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Abstract

We introduce a systematic procedure to transform large
classes of (Hilbert) axioms into equivalent inference rules
in sequent and hypersequent calculi. This allows for the
automated generation of analytic calculi for a wide range
of propositional nonclassical logics including intermedi-
ate, fuzzy and substructural logics. Our work encom-
passes many existing results, allows for the definition of
new calculi and contains a uniform semantic proof of cut-
elimination for hypersequent calculi.

1. Introduction

Nonclassical logics are often presented by extending
with suitable axioms the (Hilbert) calculi of well known
systems. The applicability/usefulness of these logics, how-
ever, strongly depends on the availability ofanalyticcalculi.
Such calculi, where proof search proceeds by step-wise de-
composition of the formula to be proved, are not only useful
in establishing important properties of corresponding log-
ics, such as decidability or the Herbrand theorem, but also
the key to develop automated reasoning methods.

Since its introduction by Gentzen in [7], sequent calculus
has been one of the preferred frameworks to define analytic
calculi. This framework is however not capable of handling
all interesting and useful logics. A large range of variants
and extensions of sequent calculus have been indeed intro-
duced in the last few decades to define analytic calculi for
logics that seemed to escape a (cut-free) sequent formalisa-
tion; a prominent example being Gödel logic, obtained by
extending intuitionistic logicIL with the prelinearity axiom
(α → β) ∨ (β → α). An analytic calculus for this logic
was defined by Avron using hypersequents [2] – a simple
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generalization of Gentzen sequents to multisets of sequents.
Since then hypersequent calculi have been discovered for a
wide range of nonclassical logics, e.g. [2, 3, 4, 5, 11]. This
is traditionally done by (i) looking for the “right” inference
rule(s) formalizing the particular properties of the logicun-
der consideration (e.g., Avron introduced the rule(com),
corresponding to the prelinearity axiom) and (ii) proving
cut-elimination (or cut-admissibility) to show that the re-
sulting calculus is analytic. These two steps are usually
tailored to the particular logic at hand, and each calculus
needs its own proof of soundness, completeness and cut-
elimination. This holds even when adding the same rules to
different base calculi (e.g.IL + (com) dealt with in [2],IL
+ (com) - contraction in [4], andIL + (com) - weakening
- contraction in [11]), which might cause a combinatorial
explosion on the number of the papers to be produced.

In this paper we introduce a systematic procedure for
performing step (i) and a uniform (semantic) proof for step
(ii) for a wide range of logics extendingFLe1, i.e., in-
tuitionistic linear logic without exponentials. This allows
for theautomated generationof analytic calculi for a wide
range of nonclassical logics including intermediate, sub-
structural and fuzzy logics.

More precisely, we define a hierarchy – analogous to
the arithmetical hierarchyΣn,Πn – over the formulas of
FLe and show how to translate the axioms at levels up to
N2 (resp. up toP3) into equivalent structural sequent rules
(resp. hypersequent rules). See Figure 2 for examples of
axioms, considered in the literature of intermediate, sub-
structural and fuzzy logics, that fall into these two classes.
When the generated rules satisfy an additional condition or
the base calculus admits weakening, these are further trans-
formed (completed) into equivalent analytic rules, i.e., they
preserve cut-elimination once added toFLe. The analyt-
icity of the generated calculi is proved once and for all by

1FLe stands forFull Lambek calculuswith exchange, see e.g. [8].



extending Okada’s semantic proof of cut-elimination [13] to
hypersequent calculi. The completion procedure sheds also
light on the expressive power and limitations of structural
(hyper)sequent rules.

Our work accountsuniformly for many existing results,
and new ones can be generated in anautomatedway. For
instance, by applying our procedure a first analytic calculus
is found for Weak Nilpotent Minimum LogicWNM [6] –
the logic of left-continuoust-norms2 satisfying the weak
nilpotent minimum property (Corollary 8.9).

2. Preliminaries

The base calculus we will deal with is the sequent sys-
temFLe i.e., Full Lambek calculusFL extended with ex-
change (see e.g. [8]). Roughly speaking,FLe is obtained
by dropping the structural rules of weakening (w) and con-
traction (c) from the sequent calculusLJ (FLewc, in our
terminology) for intuitionistic logic. Also,FLe is the same
as intuitionistic linear logic without exponentials.

The formulasof FLe are built from propositional vari-
ablesp, q, r, . . . and the0-ary connectives (constants)1
(unit), ⊥ (false),⊤ (true) and0 by using the binary logi-
cal connectives· (fusion),→ (implication),∧ (conjunction)
and∨ (disjunction). ¬α andα ↔ β will be used as ab-
breviations forα → 0 and (α → β) ∧ (β → α). (Our
notation should not be confused with that of linear logic,
where symbol0 is used for⊥ and vice versa.)

Henceforth metavariablesα, β, . . . will denote formulas,
Π,Θ will stand forstoups, i.e., either a formula or the empty
set, andΓ,∆, . . . for finite (possibly empty) multisets of
formulas. In this paper we will only consider sequents in
the language ofFLe that aresingle-conclusion, i.e., whose
right-hand side (RHS) contains at most one formula. As
usual, axioms and inference rules are specified by using
metavariables together withmetaformulas, i.e., expressions
built from metavariablesα, β, . . . by using the logical con-
nectives ofFLe. See Fig. 1 for the inference rules ofFLe.

An axiom(scheme) is a metaformulaψ, which we iden-
tify with a rule ⇒ ψ with 0 premises.

By structural rulewe mean any sequent rule, with the
exception of(init) and(cut), of the form (n ≥ 0)

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Υ0 ⇒ Ψ0
(r)

where eachΥi is a specific multiset of metavariables al-
lowed to be of both types: metavariables for formulas (α) or
for multisets of formulas (Γ), and eachΨi is either empty, a
metavariable for formulas, or a metavariable for stoups (Π).
Examples of structural rules are found in Figure 3.

2T -norms are the main tool in fuzzy logic to combine vague informa-
tion.

Notice that a metavariable is used in two ways: as a nota-
tion that stands for (possibly compound) concrete formulas
and as an (atomic) building block for defining axioms and
rules. We do not make a rigorous distinction between them,
relying on the standard practice in our field.

The notion of proof inFLe is defined as usual. LetR be
a set of rules. If there is a proof inFLe extended withR
(FLe+R, for short) of a sequentS0 from a set of sequents
S, we say thatS0 is derivable fromS in FLe+R and write
S ⊢FLe+R S0. We write⊢FLe+R α if ∅ ⊢FLe+R ⇒ α.

The logical connectives ofFLe are classified into two
groups according to theirpolarities [1]: 1,⊥, ·,∨ (resp.
0,⊤,→,∧) are positive (resp. negative) connectives for
which the left (resp. right) logical rule isinvertible, i.e., the
conclusion implies the premises. E.g. we have for(∨l):

• ⊢FLe α ∨ β,Γ ⇒ Π iff ⊢FLe α,Γ ⇒ Π and⊢FLe

β,Γ ⇒ Π.

Connectives of the same polarity interact well with each
other:

(P) ⊢FLe α · 1 ↔ α, α ∨ ⊥ ↔ α, (α · ⊥) ↔ ⊥,
α · (β ∨ γ) ↔ (α · β) ∨ (α · γ).

(N) ⊢FLe α ∧ ⊤ ↔ α, (1 → α) ↔ α, (α→ ⊤) ↔ ⊤,
(α→ (β∧γ)) ↔ (α→ β)∧(α → γ), (⊥ → α) ↔ ⊤,
((α ∨ β) → γ) ↔ (α→ γ) ∧ (β → γ).

(Notice that polarity is reversed on the left hand side of an
implication. For instance, the∨ on the left-hand side (LHS)
of → in the last equivalence is considered negative.)

Since connectives∧,∨, · have units⊤,⊥, 1 respectively,
we adopt a natural convention:β1∨· · ·∨βm (resp.β1∧· · ·∧
βm andβ1 · · ·βm) stands for⊥ (resp.⊤ and1) if m = 0.

