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Abstract generalization of Gentzen sequents to multisets of sequent
Since then hypersequent calculi have been discovered for a

We introduce a systematic procedure to transform large wide range of nonclassical logics, e.g. [2, 3, 4, 5, 11]. This
classes of (Hilbert) axioms into equivalent inference sule is traditionally done by (i) looking for the “right” infereme
in sequent and hypersequent calculi. This allows for the rule(s) formalizing the particular properties of the logit-
automated generation of analytic calculi for a wide range der consideration (e.g., Avron introduced the r(dem),
of propositional nonclassical logics including intermedi corresponding to the prelinearity axiom) and (ii) proving
ate, fuzzy and substructural logics. Our work encom- cut-elimination (or cut-admissibility) to show that the re
passes many existing results, allows for the definition of sulting calculus is analytic. These two steps are usually
new calculi and contains a uniform semantic proof of cut- tailored to the particular logic at hand, and each calculus
elimination for hypersequent calculi. needs its own proof of soundness, completeness and cut-

elimination. This holds even when adding the same rules to
different base calculi (e.dL + (com) dealt with in [2],IL
1. Introduction + (com) - contraction in [4], andL + (com) - weakening
- contraction in [11]), which might cause a combinatorial
explosion on the number of the papers to be produced.

In this paper we introduce a systematic procedure for
performing step (i) and a uniform (semantic) proof for step
(ii) for a wide range of logics extendingLe?, i.e., in-
tuitionistic linear logic without exponentials. This alle
for the automated generatioaf analytic calculi for a wide
range of nonclassical logics including intermediate, sub-
structural and fuzzy logics.

More precisely, we define a hierarchy — analogous to

Since its introduction by Gentzen in [7], sequent calculus the arithmetical hierarch,, 11, — over the formulas of

has been one of the preferred frameworks to define analyticE ¢ @nd show how to translate the axioms at levels up to
calculi. This framework is however not capable of handling V2 (TéSP. up tdPs) into equivalent structural sequent rules

all interesting and useful logics. A large range of variants (f€SP- hypersequent rules). See Figure 2 for examples of
and extensions of sequent calculus have been indeed intro@0MS, considered in the literature of intermediate, sub-

duced in the last few decades to define analytic calculi for Structural and fuzzy logics, that fall into these two classe
logics that seemed to escape a (cut-free) sequent formalisa¥vhen the generated rules satisfy an additional condition or
tion; a prominent example being Godel logic, obtained by the base calculus admits weakening, these are further trans
extending intuitionistic logidL with the prelinearity axiom  formed ompletegiinto equivalent analytic rules, i.e., they
(@ — B)V (8 — ). An analytic calculus for this logic preserve cut-elimination once addedRé.e. The analyt-

was defined by Avron using hypersequents [2] — a simple icity of the generated calculi is proved once and for all by

Nonclassical logics are often presented by extending
with suitable axioms the (Hilbert) calculi of well known
systems. The applicability/usefulness of these logica-ho
ever, strongly depends on the availabilityaofalyticcalculi.
Such calculi, where proof search proceeds by step-wise de
composition of the formula to be proved, are not only useful
in establishing important properties of corresponding log
ics, such as decidability or the Herbrand theorem, but also
the key to develop automated reasoning methods.

*Research supported by FWF Project P18731. 1FLe stands foFull Lambek calculusvith exchange, see e.g. [8].



extending Okada’s semantic proof of cut-elimination [13] t Notice that a metavariable is used in two ways: as a nota-
hypersequent calculi. The completion procedure sheds alsdion that stands for (possibly compound) concrete formulas
light on the expressive power and limitations of structural and as an (atomic) building block for defining axioms and

(hyper)sequentrules.

Our work accountsiniformly for many existing results,
and new ones can be generated inaatomatedvay. For
instance, by applying our procedure a first analytic cakulu
is found for Weak Nilpotent Minimum Logi®VNM [6] —
the logic of left-continuous-normg satisfying the weak
nilpotent minimum property (Corollary 8.9).

2. Preliminaries

The base calculus we will deal with is the sequent sys-
temFLe i.e., Full Lambek calculus-L extended with ex-
change (see e.g. [8]). Roughly speakiiid,e is obtained
by dropping the structural rules of weakening @nd con-
traction €) from the sequent calculusJ (FLewc, in our
terminology) for intuitionistic logic. AlsoFLe is the same
as intuitionistic linear logic without exponentials.

Theformulasof FLe are built from propositional vari-
ablesp, q,r,... and the0-ary connectives (constants)
(unit), L (false), T (true) and0 by using the binary logi-
cal connectives(fusion),— (implication),A (conjunction)
andV (disjunction). -« anda < 3 will be used as ab-
breviations fora — 0 and(a« — §) A (6 — «). (Our
notation should not be confused with that of linear logic,
where symbol is used forL and vice versa.)

Henceforth metavariables 3, . . . will denote formulas,

11, © will stand forstoupsi.e., either a formula or the empty
set, andl', A, ... for finite (possibly empty) multisets of
formulas. In this paper we will only consider sequents in
the language oF Le that aresingle-conclusioni.e., whose
right-hand side (RHS) contains at most one formula. As

rules. We do not make a rigorous distinction between them,
relying on the standard practice in our field.

The notion of proof inFfLe is defined as usual. L&t be
a set of rules. If there is a proof HLe extended withR
(FLe + R, for short) of a sequerff, from a set of sequents
S, we say thats, is derivable fromS in FLe + R and write
S FFLeJrR So. We WritEFFLeJrR oif 0 FFLeJrR = Q.

The logical connectives dfLe are classified into two
groups according to thejpolarities [1]: 1,L,-,V (resp.
0, T,—,A) are positive (resp. negativg@ connectives for
which the left (resp. right) logical rule igvertible i.e., the
conclusion implies the premises. E.g. we have(fd):

® FrLe Oz\/ﬁ,r = II iff FrLe a,F = II andFFLe
G, =11

Connectives of the same polarity interact well with each
other:

P)Frre -l a, aVleaq (L)« 1,
a-(BVy) e (aB)V(a-).

(N) Frre c AN T =, 1 =) = o, (a—T) T,
(@ = (BAY) = (@ = B)A(a =), (L—a) =T,
((@vpB) =)= (a=7)AB—7).

(Notice that polarity is reversed on the left hand side of an
implication. For instance, the on the left-hand side (LHS)
of — in the last equivalence is considered negative.)

