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Abstract

We provide a proofs-as-concurrent-programs interpretation for a large class of interme-
diate logics that can be formalized by cut-free hypersequent calculi. Obtained by adding
classical disjunctive tautologies to intuitionistic logic, these logics are used to type con-
current λ-calculi by Curry–Howard correspondence; each of the calculi features a specific
communication mechanism, enhanced expressive power when compared to the λ-calculus,
and implements forms of code mobility. We thus confirm Avron’s 1991 thesis that interme-
diate logics formalizable by hypersequent calculi can serve as basis for concurrent λ-calculi.

Keywords Proofs-as-programs, intermediate logics, concurrency, natural deduction,
λ-calculus, hypersequents

1 Introduction

Definable in three lines, the λ-calculus provides an elegant, yet powerful computational theory.
Remarkably, the λ-calculus is also deeply connected to logic: every intuitionistic proof is iso-
morphic to some λ-term and the proved formula can be interpreted as a type. In this paradigm,
known as Curry–Howard correspondence [24], evaluation of λ-terms can be seen as making the
corresponding proofs more direct. The main consequence of this proofs-as-programs correspon-
dence is the possibility of extracting correct by construction and terminating programs from
logical proofs. Extending the original ideas of Curry and Howard, different logics (e.g. classi-
cal [22, 33], linear [11], modal [31]) have been related to different notions of computation, see
e.g. [39] for an overview. Particularly interesting and challenging is to relate logic to concur-
rency, since concurrent programs are notoriously difficult to write and analyze. In this context,
starting with the pioneering work of [1], the propositions-as-sessions research line (e.g. [11, 38])
introduced computational interpretations of linear logic that relate sequent calculus derivations
with processes in π-calculus [30, 35] – the most widespread formalism for modelling concurrent
systems.

Although resulting in a successful model of concurrent computation, the connection relating
linear logic and π-calculus [11, 38, 37, 12] is unsuitable as tool for accomplishing our paper’s aim.
Indeed, not only we are interested in a different notion of computation – functional – but we also
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want to unveil the computational content of different logics – intermediate logics, i.e. logics lying
between classical and intuitionistic logic. The idea that there might be a connection between
concurrency and intermediate logics dates back to 1991. In this year Avron introduced [5] a
proof calculus based on multisets of sequents (hypersequents) for Gödel logic, one of the best
known intermediate logics, and speculated that there might be a strong connection between
hypersequents and concurrent computation. He suggested that a hypersequent might be seen as
the parallel composition of several sequents that can “communicate” thanks to special inference
rules. He thus envisaged the possibility of using the intermediate logics that can be captured
by cut-free hypersequent calculi as bases for parallel λ-calculi.

Despite their built-in “concurrency”, the structure of hypersequent derivations is not iso-
morphic to a parallel composition of functional programs. This seems to hinder a functional
Curry–Howard interpretations of hypersequent calculi, and notwithstanding various attempts
(e.g. [23, 8, 9]), Avron’s claim has remained unconfirmed for more than 25 years. What we
need instead are well-designed natural deduction inferences that can be interpreted as program
instructions, and in particular as typed λ-terms. Normalization [34], which corresponds to the
execution of the resulting programs, can then be used to obtain analytic proofs, i.e. proofs con-
taining only formulas that are subformulas of hypotheses or conclusion. For the particular cases
of Gödel-Dummett logic (intuitionistic logic IL extended with Lin = (A→ B) ∨ (B → A)) and
classical logic (IL extended with EM = A ∨ ¬A) well-designed calculi were introduced in [2, 3]
by extending the natural deduction system NJ for IL by rules simulating the hypersequent
rules for Lin and EM, respectively. The reduction rules required to obtain analytic proofs led
to the definition of the typed concurrent functional languages λG and λCL, featuring channels
connecting pair of processes only, thus leaving out multi-party communication.

