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Abstract. The monadic fragments of first-order Gödel logics are in-
vestigated. It is shown that all finite-valued monadic Gödel logics are
decidable; whereas, with the possible exception of one (G↑), all infinite-
valued monadic Gödel logics are undecidable. For the missing case G↑
the decidability of an important sub-case, that is well motivated also
from an application oriented point of view, is proven. A tight bound for
the cardinality of finite models that have to be checked to guarantee va-
lidity is extracted from the proof. Moreover, monadic G↑, like all other
infinite-valued logics, is shown to be undecidable if the projection op-
erator 4 is added, while all finite-valued monadic Gödel logics remain
decidable with 4.

1 Introduction

Many-valued logics have various applications in computer science (see, e.g., [10]).
They are particularly useful for modeling reasoning with graded notions and
vague information. In the latter context, the family of (finite- and infinite-valued)
Gödel logics appears as a prominent example. These are the only many-valued
logics that are completely specified by the order structure of the underlying set of
truth values. This fact characterizes Gödel logics as logics of comparative truth
and renders them an important case of so-called fuzzy logics (see [11]).

Propositional finite-valued Gödel logics were introduced by Gödel [9] to show
that intuitionistic logic does not have a characteristic finite matrix. They were
generalized by Dummett [7] to an infinite set of truth values. First-order Gödel
logic based on the closed unit interval [0, 1] as set of truth values was introduced
and axiomatized by Takeuti and Titani in [15] and called “intuitionistic fuzzy
logic”, there. In a more general view, the truth values for Gödel logics can be
taken from any V ⊆ [0, 1], that contains 0 and 1, and is closed under infima and
suprema. (Gödel logic coincides with classical logic for V = {0, 1}.) In contrast
to the propositional case, where there is only one infinite-valued Gödel logic with
respect to validity, different sets V of truth values determine different first-order
Gödel logics GV , in general. As shown in [4], GV is recursively axiomatizable
only when V is either finite or is order isomorphic to [0, 1] or to {0} ∪ [ 12 , 1].

? Supported by Austrian science foundation (FWF), project MAT P18731.
?? Supported by Austrian science foundation (FWF), project MAT P18563-N12..



We investigate monadic Gödel logics, i.e. first-order GV in which all predicate
letters are unary (monadic). Many-valued monadic predicates can be interpreted
as fuzzy sets and therefore many-valued monadic logics suffice to formalize the
central concept of a fuzzy IF-THEN rule, like: ”IF A(x) and B(x) THEN C(x)”,
where the predicates A, B, and C are fuzzy, i.e., they apply to x possibly only
to some degree.

We show that all finite-valued monadic Gödel logics are decidable, while for
infinite sets V of truth values all monadic Gödel logics are undecidable, with
the possible exception of monadic G↑, where V = {1 − 1/n : n ≥ 1} ∪ {1}.
The missing case, G↑, is interesting, since it coincides with the intersection
of all monadic finite-valued Gödel logics. Its decidability status remains open.
However, we prove the decidability of an important sub-case, that we call the
untangled fragment of G↑.

The untangled fragment of a logic consists of those (monadic) formulas in
which each subformula contains at most one free variable. To appreciate the
usefulness of this fragment, notice that its classical counterpart was used in
[12] to formalize the knowledge base of the medical expert system CADIAG-1,
represented as (classical) IF-THEN rules. This formalization made it possible to
prove the decidability of the consistency checking problem in CADIAG-1 and
led to a simple algorithm to actually carry out such checks.

Our decision procedure for the untangled fragment of G↑ also provides a tight
bound for the cardinality of finite models that have to be checked to guarantee
validity. This bound implies a considerable gain in efficiency for the correspond-
ing fragments of finite-valued Gödel logics (including classical logic). An elegant
axiomatization for the untangled fragment of G↑ can also be extracted from the
decision procedure, contrasting the fact that G↑ is not recursively axiomatiz-
able [3, 4].

We also investigate monadic Gödel logics extended with the projection op-
erator 4, see [1]. This operator maps 4P to the distinguished truth value 1 if
the value of P equals 1, and to 0 otherwise, and thus allows to recover classical
reasoning inside Gödel logics. The addition of 4 does not affect the decidability
of the finite-valued logics, however all infinite-valued monadic Gödel logics, in-
cluding G↑, turn out to be undecidable in presence of 4, even when restricted
to their prenex fragments.

2 Basic facts about Gödel logics

Kurt Gödel [9] has introduced the following truth functions for conjunction,
disjunction, and implication:

‖A ∧B‖I = min(‖A‖I , ‖B‖I), ‖A ∨B‖I = max(‖A‖I , ‖B‖I),

‖A → B‖I =

{
1 if ‖A‖I ≤ ‖B‖I
‖B‖I otherwise.



Formulas are evaluated over some set V of truth values, where {0, 1} ⊆ V ⊆ [0, 1].
The propositional constant ⊥ is semantically fixed by ‖⊥‖I = 0. ¬A abbreviates
A → ⊥ and A ↔ B abbreviates (A → B) ∧ (B → A); therefore

‖¬A‖I =

{
1 if ‖A‖I = 0
0 otherwise,

‖A ↔ B‖I =

{
1 if ‖A‖I = ‖B‖I
min(‖A‖I , ‖B‖I) otherwise.