We say that two formulasα andβ are (externally) equiv-
alent in FLe if α ⊢FLe β and β ⊢FLe α. Obviously
⊢FLe α ↔ β implies thatα andβ are equivalent, while
the converse does not hold due to lack of a deduction theo-
rem. A counterexample is thatα andα ∧ 1 are equivalent
whereas6⊢FLe α ↔ α ∧ 1. In contrast with internal equiv-
alence (i.e.⊢FLe α ↔ β), external equivalence is not a
congruence; indeed,α ∨ β and(α ∧ 1) ∨ β arenot equiva-
lent. If we are allowed to use the modality!α of linear logic,
external equivalence can be internalized:⊢FLe!α↔!β.

Two rules(r0) and(r1) areequivalent(in FLe) if the
relations⊢FLe+(r0) and⊢FLe+(r1) coincide. In particular,
when the conclusion of(r0) (and resp. of(r1)) is derivable
from its premises inFLe+(r1) (resp.FLe+(r0)) then(r0)
and(r1) are equivalent. The definition naturally extends to
sets of rules.

3. Substructural Hierarchy

To address systematically the problem of translating ax-
ioms into equivalent structural rules in anautomatedway
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G | Γ ⇒ α G | α,∆ ⇒ Π

G | Γ,∆ ⇒ Π
(cut)

G | α⇒ α
(init)

G | Γ ⇒ Π

G | 1,Γ ⇒ Π
(1l)

G | ⇒ 1
(1r)

G | α, β,Γ ⇒ Π

G | α · β,Γ ⇒ Π
(· l)

G | Γ ⇒ α G | ∆ ⇒ β

G | Γ,∆ ⇒ α · β
(· r)

G | Γ ⇒

G | Γ ⇒ 0
(0r)

G | 0 ⇒
(0l)

G | Γ ⇒ α G | β,∆ ⇒ Π

G | Γ, α→ β,∆ ⇒ Π
(→ l)

G | α,Γ ⇒ β

G | Γ ⇒ α→ β
(→ r)

G | αi,Γ ⇒ Π

G | α1 ∧ α2,Γ ⇒ Π
(∧l)

G | ⊥,Γ ⇒ Π
(⊥l)

G | α,Γ ⇒ Π G | β,Γ ⇒ Π

G | α ∨ β,Γ ⇒ Π
(∨l)

G | Γ ⇒ α G | Γ ⇒ β

G | Γ ⇒ α ∧ β
(∧r)

G | Γ ⇒ αi

G | Γ ⇒ α1 ∨ α2
(∨r)

G | Γ ⇒ ⊤
(⊤r)

G
G | Γ ⇒ Π

(EW )
G | Γ ⇒ Π | Γ ⇒ Π

G | Γ ⇒ Π
(EC)

The inference rules ofFLe are obtained by dropping ‘G | ’ and removing(EW ), (EC).

Figure 1. Inference Rules of HFLe

we introduce below a hierarchy on theFLe formulas based
on their polarities, which is analogous to the arithmetical
hierarchyΣn,Πn.

Definition 3.1. For eachn ≥ 0, the setsPn,Nn of (positive
and negative) formulas are defined as follows:

(0) P0 = N0 = the set of propositional variables.

(P1) 1,⊥ and any formulaα ∈ Nn belong toPn+1.

(P2) Ifα, β ∈ Pn+1, thenα ∨ β, α · β ∈ Pn+1.

(N1) 0,⊤ and any formulaα ∈ Pn belong toNn+1.

(N2) If α, β ∈ Nn+1, thenα ∧ β ∈ Nn+1.

(N3) If α ∈ Pn+1 andβ ∈ Nn+1, thenα→ β ∈ Nn+1.

An axiomψ belongs toPn (resp.Nn) if this holds when its
metavariables are instantiated with propositional variables.

Example 3.2. ¬(α ·β)∨ (α∧β → α ·β) (weak nilpotent
minimum [6])∈ P3 while Łukasiewicz axiom((α→ β) →
β) → ((β → α) → α) ∈ N3.
See Figure 2 for further examples.

Theorem 3.3.

1. EveryFLe formula belongs to somePn andNn.

2. Pn ⊆ Pn+1 andNn ⊆ Nn+1 for everyn.

Hence the classesPn, Nn constitute a hierarchy, which
we callsubstructural hierarchy, of the following form:

P0 P1 P2 P3

N0 N1 N2 N3
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@
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p p p p p p p p p p-

It is easy to see that formulas in each class admit the
following normal forms:

Lemma 3.4.

(P) If α ∈ Pn+1, then we have⊢FLe α↔ β1 ∨ · · · ∨ βm,
where eachβi is a fusion of formulas inNn.

(N) If α ∈ Nn+1, then⊢FLe α ↔ (
∧

1≤i≤m γi → βi),
where eachβi is either0 or a formula inPn, and each
γi is a fusion of formulas inNn.

A formulaα is said to beN2-normal if it is of the form
α1 · · ·αn → β where

• β = 0 or β1 ∨ · · · ∨ βk with eachβi a fusion of propo-
sitional variables and

• eachαi is of the form
∧

1≤j≤mi
γji → βji , whereβji =

0 or is a propositional variable, andγji is a fusion of
propositional variables.

As a consequence of the above lemma, every formulaα in
N2 can be transformed into a finite conjunction

∧
1≤i≤n αi

of N2-normal formulas such that⊢FLe α↔
∧

1≤i≤n αi.
The lack of weakening inFLe makes it hard to deal with

formulas inP3. We therefore introduce a subclassP ′
3 of P3

defined as:

1. 1,⊥ ∈ P ′
3

2. If α ∈ N2 thenα ∧ 1 ∈ P ′
3

3. If α, β ∈ P ′
3 thenα · β, α ∨ β ∈ P ′

3.

Henceforth we write(α)∧1 for α ∧ 1.
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Class Axiom Name Rule (cf. Fig. 3) Reference
N2 α→ 1, 0 → α weakening (w), (w′) [7]

α→ α · α contraction (c) [7]
α · α→ α expansion (mingle) [12]
αn → αm knotted axioms (n,m ≥ 0) (knotnm) [9, 16]∗2

¬(α ∧ ¬α) weak contraction (wc)
P2 α ∨ ¬α excluded middle (em) [3]

(α→ β) ∨ (β → α) prelinearity (com)∗1 [2]
P ′

3 ((α→ β) ∧ 1) ∨ ((β → α) ∧ 1) linearity (com) [2, 4, 11]∗3

P3 ¬α ∨ ¬¬α weak excluded middle (lq)∗1 [5]
∨k

i=0(pi →
∨
j 6=i pj) Kripke models with width≤ k (Bwk)∗1 [5]

p0 ∨ (p0 → p1) ∨ · · · ∨ (p0 ∧ · · · ∧ pk−1 → pk) Kripke models withk worlds (Bck)∗1 [5]
∗1: The rule is equivalent to the axiom inFLew.
∗2: The rules(knotnm) arise by applying the completion procedure in [18] to the rules in [16, 9].
∗3: The rule(com) is due to [2] (added toIL). Later added toFLew by [4] and toFLe by [11].

Figure 2. Axioms vs (hyper)sequent rules

Lemma 3.5. Every formula inP ′
3 is equivalent to a finite

set of formulas(α1)∧1∨· · · ∨ (αn)∧1 where eachαi isN2-
normal.

Proof. We may assume that any formulaψ ∈ P ′
3 is built

from conjunctions ofN2-normal formulas by clauses 2 and
3. ψ can be transformed into the desired sets by applying
the equivalences between

• (α∧1 · β∧1) ∨ γ and the set{α∧1 ∨ γ, β∧1 ∨ γ},

• (α ∧ β)∧1 ∨ γ and{α∧1 ∨ γ, β∧1 ∨ γ}.

whereγ is any formula inP ′
3. To prove these equivalences

we use the fact thatα∧1∨γ, β∧1∨γ ⇒ (α∧1 ·β∧1)∨γ and
(α∧1 · β∧1)∨ γ ⇒ (α∧ β)∧1 ∨ γ are provable inFLe.

Notice that in presence of weakening (i.e., inFLew)
Lemma 3.5 holds for every formula inP3, as⊢FLew α ↔
α∧1.