Since connectives, Vv, - have unitsT, 1, 1 respectively,
we adopt a natural conventiofi; V- - -V 3,, (resp.GiA- - -A
Bm andgy - - - 3,,) stands forL (resp.T and1) if m = 0.

We say that two formulas andg are gxternally equiv-
alentin FLe if o Fgre / and( Frre a. Obviously

usual, axioms and inference rules are specified by using FLe @ < 3 implies thata and 5 are equivalent, while

metavariables together withetaformulasi.e., expressions
built from metavariables, 3, ... by using the logical con-
nectives offLe. See Fig. 1 for the inference rulesBlLe.
An axiom(schemgis a metaformulay, which we iden-
tify with a rule = ¢ with O premises.
By structural rulewe mean any sequent rule, with the
exception of(init) and(cut), of the form @ > 0)

T, = U, YT,=Y,
T0:>\IJO

(r)

where eachY'; is a specific multiset of metavariables al-
lowed to be of both types: metavariables for formultasdr
for multisets of formulasl(), and eachV; is either empty, a
metavariable for formulas, or a metavariable for stodps (
Examples of structural rules are found in Figure 3.

2T-norms are the main tool in fuzzy logic to combine vague infar
tion.

the converse does not hold due to lack of a deduction theo-
rem. A counterexample is thatanda A 1 are equivalent
whereas/rre « < a A 1. In contrast with internal equiv-
alence (i.e.Frre a <« f3), external equivalence is not a
congruence; indeed, vV 5 and(a A 1) V 8 arenotequiva-
lent. If we are allowed to use the modality of linear logic,
external equivalence can be internalizegy,o!a «<!8.

Two rules(ry) and (r1) areequivalent(iin FLe) if the
relationst-gr,e 4 (ry) @NdFgret(r,) COINCIde. In particular,
when the conclusion dfr) (and resp. ofry)) is derivable
fromits premises iFLe+(ry) (resp.FLe+(ro)) then(ro)
and(r,) are equivalent. The definition naturally extends to
sets of rules.

3. Substructural Hierarchy

To address systematically the problem of translating ax-
ioms into equivalent structural rules in antomatedway



G|T =« G|a,A:>H( " (init) G|IT=1 (1) (1)
GIT,A=1I “ Gla=a " GI1L,T =1 Gl=1""
Gla,pl =1 Gll'=a G|A=4 G|T = o) o
Gla pr=T GIT,A=a 3 Girso O Glos

GlT=a G|pA=1T Gla,T'=0 G|la;, =10

=D a0 N = (L)
GlT,a— 3,A=11 Gl T=a—p Glag Nag, I'= 10 G|LT=1

GlaT'=11 G| T =1 G|T=> G|T= G|IT=q

o 18 (V1) | a | b (A7) _GlT=>a T) — (Tr)
Glavg =1 G|IT=anp G|T=oa1Va G|IT=T

G GIT=II|T'=1I
— (EW EC
G|1“:>H( ) G|II'=1I (EC)
The inference rules df'Le are obtained by dropping~ | * and removing EW), (EC).

Figure 1. Inference Rules of HFLe

we introduce below a hierarchy on thd.e formulas based It is easy to see that formulas in each class admit the
on their polarities, which is analogous to the arithmetical following normal forms:

hierarchyX.,,, I1,,.

Definition 3.1. For eachn > 0, the set$P,,, V,, of (positive
and negative) formulas are defined as follows:

(0) Py = Ny = the set of propositional variables.
(P1) 1, L and any formulax € N, belong toP,, 1.
(P2) Ifa, B € Ppy1, thenaVv g,a -8 € Ppya.

(N1) 0, T and any formulax € P,, belong ta\,, 1.
(N2) If a, B € Nyy1, thena A B € Npi1.
(N3) If a € Ppy1 andB € N,41, thena — 8 € Ni1.

An axiom) belongs taP,, (respN,,) if this holds when its
metavariables are instantiated with propositional véeisb

Example 3.2. —(a-8)V (aA B — a-3) (weak nilpotent
minimum [6]) € P53 while tukasiewicz axionf(ov — 3) —
B) = (8 — a) - a) € Ns.

See Figure 2 for further examples.

Theorem 3.3.
1. EveryFLe formula belongs to sonig, and\,,.
2. P, € P,i1 andN,, C N1, for everyn.

Hence the classeB,,, N, constitute a hierarchy, which
we callsubstructural hierarchyof the following form:

P

) P1 P2 Ps
0 M N2 N3

N

Lemma 3.4.

(P) If a € Ppy1,thenwe havegre a < 51V -+ -V G,
where eaclts; is a fusion of formulas i\,,.

(N) If & € N,y1, thentpre a < (/\1<i<m vi — Bi),
where eactp; is either0 or a formulainP,,, and each
~; is a fusion of formulas io\,,.

A formula« is said to be\,-normalif it is of the form
oy -+ o, — B where

e f=00rp V-V with eachs; a fusion of propo-
sitional variables and

e eachn; is ofthe formA\, ., ~/ — 5/, wheres! =
0 or is a propositional variable, amj is a fusion of
propositional variables.

As a consequence of the above lemma, every formiufa
N> can be transformed into a finite conjunctifn_, ., a;
of N-normal formulas such thatpy,e o < /\mgnai.

The lack of weakening i Le makes it hard to deal with
formulas inP;. We therefore introduce a subclag$of Ps
defined as:

1.1, 1LeP
2. Ifae Nythena A1 € P
3. Ifa,8 € Pithena - 8, aV 3 € Pj.

Henceforth we writda) A1 for a A 1.



Class Axiom Name Rule (cf. Fig. 3)| Reference
N, a—1,0—-«a weakening (w), (w") 7
a—a-a contraction (¢) [7]
a-a— expansion (mingle) [12]
a — o™ knotted axiomsi, m > 0) (knot?,) [9, 16]*
—(a A o) weak contraction (we)
Po aV oo excluded middle (em) [3]
(a—=B)V(B— a) prelinearity (com)* [2]
P; ((a—=B)A)V((B—a)Al) linearity (com) [2, 4, 11}
Ps oV oo weak excluded middle (Ig)* [5]
\/fzo(pi = Vi Pj) Kripke models with width< & (Bwk)* [5]
poV(po—p1)V---V(poA---App—1 — pr) | Kripke models withk worlds (Bck)* [5]

x1: The rule is equivalent to the axiom FLew.
x2: The rules(knot?,) arise by applying the completion procedure in [18] to thesuh [16, 9].
x3: The rule(com) is due to [2] (added td@L). Later added té-Lew by [4] and toFLe by [11].