Obviously, ‖.‖I extends every interpretation I, that maps propositional variables
into V , uniquely to arbitrary propositional formulas. I satisfies a formula F and
is called a model of F if ‖F‖I = 1; F is valid if all interpretations are models.
We identify a logic with its set of valid formulas.

Different choices of V in general induce different logics. The truth functions,
above, imply that only the respective order structure, but not the particular
arithmetic values of the truth values are relevant for validity or satisfiability. If
|V | = n (n ≥ 2) the set of valid formulas is called the n-valued Gödel logic. Ob-
viously, two-valued Gödel logic is classical logic. At the propositional level there
is only one infinite-valued Gödel logic G∞, which is also the intersection of all
finite-valued Gödel logics. Dummett [7] has shown that G∞ can be axiomatized
by adding the linearity axiom

(A → B) ∨ (B → A) (1)

to any Hilbert-style system for intuitionistic logic. Therefore G∞ is sometimes
also called Gödel-Dummett logic or Dummett’s LC. More recently G∞ emerged
as one of the main formalizations of fuzzy logics (see, e.g., [11]). In this context
it is very useful to enrich the logics by adding the unary operator 4 with the
following meaning [1]:

‖4A‖I =

{
1 if ‖A‖I = 1
0 otherwise.

The situation for infinite sets of truth values gets more interesting at the
first-order level. We introduce predicates and quantifiers as follows. Instead of
being propositional variables, atomic formulas are now of the form P (t1, . . . , tn),
where P is a predicate symbol and t1, . . . , tn are terms, where a term, here, is
either an (object) variable or a constant symbol. An interpretation I consists
of a non-empty domain D and a signature interpretation vI that maps constant
symbols and object variables to elements of D. Moreover, vI maps every n-ary
predicate symbol P to a function from Dn into V . The truth value of an atomic
formula P (t1, . . . , tn) is thus defined as

‖P (t1, . . . , tn)‖I = vI(P )(vI(t1), . . . , vI(tn)).

To fix the meaning of quantifiers we define the distribution of a formula A with
respect to a free variable x in an interpretation I as distrI(A(x)) = {‖A(x)‖I′ |
I ′ ∼x I}, where I ′ ∼x I means that I ′ is exactly as I with the possible exception



of the domain element assigned to x. The quantifiers correspond to the infimum
and supremum, respectively, in the following sense:

‖(∀x)A(x)‖I = inf distrI(A(x)) ‖(∃x)A(x)‖I = sup distrI(A(x)).

Note that the above definition of an interpretation as a pair (D, vI) covers also
classical logic. However, to enhance clarity, we will use (in Section 4, below) ⊥
and > instead of 0 and 1, respectively, for the classical truth values.

In the following we investigate (fragments of) first-order Gödel logics, with
and without the operator 4. Every truth value set V , {0, 1} ⊆ V ⊆ [0, 1], that is
closed under suprema and infima induces a first-order logic GV over the language
without 4 and a logic G4

V if 4 is present. Standard Gödel logic is G[0,1]; i.e.,
the logic over the full real unit interval as truth value set, see, e.g., [11, 15]. We
use Gn to denote the n-valued first-order Gödel logic for n ≥ 2. G↑ results from
taking V = {1} ∪ {1 − 1

k | k ≥ 1} (or any other order isomorphic truth value
set); G↓ arises from V = {0} ∪ { 1

k | k ≥ 1}.
Like in intuitionistic logic, also in Gödel logics (with or without 4) quan-

tifiers cannot be shifted arbitrarily. In other words, arbitrary formulas are not
equivalent to prenex formulas, in general. However, we have the following (stated
in [4] without proof):

Proposition 1. The following quantifier shift laws, where x is not free in B,
and where Q denotes either ∃ or ∀ (uniformly over a formula) are valid in all
Gödel logics:

(Qx)(A ∧B) ↔ ((Qx)A ∧B) (2)
(Qx)(A ∨B) ↔ ((Qx)A ∨B) (3)
(∃x)(A → B) → ((∀x)A → B) (4)
(∃x)(B → A) → (B → (∃x)A) (5)
(∀x)(A → B) ↔ ((∃x)A → B) (6)
(∀x)(B → A) ↔ (B → (∀x)A) (7)

Proof. Given the truth functions for quantifiers, presented above, it suffices to
note that, for all sets of reals A and all reals b the following statements hold.

– Corresponding to (2): inf{min(a, b) | a ∈ A} = min(inf A, b) and
sup{min(a, b) | a ∈ A} = min(sup A, b).

– Corresponding to (3): inf{max(a, b) | a ∈ A} = max(inf A, b) and
sup{max(a, b) | a ∈ A} = max(sup A, b).

– Corresponding to (4): If a ≤ b for some a ∈ A, then inf A ≤ b.
– Corresponding to (5): If b ≤ a for some a ∈ A, then b ≤ sup A.
– Corresponding to (6): a ≤ b for all a ∈ A iff sup A ≤ b.
– Corresponding to (7): b ≤ a for all a ∈ A iff b ≤ inf A.

(In fact almost all of these schemes are already intuitionistically valid.) 2



Note that the schemes that are dual to (4) and (5) are not valid in general
(but are valid in G↑ and Gn, n ≥ 2; see Proposition 3). Counterexamples are
readily obtained for standard Gödel logic G[0,1].