The infinitely many intermediate logics that admit analytic hypersequent calculi have been
characterized in [14]. The logics axiomatized by the disjunctive tautologies of [16], which include
the axioms Lin and EM, are among them. In particular, [16] interprets disjunctive tautologies
as synchronization schemata and provides the corresponding realizers in a concurrent extension
of the λ-calculus [22], still however typed by classical logic. The question of developing natural
deduction calculi and concurrent Curry–Howard correspondences for the intermediate logics
axiomatized by disjunctive tautologies was instead left open.

Curry–Howard Correspondence: the Concurrent Calculi λL

In this paper we exploit the intuitions in [5, 16] to provide a Curry–Howard correspondence and a
computational interpretation for a large class of intermediate logics with analytic hypersequent
calculi. We therefore confirm, in a rather general setting, Avron’s thesis on the relationship
between concurrent functional computation and those logics. In particular, we present suitable
natural deduction calculi for them and prove that the normalization process leading to ana-
lytic proofs features all the essential elements of concurrent functional programming: λ-terms,
parallelism, communication, private channels and process migration. For this purpose, we in-
troduce a computational syntax for natural deduction proofs that will exhibit all the characters
of concurrency.

Each of the logics that we consider is defined by extending IL by any arbitrary set L of
disjunctive axiom schemata A of the form

(F1 → G1) ∨ . . . ∨ (Fm → Gm)

such that the list F1 . . . , Fm can contain each propositional variable at most once and > several
times, there is an i such that Fi 6= >, and for each i such that Fi 6= > there is a j such that
Fi = Gj . Fixing a particular L, the calculus λL corresponds to the intermediate logic IL + L.
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The class of logics that we consider1 includes classical logic, cyclic IL [28], Gödel logic, and
n-valued Gödel logic, with n ≥ 2.

The natural deduction calculus used as type system for λL extends NJ by the natural
deduction counterpart [15] of the hypersequent rules for A. The decorated version of these
rules lead to λ-calculi with parallel operators that bind two or more processes, according to
the rule shape, via a variable a, which represents a private communication channel that be-
haves similarly to the π-calculus restriction operator ν. For instance, the rules for EM and
C3 = (A→ B) ∨ (B → C) ∨ (C → A) are:

u : A

a¬A u : ⊥....
t : F

[aA : A]
....

s : F
s ‖a t : F

u : A

aA→B u : B....
r : F

v : B

aB→C v : C....
s : F

w : C

aC→A w : A....
t : F

a( r ‖ s ‖ t) : F

Our natural deduction calculi are defined in a modular way and the rules added to NJ are
higher-level rules, as defined by Schroeder-Heister [36], since they also discharge rule applica-
tions rather than only formulas. We provide a normalization proof that uniformly applies to
all the associated λ-calculi and yields terms satisfying the subformula property. The additional
reductions of λL w.r.t. those of simply typed λ-calculus implement communications between
concurrent processes and forms of code mobility. Although the typing rules of λL are a gener-
alization of those in [2, 3], the activation condition in its reduction rules and the normalization
proof are very different. Indeed, though uniform and logically grounded, the technique proposed
in [2, 3] of firing only communication redexes that violate the subformula property forces the
insertion of dummy types and dummy terms all over the programs, thus making their explicit
writing a bit cumbersome. Moreover the normalization proofs in [2, 3] do not allow for a sim-
ple treatment of the connective ∨, as they require us to add several new typing and reduction
rules with no interesting computational meaning at the price of a wild bureaucracy. Hence
the reduction rules of λL and normalization strategy mark a radical departure from [2, 3] Our
new reductions are indeed logic independent and are activated when messages are values (cf.
Definition 3.2). As a result, programs are easier to write and their evaluation transmits all
values.