4.N2 and sequent rules

We provide a systematic procedure for transforming any
axiom inN2 into a set of equivalent structural rules. The
key observation being

Lemma 4.1. The rule
S1 · · · Sm

ψ1, . . . , ψn ⇒ ξ
(r) is equivalent to

each of the rules

~S α1 ⇒ ψ1 · · · αn ⇒ ψn

α1, . . . , αn ⇒ ξ
(r1)

~S ξ ⇒ β

ψ1, . . . , ψn ⇒ β
(r2)

where~S = S1 · · ·Sm andα1, . . . , αn, β are fresh metavari-
ables for formulas.

Proof. The left-to-right direction follows by(cut). For in-
stance, assume the premises of(r2). Thenψ1, . . . , ψn ⇒ ξ

follows from ~S by (r). One can then apply(cut) to obtain
the conclusion of(r2). For the right-to-left direction we
instantiateαi with ψi (i = 1, . . . , n) andβ with ξ.

Theorem 4.2. Every axiom inN2 is equivalent to a finite
set of structural rules.

Proof. By Lemma 3.4, it suffices to considerN2-normal ax-
iomsψ. Letψ beψ1 · · ·ψn → ξ with ψi =

∧
1≤j≤mi

φji →

ξji for i = 1, . . . , n. By the invertibility of(→ r), (· l), (1l)
and Lemma 4.1 follows thatψ1 · · ·ψn → ξ is equivalent to
the rule

α1 ⇒ ψ1 · · · αn ⇒ ψn

α1, . . . , αn ⇒ ξ

with α1, . . . , αn fresh metavariables. The invertibility of
(∧r), (→ r), (· l), (1l) and (0r) allows us to replace the
premises with an equivalent setS of sequents that consist
of metavariables only. Ifξ = 0, then remove it from the
conclusion to obtain a structural rule. Otherwise,ξ = ξ1 ∨
· · ·∨ξk. By Lemma 4.1 and the invertibility of(∨l) follows
that the above rule is equivalent to

S ξ1 ⇒ β · · · ξk ⇒ β

α1, . . . , αn ⇒ β

with β fresh metavariable. The claim follows by the invert-
ibility of (· l) and(1l).

Example 4.3.Using the algorithm described in the proof of
the theorem above, axiom¬(α∧¬α) (weak contraction, see
Figure 2) is transformed into an equivalent structural ruleas
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follows:

⇒ ¬(α ∧ ¬α) −→ (α ∧ ¬α) ⇒

−→ β ⇒ α ∧ ¬α

β ⇒

−→ β ⇒ α α, β ⇒

β ⇒

A further transformation (calledcompletion), described in
Section 6, makes it into the analytic rule(wc) in Fig. 3.

5.P3 and hypersequent rules

Consider some axiom beyondN2 such as weak excluded
middle¬α ∨ ¬¬α and prelinearity(α → β) ∨ (β → α),
see Fig. 2. Since they are neither valid nor contradictory in
intuitionistic logic, Corollary 7.2 ensures that no structural
rule added toFLe is equivalent to them. These axioms
have been instead formalized in a natural way by structural
rules in hypersequent calculus – a simple generalization of
sequent calculus due to Avron (see [3] for an overview).
We show below that this holds for all axioms in the classP ′

3

(P3, in presence of weakening) and we provide an algorithm
for transforming any such axiom into a set of equivalent
structural hypersequent rules.

Definition 5.1. A hypersequentG is a multisetS1 | . . . | Sn
where eachSi for i = 1, . . . , n is a sequent, called acompo-
nentof the hypersequent. A hypersequent is calledsingle-
conclusionif all its components are single-conclusion,it is
calledmultiple-conclusionotherwise.

The symbol “|” is intended to denote disjunction at
the meta-level. (This will be made precise in Defini-
tion 5.2 below.) As sequents are assumed here to be
single-conclusion, hypersequents are likewise assumed to
be single-conclusion.

Like sequent calculi, hypersequent calculi consist of ini-
tial hypersequents, logical rules, cut and structural rules.
Initial hypersequents, cut and logical rules are the same as
those in sequent calculi, except that a “side hypersequent”
may occur, denoted here by the variableG. Structural rules
are divided into two categories: internal and external rules.
The former deal with formulas within sequents as in sequent
calculi. External rules manipulate whole sequents. For ex-
ample, external weakening and contraction rules(EW ) and
(EC) in Figure 1 add and contract components respectively.

Henceforth we will considerHFLe the hypersequent
version ofFLe (Figure 1). Let⊢HFLe indicate the deriv-
ability relation in HFLe. Note that the “hyperlevel”
of HFLe is in fact redundant, in the sense that⊢HFLe

S1 | · · · | Sn if and only if for somei ∈ {1, . . . , n}, al-
ready⊢FLe Si.

In hypersequent calculi it is however possible to define
additional external structural ruleswhich simultaneously

act on several components of one or more hypersequents.
It is this type of rule which increases the expressive power
of hypersequent calculi compared to ordinary sequent cal-
culi. Examples of these rules are Avron’s communication
rule (com) and(lq) in Figure 3. E.g., extending the hyper-
sequent version ofLJ , that isHFLewc, by

• (com) we get a cut-free calculus forGödel logic, ax-
iomatized by (any Hilbert system for) intuitionistic
logic IL + (prelinearity), see [2].

• (lq) we get a cut-free calculus for the intermediate
logic LQ axiomatized byIL + (weak excluded mid-
dle), see [5].

More formally, by a hypersequent structural rule (hyper-
structural rule, for short) we mean(EW ), (EC) and any
rule, except for(init) and(cut), of the form (n ≥ 0)

G | Υ′
1 ⇒ Ψ′

1 · · · G | Υ′
n ⇒ Ψ′

n

G | Υ1 ⇒ Ψ1 | · · · | Υm ⇒ Ψm

(hr)

whereG is a metavariable that stands for hypersequents,
andΥi,Ψi,Υ

′
j,Υ

′
j are as in structural rules. Observe that,

with the notable exceptions of(EC) and (EW ), each
premise of a hypersequent structural rule contains exactly
oneactive componentΥ′

i ⇒ Ψ′
i.

Two hypersequent rules(hr0) and (hr1) are equiva-
lent in HFLe if the derivability relations⊢HFLe+(hr0)

and⊢HFLe+(hr1) coincide when restricted tosequents3 :
S ⊢HFLe+(hr0) S0 iff S ⊢HFLe+(hr1) S0 for any set
S ∪ {S0} of sequents.

We introduce below an algorithm to transform axioms in
the subclassP ′

3 of P3 into equivalent hyperstructural rules.
Let us begin with establishing a connection between the two
derivability relations⊢FLe and⊢HFLe.

Definition 5.2. We define theinterpretation function( )I

as follows:

1. (α1, . . . , αn ⇒ β)I = α1 · · ·αn → β.

2. (α1, . . . , αn ⇒ )I = α1 · · ·αn → 0.

3. (S1| · · · |Sn)I = (SI1 )∧1 ∨ · · · ∨ (SIn)∧1.

Note that our interpretation of “|” differs from that of
[11] due to lack of weakening and linearity.

We obviously haveS ⊢FLe+ψ S0 if and only if
S ⊢HFLe+ψ S0 for any axiomψ and any setS ∪ {S0}
of sequents. However, the next proposition gives us a cru-
cial step to “unfold” an axiomψ to a hyperstructural rule in
HFLe.

3The reason for this restriction is that we are primarily interested in
derivability relations on formulas (or at most sequents); hypersequents are
merely a convenient means to obtain analytic calculi. Note that our main
theorem in this section (Theorem 5.6) holds only with this restricted notion
of equivalence.