To emphasize that different sets of valid formulas result from different V , in
general, consider the following formula schemes:

(∃x)(A(x) → (∀x)A(x)) (8)
(∃x)((∃y)A(y) → A(x)) (9)

Any instance of (8) is satisfied in an interpretation I if and only if the infimum of
distrI(A(x)) is a minimum, i.e., an element of distrI(A(x)). Therefore (8) is valid
in G↑ and in any Gn, but not, e.g., in G[0,1] or in G↓. Similarly (9) expresses that
every supremum of a distribution is a maximum, with the possible exception of
the value 1. Therefore (9) is valid in G↓, in G↑, and in all Gn for n ≥ 2, but not,
e.g., in G[0,1]. In fact there are infinitely many different infinite-valued first-order
Gödel logics, according to [4]. The conjecture that there are just countable many
different Gödel logics has recently been settled in [5]. G[0,1] and G4

[0,1] are well
known to be recursively axiomatizable, see, e.g., [11]. In contrast, G↑ and G↓
are not recursively axiomatizable, see [3, 4].

The fact that G↑ =
⋂

n≥2 Gn also holds at the first-order level, see [4].
However, this is no longer the case if we add the projection operator 4. In the
enriched language, the intersection of all finite-valued Gödel logics is not a Gödel
logic:

Proposition 2. G4
V 6=

⋂
n≥2 G4

n for every V .

Proof. Since G4
n is a proper subset of G4

m whenever n > m,
⋂

n≥2 G4
n cannot

coincide with any finite-valued Gödel logic. To show that
⋂

n≥2 G4
n also cannot

be an infinite-valued Gödel logic, consider the formula

4(∃x)A(x) → (∃x)4A(x). (10)

It is valid in all finite-valued Gödel logics and therefore also in
⋂

n≥2 G4
n . But

not every interpretation I for G4
↑ satisfies all instances of (10). Take, e.g., the

positive integers as domain of I and let vI(P )(n) = 1 − 1
n for some predicate

symbol P . We obtain ‖(∃x)P (x)‖I = ‖4(∃x)P (x)‖I = 1 and ‖4P (x)‖I =
‖(∃x)4P (x)‖I = 0. Consequently, G4

↑ 6=
⋂

n≥2 G4
n . On the other hand, G↑ =⋂

n≥2 Gn ⊂
⋂

n≥2 G4
n and therefore all instances of schemes (8) and (9) are in⋂

n≥2 G4
n . As noted above, this implies that in all interpretations of

⋂
n≥2 G4

n

every infimum of a distribution is a minimum and every supremum of a distribu-
tion is either 1 or a maximum. In other words: if

⋂
n≥2 G4

n were identical with
some GV , then its set V of truth values could not contain any accumulation
point except 1. But all infinite subsets of [0, 1] containing 0 and 1, that satisfy
this property are order isomorphic to {1} ∪ {1 − 1

k | k ≥ 1}, which is the case
that we have excluded above. 2

Remark 1. Note that we only had to refer to a unary predicate symbol in the
above proof. I.e., Proposition 2 holds already for the monadic fragments.



3 Decidability of all finite-valued monadic Gödel logics

From now on, we will restrict our attention to monadic Gödel logics, i.e., all
predicate symbols are unary. G2 is classical logic and therefore, as is well known,
monadic G2 is decidable, whereas already a single binary predicate symbol leads
to undecidability. It is straightforward to generalize this classic result to all finite-
valued logics.

Theorem 1. Monadic G4
n is decidable for all n ≥ 2.

Proof. Let A be any monadic formula that is not valid in G4
n . Hence, there exists

an interpretation I based on the set of truth values V = { j
n−1 | 0 ≤ j ≤ n− 1}

such that ‖A‖I < 1. Let {P1, . . . , Pk} be the set of different predicate symbols
occurring in A. I induces the following equivalence relation ≡I on the domain
D of I:

c ≡I d ⇐⇒df vI(Pi)(c) = vI(Pi)(d) for all i ∈ {1, . . . , k}.

Note that c ≡I d expresses that the domain elements c and d are indistin-
guishable with respect to the interpretation I. Let [c]I denote the equivalence
class of the element c ∈ D, induced by ≡I . We define a new interpretation I ′
with domain D′ = {[c]I | c ∈ D}. D′ is finite, since according to the defini-
tion of ≡I there can be at most nk elements that are pairwise inequivalent. Let
vI′(Pi)([c]I) = vI(Pi)(c) for i ∈ {1, . . . , k}. It is straightforward to check that
I ′ is well-defined and that ‖A‖I′ = ‖A‖I . This means that A is valid in G4

n iff
it is satisfied in all interpretations with domain {1, . . . , nk}. Since there are at
most nk·nk

different such interpretations, and since evaluation of formulas over
finite domains is computable, we have proved the decidability of G4

n . 2

Remark 2. Clearly, the ‘filtration argument’ of the above proof applies to the
monadic fragments of arbitrary finite-valued logics, not just of Gödel logics. (In
fact, the proof is probably ‘folklore’. To render the paper self contained, and
since there seems to be no appropriate reference in the literature, we decided to
include it here.)

