7QZ�+ ) 7 �^k k
��� �?)��  �
Z`� � �E� a>cHd7fe e � ��)�+ )	7 �^k +Ie Z � �s+ ) 7 �^k +Ke � �N)�+ � ��Z�k k
��� �?)��  � Z^� a>cHd7fe e ) � � + � � Z�k +Ie Z � � + � � )�k k

where ) , Z and � are atoms, considered as terms.
The clause form for formulas " � ��� ��� is given by

� � a �J" � ��� ����� a>cHd7 e e 4 	 � ��� � ��k k�! �

	 ��� ��� d ��	W�
��� � � l � ���E�

To define the alternative clause normal form
� ��� �
" � ��� ����� based on chains, let* ) ��� Z -�� a!cHd7 e Z � ) k and * ) �  Z -�� a!cHd7 e ) � Z�+ Z �N)�k .

� � � �
" � ��� ���E��a!cHd7 e e �
	�
� �� � 3  * ) � 
 � Z - � k h � � � � ���;k

where
� � ��� is the subset of �,� ��� given by Theorem 17.

Lemma 27. For every interpretation / there is a DTOE-model �s1 , such that for all
non-atomic � : val 1L� � l�� �����K7 � iff � 1 satisfies ��� � � l�� ���E� ; and vice versa.

Proof. We only present the case for �]7 * ) �  �?ZNP � � - . The other cases are similar.
We have:

val1��
) �  �?Z	P � �E�K7 � � val1L�
)@�K7\R%S�TWe val1��?Z��C+ val 1L� � �;k
� val1L�
)@� � val1��?Z�� and val1L�?)@� � val1�� � � and� val 1��?)s�I7 val1��
Z^� or val 1L�?)s�K7 val1�� � ���

Therefore / induces an DTOE-model � 1 satisfying the order clauses

e�) ��Z�k +Ke�) � �^k + and e )	7\Z$+E)	7��^k =
Conversely, every DTOE-model for this clause set induces an interpretation that evalu-
ates ) �  �?Z	P � � to � . ��
Theorem 28. Any prenex formula

� : � :�=!=>= � 3 � 3 ��� � :<+>=!=>=>+ � 3 � of 	�
 is valid if and
only if

� � a �
" � � 	 � ���E� is DTOE-unsatisfiable.

Proof. By Lemma 3 and Corollary 8 we have: h 7 t uv � : � :q=>=>= � 3 � 3 ��� � : +!=>=>=!+ � 3 � iffh 7 t�uv " � � 	 � ��� . By Lemma 22 we have: h 7 tLuv�" � � 	 � �� iff h 7 tLuv�" � ��	�� � � 	 � ����� .



Since the conclusion as well as the conjuncts in the premise of
��	�� � � 	 � ����� are pre-

fixed by � , those subformulas behave like in classical logic. Hence the validity problem
can be dualized; i.e., " � ��	�� � � 	 � ���E� is valid iff

� � X ��4 	 � ���WP �
	 ������� d �
	D�

� l�� ���
is unsatisfiable. By Lemma 27 the latter is equivalent to the DTOE-unsatisfiability of� � a �
" � � 	 � ����� . ��
Remark 29. By similar arguments Theorem 28 also holds for

� ��� �J" � � 	 � ���E� .
6 Using an Ordered Chaining Calculus

In the previous sections, we have reduced the validity problem for prenex 	�
 to check-
ing DTOE-unsatisfiability of certain sets of order clauses. Fortunately, efficient theo-
rem proving for (various types of) order clauses has already received considerable at-
tention in the literature; see [14, 13] (and the references given there).

Some familiarity with basic notions from automated deduction, in particular the
concept of a most general unifier (mgu) of two or more terms, is assumed in the follow-
ing (see, e.g., [23].) We will identify a substitution � with a set e!�D:�� 9E: +!=>=!=W+�� 3 �9 3 k and define ������� � ���W�K7]e!9 : +!=>=!=�+�9 3 k .

We consider the following rules (cf. [13]) for order clauses:

Irreflexivity Resolution: � ! e�� �N9;k
�	�

where � is the mgu of � and 9
(Factorized) Chaining:

� ! e �W:��@: �<: +!=>=>=D+�� � � � � � k 0 ! e!9E: � i :�
 :<+>=!=>=W+E9 3 � i3 
 3 k
�	� !(0�� ! e � � � � �� � 
 � �8h � ��� � �_+ ��� 2qk

where � is the mgu of ��: +>=!=>=�+ � � +�9E:<+>=!=>=>+E9 3 and � �� � is � if and only if either � �
is � or � i� is � . Moreover, 9 :�� occurs in 0�� only in inequalities 
 �_9 :�� .

These two rules constitute a refutationally complete inference system for the theory of
all total orders in presence of set ����� of clauses

e!� � � � � + � � � � � h ����� � 2qk�! e �q�?� : +>=>=!=�+�� 3 � � �q� � : +!=>=>=D+ � 3 �Ck
where � ranges the set � of function symbols of the signature. Observe that, in trans-
lating a formula � from prenex 	 
 into a set of order clauses

� � a � ��� , we treat the
predicate symbols of � as function symbols. Additional function symbols occur from
Skolemization.