5



Γ ⇒ Π
∆,Γ ⇒ Π

(w) Γ ⇒
Γ ⇒ Π

(w′)
∆,∆,Γ ⇒ Π

∆,Γ ⇒ Π
(c)

Γ,Γ ⇒

Γ ⇒
(wc)

∆1,Γ ⇒ Π ∆2,Γ ⇒ Π

∆1,∆2,Γ ⇒ Π
(mingle)

{∆i1 , . . . ,∆im ,Γ ⇒ Π}i1,...,im∈{1,...,n}

∆1, . . . ,∆n,Γ ⇒ Π
(knotnm)

G | Γ,∆ ⇒ Π

G | Γ ⇒ | ∆ ⇒ Π
(em)

{G | Γi,Γj ⇒ Πi}0≤i,j≤k,i6=j

G | Γ0 ⇒ Π0 | . . . | Γk ⇒ Πk

(Bwk)

G | Γ,∆ ⇒

G | Γ ⇒ | ∆ ⇒
(lq)

G | ∆1,Γ1 ⇒ Π1 G | ∆2,Γ2 ⇒ Π2

G | ∆2,Γ1 ⇒ Π1 | ∆1,Γ2 ⇒ Π2
(com)

{G | Γi,Γj ⇒ Πi}0≤i≤k−1; i+1≤j≤k

G | Γ0 ⇒ Π0 | . . . | Γk−1 ⇒ Πk−1 | Γk ⇒
(Bck)

Figure 3. Some Known (Hyper) structural rules

Proposition 5.3. For any hypersequentG and any setS ∪
{S0} of sequents, we have{G}∪S ⊢HFLe S0 iff {⇒ GI}∪
S ⊢HFLe S0 iff {⇒ GI} ∪ S ⊢FLe S0.

Proof. {⇒ GI}∪S ⊢FLe S0 obviously implies{⇒ GI}∪
S ⊢HFLe S0, which in turn implies{G} ∪ S ⊢HFLe S0 by
G ⊢HFLe⇒ GI . For instance whenG = (⇒ α | ⇒ β),
we have

⇒ α | ⇒ β

⇒ 1
(1r)

⇒ 1 | ⇒ β
(EW )

⇒ α∧1 | ⇒ β
(∧r)

⇒ 1
(1r)

⇒ α∧1 | ⇒ 1
(EW )

⇒ α∧1 | ⇒ β∧1

(∧r)

⇒ α∧1 ∨ β∧1 | ⇒ α∧1 ∨ β∧1

(∨r)

⇒ α∧1 ∨ β∧1

(EC)
.

To show that{G}∪S ⊢HFLe S0 implies{⇒ GI}∪S ⊢FLe

S0, we prove by induction on the length of derivation that
{G}∪S ⊢HFLe G0 implies{⇒ GI}∪S ⊢FLe G

I
0 for any

hypersequentG0. The claim then follows sinceSI0 implies
S0 in FLe.

The base case being easy. For the inductive case it is
enough to observe that for each inference rule inHFLe

with premisesG | S1, . . . ,G | Sn and conclusionG | S0, the
sequent(G | S1)

I , . . . , (G | Sn)I ⇒ (G | S0)
I is provable

in FLe. For instance we have for the∧ right rule: (assume
for simplicity thatG consists of a single component)
⊢FLe (GI)∧1 ∨ (Γ ⇒ α)I∧1, (GI)∧1 ∨ (Γ ⇒ β)I∧1

⇒ (GI)∧1 ∨ (Γ ⇒ α ∧ β)I∧1.

Corollary 5.4. For any hypersequentG and any set
S ∪ {S0} of sequents, we haveS ⊢HFLe+G S0 iff
S ⊢HFLe+(⇒GI) S0 iff S ⊢FLe+(⇒GI) S0.

The key Lemma 4.1 naturally extends to hypersequents.
We state it in a slightly generalized form for later use.

Lemma 5.5. Let Φ,Φ1, . . . ,Φm be (meta)hypersequents
consisting of metavariables. The hypersequent rule

G | Φ1 · · · G | Φm

G | Φ | ψ1, . . . , ψn ⇒ ξ

is equivalent to each of the rules
−−−→
G | Φ G | Υ1 ⇒ ψ1 · · · G | Υn ⇒ ψn

G | Φ | Υ1, . . . ,Υn ⇒ ξ

−−−→
G | Φ G | ξ,Υ ⇒ Ψ

G | Φ | ψ1, . . . , ψn,Υ ⇒ Ψ

where
−−−→
G | Φ = (G | Φ1, · · · , G | Φm), Υi is a fresh

metavariableαi or Γi, andΥ ⇒ Ψ is either⇒ β or Σ ⇒ Π
with β,Σ,Π fresh.

Proof. Proceed as the proof of Lemma 4.1. To see that the
third rule implies the first one, instantiateΥ ⇒ Ψ with ⇒ ξ.
The converse direction follows by(cut).

Theorem 5.6.

1. Every axiom inP ′
3 is equivalent to a finite set of hyper-

structural rules inHFLe.

2. Every axiom inP3 is equivalent to a finite set of hyper-
structural rules inHFLew.

Proof. 1. By Lemma 3.5, every axiom inP ′
3 is equiva-

lent to a finite set of axioms(ψ1)∧1 ∨ · · · ∨ (ψn)∧1 where
ψ1, . . . , ψn areN2-normal. By Corollary 5.4, the latter is
equivalent to⇒ ψ1 | · · · | ⇒ ψn in HFLe, which is in
turn equivalent toΦ = (G | ⇒ ψ1 | · · · | ⇒ ψn) with G a
metavariable for hypersequents, by(EW ) and instantiation
of G with the empty hypersequent. By applying the pro-
cedure described in the proof of Theorem 4.2 to each com-
ponent ofΦ we obtain a finite set of hyperstructural rules,
which is equivalent toΦ by Lemma 5.5.

2. Follows by⊢FLew α↔ α ∧ 1.

Example 5.7. TheP ′
3 version of the weak nilpotent mini-

mum axiom (see Example 3.2), i.e.,
(¬(α · β))∧1 ∨ (α ∧ β → α · β)∧1

is transformed into the hyperstructural rule(wnm0) as fol-
lows:

−→ G | ⇒ ¬(α · β) | ⇒ α ∧ β → α · β

−→ G | α, β ⇒ | α ∧ β ⇒ α · β

−→ G | τ ⇒ α ∧ β G | α · β ⇒ σ

G | α, β ⇒ | τ ⇒ σ

−→ G | τ ⇒ α G | τ ⇒ β G | α, β ⇒ σ

G | α, β ⇒ | τ ⇒ σ
(wnm0)
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Linearity and theP ′
3 version of the weak law of excluded

middle (see Fig. 2) are transformed into

G | β ⇒ γ G | α⇒ δ

G | α⇒ γ | β ⇒ δ
(com0)

G | γ ⇒ α G | β, α⇒

G | γ ⇒ | β ⇒
(lq0)

6. Rule Completion

As seen in the previous section, all axioms inP ′
3 (and in

presence of weakening inP3) can be transformed into hy-
perstructural rules. These rules however do not always pre-
serve cut admissibility once added toHFLe. For instance,
HFLewc extended with

G | Γ,∆ ⇒ α

G | Γ ⇒ α | ∆ ⇒ α
(SI)

does not enjoy cut admissibility, see [3]. Nevertheless, the
above rule can be transformed into an equivalent one (in
HFLe) which does preserve cut admissibility. The same
applies to any hyperstructural rule when we admit weaken-
ing (see Section 7), or when the rule satisfies theacyclicity
condition below. The purpose of this section is to describe
this transformation (we refer to it ascompletion), which ex-
tends a similar procedure in [18] that works for suitable se-
quent structural rules inFL, and is analogous to the princi-
ple of reflection in [17].

Definition 6.1. Given a hyperstructural rule

G | Υ′
1 ⇒ Ψ′

1 · · · G | Υ′
n ⇒ Ψ′

n

G | Υ1 ⇒ Ψ1 | · · · | Υm ⇒ Ψm

(hr)

we build itsdependency graphD(hr) as follows:

• The vertices ofD(hr) are the metavariables for
formulas occurring in the premisesG | Υ′

1 ⇒
Ψ′

1, · · · , G | Υ′
n ⇒ Ψ′

n (we do not distinguish occur-
rences).

• There is a directed edgeα −→ β in D(r) if and only
if there is a premiseG | Υ′

i ⇒ Ψ′
i such thatα occurs

in Υ′
i andβ = Ψ′.

A hyperstructural rule(hr) is said to beacyclicif D(hr) is
acyclic.