Remark 3. It is well known that the bound nk for the cardinality of relevant
model domains is optimal in the case n = 2, i.e., for classical logic. Better
bounds might be achievable in general; however all such bounds seem to depend
on the number of truth values n and are exponential in the number of different
predicate symbols k. We show in Section 5 that much better bounds can be
achieved for an interesting, non-trivial sub-case of the monadic fragments.

4 Undecidability of infinite-valued Gödel logics

We prove the undecidability of each Gödel logic GV , where the set V of truth
values contains infinitely many values below some value that is distinct from 1.
Our proof adapts and generalizes the undecidability proof sketched in [8] for



monadic ‘LC with constant domains’, which coincides with monadic G[0,1]. With
the notable exception of G↑, all infinite-valued Gödel logics satisfy the above
condition on V , see Corollary 1.

We will also consider infinite-valued Gödel logics extended with the projec-
tion operator 4. Monadic prenex G4

[0,1] was shown to be undecidable in [2]. This
result is generalized below, where we show that in fact for all infinite V , monadic
G4

V is undecidable, even when restricted to prenex formulas.

Theorem 2. Let GV be a Gödel logic, where the set V of truth values satisfies
the condition: ∃p ∈ V, p < 1, such that Vp = {y ∈ V | y ≤ p} is infinite. Validity
in GV is undecidable for monadic formulas.

Proof. The classical theory CE of two equivalence relations ≡1 and ≡2 was
shown to be undecidable in [14]. Let GV be any Gödel logic, where V satisfies
the condition: ∃p ∈ V, p < 1, such that Vp = {y ∈ V | y ≤ p} is infinite. We
faithfully interpret CE in the monadic fragment of GV . The idea is to translate
formulas of the form x ≡i y into formulas Pi(x) ↔ Pi(y), i = 1, 2, of the monadic
fragment of GV , where P1 and P2 are different unary predicate symbols. Without
loss of generality, we can assume formulas in CE to be in prenex normal form.
Let S be the following formula of this kind:

Q∗
∧

(
∧
j

xj ≡ yj →
∨
k

uk ≡ vk),

where each occurrence of ≡ is either ≡1 or ≡2, and where Q∗ is a string (Q1z1) . . .
(Qnzn) of n quantifier occurrences. I.e., for all i = 1, . . . , n, Qi ∈ {∀,∃}, and zi

denotes some variable. Let S] be the following monadic formula:

Q∗
∧(∧

j

(P (xj) ↔ P (yj)) → [(
∨
k

P (uk) ↔ P (vk)) ∨ (∃x)P1(x) ∨ (∃x)P2(x)]
)
,

where P is P1 or P2, according to whether ≡ is ≡1 or ≡2. We show that S is
valid in CE if and only if S] is valid in GV .

Let M = (D, vM) be an interpretation of CE. By the Löwenheim-Skolem
theorem we can assume D to be countable without loss of generality. We define
a corresponding interpretation I(M) = (D, vI(M)) of G↑ as follows. We set
vI(M)(z) = vM(z) for all variables z. (It suffices to work in a language without
constant symbols.) Let us use ≡Mi to denote the equivalence relation vM(≡i).
Note that ≡Mi induces a partition of the domain D into equivalence classes
Ec

i = {d | d ≡Mi c}, where c ∈ D (i ∈ {1, 2}). Since Vp = {y ∈ V | y ≤ p} is
infinite and D is countable, we can take some subset W = {w0, w1, . . .} of Vp as
the set of (unique) indices in an enumeration Ew0

i , Ew1
i , . . . without repetitions

of all such equivalence classes. (This enumeration is assumed to be the same for
all interpretations that only differ in their variable assignments.) Referring to
this enumeration of equivalence classes, we can define vI(M) by

vI(M)(Pi)(d) = wk if and only if d ∈ Ewk
i ,



where e, d ∈ D and i = 1, 2.
Moreover, for each interpretation I = (D, vI) of GV we define the interpre-

tation M(I) = (D, vM(I)) of CE by

vM(I)(≡i)(d, e) = > if and only if vI(Pi)(d) = vI(Pi)(e).

for all d, e ∈ D and i = 1, 2.
We prove the following claims about I(M) and M(I) by induction on the

number n of quantifier occurrences in S and S].

(⇒) For every interpretation M = (D, vM) of CE, where ‖S‖M = ⊥, we have
‖S]‖I(M) ≤ p.

(⇐) For every interpretation I of GV , where ‖S]‖I < 1, we have ‖S‖M(I) = ⊥.

Base case: n = 0 (i.e., there are no quantifiers).
(⇒) Let ‖S‖M = ⊥ for some interpretation M = (D, vM) of CE. By definition
of I(M), we have ‖Pi(x) ↔ Pi(y)‖I(M) = 1 if and only if ‖x ≡i y‖M = >. The
exhibited conjunct of S is evaluated to ⊥ inM if and only if ‖

∧
j xj ≡ yj‖M = >

and ‖
∨

k uk ≡ vk‖M = ⊥. This, in turn, implies ‖
∧

j P (xj) ↔ P (yj)‖I(M) = 1
and ‖

∨
k P (uk) ↔ P (vk)‖I(M) = maxk min(‖P (uk)‖I(M), ‖P (vk)‖I(M)) ≤ p.

Since ‖(∃x)P1(x) ∨ (∃x)P2(x)‖I(M) ≤ sup(Vp) = p, we obtain ‖S]‖I(M) ≤ p.

