
Automated Support for the Investigation of
Paraconsistent and Other Logics?

Agata Ciabattoni1, Ori Lahav2, Lara Spendier1, and Anna Zamansky1

1 Vienna University of Technology
2 Tel Aviv University

Abstract. We automate the construction of analytic sequent calculi and
effective semantics for a large class of logics formulated as Hilbert calculi.
Our method applies to infinitely many logics, which include the family
of paraconsistent C-systems, as well as to other logics for which neither
analytic calculi nor suitable semantics have so far been available.

1 Introduction

Non-classical logics are often introduced using Hilbert systems. Intuitionistic,
modal and paraconsistent logics are just a few cases in point. The usefulness of
such logics, however, strongly depends on two essential components. The first
is an intuitive semantics, which can provide insights into the logic. A desir-
able property of such semantics is effectiveness, in the sense that it naturally
induces a decision procedure for the logic. Examples of such semantics include
finite-valued matrices, and their generalizations: non-deterministic finite-valued
matrices (Nmatrices) and partial Nmatrices (PNmatrices) (see [5, 6]). The sec-
ond component is a corresponding analytic calculus, i.e. a calculus whose proofs
only consist of concepts already contained in the result. Analytic calculi are use-
ful for establishing various properties of the corresponding logics, and are also
the key for developing automated reasoning methods for them.

In this paper we provide both methodologies and practical tools for an au-
tomatic generation of analytic sequent calculi and effective semantics for a large
class H of Hilbert systems. This is a concrete step towards a systematization of
the vast variety of existing non-classical logics and the developement of tools for
designing new application-oriented logics, see e.g. [11].

The calculi in H are obtained (i) by extending the language of CL+, the
positive fragment of classical logic, to a language LU which includes also a finite
set U of unary connectives, and (ii) by adding to a Hilbert axiomatization HCL+

of CL+ axioms over LU of a certain general form. H contains infinitely many
systems, which include well-known Hilbert calculi, the simplest and best known
of which is the standard calculus for classical logic, obtained by adding to HCL+

the usual axioms for negation. Another example of calculi in H is the family of
paraconsistent logics known as C-systems [8, 10].
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Given a system H ∈ H, our algorithm proceeds in two steps. First we intro-
duce a sequent calculus G equivalent to H. This is done by suitably adapting the
procedure in [9], where certain Hilbert axioms are transformed into equivalent
(sequent and hypersequent) structural rules. In contrast to [9], however, here the
rules extracted from the axioms of H are logical rules in Gentzen’s terminology,
that is they introduce logical connectives. The analyticity of the resulting calcu-
lus depends on the interaction between these rules. This is not anymore a local
check and needs instead a “global view” on the obtained calculus, which is pro-
vided by the semantics constructed in the second step. This semantics is given in
the framework of PNmatrices – a generalization of usual many-valued matrices
in which each entry in the truth-tables of the logical connectives consists of a
possibly empty set of options (see [6]). This framework allows non-deterministic
semantics, and also, using empty sets of options makes it possible to forbid some
combinations of truth values. However, it is still effective, as it guarantees the
decidability of the corresponding sequent calculus. As a corollary it follows that
each system H ∈ H is decidable. Furthermore, we show that the PNmatrix con-
structed for H is an Nmatrix (i.e., it has no empty sets in the truth-tables) iff
G enjoys a certain generalized analyticity property.

Related Work: A semi-automated procedure to define semantics and analytic
calculi for the family of C-systems was introduced in [4]. A corresponding Nma-
trix was constructed there for each system in the family, and was then used for
introducing a corresponding analytic sequent calculus. However, the construc-
tion of Nmatrices out of the Hilbert calculi is done manually, and it requires
some ingenuity. In this paper we provide a full automation of the generation
of effective semantics and analytic calculi for all the systems considered in [4],
which have finite-valued semantics. Our method also applies to infinitely many
other extensions of CL+, which had so far no available semantics or adequate
calculi. These include some logics defined in [1], finding semantics for which was
left as an open problem. It should be noted that our algorithm reverses the steps
taken in [4]: it first extracts suitable sequent rules from the axioms of H, and
uses them to “read off” the semantics.

Implementation: Our method is implemented in the Prolog system Paralyzer,
available at www.logic.at/people/lara/paralyzer.html. For any set of ax-
ioms over LU of a certain general form Paralyzer (PARAconsistent (and other)
logics anaLYZER) outputs: (a) a set of corresponding sequent rules, and (b)
the associated PNmatrix. The user can choose whether to start as basic system
with HCL+ or with the system BK from [4], obtained by augmenting HCL+

with the axioms (n1), (b) and (k) (cf. Fig. 1). In the latter case, by exploiting
the invertibility of the sequent rules for ◦, (a) and (b) for the C-systems having
finite-valued semantics coincide with the results in [4].

2 Step 1: From Hilbert Systems to Sequent Calculi

The first step of our method consists of a mapping from a family H of Hilbert
systems into a family G of “well-behaved” sequent calculi.



2.1 The Family H

In what follows, L denotes a propositional language, and wffL is its set of formu-
las. We assume that the atomic formulas of L are {p1, p2, . . .}. L+

cl is the language
of CL+, the positive fragment of (propositional) classical logic, consisting of the
binary connectives ∧,∨ and ⊃. We consider languages that extend L+

cl with
finitely many new unary connectives (such as ¬ and ◦). Henceforth U denotes
an arbitrary finite set of unary connectives, and LU denotes the extension of L+

cl

with the connectives of U . For a Hilbert system H, we write Γ `H ϕ if ϕ is
provable in H from a finite set Γ of formulas. HCL+ denotes any Hilbert cal-
culus for L+

cl, which is sound and complete for CL+. H is a family of axiomatic
extensions of HCL+, each of which is in the language LU for some U . These
systems are obtained by augmenting HCL+ with axioms3 of the form defined
below.