Figure 2. Axioms vs (hyper)sequent rules
Lemma 3.5. Every formula inP} is equivalent to a finite

set of formulaga; )a1 V- - - V (o) a1 Where eachw; is Na-
normal.

Proof. The left-to-right direction follows bycut). For in-
stance, assume the premises@f). Theny, . ..
follows from S by (r). One can then applfcut) to obtain

v =&

the conclusion of(r2). For the right-to-left direction we

Proof. We may assume that any formufac P} is built
from conjunctions of\,-normal formulas by clauses 2 and
3. @ can be transformed into the desired sets by applying
the equivalences between
set of structural rules.
o (an1-Ba1) Vyandthe sefanr Vv, Ba1 V),

o (aAB)a1Vyand{aa V7, Ba1 V)

where~ is any formula inP}. To prove these equivalences
we use the fact thatay Vv, Ba1 Vy = (a1 Ba1) Vy and

instantiaten; with ¢; (i = 1,...,n) andg with €.

O

Theorem 4.2. Every axiom in\; is equivalent to a finite

Proof. By Lemma 3.4, it suffices to considaf,-normal ax-
iomsz). Lety bey -, — Ewithy; = Ao ¢ —
¢ fori =1,...,n. By the invertibility of (— 7), (-1), (11)
and Lemma 4.1 follows thap; - - - ¢,, — ¢ is equivalent to

(a1 Br1) VY = (@A B)a1 Vy are provable iFLe. O the rule
o] = d)l Qp = wn
Notice that in presence of weakening (i.e., FilLew) a0 =€
Lemma 3.5 holds for every formula iRs, ast-rrew o < with a1, ..., o, fresh metavariables. The invertibility of

QAT

(Ar), (— 7), (-1), (11) and (0r) allows us to replace the

premises with an equivalent s&tof sequents that consist

4. N, and sequent rules

of metavariables only. 1 = 0, then remove it from the

conclusion to obtain a structural rule. Otherwises &; Vv

We provide a systematic procedure for transforming any
axiom in N5 into a set of equivalent structural rules. The
key observation being

that the above rule is equivalent to

---V¢&. By Lemma 4.1 and the invertibility dfvl) follows

S &L=p §p = B
Lemma 4.1. The ruleM (r) is equivalent to e on =0
each of the rules with 3 fresh metavariable. The claim follows by the invert-
ﬁ i} ibility of (-1) and(11). 0
S a1 = Qn = Pn S =0
an . om £ M) S onsg

Example 4.3. Using the algorithm described in the proof of

whereS = S1-+-Smanday, ..
ables for formulas.

., &y, B are fresh metavari-

the theorem above, axion{aA—«) (weak contraction, see
Figure 2) is transformed into an equivalent structural age



follows: act on several components of one or more hypersequents.
It is this type of rule which increases the expressive power

= ~(ehna) — (an=a) = of hypersequent calculi compared to ordinary sequent cal-

— Bz ah-a culi. Examples of these rules are Avron’s communication
B= rule (com) and(lq) in Figure 3. E.g., extending the hyper-
_, B=a o= sequent version dfJ, that isHFLewc, by
=
_ g _ _ _ e (com) we get a cut-free calculus f@odel logig ax-
A further transformation (calledompletior), described in iomatized by (any Hilbert system for) intuitionistic
Section 6, makes it into the analytic rulec) in Fig. 3. logic IL + (prelinearity), see [2].
5. P. and hypersequent rules . (lq) we get a cu.t-free calculus for the intermegliate
3 yp 9 logic LQ axiomatized byiL + (weak excluded mid-
dle), see [5].

Consider some axiom beyond such as weak excluded

middle ~a V =—a and prelinearity (o« — 3) vV (8 — «), More formally, by a hypersequent structural ruteyger-
see Fig. 2. Since they are neither valid nor contradictory in structural rule for short) we meadEW), (EC) and any
intuitionistic logic, Corollary 7.2 ensures that no sturet rule, except fo(init) and(cut), of the form @ > 0)

rule added taFLe is equivalent to them. These axioms

have been instead formalized in a natural way by structural GlM=¥ - G =¥,
rules in hypersequent calculus — a simple generalization of GlTi=W |- [T = Ty
sequent calculus due to Avron (see [3] for an overview).
We show below that this holds for all axioms in the cl&@§s
(Ps, in presence of weakening) and we provide an algorithm
for transforming any such axiom into a set of equivalent
structural hypersequent rules.

(hr)

whereG is a metavariable that stands for hypersequents,
andY;, ¥;, Y%, T’ are as in structural rules. Observe that,
with the notable exceptions ofEC) and (EW), each
premise of a hypersequent structural rule contains exactly
oneactive componerif; = .

Definition 5.1. A hypersequent is amultisetS; | ... | S, Two hypersequent ruleghrg) and (hry) are equiva-
where eacly; fori = 1, ..., nis a sequent, calledampo- lent in HFLe if the derivability relationstgrret(r)
nentof the hypersequent. A hypersequent is caiedle- and Fypret(nr,) COINcide when restricted teequents :
conclusionif all its components are single-conclusion,itis S Furret(hr) So iff S Furret(nr,) So for any set
calledmultiple-conclusiomtherwise. S U{Sy} of sequents.

e .. . We introduce below an algorithm to transform axioms in
The symbol {" is intended to denote disjunction at ) : .
C L .. the subclas®; of P5 into equivalent hyperstructural rules.

the meta-level. (This will be made precise in Defini- SUS, L .
. Let us begin with establishing a connection between the two
tion 5.2 below.) As sequents are assumed here to bederivabilit relations- and-
single-conclusion, hypersequents are likewise assumed to y FlLe HFLe:
be single-conclusion. Definition 5.2. We define thénterpretation function )’

Like sequent calculi, hypersequent calculi consist of ini- as follows:
tial hypersequents, logical rules, cut and structuralsiule s
Initial hypersequents, cut and logical rules are the same as L(,on= ) =aran— 0.
those in sequent calculi, except that a “side hypersequent” 5 ( I
may occur, denoted here by the variaBleStructural rules
are divided into two categories: internal and externalgule 3. (S1|---[Sn)! = (ST a1 V- -V (SE)A1.
The former deal with formulas within sequents as in sequent
calculi. External rules manipulate whole sequents. For ex-
ample, external weakening and contraction rgi8%") and
(EC)inFigure 1 add and contract components respectively.S

Henceforth we will consideHFLe the hypersequent
version ofFLe (Figure 1). Lett-grre indicate the deriv-

A1y p =) =1 -, — 0.