(⇐) Let I be an interpretation of GV , such that ‖S]‖I < 1. Then, for some
conjunct of S] (which without loss of generality we identify with the exhibited
one) we have

‖(
∨
k

P (uk) ↔ P (vk)) ∨ (∃x)P1(x) ∨ (∃x)P2(x)‖I < ‖
∧
j

P (xj) ↔ P (yj)‖I .

This implies ‖
∧

j P (xj) ↔ P (yj)‖I = 1, since ‖
∧

j P (xj) ↔ P (yj)‖I is either 1 or
not greater than sup{vI(Pi)(d) | d ∈ D, i = 1, 2} = ‖(∃x)P1(x) ∨ (∃x)P2(x)‖I .
By the definition of M(I) we have for all variables z, z′: ‖z ≡i z′‖M(I) = > if
and only if ‖Pi(z) ↔ Pi(z′)‖I = 1 (i = 1, 2). Therefore ‖

∧
j xj ≡ yj‖M(I) = >

and ‖
∨

k uk ≡ vk‖M(I) = ⊥. Hence ‖S‖M(I) = ⊥.

Inductive case: Assuming that the claims hold for S and S], we have to show
that they also hold for S1 = (Qx)S and S]

1 = (Qx)S], where Q ∈ {∃,∀} and x
denotes any variable.

Let S1 be (∃x)S. (⇒) If ‖(∃x)S‖M = ⊥ then ‖S‖M[d/x] = ⊥ for all d ∈ D,
where M[d/x] denotes an interpretation that is like M, except for assigning
the domain element d to the variable x. By the induction hypothesis we have
‖S]‖I(M[d/x]) ≤ p, where I(M[d/x]) is the interpretation of GV corresponding
to M[d/x]. By definition, the interpretations I(M[d/x]) are identical for all
d ∈ D, except for the element assigned to x, since we required the underlying
enumeration of equivalence classes to be the same for all I(M[d/x]). We thus
obtain supd∈D(‖S]‖I(M[d/x])) = ‖(∃x)S]‖I(M) = ‖S]

1‖I(M) ≤ p, as required.
Similarly for (⇐): If ‖S]

1‖I = ‖(∃x)S]‖I < 1 then ‖S]‖I[d/x] < 1 for all
d ∈ D, where I[d/x] denotes an interpretation for GV that is like I, except for



assigning the domain element d to the variable x. By the induction hypothesis we
have ‖S‖M(I[d/x]) = ⊥, where the interpretations M(I[d/x]) are identical for all
d ∈ D, except for the element assigned to x. We thus obtain ‖(∃x)S‖M(I) = ⊥
as required.

The case S1 = (∀x)S is analogous. 2

Corollary 1. All infinite-valued monadic Gödel logics, with the possible excep-
tion of G↑, are undecidable.

Proof. Let V be any infinite set of reals, such that {0, 1} ⊆ V ⊆ [0, 1]. Suppose
V does not satisfy the condition of Theorem 2. Then V contains only finitely
many different elements below any given p < 1 for p ∈ V . It is not difficult to
see that all such V are order isomorphic to {1} ∪ {1− 1

n | n ≥ 1}; i.e., to the set
of truth values of G↑. 2

Theorem 2 can be strengthened as follows, if we augment the language of our
logics by the projection operator 4.

Theorem 3. Validity of monadic formulas in G4
V , where V is infinite, is un-

decidable. This already holds for prenex monadic formulas.

Proof. Similarly to the proof of Theorem 2, above, we translate classical formulas
of the form x ≡i y into formulas 4(Pi(x) ↔ Pi(y)) (i = 1, 2). More exactly, let
S be a formula of CE, like in the proof of Theorem 2. Let the corresponding
formula S]

4, to be interpreted in G4
V , be

Q∗
∧

(
∧
j

4(P (xj) ↔ Pi(yj)) →
∨
k

4(P (uk) ↔ Pi(vk)).

The proof that S is valid in CE if and only if S]
4 is valid in G4

V is analogous
to that of the corresponding claim in Theorem 2. However, in defining I(M)
we may now take any subset of (the infinite set) V as the set of indices in the
underlying enumeration of equivalence classes Ewk

i . The reason for this is that, in
any interpretation I, ‖4(P (x) ↔ P (y))‖I = 0 if vI(P )(vI(x)) 6= vI(P )(vI(y)),
and ‖4(P (x) ↔ P (y))‖I = 1 otherwise. Hence S]

4 itself behaves like a classical
formula, i.e., it always evaluates either to 0 or to 1 Consequently, it suffices that
V is infinite to be able to encode different equivalence classes by different truth
values in the required way.

Finally note that, in contrast to Theorem 2, S]
4 is a prenex formula. 2

5 Efficient decidability of untangled G↑ and Gn

As mentioned in the introduction, application oriented investigations draw our
attention to monadic formulas that exhibit a restricted form of overlap between
scopes of different quantifier occurrences. We propose to view quantifier scopes
as being entangled in general, but untangled in the following case.



Definition 1. A closed monadic formula F is called untangled if every subfor-
mula of F contains at most one free variable.

Example 1. (∃y)((∀x)P (x) → Q(y)) and (∀y)((∃z)((∀x)P (x) ∨ Q(z)) → P (y))
are untangled, but (∃y)(∀x)(P (x) → Q(y)) and (∃x)(∃y)(P (x) ∧ P (y)) are not
untangled.