Definition 1. Let U = {?1, . . . , ?n}. AxU is the set of LU -formulas generated
by the following grammar (where S is the initial variable):

S = Rp | R1 | R2 P1 = (P1 � P1) | ?p1 | p1 | p2 | . . .
Rp = (Rp � P1) | (P1 �Rp) | ?p1 P2 = (P2 � P2) | ?p1 | ?p2 | p1 | p2 | p3 | . . .
R1 = (R1 � P1) | (P1 �R1) | ? ? p1 � = ∧,∨,⊃
R2 = (R2 � P2) | (P2 �R2) | ?(p1 � p2) ? = ?1 | . . . | ?n

N : (n1) p1 ∨ ¬p1 (n2) p1 ⊃ (¬p1 ⊃ p2)
(c) ¬¬p1 ⊃ p1 (e) p1 ⊃ ¬¬p1
(nl
∧) ¬(p1 ∧ p2) ⊃ (¬p1 ∨ ¬p2) (nr

∧) (¬p1 ∨ ¬p2) ⊃ ¬(p1 ∧ p2)

(nl
∨) ¬(p1 ∨ p2) ⊃ (¬p1 ∧ ¬p2) (nr

∨) (¬p1 ∧ ¬p2) ⊃ ¬(p1 ∨ p2)

(nl
⊃) ¬(p1 ⊃ p2) ⊃ (p1 ∧ ¬p2) (nr

⊃) (p1 ∧ ¬p2) ⊃ ¬(p1 ⊃ p2)
C : (b) p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2)) (r�) ◦(p1 � p2) ⊃ (◦p1 ∨ ◦p2)

(k) ◦p1 ∨ (p1 ∧ ¬p1) (i) ¬◦p1 ⊃ (p1 ∧ ¬p1)
(o1
�) ◦p1 ⊃ ◦(p1 � p2) (o2

�) ◦p2 ⊃ ◦(p1 � p2)
(a�) (◦p1 ∧ ◦p2) ⊃ ◦(p1 � p2) (a¬) ◦p1 ⊃ ◦¬p1

Fig. 1. Examples of formulas in Ax{¬,◦} (� ∈ {∨,∧,⊃})

Definition 2. A Hilbert calculus H for a language LU is called a U-extension
of HCL+ if it is obtained by augmenting HCL+ with a finite set of axioms from
AxU . We denote by H the family of all U-extensions of HCL+ for some U .

The family H contains infinitely many systems, which include many well-
known Hilbert calculi. The most important member of H is the standard calculus
for (propositional) classical logic, obtained by adding (n1) and (n2) to HCL+

(cf. Fig. 1). Other important examples include various systems for paraconsistent
logics [4, 7, 8, 10].

Remark 1. Paraconsistent logics are logics which are tolerant of inconsistent
theories, i.e. there are some formulas ψ,ϕ, such that: ψ,¬ψ 6` ϕ. One well-known

3 By axioms we actually mean axiom schemata.



family of paraconsistent logics, formulated in terms of Hilbert calculi, is known as
C-systems [4, 7, 8, 10]. In this family the notion of consistency is internalized into
the object language by employing a unary consistency operator ◦, the intuitive
meaning of ◦ψ being “ψ is consistent”. Clearly, a system which includes the
standard axiom for negation (n2) (Fig. 1) cannot induce a paraconsistent logic.
Many C-systems include instead the weaker axiom (b), and in addition also the
axiom (n1). Furthermore, different C-systems employ different subsets of the
axioms from the set C (Fig. 1), which express various properties of the operator
◦. For instance, axiom (a∨) says that the consistency of two formulas implies
the consistency of their disjunction. The axiom (o1

∨) expresses another form of
consistency propagation: the consistency of a formula implies the consistency of
its disjunction with any other formula. By adding toHCL+ various combinations
of axioms from Fig. 1, we obtain a wider family of systems (not all of them
paraconsistent), many of which are studied in [2, 4].

2.2 The Family G

The sequent calculi we will consider, formulated label-style, are as follows:

Definition 3. 1. A labelled L-formula has the form b : ψ, where b ∈ {f, t}
and ψ ∈ wffL. An L-sequent is a finite set of labelled L-formulas. The
usual sequent notation ψ1, . . . , ψn ⇒ ϕ1, . . . , ϕm is interpreted as the set
{f : ψ1, . . . , f : ψn, t : ϕ1, . . . , t : ϕm}.

2. An L-substitution is a function σ : wffL → wffL, such that σ(�(ψ1, . . . , ψn)) =
�(σ(ψ1), . . . , σ(ψn)) for every n-ary connective � of wffL. L-substitutions are
naturally extended to labelled L-formulas and L-sequents.

3. An L-rule is an expression of the form Q/s, where Q is a finite set of L-
sequents (called premises) and s is an L-sequent (called conclusion). An
application of an L-rule Q/s is any inference step inferring the L-sequent
σ(s) ∪ c from the set of L-sequents {σ(q) ∪ c | q ∈ Q}, where σ is an L-
substitution, and c is an L-sequent.

4. A sequent calculus G for L consists of a finite set of L-rules. We write S `G s
whenever the L-sequent s is derivable from the set S of L-sequents in G.