For any L := IL+L and λL we show the perfect match between computation steps and proof
reductions (Subject Reduction), a terminating reduction strategy (Normalization) for the full
logic language, ∨ included, and the Subformula Property. The latter is obtained by sophisticated
reduction rules (cross reductions) which are inspired by hypersequent cut-elimination, generalize
those in λG and λCL, and address a “fundamental problem in any distributed implementation
of a statically-typed, higher-order programming language”: how to send open processes and
transmit function closures between processes; cf. [19] on Cloud Haskell. The calculus λL is more
expressive than the λ-calculus (see Example 3.5) and, unlike λG and λCL [2, 3], can implement
multiparty communication. Furthermore, the reduction rules of λL, which are solely based on
the shape of terms and do not rely on their types, might shed light on the long-standing problem
of defining a well-behaved untyped concurrent λ-calculus.

Although based on the conference papers [2] and [3], the present work substantially extends
and generalizes their results. In particular, we introduce Curry–Howard correspondences for
infinitely many intermediate logics, which includes the specific logics considered in [2] and [3];
we define a type-independent reduction system for all the presented calculi, and we prove a
general normalization result.

1We chose to rule out from our investigation some disjunctive axioms that are characterized in [14] by hyper-
sequent rules: those axioms indeed do not seem to provide further interesting communication mechanisms, while
they do greatly complicate notation and normalization proofs.
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2 Hypersequents, Natural Deduction and Type System

The intermediate logics we consider are obtained by extending IL by any set L of disjunctive
axiom schemata A of the form

(F1 → G1) ∨ . . . ∨ (Fm → Gm) (1)

where: each Fi is either a propositional variable or >; if Fi 6= > and i 6= j, then Fi 6= Fj ; if
Fi 6= >, then Fi = Gj for some j ∈ {1, . . . ,m}; for some i ∈ {1, . . . ,m} Fi 6= >. These include
classical logic, cyclic IL [28], Gödel logic, and n-valued Gödel logic, with n ≥ 2. Uniform analytic
calculi for these logics are defined [14] in the hypersequent framework, a simple generalization
of the sequent framework whose basic objects are “parallel” sequents and whose derivations are
communicating parallel sequent derivations.

Definition 2.1 (Hypersequent [4]). Hypersequents are multisets of sequents, written as Γ1 ⇒
Π1 | · · · | Γn ⇒ Πn where, for any i = 1, . . . n, Γi ⇒ Πi is an ordinary sequent, called component.

In this section we present suitable natural deduction calculi for the above logics and introduce
corresponding typed concurrent λ calculi. Our natural deduction calculi were defined in [15] by
reformulating their hypersequent calculi, which we describe below.

A sequent calculus can be trivially embedded into a hypersequent calculus, by just adding
to all sequents a context “G | ”, standing for a possibly empty hypersequent. This property
is exploited for instance in [25], which defines a hypersequent-based conservative extension of
linear logic and uses it as type system for the π-calculus. However, the significance of the
hypersequent calculus lies in the larger class of logics for which analytic calculi can be given.
This additional expressive power of hypersequent calculi w.r.t. sequent calculi is due to the new
definable rules which act simultaneously on several components of one or more hypersequents.
These rules, intuitively, allow parallel sequents to communicate.

Henceforth we will denote by L any finite set of axiom schemes of the form (1) above.
A cut-free hypersequent calculus for IL + L is defined by adding to the base hypersequent
calculus structural rules equivalent to the provability of the axioms in L. Namely, the result
is the hypersequent version of the LJ sequent calculus for IL, extended with (ew) and (ec)
and structural rules corresponding to the axioms in L; the latter rules allow “exchange of
information” between different components. Below we present the rules (ew), (ec) and the
general form (r), see [14], of the hypersequent rules corresponding to axioms of the form (1):

G | Γ⇒ Π

G | Γ⇒ Π | Σ⇒ ∆
(ew)

G | Γ⇒ Π | Γ⇒ Π

G | Γ⇒ Π
(ec)