The monadic fragment of classical logic was used in [12] to formalize the
knowledge base of the medical expert system CADIAG-1, represented as (classi-
cal) IF-THEN rules. This formalization made it possible to prove the decidability
of the consistency checking problem in CADIAG-1 and led to a simple algorithm
to actually carry out such checks. An inspection of this application reveals that
in fact only the untangled fragment of classical logic is needed for this purpose.
In a many-valued context unary predicates are interpreted as fuzzy sets. This
allows to formalize fuzzy IF-THEN rules in the untangled fragments of many-
valued logics (including Gödel logics). Therefore (efficient) decision procedures
for these fragments are of particular interest for fuzzy expert systems.

Remember from Proposition 1 that most quantifier shift laws are valid in all
Gödel logics. For the decidability proof, below, we have to apply also the two
remaining quantifier shift laws, that are not valid, e.g., in G[0,1], but are valid
in G↑ and in Gn.

Proposition 3. The following schemes, where x is not free in B, are valid in G↑
and in Gn, for n ≥ 2:

((∀x)A(x) → B) → (∃x)(A(x) → B) (11)
(B → (∃x)A(x)) → (∃x)(B → A(x)) (12)

Proof. The underlying truth value set of G↑ is V = {1} ∪ {1 − 1
k | k ≥ 1}.

Therefore, for every formula A(x) and every interpretation I of G↑ there exists
an element e in the domain of I such that ‖A(x)‖I[e/x] = inf distrI(A(x)), where
I[e/x] is like I except (possibly) for assigning e to the variable x. Similarly, for
every formula A(x) and every interpretation I either ‖(∃x)A(x)‖I = 1 or there
exists an element e in the domain of I such that ‖A(x)‖I[e/x] = sup distrI(A(x)).
The validity of (11) and (12) follows directly from these observations. 2

Definition 2. We define contexts (‘formulas with a place holder’) inductively
as follows (remember that ¬ and ↔ are derived connectives):

– the empty context [·] is positive;
– if C is a positive context and F is a formula then (C ∨F ), (F ∨C), (C ∧F ),

(F ∧C), (F → C), (∀x)C, and (∃x)C are positive contexts, but (C → F ) is
a negative context;

– if C is a negative context and F is a formula then (C∨F ), (F ∨C), (C∧F ),
(F ∧C), (F → C), (∀x)C, and (∃x)C are negative contexts, but (C → F ) is
a positive context.



The formula resulting from substituting the place holder [·] in context C by for-
mula A is denoted by C[A]. We use C[A]+ to indicate that the exhibited occur-
rence of the subformula A in the formula C[A] is positive, meaning that C is a
positive context. Likewise, C[A]− indicates a negative occurrence of A in C[A].

In C[(∃x)A]+ and in C[(∀x)A]− the exhibited quantifier occurrence is called
weak, while in C[(∃x)A]− and in C[(∀x)A]+ it is called strong.

Proposition 4. In all Gödel logics without 4 the following principles hold:

– If A → B is valid, then also C[A]+ → C[B]+ is valid;
– if A → B is valid, then also C[B]− → C[A]− is valid.

Proof. By induction on the complexity of C.
The base case, where C is the empty context (and therefore positive) trivially

holds.
We spell out two of the twelve different propositional cases of the induc-

tion step. The validity of A → B implies ‖A‖I ≤ ‖B‖I for every interpre-
tation I. By the induction hypothesis we have ‖C[A]+‖I ≤ ‖C[B]+‖I . Thus,
‖F∧C[A]+‖I = min(‖F‖I ,‖C[A]+‖I) ≤ min(‖F‖I ,‖C[B]+‖I) = ‖F∧C[B]+‖I .
I.e., (F ∧ C[A]+) → (F ∧ C[B]+) is valid.

For a context of the form C[·]+ → F we have to show that (C[B]+ → F ) →
(C[A]+ → F ) is valid if ‖A‖I ≤ ‖B‖I for all I. (Remember that the occurrence
of A is negative in C+[A] → F .) We distinguish two cases.

(a) ‖C[B]+‖I ≤ ‖F‖I : By the induction hypothesis ‖C[A]+‖I ≤ ‖C[B]+‖I .
Therefore also ‖C[A]+‖I ≤ ‖F‖I and consequently ‖C[A]+ → F‖I = 1,
which implies that ‖(C[B]+ → F ) → (C[A]+ → F )‖I = 1.

(b) ‖C[B]+‖I > ‖F‖I : this implies ‖C[B]+ → F‖I = ‖F‖I . If ‖C[A]+‖I ≤
‖F‖I then ‖C[A]+ → F‖I = 1. Otherwise ‖C[A]+‖I > ‖F‖I and con-
sequently also ‖C[A]+ → F‖I = ‖F‖I . In both cases ‖C[B]+ → F‖I ≤
‖C[A]+ → F‖I and therefore, again, ‖(C[B]+ → F ) → (C[A]+ → F )‖I = 1.