Example 1. Formulated according to Def. 3, the standard sequent calculus LK+

for CL+ is the set of L+
cl-rules consisting of the following elements:

(id) ∅/{f : p1, t : p1} (cut) {{f : p1}, {t : p1}}/∅
(W⇒) {∅}/{f : p1} (⇒W ) {∅}/{t : p1}
(∧ ⇒) {{f : p1, f : p2}}/{f : p1 ∧ p2} (⇒ ∧) {{t : p1}, {t : p2}}/{t : p1 ∧ p2}
(∨ ⇒) {{f : p1}, {f : p2}}/{f : p1 ∨ p2} (⇒ ∨) {{t : p1, t : p2}}/{t : p1 ∨ p2}
(⊃⇒) {{t : p1}, {f : p2}}/{f : p1 ⊃ p2} (⇒⊃) {{f : p1, t : p2}}/{t : p1 ⊃ p2}

G is a family of sequent calculi, each of which is in the language LU for some
U . These calculi are obtained by augmenting LK+ with simple rules:



(⇒ ¬) {{f : p1}}/{t : ¬p1}
Γ, ϕ⇒ ∆

Γ ⇒ ¬ϕ,∆

(◦ ⇒) {{t : p1}, {t : ¬p1}}/{f : ◦p1}
Γ ⇒ ϕ,∆ Γ ⇒ ¬ϕ,∆

Γ, ◦ϕ⇒ ∆

(¬¬ ⇒) {{f : p1}}/{f : ¬¬p1}
Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆

(⇒ ¬∧)1 {{t : ¬p1}}/{t : ¬(p1 ∧ p2)} Γ ⇒ ¬ϕ,∆
Γ ⇒ ¬(ϕ ∧ ψ),∆

Fig. 2. Examples of L{¬,◦}-rules and their applications forms

Definition 4. A Un-premise (n = 1, 2) is an LU -sequent of the form {b : pn}
or {b : ?pn}, where b ∈ {f, t} and ? ∈ U . An LU -rule Q/s is (b ∈ {f, t}, ?, . ∈ U
and � ∈ {∧,∨,⊃}):

– primitive if s = {b : ?p1} and Q consists only of U1-premises.
– onevar if s = {b : ? . p1} and Q consists only of U1-premises.
– twovar if s = {b : ?(p1 � p2)} and Q consists only of U1-premises and U2-

premises.
– simple if it is either a primitive, a onevar or a twovar rule.

Example 2. (⇒ ¬) is primitive, (¬¬ ⇒) onevar, and (⇒ ¬∧)1 twovar (cf. Fig. 2).

Distinguishing between the types of rules above will be crucial for the seman-
tic definitions of Section 3.2. As we shall see, rules of different types will play
different semantic roles: the primitive rules will determine the truth values in
the PNmatrices, while the onevar and twovar rules will dictate the truth-tables
of the unary and binary connectives respectively.

Definition 5. A sequent calculus G for LU is called a U-extension of LK+ if it
is obtained by augmenting LK+ with a finite set of simple LU -rules. We denote
by G the family of all U-extensions of LK+ for some U .

2.3 Mapping from H to G

Given a Hilbert system H ∈ H we show how to construct a sequent calculus
GH ∈ G which is equivalent in the following sense:

Definition 6. A sequent calculus G is equivalent to a Hilbert system H if for
every finite set Γ ∪ {ϕ} of formulas: Γ `H ϕ iff `G Γ ⇒ ϕ.

Fact 1. LK+ is equivalent to HCL+.

We denote by H ∪ {ϕ} the Hilbert system obtained from H by adding the
axiom ϕ, and by G∪R the sequent calculus extending G with the set R of rules.



Definition 7. Let R and R′ be two sets of L-rules, and G be a sequent calculus
for L. R and R′ are equivalent in G if Q `G∪R′ s for every Q/s ∈ R, and
Q `G∪R s for every Q/s ∈ R′.

Definition 8. An LU -rule Q/s is invertible in G if s `G q for every q ∈ Q.

The key observations for our transformation procedure are: (i) the invertibil-
ity of the rules for ∧,∨ and ⊃ in LK+, (ii) Lemma 1, known as Ackermann’s
lemma and used, e.g. in [9] for substructural logics, and (iii) Lemma 2, which
allows the generated rules to obey a (weaker form of) subformula property.

Lemma 1. Let G be a sequent calculus for L extending LK+. Let s be an L-
sequent, and γ be a labelled formula in s. The L-rule ∅/s is equivalent in G to
the rule r = {{b : ϕ} | b : ϕ ∈ s \ {γ}}/{γ} (where f = t and t = f).

Proof. {{b : ϕ} | b : ϕ ∈ s\{γ}} `G∪{∅/s} γ is obtained by applying the rule ∅/s
and then have multiple applications of (cut) (preceded by suitable applications
of (W⇒) and (⇒W )). To prove `G∪{r} s we first use (id) to obtain {f : ψ, t : ψ}
for every ψ ∈ {ϕ | b : ϕ ∈ s \ {γ}} followed by suitable applications of (W⇒)
and (⇒W ). The claim then follows by applying r. ut

Lemma 2. Let G be a sequent calculus for L extending LK+. Let s be an L-
sequent, and let s′ = s ∪ {b : p}, where b ∈ {f, t} and p is an atomic formula
that does not occur in s. Then, `G∪{∅/s′} Γ ⇒ ϕ iff `G∪{∅/s} Γ ⇒ ϕ, for every
sequent Γ ⇒ ϕ.

Proof. Clearly, `G∪{∅/s′}⊆`G∪{∅/s} (applications of ∅/s′ can be simulated using
(W⇒) or (⇒W ), and ∅/s). For the converse direction, we distinguish two cases
according to b. If b = f then every application of ∅/s deriving σ(s) can be
simulated in G ∪ {∅/s′} by using (cut) on σ(s) ∪ {f : p1 ⊃ p1} (obtained by
∅/s′ in which p is substituted with p1 ⊃ p1) and σ(s) ∪ {t : p1 ⊃ p1}, derivable
in LK+. If b = t we need a proof transformation: every application of ∅/s in
a derivation of Γ ⇒ ϕ is replaced with an application of ∅/s′, in which p is
substituted with ϕ. t : ϕ is then propagated till the end sequent. ut

Theorem 1. Every H ∈ H has an equivalent sequent calculus GH ∈ G.

Proof. Follows by repeatedly applying the following procedure (starting from
HCL+ and LK+). Let H ∈ H and G ∈ G be an equivalent sequent calculus for
LU and let ψ ∈ AxU . We show how to construct a finite (possibly empty) set
R′ of simple LU -rules such that H ∪ {ψ} is equivalent to G ∪R′.