The inference system is not yet sufficiently restrictive for efficient proof search. We
follow [13] and add conditions to the rules that refer to some complete reduction order� (on the set of all terms). We write � r� 9 if X � � � 9�� and �_r7 9 ; and “ 9 is basic in
(clause) � ” if 9 � � � � or � � 9 � � .



Maximality Condition for Irreflexivity Resolution: � � is a maximal term in �	� .
Maximality Condition for Chaining: (1) � � � r� � :�� for all ��� � �N2 , (2) 
 � � r� 9E:��

for all � � � � � , (3) � � r� �<: � for all terms � that are basic in � , and (4)

 � r� 9E: � for all terms 
 that are basic in 0 .

For our purposes it is convenient to view the resulting inference system
� ���

as a set
operator.

Definition 30.
� � � �  �� is the set of all conclusions of Irreflexivity Resolution or Max-

imal Chaining where the premises are (variable renamed copies of) members of the set
of clauses  . Moreover,

� � � � �  �� 7  ,
� � � � :� �  ��^7 � � � � � � � � �  �����! � � � � �  �� ,

and
� � � � �  ��A7�� ��� � � � � � �  �� .

The set consisting of the three clauses e ��� �Wk , e!� � ��k , and e ��� ��k , correspond-
ing to the endpoint axioms, is called �,4 . The set consisting of e � � �D+ � �?�D+ � � � � k
and e � �N�D+E� � � ���L+ � �;k , corresponding to the usual density axiom, is called � � .

The following completeness theorem follows directly from Theorem 2 of [13].

Theorem 31.  has a dense total order with endpoints � and � as a model if and only
if
� � � � �  ! ����� ! �,4 !	� � � does not contain the empty clause.

Remark 32. Even more refined “chaining calculi” for handling orders have been de-
fined by Bachmair and Ganzinger in [13, 14]. However,

� ���
turns out to be quite

appropriate for our context. (In particular, since the problem of “variable chaining”
does not occur for the sets of clauses considered here).

7 The Monadic Prenex Fragment

A formula is called monadic if all predicate symbols are monadic (unary) and no func-
tion symbols occur in it.

To support the claim that
� �
�

provides an efficient proof system for prenex 	�
 ,
we conclude by investigating the special case of monadic formulas.

To appreciate the importance of this fragment, remember that monadic predicates
are interpreted as fuzzy sets. We will show that

� � �
allows to prevent the nesting of

function symbols (beyond the level of the input set) in clauses derivable from chain-
based clause normal forms of the Skolem form of a prenex and monadic formula.

To characterize the syntactic restrictions obeyed by clauses arising from translating
prenex monadic formulas we need some additional notation.

From now on we assume that the set of function symbols � consists in the disjoint
union � !� ! e �6+ ��k"! e � k , where � are the function symbols and constants arising
from Skolemizing the original formula � , and � is the set of monadic predicate symbols
occurring in � . We will distinguish the different types of function symbols syntactically
by using lower case letters for symbols in � and upper case letters for symbols in � .
Moreover, we assume the set of variables � to be stratified in the following sense: �
is the disjoint union � :�� � ��� � � , where each � � is infinite and 4 is the maximal arity of
function symbols in � .



Definition 33. We call a term simple if it is either a variable or a constant or of form
�q����:�+>=!=>=�+E� 3 � where � � � � � for � � � �N2 . (We call terms of the latter type stratified.)
A term is called atom-like if it is of form ��� � � , where � is a monadic function symbol
and � is a simple term.

An inequality 9 : �N9 � is called monadic if 9 : +�9 � are either simple or atom-like. A
clause is called monadic if all its inequalities are monadic. Finally, a set of clauses is
called monadic if all its clauses are monadic.

Proposition 34. Let
� : � : =>=>= � 3 � 3 ��� � : +!=>=>=D+ � 3 � be a monadic and prenex formula

of 	�
 . Then
� � � �
" � � 	I� is monadic. Moreover, ��� � , �,4 , and � � are monadic too, up

to renaming of variables.

To obtain the closure of the class of monadic sets of clauses with respect to
� � �

,
we have to choose the reduction order � appropriately. From now on we assume that �
fulfills all of the following, where � � � and ��+;� � � :

(a) 9 � � if � is a proper subterm of 9 , and
(b) 9 � ������� if 9 is a simple term containing � as a proper subterm.
(c) ����9�� � ������� if 9 is simple term containing � as a proper subterm.

It is easy to check that these conditions are fulfilled if � is a lexicographic path order
based on a strict order � � of the signature where ��� � 4 whenever � � � and 4 � � .
(See, e.g., [3].)

Lemma 35. If  is monadic then
� �
� �  �� is monadic too.

Proof. Consider irreflexivity resolution: i.e., �	� where � is the mgu of � and 9 in the
monadic clause � ! e����N9;k .