All other propositional cases are similar. The quantifier cases are straightfor-
ward, too. We just present the case for (∀x)C[·]−. (The other cases are similar.)
Assume that A → B is valid, i.e., ‖A‖I ≤ ‖B‖I for all interpretations I. By
the induction hypothesis ‖C[B]−‖I ≤ ‖C[A]−‖I for all I. But this implies that
inf distrI(C[B(x)]−) ≤ inf distrI(C[A(x)]−) and therefore also ‖(∀x)C[B]−‖I ≤
‖(∀x)C[A]−‖I for all I; i.e., (∀x)C[B]− → (∀x)C[A]− is valid, too. 2

Theorem 4. Untangled G↑ is decidable.

Proof. We first prove that untangled formulas in G↑ remain valid if all strong
quantifier occurrences are replaced by new constant symbols. To this aim it
suffices to show that

– C[(∀x)A(x)]+ is valid if and only if C[A(d)]+ is valid, and
– C[(∃x)A(x)]− is valid if and only if C[A(d)]− is valid,



where d is a constant that does not occur in C[A].
The ‘only if’ part of these claims follows directly from Proposition 4 and the

validity of (∀x)A(x) → A(d) and of A(d) → (∃x)A(x), respectively.
For the ‘if’ part note that the validity of F (d) implies the validity of (∀x)F (x)

if d does not occur in F : any interpretation I, where ‖(∀x)F (x)‖I < 1, can be
extended to include the new d in such a way that ‖(∀x)F (x)‖I = ‖F (d)‖I .
Therefore the claims follow, if the following schemes are valid:

– (∀x)C[A(x)]+ → C[(∀x)A(x)]+ and
– (∀x)C[A(x)]− → C[(∃x)A(x)]−,

where the only free occurrences of x in C are in A(x) and A(x) is not in the
scope of any quantifier occurrence in C[A(x)]. The validity of these schemes is
obtained by repeatedly applying the quantifier shift laws of Propositions 1 and 3
in combination with the context rules of Proposition 4. (This is possible only
because the formulas are untangled; see Remark 4, below.)

So far, we have shown that every untangled formula F can be transformed
(in linear time) into a formula F ′ that only contains weak quantifier occurrences,
but is equivalent to F with respect to validity in G↑ (and Gn, see Remark 5,
below). Let us call such a formula weak. To obtain a decision procedure, we
finally prove that every weak formula G is valid if and only if it is satisfied by
all interpretations, where the size of the domain is bounded by the number of
constant symbols occurring in G.

Let I be an arbitrary interpretation and let d1, . . . , dn be the different con-
stant symbols occurring in a weak formula G. Let I ′ be the interpretation that
is obtained from I by removing from the domain D of I all elements except
those e ∈ D, where vI(di) = e for some i ∈ {1, . . . , n}. It remains to check that
‖G‖I < 1 implies ‖G‖I′ < 1. In other words: if there is a counter model for G,
then there is already one with a restricted domain, as indicated. To this aim, note
that the quantifier shift laws of Propositions 3 and 1 entail that every weak G
is equivalent to a formula of the form (∃x)G′(x), where G′(x) is weak, too. Ob-
viously, distrI′(G′(x)) ⊆ distrI(G′(x)). Since Y ⊆ X implies sup X ≥ sup Y , we
obtain ‖G‖I = sup distrI(G′(x)) ≥ sup distrI′(G′(x)) = ‖G′‖I′ . By repeating
this argument for all (weak) quantifier occurrences, we obtain ‖G‖I′ ≤ ‖G‖I , as
required.

Finally, remember that, in Gödel logics, it only depends on the relative order,
but not on the absolute values of assigned truth values different from 0 and 1,
whether a given interpretation satisfies a formula. This implies that the number
of different interpretations with finite domain is bounded by the size of the
domain and the number of relevant (unary) predicates symbols. Hence we have
shown that validity for untangled G↑ is decidable. 2

Remark 4. Note that, in proving the validity of (∀x)C[A(x)]+ → C[(∀x)A(x)]+

and of (∀x)C[A(x)]− → C[(∃x)A(x)]−, we had to shift quantifiers in and out
(depending on the type of context). But those shifts are only over closed sub-
formulas. This is where the defining condition for untangled formulas is used.
In contrast, quantifiers cannot be moved into the scope of other quantifiers, in



general. Indeed, e.g., (∃y)(∀x)(P (y) ∧ Q(x)) entails (∃y)(P (y) ∧ Q(d)), which
in turn entails (∀x)(∃y)(P (y) ∧ Q(x)). But the latter formula does not entail
(∃y)(∀x)(P (y)∧Q(x)). Moreover, note that Proposition 3 only holds for G↑ and
for Gn, n ≥ 2, but not for other Gödel logics.

The following statement can be directly extracted from the proof of Theorem 4.

Corollary 2. An untangled formula F is valid in G↑ if and only if it is satisfied
by all interpretations of domain size m + c, where m is the number of strong
quantifier occurrences in F and c is the number of different constant symbols
occurring in F .

To see that the mentioned bound is tight consider a formula of the form

Fm =
∧

1≤i≤m

(∃xi)(�1i P1(xi) ∧ . . . ∧ �k
i Pk(xi)),

where �j
i is either ¬ or empty, and where the vectors (�1i , . . . �k

i ) and (�1j , . . . �k
j )

are different if i 6= j. Clearly, ¬Fm is not valid, since Fm can be satisfied in an
interpretation that assigns different elements to the m different variables. On
the other hand, in any domain with less than m elements at least two conjuncts
of the form P`(xi) and ¬P`(xj) cannot be satisfied simultaneously, which means
that ¬Fm is satisfied in all corresponding interpretations.