First, it is easy to see that H ∪ {ψ} is equivalent to G ∪ {rψ}, where rψ is
the rule ∅/{t : ψ}. For the right-to-left direction consider a proof of a sequent
Γ ⇒ ϕ in G∪{rψ}, and transform it into a proof of Γ, ψ ⇒ ϕ in G, by replacing
every application of rψ with the identity axiom {f : ψ, t : ψ}, and propagating
f : ψ through the derivation till the end sequent. The equivalence of H and G
entails that Γ, ψ `H ϕ, and it immediately follows that Γ `H∪{ψ} ϕ.

Now, starting from rψ and using the invertibility of the rules for ∧,∨ and
⊃, we obtain a finite set of rules R, such that (i) R is equivalent to {rψ} in G,



and (ii) each r ∈ R has the form ∅/s, where s has one of the following forms,
according to whether ψ is generated by Rp, R1 or R2 in the grammar of Def. 1:

1. s consists of at least one labelled formula of the form b : ?p1 (b ∈ {f, t},
? ∈ U), and any number of labelled formulas b : pi (b ∈ {f, t}, i ≥ 1).

2. s consists of exactly one labelled formula of the form b : ? . p1 (b ∈ {f, t},
?, . ∈ U), and any number of labelled formulas of the form b : pi or b : ?p1
(b ∈ {f, t}, i ≥ 1, and ? ∈ U).

3. s consists of exactly one labelled formula of the form b : ?(p1 �p2) (b ∈ {f, t},
? ∈ U , � ∈ {∧,∨,⊃}), and any number of labelled formulas of the form b : pi,
b : ?p1, or b : ?p2 (b ∈ {f, t}, i ≥ 1, and ? ∈ U).

Obviously, we can discard all rules ∅/s of R for which {f : pi, t : pi} ⊆ s for some
i ≥ 1. By Lemma 2, for each rule ∅/s left in R: if s has the form 1 or 2 above, we
can omit from s all labelled formulas of the form b : pi for i > 1, and similarly,
if s has the form 3, all labelled formulas of the form b : pi for i > 2. By Lemma
1 the resulting rules can be transformed into equivalent simple LU -rules. ut

The proof above is constructive, and induces an algorithm to extract simple
LU -rules out of axioms in AxU .

Example 3. Let (b) be the axiom p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2)). Consider the rule
∅/{t : p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2))}. Using the invertibility of (⇒⊃) we obtain
an equivalent rule ∅/{f : p1, f : ¬p1, f : ◦p1, t : p2}. By Lemma 2 we get
∅/{f : p1, f : ¬p1, f : ◦p1}. The primitive rule {{t : p1}, {t : ¬p1}}/{f : ◦p1} (or
{{t : p1}, {t : ◦p1}}/{f : ¬p1}) then follows by Lemma 1.

3 Step 2: Extracting Semantics

We define finite-valued semantics, using partial non-deterministic matrices, for
every calculus in G.

3.1 Partial Non-deterministic Matrices

Partial non-deterministic matrices were introduced in [6] in the context of la-
belled sequent calculi. They generalize the notion of non-deterministic matrices
by allowing empty sets of options in the truth-tables of the logical connectives.
This feature makes it possible to semantically characterize every G ∈ G. Below
we shortly reproduce and adapt to our context the basic definitions from [6].

Definition 9. A partial non-deterministic matrix (PNmatrix)M for L consists
of: (i) a set VM of truth values, (ii) a subset DM ⊆ VM (designated truth values),
and (iii) a truth-table �M : VMn → P (VM) for every n-ary connective � of L.

Definition 10. Let M be a PNmatrix for L, and W be a set of L-formulas
closed under subformulas.



1. A W-valuation is a function v from W to some set V (of truth values). A
wffL-valuation is also called an L-valuation.

2. A W-valuation v is called M-legal if its range is VM, and it respects the
truth-tables of M, i.e. v(�(ψ1, . . . , ψn)) ∈ �M(v(ψ1), . . . , v(ψn)) for every
compound formula �(ψ1, . . . , ψn) ∈ W.

3. A W-valuation v satisfies an L-sequent s for M (denoted by v |=M s) if
either v(ϕ) ∈ DM for some t : ϕ ∈ s, or v(ϕ) 6∈ DM for some f : ϕ ∈ s.

4. Given an L-sequent s, `WM s if v |=M s for every M-legal W-valuation v.

We write `M s instead of `wffL
M s.

Clearly, every (ordinary) matrix can be identified with a PNmatrix, in which
all truth-tables take only singletons.

Example 4. The (positive fragment of the) standard classical matrix can be iden-
tified with the PNmatrix MLK+ defined as:

1. VMLK+ = {f, t}, DMLK+ = {t}.
2. ∧MLK+ , ∨MLK+ , and ⊃MLK+ are defined according to the classical truth-

tables (singletons are used instead of values, e.g. ∧MLK+ (t, f) = {f}).

Fact 2. MLK+ is sound and complete for LK+ (i.e. `LK+ s iff `MLK+ s).

3.2 PNmatrices for U-extensions of LK+

Until the end of this section, let G be some U-extension of LK+. The main
idea behind the construction of a PNmatrix MG for G is to use truth values as
“information carriers” (along the lines of [1]) in the following sense. In addition to
determining whether ϕ is “true”, the truth value of ϕ contains also information
about the “truth/falsity” of all the formulas of the form ?ϕ for ? ∈ U . To this end,
instead of using the truth values {f, t}, we use extended truth values, which are
tuples over {f, t} of size |U|+1. The first element of each such a tuple u, denoted
by u0, is reserved for representing the “truth/falsity” of ϕ. Each connective ? ∈ U
is then (arbitrarily) allocated one of the remaining elements. We shall denote
by u? the element of u allocated for ? ∈ U . Thus whenever ϕ is assigned the
truth value u, ϕ is “true” iff u0 = t, and for each ? ∈ U , ?ϕ is “true” iff u? = t.
However, in constructing MG not all the possible tuples will be used as truth
values: only those that “respect” the primitive rules of G (cf. Def. 4). This is
formalized as follows:

Notation 1. We denote by VU the set of all (|U|+ 1)-tuples over {f, t}.