Note that our interpretation of|™ differs from that of
[11] due to lack of weakening and linearity.
We obviously haveS Fgre+y So if and only if
FarLe+y So for any axioms and any setS U {So}
of sequents. However, the next proposition gives us a cru-

ability relation in HFLe. Note that the “hyperlevel” cial step to “unfold” an axiomp to a hyperstructural rule in

. - HFLe.
of HFLe is in fact redundant, in the sense thafrre
S1 | . | S, if and only if for somei € {1’ . ,n}, al- 3The reason for this restriction is that we are primarily iegted in
derivability relations on formulas (or at most sequentgpdrsequents are
readytrre 9S;. X ) ; ; X
A . . merely a convenient means to obtain analytic calculi. Nio& dbur main

m .hypersequent calculi it is howeyer p_(.)SSIble to define theorem in this section (Theorem 5.6) holds only with thinieted notion

additional external structural rulesvhich simultaneously  of equivalence.




=11 ) T = ) AAT =TI ) I'l'= ) A, T=10 Ay, T'=10 ngle)
ST S T ATom ¢ TS (we A, Ao, T = 11 (mingle
AV AV A LIV n G|ILA=1I G| Ty, Ty = 1L fo<i j<k,izj
{ 1 } 1 5 m€{17 s } (knotnm) | { | J }OS J<k,i#£j (Bwk)
Ay, A, =10 G|IT'= |A=1I G|To=1y| ... | Tk =1
G|F,A:> (Z) G|A1,F1$H1 G|A2,F2$H2 ) {G|Fi,1—‘j:>Hi}0§i§k—l;i+1§j§k (B k)
- m c
G|F:> |A:> 4 G|A2,F1:>H1|A1,F2:>H2 G|F0:>H0|...|Fk,1:>Hk,1|Fk:>

Figure 3. Some Known (Hyper) structural rules

Proposition 5.3. For any hypersequerit and any setS U
{So} of sequents, we hay&'}US Furre So iff {= GT}U
S FaFLe S0 iff {:> Gl} US Frre So.

Proof. {= G'}US FpLe So Obviously implies{= G} U
S FarLe So, Which in turn |mp||es{G} US FarLe So by
G FarLe= G!. For instance whett = (= a | = 3),
we have

_ =1
sa|l=>0 =1| =0
= an| =0

= an1 | = Ba1

=1 1)
:>a/\1| =1

(EW)
(A7)

(vr)

= \Y = \Y
(67N ﬂA1| (67N ﬂAl (EC)

= a1 V Bar

To show thaf G} US FarLe So implies{= G'}US FpLe

So, we prove by induction on the length of derivation that
{G}US FarLe Go implies{= G'} US kL. GJ forany
hypersequent’y. The claim then follows sincé{ implies

So in FLe.

is equivalent to each of the rules

G‘@ G‘T1:>’ll}1 G‘Tnﬁwn G‘@ G|§7T:>\I/
Gl®|T1,...,Toh = ¢ G| ®| %1, . tn, T =¥
BN _

whereG | ® = (G | ®1,---,G | ®,,), T, is a fresh

metavariabley; or I';, andY = Vs either= gorX = II
with 3, X, I fresh.

Proof. Proceed as the proof of Lemma 4.1. To see that the
third rule implies the first one, instantidfe= ¥ with = &.
The converse direction follows Hyut). O

Theorem 5.6.

1. Every axiom i} is equivalent to a finite set of hyper-
structural rules inHF Le.

2. Every axiom irP; is equivalent to a finite set of hyper-
structural rules inHF Lew.

Proof. 1. By Lemma 3.5, every axiom ifP; is equiva-
lent to a finite set of axiom@p1)a1 V -+ V ()1 Where
¥1,...,%, areNa-normal. By Corollary 5.4, the latter is
equivalentto= ¢ | --- | = 1, in HFLe, which is in

The base case being easy. For the inductive case it i equivalenttad = (G | = 1y | -~ | = ¥,) with G a

enough to observe that for each inference ruldiFLe
with premises | S1, ...,G | S, and conclusioitr | Sy, the
sequentG | 1), ..., (G| S,)! = (G| Sp)! is provable
in FLe. For instance we have for threright rule: (assume
for simplicity thatG consists of a single component)
FrLe (G V (I'= )iy, (G V(T = B

= (G V([ =anB)i,. O

Corollary 5.4. For any hypersequentd and any set
S U {Sy} of sequents, we hav8 turrerc So iff
S FarLet(=a1) S0 It S Frret(=ar) So-

The key Lemma 4.1 naturally extends to hypersequents.

We state it in a slightly generalized form for later use.

Lemma 5.5. Let &, ®4,...,d,, be (meta)hypersequents

consisting of metavariables. The hypersequent rule
G|
G|®|¢r,...

G|
711}”:}{

metavariable for hypersequents, [#y¥¥) and instantiation

of G with the empty hypersequent. By applying the pro-
cedure described in the proof of Theorem 4.2 to each com-
ponent of® we obtain a finite set of hyperstructural rules,
which is equivalent t@ by Lemma 5.5.

2. Follows byt prew a < a A 1. O

Example 5.7. The P4 version of the weak nilpotent mini-
mum axiom (see Example 3.2), i.e.,

(=(a- B V(eAB = a-B)n

is transformed into the hyperstructural rdtenm) as fol-
lows:

— G|l = (a-pB)| =anf—a-f

— Gla,f= |anNB=a-0

N Glr=aApB Gla-B=0
Gla,f=|T=0

. Gltr=a Gltr=p8 Gla,f=0

Gla,f=|T=0 (wnmo)



Linearity and theP; version of the weak law of excluded
middle (see Fig. 2) are transformed into

G|f=~v Gla=94
Gla=~v|8=4¢

Gly=a G|Ba=
Gly=[B=

(como)

(Igo0)

6. Rule Completion

As seen in the previous section, all axiom$Afi(and in
presence of weakening i;) can be transformed into hy-

Clearly the original rule implies the new one. The con-
verse also holds because any multiBet aq,...,a, of
formulas (resp. the empty stolipb= §)) can be turned into a
single formulael’ = a4 - - - o, (resp.0). Hence given con-
crete instances of the premises of the original rule, one can
first replace a multisef (resp. the empty stoup) with for-
mula oI’ (resp.0), apply the new rule and later on recover
the multisefl” (resp. the empty stoup) by the invertibility of
(-1), (11) and(0r).