{G | Γi,Γ
′
p ⇒ Πi}i 6=p, i,p=1,...,m

G | Γ′1,Γ1 ⇒ Π1 | · · · | Γ′m,Γm ⇒ Πm
(r)

with possibly Γ′j , {Γi,Πi} = ∅. Concrete examples of rules (r) are in Table 1.
The connection between concurrent computation and hypersequent calculi was first noted

by Avron. His 1991 thesis states, in particular, that it should be possible to use hypersequent
calculi “as bases for parallel λ-calculi” [5]. The most direct way to associate a λ-calculus to
a proof calculus is by a Curry–Howard correspondence for a natural deduction calculus. The
absence of explicit structural elements makes it possible indeed to use formulae as types of
λ-terms, rather than complex objects such as sequents. The natural deduction calculi that we
use as typing systems have been extracted from hypersequent calculi. Rather than following
the approach in [6, 8, 9], which extends natural deduction by simulating the syntactic structure
of hypersequents, we endeavoured to keep our natural deduction calculi as simple as possible.
In order to do so while preserving the parallel and concurrent behavior of hypersequents, we
exploited the embeddings in [15] between hypersequent derivations and derivations using systems
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axiom hypersequent rule logic

A ∨ ¬A
G | Γ,Σ⇒ ∆

G | Γ⇒| Σ⇒ ∆
CL

(A→ B) ∨ (B → A)
G | Γ1,Σ2 ⇒ ∆ G | Σ1,Γ2 ⇒ Θ

G | Γ1,Γ2 ⇒ ∆ | Σ1,Σ2 ⇒ Θ
GL

k−1∨
i=0

(Ai → Ai+1) ∨ (¬Ak)
{G | Γj+1,∆j ⇒ Πj}j∈{0,...,k−1}

G | Γ0,∆0 ⇒ Π0 | . . . | Γk−1,∆k−1 ⇒ Πk−1 | Γk ⇒
Gk

k−1∨
i=1

(Ai → Ai+1) ∨ (Ak → A1)
{G | Γj+1,∆j ⇒ Πj}j∈{1,...,k−1} G | Γ1,∆k ⇒ Πk

G | Γ1,∆1 ⇒ Π1 | . . . | Γk,∆k ⇒ Πk

Ck

Table 1: Hypersequent rules and corresponding axioms.

of rules of depth 2 (2-systems) [32]. A system2 of rules is a set of (possibly labelled) sequent rules
linked together by some variables and by the requirement for the rules of appearing in a certain
order in the derivation. The “depth 2” condition limits to two in each branch the number
of sequent rules that have to appear in a certain order. The fact that 2-systems essentially
correspond to natural deduction rules that can discharge other rule applications (i.e. they are
higher-level rules according to the terminology in [36]), was already observed in [15], where the
question whether the resulting systems are analytic was left open. Before presenting the general
form of the rules consider the following example:

Example 2.1. The hypersequent rule for the linearity axiom Lin = (A→ B)∨ (B → A) below
on the left is translated in [15] into the 2-system at the center. This 2-system corresponds to
the natural deduction rule below on the right:

G | B,Γ1 ⇒ Π1 G | A,Γ2 ⇒ Π2

G | A,Γ1 ⇒ Π1 | B,Γ2 ⇒ Π2

B,Γ1 ⇒ Π1

A,Γ1 ⇒ Π1....
Γ⇒ Π

A,Γ2 ⇒ Π2

B,Γ2 ⇒ Π2....
Γ⇒ Π

Γ⇒ Π

A
B....
C

B
A....
C

C

We show below two derivations of Lin:

B ⇒ B A⇒ A
A⇒ B | B ⇒ A

(com)

A⇒ B |⇒ B → A

⇒ A→ B |⇒ B → A

⇒ A→ B |⇒ (A→ B) ∨ (B → A)

⇒ (A→ B) ∨ (B → A) |⇒ (A→ B) ∨ (B → A)

⇒ (A→ B) ∨ (B → A)

[A]1

B
∗

A→ B
1

(A→ B) ∨ (B → A)

[B]2

A
∗

B → A
2

(A→ B) ∨ (B → A)