Definition 11. A tuple u ∈ VU satisfies a U1-premise q, if either q = {u0 : p1},
or q = {u? : ?p1} for some ? ∈ U . u respects a primitive rule Q/{b : ?p1} if
u? = b whenever u satisfies every q ∈ Q.

Definition 12. VMG
(the set of truth values of the PNmatrix MG) is the set

of all tuples in VU which respect all primitive rules of G. In addition, the set of
designated truth values DMG

is {u ∈ VMG
| u0 = t}.



Example 5. Suppose that U = {¬}, and that the only primitive rule of G is
{{f : p1}}/{t : ¬p1}. A pair u ∈ VMG

respects (⇒ ¬) iff u¬ = t whenever
u0 = f . Thus we obtain VMG

= {〈f, t〉, 〈t, f〉, 〈t, t〉} (here u¬ is the second
component of each pair). The designated values are: DMG

= {〈t, f〉, 〈t, t〉}.

Having defined the truth values ofMG, we proceed to providing a truth-table
.MG

for each (unary) connective . ∈ U . This is done according to the onevar
rules of G of the form Q/{b : ? . p1}.

Definition 13. Let . ∈ U . For every u1 ∈ VMG
, .MG

(u1) is the set of all tuples
u ∈ VMG

such that: (i) u0 = u.1; and (ii) for every onevar rule of G of the form
Q/{b : ? . p1}, if u1 satisfies every q ∈ Q then u? = b.

Intuitively, condition (i) forces the information about the “truth/falsity” of
.ϕ carried in the truth value of .ϕ (in the first bit of this tuple) to be equal to
the one carried in the truth value of ϕ.

Example 6. Following Example 5, suppose that G’s only onevar rule of the form
Q/{b : ?¬p1} is {{f : p1}}/{f : ¬¬p1}. Let us explain, e.g., how ¬MG

(〈t, f〉) is
obtained. The only tuple from VMG

= {〈f, t〉, 〈t, f〉, 〈t, t〉} satisfying condition (i)
(that is, whose first component is 〈t, f〉¬ = f) is u = 〈f, t〉. Condition (ii) holds
trivially for u, as 〈t, f〉 does not satisfy the premise {f : p1} of the above rule.
Thus we obtain: ¬MG

(〈t, f〉) = {〈f, t〉}. Similarly, we get ¬MG
(〈f, t〉) = {〈t, f〉},

and ¬MG
(〈t, t〉) = {〈t, f〉, 〈t, t〉}.

To complete the construction of MG, we provide the truth-tables of the
binary connectives, using the twovar rules.

Definition 14. A pair of tuples 〈u1, u2〉 ∈ VU
2 satisfies a U1-premise q, if u1

satisfies q. 〈u1, u2〉 satisfies a U2-premise q, if u2 satisfies q.

Definition 15. Let � ∈ {∧,∨,⊃}. For every u1, u2 ∈ VMG
, �MG

(u1, u2) is the
set of all tuples u ∈ VMG

satisfying: (i) u0 ∈ �MLK+ (u01, u
0
2); and (ii) for every

twovar rule of G of the form Q/{b : ?(p1 � p2)}, if 〈u1, u2〉 satisfies every q ∈ Q
then u? = b.

Intuitively, condition (i) ensures that � behaves as the corresponding classical
connective, and condition (ii) provides the correspondence between the truth-
table of � and the twovar rules that involve �.

Example 7. Following Example 5, suppose that G’s only twovar rule of the form
Q/{b : ?(p1 ∧ p2)} is (⇒ ¬∧)1 (see Fig. 2). A pair of values 〈u1, u2〉 ∈ VMG

2

satisfies the premise of (⇒ ¬∧)1 iff u¬1 = t. In this case we require that for every
u ∈ ∧MG

(u1, u2) we have u¬ = t. Thus we obtain the following table for ∧:

∧̃ 〈f, t〉 〈t, f〉 〈t, t〉
〈f, t〉 {〈f, t〉} {〈f, t〉} {〈f, t〉}
〈t, f〉 {〈f, t〉} {〈t, f〉, 〈t, t〉} {〈t, f〉, 〈t, t〉}
〈t, t〉 {〈f, t〉} {〈t, t〉} {〈t, t〉}



3.3 Soundness and Completeness

We turn to prove the correctness of the construction ofMG. We establish strong
forms of soundness and completeness, to be used later in the characterization of
analyticity of G. The main idea is to maintain a correlation between the formulas
used in the derivation, and the formulas from the domain of the valuations. In
what followsW is an arbitrary set of LU -formulas closed under subformulas. We
use the following additional notations and definitions:

Notation 2. Let s be an LU -sequent.

1. sub[s] denotes the set of subformulas of all LU -formulas occurring in s.
2. s is called a W-sequent if sub[s] ⊆ W.
3. We write `WG s if there exists a proof of s in G consisting only ofW-sequents.

Definition 16. The sets U+(W) and U−(W) are defined as follows:
U−(W) =W\{?ψ ∈ W | ? ∈ U , ?ψ is not a proper subformula of a formula inW}
U+(W) =W ∪ {?ψ | ? ∈ U , ψ ∈ U−(W)}

Example 8. For U = {¬} and W = {p1, p2,¬p1,¬p2, p1 ∨ p2,¬p1 ∨ p2,¬(p1 ∨
p2)}, we have U−(W) = {p1, p2,¬p1, p1 ∨ p2,¬p1 ∨ p2}, and U+(W) = W ∪
{¬¬p1,¬(¬p1 ∨ p2)}.

Remark 2. Note that ψ ∈ U−(W) whenever ?ψ ∈ U+(W) for some ? ∈ U .

The weaker notion of satisfaction, introduced in the following definition, is
needed later to characterize (a generalized form of) analyticity.