Example 6.2. The rules(wnm0), (com0) and(lq0) in Ex-
ample 5.7 and(SI) above are acyclic, while this is not the
case for the rule

G | γ, α⇒ β G | β ⇒ α

G | γ ⇒ β

1. Preliminary step. Given any hyperstructural rule, we
replace each metavariableΓ for multisets of formulas (resp.
each metavariableΠ for stoups), if any, by a fresh metavari-
ableβΓ (resp.βΠ) for formulas.

Clearly the original rule implies the new one. The con-
verse also holds because any multisetΓ = α1, . . . , αn of
formulas (resp. the empty stoupΠ = ∅) can be turned into a
single formula◦Γ = α1 · · ·αn (resp.0). Hence given con-
crete instances of the premises of the original rule, one can
first replace a multisetΓ (resp. the empty stoup) with for-
mula◦Γ (resp.0), apply the new rule and later on recover
the multisetΓ (resp. the empty stoup) by the invertibility of
(· l), (1l) and(0r).

This step is not needed when the given hyperstructural
rule contains neitherΓ nor Π, as in the case of the rules
generated by the algorithms in Theorems 4.2 and 5.6. No-
tice that this step preserves acyclicity, i.e. if the original rule
is acyclic, so is the rule after applying the preliminary step.

Example 6.3. Applied to the rule(SI) above the prelimi-
nary yields

G | βΓ, β∆ ⇒ α

G | βΓ ⇒ α | β∆ ⇒ α
(S′)

2. Restructuring. Given any hyperstructural rule only
containing metavariables for formulas. We replace each
component(α1, . . . , αn ⇒ β) in its conclusion with
(Γ1, . . . ,Γn,Σβ ⇒ Πβ) and addn+1 premises(G | Γ1 ⇒
α1), . . . , (G | Γn ⇒ αn), (G | β,Σβ ⇒ Πβ),
whereΓ1, . . . ,Γn,Σβ,Πβ are fresh and mutually distinct
metavariables. Likewise, we replace each component
in its conclusion of the form(α1, . . . , αn ⇒ ) with
(Γ1, . . . ,Γn ⇒ ) and addn premises(G | Γ1 ⇒ α1),
. . . , (G | Γn ⇒ αn). As a result, we obtain a new rule in
which

(linear-conclusion) each metavariable occurs (at most)
once in the conclusion

(separation) no metavariable occurring on the LHS (resp.
RHS) of a component of the conclusion does occur on
the RHS (resp. LHS) of a premise, and

(coupling) any pair(Σβ ,Πβ) of metavariables associated
to the same occurrence ofβ always occur together,
namelyΣβ occurs in a premise iffΠβ does.

Example 6.4. Applied to(wnm0) in Example 5.7, the re-
structuring step yields a new rule(wnm1)

G | τ ⇒ α G | τ ⇒ β G | α, β ⇒ σ

G | Γ ⇒ α G | ∆ ⇒ β G | Λ ⇒ τ G | σ,Σ ⇒ Π

G | Γ,∆ ⇒ | Λ,Σ ⇒ Π

while applied to the rule(S′) in Example 6.3 this step yields

G | βΓ, β∆ ⇒ α G | Γ1 ⇒ βΓ

G | α,Λ1 ⇒ Π1 G | Γ2 ⇒ β∆ G | α,Λ2 ⇒ Π2

G | Γ1,Λ1 ⇒ Π1 | Γ2,Λ2 ⇒ Π2
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When the original rule is acyclic, so is the resulting rule as
we add only metavariables for multisets and stoups. The
equivalence with the original rule is ensured by Lemma
5.5.

3. Cutting. Given any acyclic hyperstructural rule. We
eliminate from the setG of its premises all metavariables
not occurring in the conclusion (we call these variablesre-
dundant). The procedure is as follows.

Let α be such a redundant metavariable andG1 =
{G | Υ′

i ⇒ α : 1 ≤ i ≤ k} be the subset of premises which
haveα on the RHS, andG2 = {G | Υj , α, . . . , α ⇒ Ψj :
1 ≤ j ≤ m} be the set of those which have one or more
occurrences ofα on the LHS, whereΥj does not containα.
By acyclicity,α does not appear inΥ′

i andΨj.
If k = 0 (resp.m = 0), then removeG2 (resp.G1) from

G. The resulting rule implies the original one, by instantiat-
ingα with ⊥ (resp.⊤). (This remains true even if⊥,⊤ are
not in the language.)

Otherwise, letG3 be the set of all hypersequents of the
formG | Υj,Υ

′
i1
, . . . ,Υ′

ip
⇒ Ψj , where1 ≤ j ≤ m and

1 ≤ i1, . . . , ip ≤ k. We replaceG1∪G2 with G3 thus obtain-
ing a new hyperstructural rule. It is clear that the acyclicity
is preserved by this transformation and the number of re-
dundant variables decreases by one. Hence by repeating this
process, we obtain a hyperstructural rule without redundant
variables.

Example 6.5. Applied to the metavariablesτ and σ of
the rule(wnm1) in the previous example, the cutting step
yields

G | Λ ⇒ α G | Λ ⇒ β

G | Γ ⇒ α G | ∆ ⇒ β G | α, β,Σ ⇒ Π

G | Γ,∆ ⇒ | Λ,Σ ⇒ Π
(wnm2)

and applied further onα andβ,

G | Γ,∆,Σ ⇒ Π, G | Λ,∆,Σ ⇒ Π
G | Γ,Λ,Σ ⇒ Π, G | Λ,Λ,Σ ⇒ Π

G | Γ,∆ ⇒ | Λ,Σ ⇒ Π
(wnm)

To see that this step preserves equivalence, we show that
the two rules above ((wnm2) and(wnm)) are equivalent.
It is clear that the conclusionG | Γ,∆ ⇒ | Λ,Σ ⇒ Π
is derivable from the premises of(wnm2) by using(cut)
and(wnm). Conversely, consider concrete instances of the
premises of(wnm). Let ◦Λ be the fusion of all formulas in
Λ, andα = ◦Λ ∨ ◦Γ, β = ◦Λ ∨ ◦∆. Since(G | Λ ⇒ α),
(G | Λ ⇒ β), (G | Γ ⇒ α) and(G | ∆ ⇒ β) are provable
andG | α, β,Σ ⇒ Π is derivable from the premises of
(wnm), we obtain the conclusion by(wnm2).

We call completedany hyperstructural rule obtained by
applying the above completion procedure (steps 1-3).
Any completed hyperstructural rule satisfies the properties

(linear-conclusion) and (coupling) together with a strength-
ened form of (separation):

(strong subformula property) every metavariable occur-
ring on the LHS (resp. RHS) in a premise also occurs
on the LHS (resp. RHS) of the conclusion.

Example 6.6. The completion of the rule(SI) leads to the
rule

G | Γ1,Γ2,Λ1 ⇒ Π1 G | Γ1,Γ2,Λ2 ⇒ Π2

G | Γ1,Λ1 ⇒ Π1 | Γ2,Λ2 ⇒ Π2

suggested by Mints (see [3]) and equivalent to(com) in
presence of weakening and contraction.

Example 6.7. By applying to the axioms in Figure 2 the
translation of Sections 4 and 5 followed by the completion
procedure, we obtain the known rules in Figure 3 (up to
contraction(c) for (Bwk) and(Bck)).

7 On the power of (hyper)structural rules

If we admit weakening the completion procedure de-
scribed in Section 6 does not need the acyclicity condition
anymore and henceall (hyper)structural rule can be com-
pleted. This observation leads to two results (Corollary 7.2
and Corollary 7.3) that shed light on the expressive power
of single-conclusion (hyper)sequent calculi.

Theorem 7.1.

(a) Any acyclic hyperstructural rule can be transformed
into a completed rule which is equivalent inHFLe;

(b) Any hyperstructural rule can be transformed into a
completed rule which is equivalent inHFLew.