(1) If ����� � �8���W� contains only variables (or � is the empty substitution) then the only
condition on monadicity that is not already obviously fulfilled by �	� is that that all
terms of form �q�?��:<+!=>=>=�+E� 3 � occurring in �	� are stratified. We have to check the
following cases

(1.1) � and 9 are variables: By the maximality condition, no term of form
�q����:<+!=>=!=�+�� 3 � in � can contain � or 9 as a subterm. Therefore such terms
remain unchanged and, in particular, stratified.

(1.2) ��7 �q�?��:�+>=!=>=�+E� 3 � and 9 7 �q� � : +!=>=!=�+ � 3 � . Since � � � � � and � � ��� � ,
stratification is preserved in �	� .

(1.3) �@7 ��� �q��� : +>=!=>=�+�� 3 ��� and 9I7 ��� �q� � : +>=>=!=W+ � 3 �E� . Like case (1.2).
(1.4) � 7 ������� and 9�7 ��� � � ; � 7�e!� � � k or �_7�e � � �Wk . By the maximality

condition and conditions (b) and (c) no term of form �q���D:�+>=!=>=�+E� 3 � in � can
contain � or � as a subterm. Therefore such terms remain stratified.

(2) Otherwise, since � � 9 is monadic, � is of form e!� ��� k for some term � that is
either simple or atom-like, but not a variable. Without loss of generality, we assume
that � occurs in � (but not in 9 ). Since � is not a variable, there are only the following
two cases:

(2.1) �@7\� and 9b7�� : By the maximality condition and condition (i) for � , � cannot
be a proper subterm of a term in � . I.e., � is basic in � , if it occurs in � at all.
Therefore �	� is monadic.



(2.2) �$7 ������� and 9 7 ��� ��� for some � � � : By the maximality condition and
conditions (b) and (c) for � we have: if � occurs in � , then � is basic in � or �
occurs in an atom-like term of form ���?�� in � . In both cases �	� is monadic.

The case for chaining is analogous. E.g., consider �[7 2 7 � : � 7 �	� ! 0�� !e � � � � 
 ��k , where � is mgu of � and 9 in the monadic clauses � !�e ��� � k and0 ! e�9�� 
 k . Again, if ����� � � ���W� consists of variables only then
�

is monadic, too,
by the same arguments as in (1), above. Otherwise the same case distinction as for (2),
above, and analogous arguments apply. ��

Lemma 35 implies a bound on the depth of terms that occur in clauses derivable
from monadic sets of clauses. This leaves open the question whether also the length of
clauses (i.e., number of inequalities) can be bounded. However, this would contradict
the following undecidability result. (We adapt a proof of Gabbay [19] for the monadic
— but not prenex — fragment of 	 
 .)

Theorem 36. Validity of prenex monadic formulas of 	 
 is undecidable.

Proof. In [25] it has been shown that the classical theory CE of two equivalence re-
lations is undecidable. We faithfully interpret CE in the prenex monadic fragment of
	�
 . In fact, already validity (and therefore also satisfiability) of a formula � of CE of
form � : � : =>=>=;� 3 
 3 �� � � � � � � � �

�
� � � 
 � �

is undecidable, where each occurrence of � can be either � : or � � . Let 4 : and 4 �
be two monadic predicate symbols. We define * � � � � - ��a>cHd7 �_�B4 � �?��%Y 4 � � � �E� , for
�I7 � +�� . Let � � be the formula arising from � by replacing all subformulas � � � � by* � � � � - � .

We show that � has a CE-model � 7 �
0�� � :	� + � �
� � if and only if val1 ��� �!�I7
� for some 	�
 -interpretation / . Without loss of generalization we will assume that the
domain of � to be countable.� � � Note that each of two equivalence relations � � � ( �N7 � +�� ) of the CE-
model � induces a partition of its domain * �6+ �.- into equivalence classes

� �� 7 e!�	h� � � � � � k , where � � is an element of the domain 0 of � and  is some index taken
from a set � . Without loss of generality will assume that the index set � is the real
unit interval * �,+ �.- . (An equivalence class may have many different indices.) We define/ 7 �
0 + val1� by setting (for �b7 � +�� ) val 1�� 4 � �.� � ��7� iff � � � ��

. By straightforward
induction on the complexity of � it follows that val 1q��� �!�I7 � iff � a CE-model � .� � � Given a 	�
 -interpretation / 7��
0 + val 1 � for � � we define the CE-model �
for � by taking 0 as its domain and setting � � � � � iff val 1 � 4 � �>���� 7 val 1 � 4 � �.� � � for�D+ � � 0 , �q7 � +�� . ��
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and of some temporal logic of programs. In: Proceedings of Computer Science Logic
CSL’95. Berlin, 1996. Springer.

[9] M. Baaz, H. Veith. Quantifier Elimination in Fuzzy Logic. Computer Science Logic, 12th
International Workshop, CSL’98, LNCS 1584, 1999, 399-414.

[10] M. Baaz, H. Veith. An Axiomatization of Quantified Propositional Gödel Logic Using the
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