This step is not needed when the given hyperstructural

perstructural rules. These rules however do not always pre<ule contains neithel' nor II, as in the case of the rules

serve cut admissibility once addedH¥ Le. For instance,
HFLewc extended with

GIT' A=«
GIT=a|lA=a

(Sr1)

does not enjoy cut admissibility, see [3]. Nevertheless, th

above rule can be transformed into an equivalent one (in
HFLe) which does preserve cut admissibility. The same
applies to any hyperstructural rule when we admit weaken-

ing (see Section 7), or when the rule satisfiesabgclicity

condition below. The purpose of this section is to describe

this transformation (we refer to it @mpletion, which ex-

tends a similar procedure in [18] that works for suitable se-

guent structural rules iR'L, and is analogous to the princi-
ple of reflection in [17].

Definition 6.1. Given a hyperstructural rule

G|T) =T
G|T1:>\I’1|

G|Y, =T,
|Tm:>\1’m

(hr)

we build itsdependency grapP (hr) as follows:

e The vertices of D(hr) are the metavariables for
formulas occurring in the premise§ | T/ =
v, ,G | Y, = ¥ (we do not distinguish occur-
rences).

e There is a directed edge — £ in D(r) if and only
if there is a premis& | T, = ¥/ such thatx occurs
in Y, andg = .

A hyperstructural ruléhr) is said to beacyclicif D(hr) is
acyclic.

Example 6.2. The rules(wnmy), (comg) and(lqo) in Ex-
ample 5.7 and.S;) above are acyclic, while this is not the
case for the rule
Glv,a=0 G|B=>a
Glv=8

1. Preliminary step. Given any hyperstructural rule, we
replace each metavarialdidor multisets of formulas (resp.

each metavariablg for stoups), if any, by a fresh metavari-
ablegr (resp.Gr) for formulas.

generated by the algorithms in Theorems 4.2 and 5.6. No-
tice that this step preserves acyclicity, i.e. if the orairule
is acyclic, so is the rule after applying the preliminarypste

Example 6.3. Applied to the rule(S;) above the prelimi-
nary yields
G| Br,Ba = «

Glfr=a|fa=a

()

2. Restructuring. Given any hyperstructural rule only
containing metavariables for formulas. We replace each
component(as,...,a, = () in its conclusion with
(Ty,...,Ty, 23 = IIg) and addh + 1 premisesG |1 =

al), ey (G | Fn = an), (G | 5,25 = Hﬁ),
whereT'y, ..., 'y, 3,11z are fresh and mutually distinct
metavariables. Likewise, we replace each component
in its conclusion of the formas,...,a, = ) with
(T,...,I', = ) and addn premises(G | Ty = a1),

..., (G| T, = ay). As aresult, we obtain a new rule in
which

(linear-conclusion) each metavariable occurs (at most)
once in the conclusion

(separation) no metavariable occurring on the LHS (resp.
RHS) of a component of the conclusion does occur on
the RHS (resp. LHS) of a premise, and

(coupling) any pair(3g,I1s) of metavariables associated
to the same occurrence ¢f always occur together,
namelyX s occurs in a premise iffl 3 does.

Example 6.4. Applied to (wnmg) in Example 5.7, the re-
structuring step yields a new rulenm,)

Glr=a (G|lt=0 Glo,f=>0
GIT=a G|A=p G|A=>1

G|IA= |AY=10

Glo, =11

while applied to the rul¢S’) in Example 6.3 this step yields

G|pr,fa=a G|I'i=pr
G|a,A1:>H1 G|F2:>ﬂA G|Oé,A2:>H2

G|F1,A1:>H1|F2,A2:>H2




When the original rule is acyclic, so is the resulting rule as (linear-conclusion) and (coupling) together with a stitbrg
we add only metavariables for multisets and stoups. Theened form of (separation):
equivalence with the original rule is ensured by Lemma

55 (strong subformula property) every metavariable occur-

ring on the LHS (resp. RHS) in a premise also occurs

3. Cutting. Given any acyclic hyperstructural rule. We on the LHS (resp. RHS) of the conclusion.

eliminate from the se@ of its premises all metavariables Example 6.6. The completion of the ruléS;) leads to the
not occurring in the conclusion (we call these varialsles  rule

dundanj. The procedure is as follows. Gyl M =1L GIT, T2 A = 1,

Let o be such a redundant metavariable afd = G|, Ay = 10 [ T2, Ap = 1o
{G | Y, = a:1<i<k} bethe subset of premises which suggested by Mints (see [3]) and equivalent(tom) in
havea on the RHS, andj: = {G | ¥, a,...,a = ¥, : presence of weakening and contraction.

1 < j < m} be the set of those which have one or more
occurrences af on the LHS, wher&; does not contair.
By acyclicity,« does not appear itf; and ¥ .

If & = 0 (resp.m = 0), then removéj, (resp.G;) from
G. The resulting rule implies the original one, by instantiat
ing o with L (resp.T). (This remains true evenif, T are

Example 6.7. By applying to the axioms in Figure 2 the
translation of Sections 4 and 5 followed by the completion
procedure, we obtain the known rules in Figure 3 (up to
contraction(c) for (Bwk) and(Bck)).

not in the language.) 7 On the power of (hyper)structural rules
Otherwise, lelG; be the set of all hypersequents of the

formG | Y;, Y, ,...,Y, = ¥;, wherel < j < m and If we admit weakening the completion procedure de-

1<iy,...,ip < k. We repplac@1 UG, with G5 thus obtain-  scribed in Section 6 does not need the acyclicity condition

ing a new hyperstructural rule. It is clear that the acygfici anymore and hencall (hyper)structural rule can be com-
is preserved by this transformation and the number of re-pleted. This observation leads to two results (Corollagy 7.
dundantvariables decreases by one. Hence by repeating thignd Corollary 7.3) that shed light on the expressive power
process, we obtain a hyperstructural rule without redundan of single-conclusion (hyper)sequent calculi.

variables. Theorem 7.1.