Proof. (a) Follows by results in the preceeding section.
(b) Steps 1 and 2 in Section 6 can be applied to any hy-
perstructural rule. As for step 3 (Cutting), all premises in
Gi, i = 1, 2, 3 of the formΥ, α ⇒ α can be simply re-
moved, being already derivable by weakening inHFLew.
It is easy to see that the resulting rule is equivalent to the
original rule inHFLew.

The completion procedure for hyperstructural rules out-
lined in Section 6 subsumes completion of structural rules
in sequent calculi. Hence

Corollary 7.2. Any structural rule is either derivable in
Gentzen’sLJ or derives every formula inLJ.

Proof. Given a structural rule(r), we apply the completion
procedure to obtain, by Theorem 7.1(b), a completed rule
(r′) equivalent to(r) in LJ. If (r′) has no premises, by
linear-conclusion any formula is provable inLJ + (r′) and
hence inLJ + (r). Otherwise, the conclusion of(r′) is
derivable from any of its premises by weakening and con-
traction due to the strong subformula property.
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Let HSM be the hypersequent calculusHFLewc +
(com) + (Bc2) (see Figure 3) introduced in [5] for three-
valued Gödel logicSM – the strongest intermediate logic,
semantically characterized by linearly ordered Kripke mod-
els containing two worlds.

Corollary 7.3. Any hyperstructural rule is either derivable
in HSM or derivesα∨¬αn in HFLew, for somen ∈ N .

Proof. First note that both rules

G | Υ1,Υ2 ⇒ Π1 G | Υ0,Υ2 ⇒ Π2

G | Υ1 ⇒ Π1 | Υ2 ⇒ Π2 | Υ0 ⇒
(Bc2′)

and

G | Υ1, . . . ,Υn ⇒ Π1 {G | Υ0,Υ1, . . . ,Υn ⇒ Πi}2≤i≤n

G | Υ1 ⇒ Π1 | · · · | Υn ⇒ Πn | Υ0 ⇒
(Bcn′)

are derivable inHSM. Indeed (Bc2′) follows by
(com), (Bc2), (c), (EW ) and(EC), while(Bcn′) is deriv-
able in HSM by n − 1 applications of both(w) and
(Bc2′) with premisesG | Υ1, . . . ,Υn ⇒ Π1 and
G | Υ0, . . . ,Υn ⇒ Πi (2 ≤ i ≤ n), followed by several
applications of(com), (c), (EW ) and(EC).

Given any (hyper)structural rule. By Theorem 7.1(b) it
is equivalent inHFLew to a completed rule, say(hr).
If at least one active component in the premises of(hr)
has empty RHS then(hr) is derivable in HSM (use
(com), (w), (w′), (c) and (EW )). Otherwise, we can as-
sume that(hr) has the form

G | Ξ1 ⇒ Π′
1 . . . G | Ξk ⇒ Π′

k

G | Υ1 ⇒ Π1 | · · · | Υn ⇒ Πn | Υ′
1 ⇒ | . . . | Υ′

m ⇒

with m ≥ 0. We can also assumeΠ1, . . . ,Πn ⊆
{Π′

1, . . . ,Π
′
k} as if e.g. Π1 6∈ {Π′

1, . . . ,Π
′
k} then(hr) is

equivalent inHFLew to the rule with premisesG | Ξ1 ⇒
Π′

1, . . . , G | Ξk ⇒ Π′
k and conclusionG | Υ2 ⇒

Π2 | · · · | Υn ⇒ Πn | Υ′
1 ⇒ | . . . | Υ′

m ⇒ | Υ1 ⇒.
Let Υ0 = Υ′

1, . . . ,Υ
′
m and consider the rule(hr)′

G | Ξ1 ⇒ Π′
1 . . . G | Ξk ⇒ Π′

k

G | Υ1 ⇒ Π1 | · · · | Υn ⇒ Πn | Υ0 ⇒

obtained applying to the conclusion of(hr): (EW ), when
m = 0 and both(w) and(EC), whenm > 1. Note that
(hr)′ is derivable from(hr) in HFLew and satisfies linear-
conclusion. Two cases can occur:

1. There is a premiseG | Ξj ⇒ Π′
j in (hr)′ such that

Ξj ∩Υ0 = ∅. AsΠ1, . . . ,Πn ⊆ {Π′
1, . . . ,Π

′
k}, the conclu-

sion of(hr)′ is derivable from (some of) its premises using
(Bcn′) and(w), from which the conclusion of(hr) follows
by several applications of(com) and (c). Hence(hr) is
derivable inHSM.

2. Assume otherwise that each premiseG | Ξi ⇒ Π′
i

of (hr)′ involves a metavariable inΥ0. We instantiate all

metavariables inΥ0 and those for stoups withα, and all
others with the empty multiset. Then all the premises of
(hr)′ are of the formα, . . . , α⇒ α and hence are provable
in HFLew. By the linear-conclusion property, the conclu-
sion is of the form⇒ α | · · · | ⇒ α | α, . . . , α ⇒, from
whichα ∨ ¬αn is easily derivable inHFLew.

Corollaries 7.2 and 7.3 can be used to establish negative
results on the transformation of axioms into inference rules.

Example 7.4. No (hyper)structural rule is equivalent to
((α → β) → β) → ((β → α) → α) (Łukasiewicz ax-
iom, see Example 3.2). Indeed this axiom is not valid in
SM (take an evaluationv in SM, i.e., v : SM-formulas
→ {0, 1/2, 1} with v(α → β) = 1 if v(α) ≤ v(β) and
v(α → β) = v(β) otherwise, and assignv(α) = 1/2
and v(β) = 0). Moreover for no finiten, is α ∨ ¬αn

derivable fromHFLew extended with Łukasiewicz ax-
iom. This follows from the fact that Corollary 5.4 also
holds forHFLew andFLew and from the non validity
of α ∨ ¬αn in infinite-valued Łukasiewicz logicL , which
is obtained by adding Łukasiewicz axiom toFLew (take
an evaluationv in L , i.e., v : L -formulas→ [0, 1] with
v(¬α) = 1 − v(α), v(α · β) = max{0, v(α) + v(β) − 1}
and assignv(α) = n/(n+ 1)).

8. Cut Elimination

We introduce a uniform (and first semantic) proof of cut-
admissibility for any (hyper)sequent calculus defined by ex-
tendingHFLe with any set of completed rules. Our result
is obtained by extending to hypersequents a powerful se-
mantic technique introduced by Okada (see e.g. [13]) which
proved cut-elimination for (higher order) linear, intuitionis-
tic and classical logics.

Traditional (syntactic) proofs of cut-elimination start
with derivations containing cuts and generate derivations
without cuts. Semantic proofs go instead in the opposite di-
rection; they start with a notion of cut-free provability and
build a model in which cuts are valid.

The latter step is analogous to the process of obtain-
ing the field of reals from the field of rationalsQ =
(Q,+, ·, 0, 1) via the Dedekind-MacNeille completion. For
anyX ⊆ Q, define:

X� = {y : ∀x ∈ X. x ≤ y}

X� = {y : ∀x ∈ X. y ≤ x}

Then the setR = {X ⊆ Q : X = X��} can be thought
of as the set of real numbers extended with±∞ and or-
dered by inclusion⊆, and one can naturally embedQ into
R = (R,+, ·,0,1), where+, ·,0,1 are suitably defined,
by mappingr ∈ Q to r• = r�� = r�.
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This construction yields a continuous structure out of a
discontinuous one. In our case, we start with an ‘intransi-
tive’ structure (as⇒ of a sequent is intransitive in the ab-
sence of the cut rule), and obtain a ‘transitive’ one in which
the cut rule is valid. We refer to [15] for further algebraic
account.

Let R be a set of completed hyperstructural rules. We
write ⊢cf

HFLe+R G if G is cut-free provable inHFLe +

R. For asetG of hypersequents, we write⊢cf
HFLe+R G if

⊢cf
HFLe+R G for everyG ∈ G.