Definition 17. A U−(W)-valuation v : U−(W) → VU w-satisfies a U+(W)-
sequent s if there exists some labelled formula b : ψ ∈ s, such that either (i) ψ
does not have the form ?ϕ and v(ψ)0 = b; or (ii) ψ = ?ϕ (for some ? ∈ U and
ϕ ∈ U−(W)) and v(ϕ)? = b.

Theorem 2 (Soundness). Let s be aW-sequent. If `U
+(W)

G s, then everyMG-
legal U−(W)-valuation w-satisfies s.

Proof. It suffices to show that whenever anMG-legal U−(W)-valuation w-satisfies
the premises of some application of an LU -rule r = Q/s of G consisting solely of
formulas from U+(W), it also w-satisfies its conclusion. Consider such an appli-
cation of r inferring σ(s) ∪ c from the set {σ(q) ∪ c | q ∈ Q}, where c is an LU -
sequent, and σ is an LU -substitution. Assume that σ(p1) = ψ1 and σ(p2) = ψ2.
Let v be anMG-legal U−(W)-valuation, and suppose that v w-satisfies σ(q)∪ c
for every q ∈ Q. We prove that v w-satisfies σ(s) ∪ c. Clearly, if v w-satisfies
c, then we are done. Suppose otherwise. Then our assumption entails that it
w-satisfies σ(q) for every q ∈ Q. We show that in this case v w-satisfies σ(s)
(and so it w-satisfies σ(s) ∪ c). For r ∈ LK+ the claim is easy and left for the
reader. Otherwise, r is a simple rule. Three cases can occur:



– Suppose that r = Q/{b : .p1} is a primitive rule. Note that since we only
consider applications of r consisting solely of formulas from U+(W), we have
that .ψ1 ∈ U+(W) and so ψ1 ∈ U−(W). The fact v w-satisfies σ(q) for every
q ∈ Q implies that v(ψ1) satisfies every q ∈ Q. To see this, consider the
following cases:
• Assume that q = {b : p1}, and ψ1 does not have the form ?ϕ. Since v

w-satisfies σ(q), v(ψ1)0 = b.
• Assume that q = {b : p1}, and ψ1 has the form ?ϕ. Since v w-satisfies
σ(q), v(ϕ)? = b. Since v is MG-legal, v(?ϕ)0 = b.

• Assume that q = {b : ?p1}. Since v w-satisfies σ(q), v(ψ1)? = b.
In all cases, we obtain that v(ψ1) satisfies q. Now, since v(ψ1) ∈ VMG

, v(ψ1)
respects r, and so v(ψ1). = b. Thus v w-satisfies {b : .ψ1}.

– Suppose that r = Q/{b : ? . p1} is a onevar rule. As in the previous case,
v(ψ1) satisfies every q ∈ Q. Thus, since v(.ψ1) ∈ .MG

(v(ψ1)), we have
v(.ψ1)? = b. It follows that v w-satisfies {b : ? . ψ1}.

– Suppose that r = Q/{b : ?(p1�p2)} is a twovar rule. Similarly to the previous
cases, we have 〈v(ψ1), v(ψ2)〉 satisfies every q ∈ Q. Thus, since v(ψ1 � ψ2) ∈
�MG

(v(ψ1), v(ψ2)), we have that v(ψ1 �ψ2)? = b. It follows that v w-satisfies
{b : ?(ψ1 � ψ2)}. ut

Theorem 3 (Completeness). If everyMG-legal U−(W)-valuation w-satisfies

a W-sequent s0, then `U
+(W)

G s0.

Proof. Suppose that 6`U
+(W)

G s0. We construct an MG-legal U−(W)-valuation
v that does not w-satisfy s0. Call a set Ω of labelled LU -formulas maximal if
it satisfies the following conditions: (i) Ω consists of labelled LU -formulas of

the form b : ψ for ψ ∈ U+(W); (ii) 6`U
+(W)

G s for every LU -sequent s ⊆ Ω;
and (iii) For every formula ψ ∈ U+(W) and b ∈ {f, t}, if b : ψ 6∈ Ω then

`U
+(W)

G s ∪ {b : ψ} for some LU -sequent s ⊆ Ω. It is straightforward to construct
a maximal set Ω that extends s0.

Note that the availability of the cut rule implies that for every ψ ∈ U+(W),

either f : ψ ∈ Ω or t : ψ ∈ Ω (otherwise, we would have `U
+(W)

G s1 ∪ {f : ψ}
and `U

+(W)
G s2 ∪ {t : ψ} for s1, s2 ⊆ Ω, and by applying weakenings (the rules

(W ⇒) and (⇒W )) and (cut) we could obtain `U
+(W)

G s1 ∪ s2). Similarly, the
availability of the identity axiom implies that for every ψ ∈ U+(W), either

f : ψ 6∈ Ω or t : ψ 6∈ Ω (otherwise, the fact that `U
+(W)

G {f : ψ, t : ψ} would
contradict Ω’s properties).

Let v : U−(W) → VU be a U−(W)-valuation defined by: v(ψ)0 = t iff
f : ψ ∈ Ω, and for every ? ∈ U : v(ψ)? = t iff f : ?ψ ∈ Ω. Thus we have that for
every ψ ∈ U−(W) and b ∈ {f, t}, v(ψ)0 = b iff b : ψ 6∈ Ω, and for every ? ∈ U
v(ψ)? = b iff b : ?ψ 6∈ Ω. We show that v does not w-satisfy s0. Let b : ψ ∈ s0
such that ψ does not have the form ?ϕ. Thus ψ ∈ U−(W), and since s0 ⊆ Ω,
v(ψ)0 6= b. Similarly, let b : ψ ∈ s0 such that ψ does have the form ψ = ?ϕ (for
some ? ∈ U and LU -formula ϕ). Thus ϕ ∈ U−(W), and since s0 ⊆ Ω, v(ϕ)? 6= b.

To show that v is MG-legal, we use the following properties:



(∗) Let σ be an LU -substitution, such that σ(p1) ∈ U−(W). If v(σ(p1)) satisfies

a U1-premise q then `U
+(W)

G s ∪ σ(q) for some LU -sequent s ⊆ Ω.