(A→ B) ∨ (B → A)
∗

where we signal rule application discharge by ∗; on the left, there is a hypersequent derivation,
which intutitively consists of two parallel sequent derivations communicating through the rule

2The word “system” is used as in linear algebra, where there are systems of equations with common variables,
and each equation is meaningful and can be solved only if considered with the other equations of the system.
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xA : A
for x intuitionistic variable

u : ⊥
u efqP : P

with P atomic, P 6= ⊥

[xA : A]
....

u : B

λxAu : A→ B

t : A→ B u : A
tu : B

u : A t : B

〈u, t〉 : A ∧B
u : A ∧B
uπ0 : A

u : A ∧B
uπ1 : B

u : A

ι0(u) : A ∨B
u : B

ι1(u) : A ∨B u : A ∨B

[xA : A]
....

w1 : C

[yB : B]
....

w2 : C

u [xA.w1, yB .w2] : C

u : A

aA→B u : B

[aF1→G1 : F1 → G1]..
..

u1 : B . . .

[aFm→Gm : Fm → Gm]
...
.

um : B

a(u1 ‖ . . . ‖ um) : B
(A)

t1 : A t2 : A

t1 ‖ t2 : A
contr

where (F1 → G1)∨. . .∨ (Fm → Gm) is an instance of A ∈ L and all a in ui for 1 ≤ i ≤ m have the form aFi→Gi

Table 2: Type assignments for λL.

(com); on the right, these two proofs have been split and have become the two branches of the
natural deduction rule for Lin.

The general form of our natural deduction rules – coming from a hypersequent rule (r)
corresponding to an axiom of the form (1) above via the 2-system rules below left – is as below
right

G1,Γ1 ⇒ Π1

F1,Γ1 ⇒ Π1....
Γ⇒ Π . . .

Gm,Γm ⇒ Πm

Fm,Γm ⇒ Πm....
Γ⇒ Π

Γ⇒ Π

F1

G1....
C . . .

Fm

Gm....
C

C

These rules were considered in [15] (some in [17, 28]) without any normalization proof.
Since the natural deduction rules above are higher-level rules, not all the branches of a

derivation containing them are NJ derivations. To avoid this, we use the equivalent rule (A) in
Table 2 below. Normalization results were shown in [2, 3] for two particular instances of (A):
the rules for Lin and EM. The normalization proof for λL in this paper works instead for all the
(A) rules in a uniform way, Gödel and classical logic being very particular cases.

Theorem 2.1 (Soundness and Completeness). Let L be any finite set of axiom schemes of the
form (1) above, L be IL + L and NL the natural deduction system obtained by extending NJ
with all rules (A) for A ∈ L. For any set Π of formulas and formula A, Π `NL A if and only if
Π `L A.

Proof. (⇒) Applications of (A) can be simulated by ∨ eliminations having as major premise an
instance of A. (⇐) Any axiom A can be derived in NJ + (A).

The λL-Calculus

For a fixed set L of axioms of the form (1) above, the terms of λL are defined by the type
assignment rules in Table 2.

For any formula A, proof terms may contain intuitionistic variables xA0 , x
A
1 , x

A
2 , . . . of type

A – which are denoted as xA, yA, zA, . . . – and channel variables aA0 , a
A
1 , a

A
2 , . . . of type A

– which are denoted as aA, bA, cA, . . . and represent a communication channel between parallel
processes. We assume that the set of channel variables is partitioned into two disjoint classes:
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active channels and inactive channels. A term a(u1 ‖ . . . ‖ um) is called an active session,
whenever a is active. The free and bound variables of an intuitionistic proof term are defined
as usual. All the occurrences of a which are free in u1, . . . , um are still free in u1 ‖ . . . ‖ um but
are bound in a(u1 ‖ . . . ‖ um).

Notice that according to the typing rules, channel variables can only occur as applied vari-
ables and not as standalone terms, unlike intuitionistic variables. The notation

aFi→Gi : Fi → Gi....
ui : B

used in the rule (A) denotes a derivation in which aFi→Gi occurs as a free channel variable.
Proof-theoretically, the square brackets indicate that the assumption is discharged by the rule.