We denote the set of multisets of formulas byM, the
set of sequents byS and the set of hypersequents byH. We
writeMH andSH for M×H andS×H, respectively. The
empty hypersequent inH and the empty multiset inM are
respectively denoted by∅ andε. Given (Γ;G), (∆;H) ∈
MH and(Σ ⇒ Π;F ) ∈ SH, we define:

(Γ;G) ◦ (∆;H) = (Γ,∆;G | H) ∈ MH
(Γ;G)@(Σ ⇒ Π;F ) = Γ,Σ ⇒ Π | G | F ∈ H

Then (MH, ◦, (ε; ∅)) forms a commutative monoid. In
the sequel, we writeX ,Y,Z . . . for subsets ofMH, and
U ,V , . . . for those ofSH. The binary operations◦, @ and
| are naturally extended:X ◦ Y = {x ◦ y : x ∈ X , y ∈ Y}
and similarly forX@U andG | G′.

Furthermore, we define:

X� = {u ∈ SH : ∀x ∈ X . ⊢cf
HFLe+R x@u}

U� = {x ∈ MH : ∀u ∈ U . ⊢cf
HFLe+R x@u}

Notice in particular that if(Γ;G) ∈ X (resp.∈ U�) and
(∆ ⇒ Π;H) ∈ X� (resp.∈ U), the hypersequentΓ,∆ ⇒
Π | G | H is cut-free provable inHFLe + R.

The two operations( )� and ( )� form a so-called
Galois connectionbetweenP(MH) andP(SH): X ⊆
U� ⇐⇒ U ⊆ X�, inducing aclosure operator( )��

onP(MH). We have

1. X ⊆ X��, U ⊆ U��.

2. X ⊆ Y =⇒ Y� ⊆ X�, U ⊆ V =⇒ V� ⊆ U�.

3. X��� = X�, U��� = U�.

4. X�� ◦ Y�� ⊆ (X ◦ Y)��.

The last property makes( )�� anucleus[8]. Let us denote
by C the set of all closed sets w. r. t.( )�� and define

X ⊕ Y = (X ∪ Y)��, 0 = {( ⇒ ; ∅)}�,
X ⊗ Y = (X ◦ Y)��, 1 = {(ǫ; ∅)}��,
X −◦ Y = {y ∈ MH : ∀x ∈ X .x ◦ y ∈ Y} .

Lemma 8.1([14]). A = (C,∩,⊕,⊗,−◦,MH, ∅��, 1, 0)
is a bounded pointed commutative residuated lattice.
Namely,

• (C,∩,⊕,MH, ∅��) is a lattice with greatest element
MH and least element∅��;

• (C,⊗, 1) is a commutative monoid;

• for anyX ,Y,Z ∈ C, X ⊗ Y ⊆ Z ⇐⇒ X ⊆ Y −◦ Z.

0 is just a point and there is no condition on it. Bounded
pointed commutative residuated lattices, also known as
FLe-algebras, give rise to an algebraic semantics forFLe

(see [8]). Hence we can interpret our formulas inA.
A valuation on A is a function( )• that maps each

propositional variablep to a closed setp• ∈ C. It can be
naturally extended to arbitrary formulas. IfΓ = α1, . . . , αn
(resp.Π = β), thenΓ• = α•

1 ◦ · · · ◦ α•
n (resp.Π• = β•).

If Γ (resp.Π) is empty, thenΓ• = 1 (resp.Π• = 0). We
interpret a sequentS = Γ ⇒ Π by S• = Γ•@(Π•�), and
a hypersequentG = S1 | · · · | Sn byG• = S•

1 | · · · | S•
n.

If Γ is empty, thenG• = {∅}. Notice thatS• andG• are
subsets ofH.

Our model supports ‘focusing’ of a component in a hy-
persequent:

Lemma 8.2. ⊢cf
HFLe+R (Γ ⇒ Π | G)• if and only if

(ǫ;G•) ⊆ Γ•−◦Π•, where(ǫ;G•) denotes the set{(ǫ;H) :
H ∈ G•}. In particular whenG is empty, we have
⊢cf

HFLe+R (Γ ⇒ Π)• if and only if(ǫ; ∅) ∈ Γ• −◦ Π•.

Proof. (⇒) Let (ǫ;H) ∈ (ǫ;G•), x ∈ Γ• andu ∈ Π•�.
Thenx@u | H belongs to(Γ ⇒ Π | G)•, and so is cut-
free provable. Sincex@u | H = ((ǫ;H) ◦ x)@u, we have
(ǫ;H) ◦ x ∈ Π•�� = Π•, and hence(ǫ;H) ∈ Γ• −◦ Π•.
The converse direction is also easy.

Theorem 8.3(Soundness). Let ( )• be a valuation onA.
For any hypersequentG, ⊢HFLe+R G implies⊢cf

HFLe+R

G•. Hence⊢HFLe+R Γ ⇒ Π implies(ǫ; ∅) ∈ Γ• −◦ Π•.

Proof. By induction on the length of derivation. The iden-
tity axiom, cut and logical rules are dealt with by Lemmas
8.1 and 8.2. For instance, when the derivation ends with an
instance of (cut):

G | Γ ⇒ α G | α,∆ ⇒ Π

G | Γ ⇒ Π

the induction hypothesis together with Lemma 8.2 yields
(ǫ;G•) ⊆ Γ• −◦ α• and(ǫ;G•) ⊆ α• ◦ ∆• −◦ Π•. Hence
(ǫ;G•) ◦ Γ• ⊆ α• and(ǫ;G•) ◦ α• ⊆ ∆• −◦ Π•. From
this, we derive(ǫ;G•) ◦ (ǫ;G•) ⊆ Γ• ◦ ∆• −◦ Π•. Since
(ǫ;G•) ◦ (ǫ;G•) = (ǫ;G•|G•) = (ǫ; (G|G)•), Lemma 8.2
yields ⊢cf

HFLe+R (G | G | Γ,∆ ⇒ Π)•. By (EC), we

obtain⊢cf
HFLe+R (G | Γ,∆ ⇒ Π)•.

Suppose now that the derivation ends with an instance of
a completed hyperstructural rule(r) ∈ R. For simplicity,
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we assume that it is of the form:

G | S1 · · · G | Sn

G | Γ1, . . . ,Γn,Λ ⇒ Π | Γn+1, . . . ,Γm ⇒

By the coupling and strong subformula properties, eachSi
must be either of the form (1)Γi1 , . . . ,Γik ,Λ ⇒ Π, or of
the form (2)Γi1 , . . . ,Γik ⇒ with 1 ≤ i1, . . . , ik ≤ m.

Now, letF0 ∈ G•, (∆1;H1) ∈ Γ•
1, . . . , (∆m;Hm) ∈

Γ•
m, (Σ1;F1) ∈ Λ• and(Σ2 ⇒ Θ;F2) ∈ Π•�. Our pur-

pose is to show that

H | ∆1, . . . ,∆n,Σ ⇒ Θ | ∆n+1, . . . ,∆m ⇒

is cut-free provable inHFLe + R, where H =
(F0 | F1 | F2 | H1 | · · · |Hm) andΣ = Σ1,Σ2.

For each1 ≤ i ≤ n, let S∗
i = ∆i1 , . . . ,∆ik ,Σ ⇒ Θ

andH∗
i = (F0 | F1 | F2 | Hi1 | · · · | Hik) if Si is of

type (1) above, andS∗
i = ∆i1 , . . . ,∆ik ⇒ andH∗

i =
(F0 | Hi1 | · · · | Hik) if Si is of type (2). It is not hard
to see that

H | S∗
1 · · · H | S∗

n

H | ∆1, . . . ,∆n,Σ ⇒ Θ | ∆n+1, . . . ,∆m ⇒

is a correct instance of(r); notice in particular that there
is no matching constraint for the conclusion because of the
linear-conclusion property.4 SinceH∗

i | S∗
i ∈ (G | Si)• for

every1 ≤ i ≤ n, the induction hypothesis and(EW ) imply
that the conclusion is cut-free provable.

Let us now consider a valuation given byp• = (p; ∅)��.
Under this specific valuation, we have the following form
of Okada’s lemma[13]:

Lemma 8.4. For any formulaα, (α; ∅) ∈ α• ⊆ (⇒ α; ∅)�.

Proof. By induction on the structure ofα. The caseα = p
follows by the identity axiom.