Example 6.5. Applied to the metavariables and o of
the rule(wnm,) in the previous example, the cutting step
yields

(&) Any acyclic hyperstructural rule can be transformed
into a completed rule which is equivalentifiF Le;

(b) Any hyperstructural rule can be transformed into a

Gl|A=a GIA=Q completed rule which is equivalentiF Lew.

GIT==a G|A=p G|la,p,X=11

GIT,A= [Ax=1 (wnma) Proof. (a) Follows by results in the preceeding section.
(b) Steps 1 and 2 in Section 6 can be applied to any hy-
and applied further on. and g, perstructural rule. As for step 3 (Cutting), all premises in
Gi, i = 1,2,3 of the formY,a = « can be simply re-
GIT,AX=T10, GIAAY=10 > L .
G || L AS :H’ G || AAS jH moved, being already derivable by weakenindif' Lew.
i . i (wnm) It is easy to see that the resulting rule is equivalent to the

GInA= A 2= original rule inHFLew. O

To see that this step preserves equivalence, we show that
the two rules above({nms) and (wnm)) are equivalent.
It is clear that the conclusio& | T,A = | AX = 11T
is derivable from the premises ¢fvnms) by using(cut)
and(wnm). Conversely, consider concrete instances of the Corollary 7.2. Any structural rule is either derivable in
premises ofwnm). LetoA be the fusion of all formulasin ~ Gentzen’d.J or derives every formula iluJ.

A, and@ = oA VoI, B = oA V oA. Since(G | A = @),
(G|A=p),(G|T=a)and(G | A = j3) are provable
andG | @,3,¥ = II is derivable from the premises of
(wnm), we obtain the conclusion byvnms).

The completion procedure for hyperstructural rules out-
lined in Section 6 subsumes completion of structural rules
in sequent calculi. Hence

Proof. Given a structural rulér), we apply the completion
procedure to obtain, by Theorem 7.1(b), a completed rule
(") equivalent to(r) in LJ. If (+') has no premises, by
linear-conclusion any formula is provablelid + (r') and

We call completedany hyperstructural rule obtained by hence inLJ + (r). Otherwise, the conclusion d#') is
applying the above completion procedure (steps 1-3).derivable from any of its premises by weakening and con-
Any completed hyperstructural rule satisfies the propertie traction due to the strong subformula property. O



Let HSM be the hypersequent calculiFLewc +
(com) + (Bc2) (see Figure 3) introduced in [5] for three-
valued Godel logicSM — the strongest intermediate logic,
semantically characterized by linearly ordered Kripke mod
els containing two worlds.

Corollary 7.3. Any hyperstructural rule is either derivable
in HSM or derivesa V —a™ in HFLew, for somen € N.

Proof. First note that both rules

G|T17T2:>H1 G|T07T2:>H2
G|T1:>H1|T2:>H2|TO:>

(Bc2)

and
G|T1,...,Tn:>H1

G|T1:>H1|

{G|T0,T1,...,Tn:>Hi}2§i§n
Yo [To =

(Ben')

are derivable inHSM. Indeed (B¢2') follows by
(com), (Bc2), (¢), (EW) and(EC), while (Ben') is deriv-
able in HSM by n — 1 applications of both(w) and
(Bc2') with premisesG | T4,...,Y, = II; and
G| Yo,...,Y, = II; (2 < i < n), followed by several
applications of com), (¢), (EW) and(EC).

Given any (hyper)structural rule. By Theorem 7.1(b) it
is equivalent inHFLew to a completed rule, saghr).
If at least one active component in the premiseg/of)
has empty RHS therfhr) is derivable inHSM (use
(com), (w), (w'), (¢) and (EW)). Otherwise, we can as-
sume thathr) has the form

G|E =11} G| Ex = II;,
GTi=IL] - [ To=>IL Y= | ... | T =

with m > 0. We can also assum#,,...,II, C
{I1},..., I, } asife.q. II; ¢ {II},...,II;.} then(hr) is
equivalent inHFLew to the rule with premise& | =; =
If,....,G | 2 = 1II, and conclusionG | To =
Moy | - [ Tp =1, [T = | ... |, = |11 =
LetY, = T,..., Y’ and consider the rulg.r)’

G|E1:>H,1
G|T1:>H1|

Y. =10, [ To =

obtained applying to the conclusion @fr): (EW), when
m = 0 and both(w) and(EC), whenm > 1. Note that
(hr)" is derivable from(hr) in HF Lew and satisfies linear-
conclusion. Two cases can occur:

1. There is a premis€' | =; = II’ in (hr)’" such that
Z;,NYo=0.AsIly,... I, C {II}, ..., II}}, the conclu-
sion of (hr)’ is derivable from (some of) its premises using
(Ben') and(w), from which the conclusion dfir) follows
by several applications afcom) and (¢). Hence(hr) is
derivable inHSM.

2. Assume otherwise that each premise =, = II;
of (hr)’ involves a metavariable iff,. We instantiate all

metavariables ifly and those for stoups with, and all
others with the empty multiset. Then all the premises of

(hr)" are of the formy, ..., = « and hence are provable
in HFLew. By the linear-conclusion property, the conclu-
sionis of theform= a| -+ | = a|a,...,a =, from

whicha vV —a™ is easily derivable ifHFLew. O
Corollaries 7.2 and 7.3 can be used to establish negative
results on the transformation of axioms into inferencesule

Example 7.4. No (hyper)structural rule is equivalent to
(a = B) = B) — (B — a) — «a) (Lukasiewicz ax-
iom, see Example 3.2). Indeed this axiom is not valid in
SM (take an evaluation in SM, i.e., v : SM-formulas
— {0,1/2,1} with v(ae — B) = 11if v(a) < v(8) and
v(le — B) = v(B) otherwise, and assign(«) 1/2
andv(8) = 0). Moreover for no finiten, is a V —a”
derivable fromHFLew extended with tukasiewicz ax-
iom. This follows from the fact that Corollary 5.4 also
holds forHFLew and FLew and from the non validity
of a vV =a™ in infinite-valued tukasiewicz logit., which

is obtained by adding tukasiewicz axiom Ebew (take
an evaluatiorw in L, i.e., v : L-formulas— [0, 1] with
v(ma) =1 —v(a), v(a-f) = max{0,v(a) + v(B) — 1}
and assign(a) = n/(n + 1)).