From a computational perspective the rules (A) produce terms of the shape a(v1 ‖ . . . ‖ vm)
in which the terms v1, . . . , vm are in parallel and can communicate with each other through the
channel a. Informally, in order to establish a communication channel connecting two terms vi
and vj , we require that aAi→Bi occurs in vi, a

Aj→Bj occurs in vj and Ai is equal to Bj . On one
hand, the argument w of a channel application aAi→Bi w will be interpreted as a message of type
Ai that must be transmitted ; on the other hand, the channel application aAj→Bj t will receive
messages of type Bj that will replace the whole channel application aAj→Bj t upon reception.
Thus, in general each channel application may send and receive messages.

The rule contr corresponds to the hypersequent (ec); in our type system it is logically
redundant, but is useful from a computational perspective for representing parallel processes
that cannot communicate between themselves.

If Γ = y1 : A1, . . . , yn : An and all free variables of a proof term t : A are in y1, . . . , yn, we
write Γ ` t : A. From the logical point of view, t represents a natural deduction derivation of
A from the hypotheses A1, . . . , An provided that we interpret the applications of the rule below
on the left as applications of the rule below on the right:

u : A

aA→B u : B
A→ B A

B

If ‖ does not occur in t, t is a simply typed λ-term representing an intuitionistic deduction.
Notice that simply typed λ-terms may contain applied channel variables which are not bound.
In these terms, such variables have no associated reduction rule.
Notation. We assume that the connectives→ and ∧ associate to the right. Moreover, as usual,
we define ¬A as A→ ⊥, > as ⊥ → ⊥, and we adopt the convention that the empty conjunction,
namely the expression A1 ∧ . . . ∧ An for n = 0, denotes >. By 〈t1, t2, . . . , tn〉 we denote the
term 〈t1, 〈t2, . . . 〈tn−1, tn〉 . . . 〉〉 (which is λx⊥ x⊥ : >, abbreviated as ∗ : >, if n = 0) and by
〈t1, t2, . . . , tn〉πi, for i = 0, . . . , n, the term 〈t1, t2, . . . , tn〉π1 . . . π1π0 containing the projections
that select the (i + 1)th element of the sequence. For the sake of simplicity, when an operator

a(. . . ‖ . . .) is binary, we denote the terms of the form a(t ‖ s) by t ‖a s.

3 Reduction Rules of λL

The typing rules of λL enable us to compose several terms in parallel and to connect them by
communication channels. The reduction rules of the calculus will enable us to evaluate the terms
and use the communication channels for transmitting messages between them. From a proof-
theoretic point of view, these reductions can be seen as simplifications of the proof corresponding
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to the term. As we will show in Theorem 5.2, these simplifications yield proofs satisfying the
subformula property.

The reductions of λL implementing communications are based on the notion of value. Such
notion applies to a message that has to be transmitted because it has terminated its internal
computations but will generate a new computation when plugged in a new computational envi-
ronment. Hence, using all channels that are applied to values amounts to triggering all commu-
nications that are going to produce further computation. This is natural from a computational
perspective: we trigger the communications that transmit messages with operational content,
but we do not start a communication only to send empty objects like variables. Nonetheless, if
we want to obtain terms that enjoy the subformula property, we have to consume all channel
variables the type of which is too complex with respect to the rest of the term. Therefore, it
is not enough to communicate all values. Indeed, the type of a channel occurrence a t does not
only depend on its argument t but on the whole term a(. . . ‖ . . . ‖ . . .) in which it is bound.
Hence, when we reduce the occurrence of a channel because it is applied to a value, we need
to make sure that we eliminate all occurrences of the channel. Formally, we exploit the syntac-
tic distinction between active and non-active channels. A communication will only take place
through an active channel. If an occurrence of a channel is applied to a value, we replace all the
occurrences of the channel by active ones. We thus create an active session. All occurrences of
the channel determining the active session transmit their messages.