Suppose thatα = β → γ. To show that(β → γ; ∅) ∈
β• −◦ γ•, let (Γ;G) ∈ β• and(∆ ⇒ Π;H) ∈ γ•�. The
induction hypothesesβ• ⊆ ( ⇒ β; ∅)� and(γ; ∅) ∈ γ•

imply that Γ ⇒ β | G andγ,∆ ⇒ Π | H are cut-free
provable. Hence so isΓ, β → γ,∆ ⇒ Π | G | H . This
proves(β → γ; ∅) ∈ β• −◦ (γ•��) = β• −◦ γ•.

To show thatβ•−◦γ• ⊆ ( ⇒ β → γ; ∅)�, let (Γ;G) ∈
β• −◦ γ•. The induction hypothesis(β; ∅) ∈ β• implies
(β,Γ;G) ∈ γ• ⊆ (⇒ γ; ∅)�. Henceβ,Γ ⇒ γ | G is cut-
free provable and so isΓ ⇒ β → γ | G. This proves the
claim. The other cases are similar.

Theorem 8.5(Completeness). For any hypersequentG, we
haveG ∈ G• under the valuationp• = (p; ∅)��. Hence
if (ǫ; ∅) ∈ Γ• −◦ Π•, thenΓ ⇒ Π is cut-free provable in
HFLe +R.

4It is instructive to try to prove soundness forHFLe+ (SI ) (see Sec-
tion 6). The argument would break down precisely at this point, due to
lack of the linear-conclusion and coupling properties.

Proof. For any sequentS = (Γ ⇒ Π), we have(Γ; ∅) ∈
Γ• and Π• ⊆ ( ⇒ Π; ∅)� by Lemma 8.4 (and by the
definition of0 whenΠ is empty). The latter implies( ⇒
Π; ∅) ∈ Π•�, henceΓ ⇒ Π ∈ S•, and soG ∈ G• for any
hypersequentG.

Corollary 8.6 (Uniform cut-elimination). LetR be a set of
completed hyperstructural rules. If⊢HFLe+R G, thenG is
cut-free provable inHFLe +R.

Proof. Follows by Theorems 8.3 and 8.5.

Remark 8.7. The lattice reduct of the algebraA is com-
plete. Hence Corollary 8.6 can be easily extended to predi-
cate logics. Extensions to higher order logics and noncom-
mutative ones are also easy.

Corollary 8.8 (Uniform algebraic completeness). Suppose
thatR is equivalent inHFLe to a set K of axioms. A for-
mulaα is valid in everyFLe-algebra satisfyingK if and
only ifα is provable inHFLe +R.

Proof. (⇒) Since⊢HFLe+R K, Theorem 8.3 implies that
A satisfiesK. Hence by assumption(ǫ; ∅) ∈ α•. The
claim follows by completeness. (⇐) ⊢HFLe+R α implies
⊢FLe+K α. The claim then follows by the soundness of
FLe.

To illustrate the use of our results, letWNM be the fuzzy
logic defined in [6] asFLew + (prelinearity) + (weak nilpo-
tent minimum) (see Example 3.2). Theorems 5.6, 7.1(b)
and Corollary 8.6 automatically yield:

Corollary 8.9. The hypersequent calculus obtained by ex-
tendingHFLew with (com) and the rule(wnm) of Exam-
ple 6.5 is a cut-free calculus forWNM .

9. Conclusion

We introduce an algorithm that generates equivalent
structural rules, in sequent and hypersequent calculi, from
a large class of (Hilbert) axioms. The key idea for deter-
mining when this is possible is the identification of a hierar-
chy of formulasPn,Nn– similar to the arithmetic hierarchy
Σn,Πn– which keeps track of polarity alternation (cf. [1]).
We show how to transform

1. any axiom inN2 into an equivalent set of (sequent)
structural rules, and

2. any axiom inP ′
3 (⊆ P3) into an equivalent set of hy-

perstructural rules.

If the generated rules are acyclic, they are further trans-
formed (completed) into equivalent analytic rules. This also
holds when the base calculus contains weakening, in which
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case the automated transformation of axioms into equiv-
alent sets of analytic hyperstructural rules applies to the
whole classP3.

Every hypersequent calculus defined by extending
HFLe with a set ofcompletedrules is shown to enjoy cut-
admissibility, via a uniform and semantic proof (the first
such for any hypersequent calculus).

Although some particular formulas beyondN2 (resp. P3)
can be captured by multiple-conclusion (hyper)sequent cal-
culi, as in the case of weak excluded middle in GentzenLK
calculus for classical logic or of Łukasiewicz axiom (see
Example 7.4) in the hypersequent calculus for Łukasiewicz
logic in [10], we conjecture that the expressive power of
single-conclusion sequent (resp. hypersequent) structural
rules is limited toN2 (resp.P3) formulas.

We conclude the paper by stating the challenging ques-
tion of identifying the level of generality, beyond hyperse-
quents, appropriate for dealing, in auniformway, with ax-
ioms at levels higher thanP3.

References

[1] J.-M. Andreoli. Logic programming with focusing proofsin
linear logic. Journal of Logic and Computation, 2(3):297–
347, 1992.

[2] A. Avron. Hypersequents, logical consequence and interme-
diate logics for concurrency.Annals of Mathematics and Ar-
tificial Intelligence, 4: 225–248, 1991.

[3] A. Avron. The method of hypersequents in the proof theory
of propositional non-classical logics. In W. Hodges et al. ed-
itors, Logic: from foundations to applications. Proc. Logic
Colloquium, Keele, UK, 1993, pages 1–32, 1996.

[4] M. Baaz, A. Ciabattoni, and F. Montagna. Analytic calculi
for monoidal t-norm based logic.Fundamenta Informaticae,
59(4):315–332, 2004.

[5] A. Ciabattoni and M. Ferrari. Hypersequent Calculi for some
Intermediate Logics with Bounded Kripke Models.Journal
of Logic and Computation, 11(2): 283-294. 2001.

[6] F. Esteva and L. Godo. Monoidal t-norm based Logic: to-
wards a logic for left-continuous t-norms.Fuzzy Sets and
Systems, 124: 271–288, 2001.

[7] G. Gentzen. Untersuchungen über das logische schliessen.
Math. Zeitschrift, 39:176 –210, 405–431, 1935.

[8] N. Galatos, P. Jipsen, T. Kowalski and H. Ono.Residuated
Lattices: an algebraic glimpse at substructural logics. Stud-
ies in Logics and the Foundations of Mathematics, Elsevier,
2007.

[9] R. Hori, H. Ono, and H. Schellinx. Extending intuitionis-
tic linear logic with knotted structural rules.Notre Dame
Journal of Formal Logic, 35(2): 219–242, 1994.

[10] G. Metcalfe, N. Olivetti and D. Gabbay. Sequent and Hyper-
sequent Calculi for Abelian and Łukasiewicz Logics.ACM
TOCL. 6(3): 578-613, 2005.

[11] G. Metcalfe and F. Montagna. Substructural Fuzzy Logics.
Journal of Symbolic Logic72(3): 834–864, 2007.

[12] M. Ohnishi and K. Matsumoto. A system for strict impli-
cation. Annals of the Japan Association for Philosophy of
Science, 2:183–188, 1964.

[13] M. Okada. A uniform semantic proof for cut-elimination
and completeness of various first and higher order logics.
Theoretical Computer Science, 281:471–498, 2002.

[14] H. Ono. Semantics for Substructural Logics. In P. Schroeder-
Heister and K. Došen ed.Substructural Logics, 259–291.
1993.

[15] F. Belardinelli, H. Ono and P. Jipsen. Algebraic aspects of
cut elimination.Studia Logica, 68:1–32, 2001.

[16] A. Prijately. Bounded Contraction and Gentzen style Formu-
lation of Łukasiewicz Logics.Studia Logica, 57: 437–456,
1996.

[17] G. Sambin, G. Battilotti and C. Faggian, Basic logic: reflec-
tion, symmetry, visibility.Journal of Symbolic Logic, 65:
979–1013, 2000.

[18] K. Terui. Which Structural Rules Admit Cut Elimination?
An Algebraic Criterion.Journal of Symbolic Logic, 72(3):
738–754, 2007.

12