8. Cut Elimination

We introduce a uniform (and first semantic) proof of cut-
admissibility for any (hyper)sequent calculus defined by ex
tendingHF Le with any set of completed rules. Our result
is obtained by extending to hypersequents a powerful se-
mantic technique introduced by Okada (see e.g. [13]) which
proved cut-elimination for (higher order) linear, intoitiis-
tic and classical logics.

Traditional (syntactic) proofs of cut-elimination start
with derivations containing cuts and generate derivations
without cuts. Semantic proofs go instead in the opposite di-
rection; they start with a notion of cut-free provabilitycan
build a model in which cuts are valid.

The latter step is analogous to the process of obtain-
ing the field of reals from the field of rationa@ =
(Q,+,,0,1) via the Dedekind-MacNeille completion. For
any X C Q, define:

XD
X<1

{y:Ve e X. 2 <y}
{y:Vee X.y <z}

Thenthe seR = {X C Q : X = X><} can be thought
of as the set of real numbers extended witho and or-
dered by inclusiorC, and one can naturally emb&into
R = (R, +,-,0,1), where+,-,0,1 are suitably defined,
by mapping: € Q tor® = r>< = r<,



This construction yields a continuous structure out of a
discontinuous one. In our case, we start with an ‘intransi-
tive’ structure (as=- of a sequent is intransitive in the ab-
sence of the cut rule), and obtain a ‘transitive’ one in which
the cut rule is valid. We refer to [15] for further algebraic
account.

Let R be a set of completed hyperstructural rules. We
write F;{FLe+R G if G is cut-free provable iHFLe +

R. For asetG of hypersequents, we WriteffFLe+R g if

Fi{FLe+R G foreveryG € G.

We denote the set of multisets of formulas by, the
set of sequents by and the set of hypersequentsy We
write MH andSH for M xH andS x H, respectively. The
empty hypersequent i and the empty multiset iM are
respectively denoted by ande. Given(I'; G), (A; H) €
MH and(X = II; F') € SH, we define:

(I;G) o (A3 H)
;@eE =1L F)

(T, A;G | H) e MH
I'S=1|G|F eH

Then (MH, o, (;0)) forms a commutative monoid. In
the sequel, we writed, Y, Z ... for subsets ofMH, and
Uu,v,... for those ofSH. The binary operations, @ and

| are naturally extendedt oY = {zoy:z€ X,y € Y}

and similarly forx@t{ andg | G'.
Furthermore, we define:
X” = {ueSH: Vo€ X. Flpresr vQu}
U = {ze MH:Vuel. l—;IfFLe+R xQu}

Notice in particular that ifT; G) € X (resp.€ U47) and
(A = 1II; H) € X* (resp.€ U), the hypersequeiit, A =
IT | G | H is cut-free provable iHFLe + R.

The two operationg )* and( )< form a so-called
Galois connectiorbetweenP(MH) and P(SH): X C
U9 < U C X7, inducing aclosure operator{ )><
onP(MH). We have

LXCXP U cuse.

2 X CY=)YP AP, UCy=vyvicu-.
3. X[><“>:Xl>,u<]><] :u<1.

4. Xl><10yl><1g()(oy)><l_

The last property makes )>< anucleuq8]. Let us denote
by C the set of all closed sets w. r.(t.)>< and define

XoYy = (xuYy)FT, 0 = {( = ;0)}7,
XRY = (Xo)PY 1 = {(e0)}"7,
X o)y = {lye MH:Vz e X.xoy € Y}

Lemma 8.1([14]). A = (C,N,®,®, —, MH,1><,1,0)
is a bounded pointed commutative residuated lattice.
Namely,
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e (C,N,®, MH, (") is a lattice with greatest element
MH and least elemerit><;

e (C,®,1) is acommutative monoid,;
o foranyX, Y, ZeC, X QY CZ<—= X CY o 2Z.

0is just a point and there is no condition on it. Bounded
pointed commutative residuated lattices, also known as
FL.-algebras give rise to an algebraic semantics Itke
(see [8]). Hence we can interpret our formulagiin

A valuationon A is a function( )*® that maps each
propositional variable to a closed sep® € C. It can be
naturally extended to arbitrary formulasIlf= a4, ..., a,
(resp.Il = f), thenl®* = af o --- o af (resp.II®* = 3°).
If T (resp.Il) is empty, ther™® = 1 (resp.II* = 0). We
interpret a sequerf = T' = II by S* = I'*@Q(II*>), and
a hypersequer® = Sy | --- | S, byG®* =S} | --- | S».
If T is empty, theni* = {0}. Notice thatS® andG* are
subsets of+.

Our model supports ‘focusing’ of a component in a hy-
persequent:

Lemma 8.2. Fifpre.rr (I = II | G)* if and only if
(e;G*) C T'* —oII*, where(e; G*) denotes the sdi(e; H) :

H € G*}. In particular whenG is empty, we have
F eesr (T = TD)* ifand only if(e; 0) € T* —o TT°.

Proof. (=) Let (e; H) € (¢;G*), x € T'* andu € II*".
Thenx@u | H belongs to(I' = II | G)*, and so is cut-
free provable. Since@Qu | H = ((¢; H) o x)@Qu, we have
(6;H) oz € II**< = II*, and hencée; H) € I'* —o II°.
The converse direction is also easy. O

Theorem 8.3(Soundness)Let ( )* be a valuation orA.
For any hypersequen®, Furre+r G implies F;{FLe—f—R
G*. Hence-grretrr I' = Il implies(e; ) € T'* —o II°.

Proof. By induction on the length of derivation. The iden-
tity axiom, cut and logical rules are dealt with by Lemmas
8.1 and 8.2. For instance, when the derivation ends with an
instance of (cut):

GIl'=a Gla,A=1
G|IT=1

the induction hypothesis together with Lemma 8.2 yields
(,G*) CTI'* —o® and(¢; G*) C a® o A* —o II*. Hence
(G*) oI C a® and(¢;G*) o a® C A®* —o II*. From
this, we derive(e; G*) o (e; G*) C I'* o A®* —o II°. Since
(6;G®*) o (6,G*) = (6; G*|G®) = (¢; (G|G)*), Lemma 8.2
yields Fi{FLeJrR (G|G|T,A = II)*. By (EC), we
obtainﬁ{fFLHR (G|TI'A=T1I)°.