Remark 3.1. The word session is used here as in the literature about session types, that is
to refer to a “unit of information exchange between two or more communicating agents” [18].
In λL active sessions are used to force the exhaustion of all possible communications between
the involved processes. In the calculi featuring session types, these communications are further
described by a type.

In order to define values, we first need to introduce the notion of stack.

Definition 3.1 (Stack). A stack is a, possibly empty, sequence σ = σ1σ2 . . . σn where for 1 ≤
i ≤ n either σi = t for a term t, or σi = πj with j ∈ {0, 1}, or σi = [x1.u1, x2.v2], or efqP for
some atom P . We denote the empty sequence by ε and the stacks of length 1 by ξ. If t is a
proof term, we denote by t σ the term (((t σ1)σ2) . . . σn).

Our notion of value is defined in order to cover all terms that might directly or indirectly
trigger new computation if transmitted to another process. Tuples have a special role in the
definition of values because they are often used in λL as containers of messages. For example,
cross reductions introduce new tuples – see the terms 〈yi〉 in the definition of cross reductions
in Table 3. Thus, if we considered all tuples as values with computational content, we would
not be able to show that, as the normalization proceeds, communications transmit simpler and
simpler values, and thus we would not be able to prove that the normalization terminates.

Definition 3.2 (Value). A value is a term of the form 〈t1, . . . , tn〉, where for some 1 ≤ i ≤ n,
ti = λx s, ti = ιi(s), ti = t efqP , ti = t[x.u, y.v] or ti = aσ for an active channel a.

The following notion will be used in the normalization proof, and in Table 3 that contains
the reduction rules for λL-terms

Definition 3.3 (Activable). A channel a is activable in u if av occurs in u for some value v.

Definition 3.4 (Simple Context). A simple context C[ ] is a simply typed λ-term with some
fixed variable [ ] occurring exactly once. For any proof term u of the same type as [ ], C[u]
denotes the term obtained replacing [ ] with u in C[ ], without renaming of bound variables.

8



Definition 3.5 (Multiple Substitution). Let u be a proof term, x = xA0
0 , . . . , xAn

n a sequence
of variables and v : A0 ∧ . . . ∧ An. The substitution uv/x := u[v π0/x

A0
0 . . . v πn/x

An
n ] replaces

each variable xAi
i of any term u with the ith projection of v.

The reduction rules for λL-terms are in Table 3. As usual, we adopt the reduction schema:
C[t] 7→ C[u] whenever t 7→ u and for any context C. With 7→∗ we shall denote the reflexive and
transitive closure of the one-step reduction 7→.

Intuitionistic Reductions (application, projection and injection)
(λxA u)t 7→ u[t/xA] 〈u0, u1〉πi 7→ ui for i ∈ {0, 1} ιi(t)[x0.u0, x1.u1] 7→ ui[t/xi]

Case Distinction Permutations
t[x0.u0, x1.u1]ξ 7→ t[x0.u0ξ, x1.u1ξ] if ξ is a one-element stack

Parallel Operator Permutations

a(u1 ‖ . . . ‖ um) ξ 7→ a(u1ξ ‖ . . . ‖ umξ) if ξ is a stack of length 1 and a does not occur free in ξ

wa(u1 ‖ . . . ‖ um) 7→ a(wu1 ‖ . . . ‖ wum), if a does not occur free in w

λxA a(u1 ‖ . . . ‖ um) 7→ a(λx
Au1 ‖ . . . ‖ λxAum)

ιi( a(u1 ‖ . . . ‖ um)) 7→ a(ιi(u1) ‖ . . . ‖ ιi(um))

〈a(u1 ‖ . . . ‖ um), w〉 7→ a(〈u1, w〉 ‖ . . . ‖ 〈um, w〉), if a does not occur free in w