Note that our proof of Theorem 4 of implies that every untangled formula F
can be translated into a propositional formula Π(F ), that is equivalent to F
with respect to validity in G↑. To this aim one replaces subformulas of F of
the form (∀x)A(x) by

∧
1≤i≤m+c A(di) and subformulas of the form (∃x)A(x) by∨

1≤i≤m+c A(di), where each d ∈ {d1, . . . , dm+c} is either one of the c constant
symbols that already occur in F or corresponds to one of the m strong quantifier
occurrence in F .

It is well known that every propositional formula A is valid in G↑ (which
coincides with G∞ in the propositional case) if and only if it is valid in Gn+2,
where n is the number of different propositional variables in A (see, e.g., [11]).
Therefore one can reduce testing validity of untangled formulas in G↑

Corollary 3. An untangled formula F is valid in G↑ if and only if its transla-
tion Π(F ) is valid in propositional G(m+c)·k+2, where m is the number of strong
quantifier occurrences, c is the number of different constant symbols occurring
in F , and k the number of different predicate symbols in F .

Testing validity is well known to be in co-NP for all finite-valued logics.
Clearly, for every untangled F , the parameters m, c, and k are all linearly
bounded by the size of F . Therefore Corollary 3 implies that testing validity for
untangled formulas in G↑ is in co-NP, as well. This should be contrasted with
the fact that testing validity for arbitrary monadic formulas is NEXPTIME-hard
already for classical logic, see [6].



Remark 5. Although we have stated Theorem 4 only for G↑, it is clear from the
proof that the untangled fragments of finite-valued logics Gn can be decided in
the same manner. Of course, untangled Gn is only a subclass of monadic Gn.
However, the bounds mentioned in in Corollaries 2 and 3 do not depend on n
or on the number of different predicate symbols. Therefore they are drastically
better, in general, than the corresponding bounds for the unrestricted monadic
fragments (cf. Remark 3 in Section 3).

6 Axiomatization of untangled G↑

The decidability proof of Section 5 for the untangled fragment of G↑ referred
to the semantics of G↑ at several places. However, a close inspection of the
proof shows that in fact all formula schemes and rules that have been used are
valid in all Gödel logics, except for the quantifier shift laws (11) and (12) of
Proposition 3.

This observation is significant, because in [3] it has been proved that G↑
is not recursively enumerable. In other words: (full) G↑ cannot be recursively
axiomatized. In contrast to this fact, we obtain an elegant Hilbert style axiom
system that is sound and complete for untangled formulas in G↑ from the proof
of Theorem 4.

We rely on a well known axiom system for G[0,1] (see, e.g., [11]). Remem-
ber that G[0,1] is the intersection of all Gödel logics. The G↑-specific laws (11)
and (12) can already be derived in intuitionistic logic from the schemes (8)
and (9). This leads to the following system for G↑:

Intuitionistic axioms and rules: (any choice)
Linearity axiom:

(A → B) ∨ (B → A)
General quantifier axiom (valid in G[0,1], and thus in all GV ):

(∀x)(A(x) ∨B) → ((∀x)A ∨B), where x is not free in B
Specific quantifier axioms (valid only in G↑):

(∃x)(A(x) → (∀x)A(x))
(∃x)((∃y)A(y) → A(x))

According to [3], this system—like any other recursively presented proof system—
cannot be complete for full G↑. Nevertheless it is complete for untangled G↑,
since all laws that have been used in the proof of Theorem 4 can be derived.

7 Conclusion

We have investigated the decision problem for monadic fragments of Gödel log-
ics. In presence of the projection operator ∆ the emerging picture is clear and
simple: validity is decidable for all finite-valued monadic Gödel logics, but is
undecidable for all infinite-valued monadic Gödel logics. (The latter even holds
for prenex formulas.) Without ∆ all, but possible one, infinite-valued monadic



Gödel logics remain undecidable. (Obviously, the decidability result for finite-
valued logics also carries over to the language without 4.) The missing case,
G↑, is an important and interesting logic, since it coincides with the intersection
of all finite-valued logics. The (un)decidability of monadic G↑ remains open. It
is reminiscent of a long-standing open problem (see, e.g., [13]) that seems to be
related: the (un)decidability of validity for monadic  Lukasiewicz logic  L.

Motivated by a potentially important application of many-valued logics, we
have singled out a natural sub-case of monadic logic; namely, the set of un-
tangled formulas. Validity in G↑ for this fragment is shown to be decidable. In
fact, efficient and tight bounds are readily extracted from our decidability proof.
These bounds point to a considerable more efficient decision procedure for untan-
gled formulas also in the case of finite-valued logics (compared to the standard
decision method for the unrestricted monadic fragments). Moreover, since all
quantifier shifts are valid in  L, we conjecture that this decidability result can be
transferred to the untangled fragment of  L (and to similar logics as well).
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Logic and its Consequences for Theorem Proving. Proceedings of LPAR’2001. LNAI
2250, Springer, 201–216. 2001.

3. M. Baaz, A. Leitsch, R. Zach. Incompleteness of an infinite-valued first-order Gödel
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