Suppose now that the derivation ends with an instance of
a completed hyperstructural ru(e) € R. For simplicity,



we assume that it is of the form:
G|S; G|Sy
G|Ty,....,Tn,A=1|Tpi1,...,

I, =

By the coupling and strong subformula properties, e$ich
must be either of the form (I);,,...,T;,, A = II, or of

1k

the form (2)0';,,...,I';, = with 1 g yenns i < M.
Now, let Fy € G*, (A;Hy) € TY, ..., (A Hy) €
e, (X1;F1) € A* and (X2 = ©; Fy) € II*™. Our pur-
pose is to show that
H|Al,...,An,Z:>®|An+1,...,Am:>

is cut-free provable inHFLe + R, where H
(F() | Fl | FQ | H1 | |Hm) andE:Zl,ZQ.

Foreachl < i < n,letS/ = A;,,...,A;,2 = 0O
andHi* = (F() | Fi | Fy | Hil | | Hlk) if S; is of
type (1) above, and} = A;,,...,A;, = andH} =
(Fo | Hy, | --- | Hy,,) if S; is of type (2). It is not hard
to see that

H| Sy H|S;
H|Al,...,An,E:>@|An+1,...,Am:>

is a correct instance fr); notice in particular that there

Proof. For any sequen$ = (I" = 1II), we have(T;() €
Ir'* andIl* C ( = II;0)< by Lemma 8.4 (and by the
definition of 0 whenII is empty). The latter implie§ =
I1; §) € II*", hencel’ = II € S°, and soG € G* for any
hypersequent. O

Corollary 8.6 (Uniform cut-elimination) Let R be a set of
completed hyperstructural rules. Hgrre 1 r G, thenG is
cut-free provable ifHFLe + R.

Proof. Follows by Theorems 8.3 and 8.5. O

Remark 8.7. The lattice reduct of the algebr& is com-
plete. Hence Corollary 8.6 can be easily extended to predi-
cate logics. Extensions to higher order logics and noncom-
mutative ones are also easy.

Corollary 8.8 (Uniform algebraic completeness}uppose
that R is equivalent inHF Le to a set K of axioms. A for-
mula « is valid in everyF'L.-algebra satisfyingk if and
only if « is provable inHFLe + R.

Proof. (=) SinceFurLe+r K, Theorem 8.3 implies that
A satisfiesK. Hence by assumptiofe; ) € «®. The
claim follows by completeness<) FurrLe+r « implies

is no matching constraint for the conclusion because of thetgre ¢ . The claim then follows by the soundness of

linear-conclusion propertySinceH; | Sy € (G | S;)* for
everyl < i < n, the induction hypothe5|s and@) |mpIy
that the conclusion is cut-free provable.

Let us now consider a valuation given pYy = (p; 0)><.
Under this specific valuation, we have the following form

of Okada’s lemmd13]:
Lemma 8.4. For any formulaa, (o; 0) € a® C (= «;0)<.

Proof. By induction on the structure @f. The casex = p
follows by the identity axiom.

Suppose that: = 3 — ~. To show that 3 — ~;0) €
B* —~*, let(I;G) € p* and(A = II; H) € v*>. The
induction hypotheses® C ( = §;0)7 and(;0) € 7*
imply thatT' = 3| G andy,A = II | H are cut-free
provable. Hence so i5,3 — +,A = II | G| H. This
proves(§ — ~;0) € * —o (1*>7) = * —o~*.

To show that3® —~* C ( = 3 — v;0)<, let(I'; G) €
B* —o v*. The induction hypothesi§3; ) € 3* implies
(3,T;G) € v* C (= v;0)<. Hencesd, T = ~ | G is cut-
free provable and so B = 3 — v | G. This proves the
claim. The other cases are similar. O

Theorem 8.5(Completeness)For any hypersequeidt, we
haveG € G* under the valuationp® = (p;#)><. Hence
if (¢;0) € I'* — II*, thenT’ = II is cut-free provable in
HFLe + R.

4ltis instructive to try to prove soundness HiFLe + (S;) (see Sec-

tion 6). The argument would break down precisely at this paine to
lack of the linear-conclusion and coupling properties.
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FLe. O

To illustrate the use of our results, IWNM be the fuzzy
logic defined in [6] as-Lew + (prelinearity) + (weak nilpo-
tent minimum) (see Example 3.2). Theorems 5.6, 7.1(b)
and Corollary 8.6 automatically yield:

Corollary 8.9. The hypersequent calculus obtained by ex-
tendingHFLew with (com) and the rule(wnm) of Exam-
ple 6.5 is a cut-free calculus f&VNM .

9. Conclusion

We introduce an algorithm that generates equivalent
structural rules, in sequent and hypersequent calculi fro
a large class of (Hilbert) axioms. The key idea for deter-
mining when this is possible is the identification of a hierar
chy of formulasp,,, \V,,— similar to the arithmetic hierarchy
>, I1,,— which keeps track of polarity alternation (cf. [1]).
We show how to transform

1. any axiom in\; into an equivalent set of (sequent)
structural rules, and

2. any axiom inP4 (C P3) into an equivalent set of hy-
perstructural rules.

If the generated rules are acyclic, they are further trans-
formed completedlinto equivalent analytic rules. This also
holds when the base calculus contains weakening, in which



case the automated transformation of axioms into equiv- [12] M. Ohnishi and K. Matsumoto. A system for strict impli-

alent sets of analytic hyperstructural rules applies to the

whole classPs.

Every hypersequent calculus defined by extending [13]

HFLe with a set ofcompletedules is shown to enjoy cut-
admissibility, via a uniform and semantic proof (the first
such for any hypersequent calculus).

Although some particular formulas beyong (resp. Ps)
can be captured by multiple-conclusion (hyper)sequent cal
culi, as in the case of weak excluded middle in Gentz¢n
calculus for classical logic or of Lukasiewicz axiom (see

Example 7.4) in the hypersequent calculus for Lukasiewicz
logic in [10], we conjecture that the expressive power of [17]

single-conclusion sequent (resp. hypersequent) staictur
rules is limited taV, (resp.Ps) formulas.

We conclude the paper by stating the challenging ques- [18]

tion of identifying the level of generality, beyond hyperse
qguents, appropriate for dealing, iruaiformway, with ax-
ioms at levels higher thahs.
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