To see this, note that if v(σ(p1)) satisfies q then one of the following holds:

– q = b : p1 and v(σ(p1))0 = b. Thus b : σ(p1) 6∈ Ω, and since σ(p1) ∈ U+(W),

we obtain that `U
+(W)

G s ∪ {b : σ(p1)} for some LU -sequent s ⊆ Ω.
– q = b : ?p1 and v(σ(p1))? = b. Thus b : ?σ(p1) 6∈ Ω, and since ?σ(p1) ∈ U+(W),

we obtain that `U
+(W)

G s ∪ {b : ?σ(p1)} for some LU -sequent s ⊆ Ω.

Similarly, we have the following:

(∗∗) Let q be a U1-premise or a U2-premise, and σ be an LU -substitution, such

that σ(p1), σ(p2) ∈ U−(W). If 〈v(σ(p1)), v(σ(p2))〉 satisfies q, then `U
+(W)

G

s ∪ σ(q) for some LU -sequent s ⊆ Ω.

We show that VMG
is the range of v. Let ψ ∈ U−(W). To prove that

v(ψ) ∈ VMG
, we show that v(ψ) respects all primitive rules of G. Consider a

primitive rule of G, r = Q/{b : ?p1}. Suppose that v(ψ) satisfies every q ∈ Q.
We show that v(ψ)? = b. Let σ be any LU -substitution, assigning ψ to p1. By (∗),
for every q ∈ Q, there exists some LU -sequent sq ⊆ Ω such that `U

+(W)
G sq∪σ(q).

By applying weakenings and the rule r, we obtain that `U
+(W)

G

⋃
q∈Q sq∪{b : ?ψ}

(here we use the fact that ?ψ ∈ U+(W) since ψ ∈ U−(W)). This implies that
b : ?ψ 6∈ Ω, and so v(ψ)? = b.

Finally, we show that v respects the truth-tables of MG:
(1) Let .ψ ∈ U−(W) (where . ∈ U). We show that v(.ψ) ∈ .MG

(v(ψ)).
By the construction of .MG

, it suffices to show: (i) v(.ψ)0 = v(ψ).; and (ii)
v(.ψ)? = b for every onevar rule r = Q/{b : ? . p1} of G for which v(ψ)
satisfies every q ∈ Q. (i) trivially holds using the definition of v. For (ii), let
r = Q/{b : ? . p1} be a onevar rule of G, and suppose that v(ψ) satisfies every
q ∈ Q. We prove that v(.ψ)? = b. Let σ be any LU -substitution, assigning ψ to
p1. By (∗) (note that ψ ∈ U−(W) since U−(W) is closed under subformula), for

every q ∈ Q, there exists some LU -sequent sq ⊆ Ω such that `U
+(W)

G sq∪σ(q). By

applying weakenings and the rule r, we obtain that `U
+(W)

G

⋃
q∈Q sq ∪{b : ?.ψ}

(note that ? . ψ ∈ U+(W) since .ψ ∈ U−(W)). This implies that b : ? . ψ 6∈ Ω,
and so v(.ψ)? = b.

(2) Let ψ1 � ψ2 ∈ U−(W) for � ∈ {∧,∨,⊃}. We show that v(ψ1 � ψ2) ∈
�MG

(v(ψ1), v(ψ2)). Here it suffices to show: (i) v(ψ1 � ψ2)? = b for every twovar
rule r = Q/{b : ?(p1 � p2)} of G for which 〈v(ψ1), v(ψ2)〉 satisfies every q ∈ Q;
and (ii) v(�(ψ1, ψ2))0 ∈ �MLK+ (v(ψ1)0, v(ψ2)0). We prove (i) and leave (ii) to
the reader. Let r = Q/{b : ?(p1 � p2)} be a twovar rule of G, and suppose that
〈v(ψ1), v(ψ2)〉 satisfies every q ∈ Q. We prove that v(ψ1 � ψ2)? = b. Let σ be
any LU -substitution, assigning ψ1 to p1, and ψ2 to p2. By (∗∗), for every q ∈ Q,

there exists some LU -sequent sq ⊆ Ω such that `U
+(W)

G sq ∪ σ(q). By applying

weakenings and the rule r, we obtain that `U
+(W)

G

⋃
q∈Q sq ∪ {b : ?(ψ1 � ψ2)}



(note that ?(ψ1 � ψ2) ∈ U+(W) since ψ1 � ψ2 ∈ U−(W)). This implies that
b : ?(ψ1 � ψ2) 6∈ Ω, and so v(ψ1 � ψ2)? = b. ut

Corollary 1. For every LU -sequent s, `G s iff `MG
s.

Proof. The claim follows by choosing W = wffLU in Thm. 2 and Thm. 3 (in this
case U+(W) = U−(W) =W). Note that anMG-legal LU -valuation v w-satisfies
an LU -sequent iff v |=MG

s (since v(?ψ)0 = v(ψ)? for every LU -formula ?ψ). ut

4 Semantics at Work

Let us take stock of what we have achieved so far. Given a Hilbert calculus
H ∈ H we introduced an equivalent sequent calculus GH ∈ G and extracted a
suitable semantics out of it (the PNmatrix MGH

). In this section we show how
to useMGH

to prove the decidability of H and to check whether GH is analytic
(in the sense defined below). If GH is not analytic, MGH

is used to define a
family of cut-free calculi for H.

Corollary 2 (Decidability). Given a Hilbert system H ∈ H and a finite set
Γ ∪ {ϕ} of formulas, it is decidable whether Γ `H ϕ or not.

Proof. Follows by the soundness and completeness of MGH
for GH , Thm. 1,

and the fact, proved in [6], that each logic characterized by a finite PNmatrix is
decidable. ut

Roughly speaking, a sequent calculus is analytic if whenever a sequent s is
provable in it, it can also be proven using only the “syntactic material available
within s”. Usually this “material” is taken to consist of all subformulas occurring
in s (in this case ‘analyticity’ is just another name for the global subformula
property). However, weaker variants have also been considered in the literature,
especially in modal logic. In this paper we use the following:

Definition 18. A U-extension G of LK+ is U-analytic if for every LU -sequent

s: `G s implies that `U
+(sub[s])

G s.

Next, we show thatMG can be easily used to check whether G is U-analytic.

Definition 19. A PNmatrix M for L is called proper if VM is non-empty and
�M(x1, . . . , xn) 6= ∅ for every n-ary connective � of L and x1, . . . , xn ∈ VM.

Theorem 4. A U-extension G of LK+ is U-analytic iff MG is proper.

Proof. (⇒) Suppose thatMG is not proper. First, if VMG
is empty, then `MG

∅,
and so (by Cor. 1), `G ∅. But, U+(∅) = ∅, and clearly there is no derivation in G
that does not contain any formula. It follows that G is not U-analytic in this case.
Otherwise, there exist either some . ∈ U and u ∈ VMG

such that .MG
(u) = ∅,

or some � ∈ {∧,∨,⊃} and u1, u2 ∈ VMG
such that �MG

(u1, u2) = ∅. We con-
sider here only the first case and leave the second to the reader. Define the



LU -sequent s = {u0 : p1} ∪ {u? : ?p1 | ? ∈ U} (where t = f and f = t).
We first prove that `G s. By Cor. 1 it suffices to show `MG

s. Suppose oth-
erwise, and let v be an MG-legal LU -valuations such that v 6|=MG

s. Then,
v(p1)0 = u0 and v(?p1)0 = u? for every ? ∈ U . Since v is MG-legal, we have
that v(p1)? = u? for every ? ∈ U . It follows that v(p1) = u. Since v isMG-legal,
we have v(.p1) ∈ .MG

(v(p1)). Clearly, this is not possible under the assumption

that .MG
(u) = ∅. Next we claim that 6`U

+(sub[s])
G s (and so G is not U-analytic).

To see this, note that the {p1}-valuation defined by v(p1) = u is an MG-legal

U−(sub[s])-valuation that does not w-satisfy s. By Thm. 2, 6`U
+(sub[s])

G s.

(⇐) Assume that MG is proper and 6`U
+(sub[s])

G s for some LU -sequent s. We
prove that 6`G s. By Thm. 3, there exists an MG-legal U−(sub[s])-valuation v
that does not w-satisfy s. BeingMG proper, it is straightforward to extend v to
a (full) MG-legal LU -valuation v′. Note that v′ 6|=MG

s (since v(?ψ)0 = v′(ψ)?

for every LU -formula ?ψ). Cor. 1 then entails that 6`G s. ut

There are, however, calculi in G which are not U-analytic. This is the case,
e.g., for the extension of HCL+ by axioms (n1), (nr

∧), (b) and (o1
∧) (cf. Fig. 1).

Its corresponding sequent calculus induces a PNmatrix which is not proper (this
can be verified in the system Paralyzer), hence it is not {¬, ◦}-analytic. When
G ∈ G is not U-analytic, we start by transforming MG into a finite family of
proper PNmatrices, which satisfy the following property:

Definition 20. ([6]) Let M and N be PNmatrices for L. We say that N is a
simple refinement of M if VN ⊆ VM, DN = DM ∩ VN , and �N (x1, . . . , xn) ⊆
�M(x1, . . . , xn) for every n-ary connective � of L and x1, . . . , xn ∈ VN .

Theorem 5. For every finite PNmatrixM for L, there existsM1 . . .Mn, finite
proper simple refinements of M, such that `M=`∩Mi

for i = 1, . . . , n.

Proof (Outline). Let M be a PNmatrix for L. Choose M1, . . . ,Mn to be all
simple refinements of M which are proper PNmatrices. Based on the results in
[6], we show that `M=`∩Mi

. (⇒) By Prop. 1 in [6], `M⊆`N for every simple
refinement N of M. Therefore, `M⊆`∩Mi

.
(⇐) Suppose that 6`M s. Thus v 6|=M s for someM-legal L-valuation v. Thm. 1
in [6] ensures that there exists some Mi, such that v is Mi-legal. The fact that
v 6|=M s easily entails that v 6|=Mi

s, and so 6`Mi
s. ut

We can now apply the method of [3], which produces a cut-free sequent
calculus G which is sound and complete for any proper PNmatrix M, whose
set of designated truth values (DM) is a non-empty proper subset of the set of
its truth values (VM), provided that its language satisfies the following slightly
reformulated condition of [3]:

Definition 21. LetM be a proper PNmatrix for L. We say that L is sufficiently
expressive for M if for any x ∈ VM, there exists a set S of L-sequents, each of
which has the form {b : ψ}, for some b ∈ {f, t} and ψ ∈ wffL in which p1 is the
only atomic variable, such that the following condition holds:



– For any M-legal L-valuation v and ϕ ∈ wffL, v(ϕ) = x iff v satisfies every
L-sequent in σ(S) for M for any L-substitution σ such that σ(p1) = ϕ.

Corollary 3. Let G ∈ G be a U-extension of LK+ that is not U-analytic. We
can construct a family of cut-free sequent calculi FG, such that for every sequent
s: `G s iff `G′ s for every G′ ∈ FG.

Proof. We start by constructing MG. If DMG
= ∅ or DMG

= VMG
, MG has a

trivial corresponding cut-free calculus. For the rest of the cases, the claim follows
by Thm. 5 using the method of [3]. Note that LU is sufficiently expressive for
any simple refinement ofMG. Indeed, for x ∈ VMG

, define Sx = {x0 : p1}∪{x? :
?p1 | ? ∈ U}. Let M be a simple refinement of MG and let v be an M-legal
LU -valuation. The required condition is met by the fact that for every ? ∈ U
and θ ∈ wffLU , v(?θ)0 = v(θ)? (by condition (i) in Def. 13). ut
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