〈w, a(u1 . . . ‖ um)〉 7→ a(〈w, u1〉 ‖ . . . ‖ 〈w, um〉), if a does not occur free in w

a(u1 ‖ . . . ‖ b(w1 ‖ . . . ‖ wn) . . . ‖ um) 7→ b(a(u1 ‖ . . . ‖ w1 ‖ . . . ‖ um) . . . ‖ a(u1 ‖ . . . ‖ wn ‖ . . . ‖ um))
if u1, . . . , um and b(w1 ‖ . . . ‖ wn) do not contain active sessions

Communication Reductions

Activation Reductions a(u1 ‖ . . . ‖ um) 7→ b(u1[b/a] ‖ . . . ‖ um[b/a])
where a is not active, b is a fresh active variable, and there is some occurrence of a in some ui of the
form aw, for a value w.

Basic Cross Reductions a(C1 ‖ . . . ‖ Ci[aFi→Gi t] ‖ . . . ‖ Cj [aFj→Gj u] ‖ . . . ‖ Cm)
7→ a(C1 ‖ . . . ‖ Ci[aFi→Gi t] ‖ . . . ‖ Cj [t] ‖ . . . ‖ Cm)

for Fi = Gj

a(C1 ‖ . . . ‖ Cj [aFj→Gj u] ‖ . . . ‖ Ci[aFi→Gi t] ‖ . . . ‖ Cm)
7→ a(C1 ‖ . . . ‖ Cj [t] ‖ . . . ‖ Ci[aFi→Gi t] ‖ . . . ‖ Cm)

for Fj = Gi

where a is active, the displayed occurrence of a is rightmost in the simply typed λ-terms Ci[aFi→Git]
and Cj [aFj→Gju], 1 ≤ i < j ≤ m, Ci, Cj are simple contexts and t does not contain free variables which
are bound in Ci[aFi→Git].

Simplification Reductions a(u1 ‖ . . . ‖ um) 7→ uj1 ‖ . . . ‖ ujn for 1 ≤ j1 < . . . < jn ≤ m
if a does not occur in uj1 , . . . , ujn

Cross Reductions a(C1[aF1→G1 t1] ‖ . . . ‖ Cm[aFm→Gm tm]) 7→ b(s1 ‖ . . . ‖ sm)
where a is active, Cj [aFj→Gj tj ] for 1 ≤ j ≤ m are simply typed λ-terms; the displayed aFj→Gj is
rightmost in each of them; b is a fresh inactive channel; for 1 ≤ i ≤ m, we define

si =

 a(C1[aF1→G1 t1] ‖ . . . ‖ Ci[t
b
Bi→Bj 〈yi〉/yj

j ] ‖ . . . ‖ Cm[aFm→Gm tm]) if Gi 6= ⊥

a(C1[aF1→G1 t1] ‖ . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm]) if Gi = ⊥

where Fj = Gi in the axiom schema if Gi 6= ⊥; yz for 1 ≤ z ≤ m is the sequence of the free variables
of tz bound in Cz[aFz→Gz tz]; and Bz is the type of 〈yz〉.

Table 3: Reduction Rules for λL where A = (F1 → G1) ∨ . . . ∨ (Fm → Gm) ∈ L.
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We explain the reduction rules of λL both from the computational and the proof-theoretic
point of view.

Intuitionistic Reductions and Case Distinction Permutations.

These are the usual computational rules for the simply typed λ-calculus [21] representing the
application of a function, the selection of an element from a pair and the choice of a case in a case
distinction. The calculus also features permutations for the case distinction construct, which
correspond to standard natural deduction ∨-permutations. From the logical point of view, all
these are standard Prawitz reductions [34] for NJ.

An example of the correspondence between the evaluation of terms and proof-simplification
is β-reduction in λ-calculus: (λxA u)t 7→ u[t/x], which corresponds to the following proof trans-
formation:

[xA : A]
....

u : B

λxA u : A→ B

....
t : A

(λxA u)t : B

7→

....
t : A....

u[t/x] : B

From a proof-theoretic perspective, this transformation avoids the use of the formula A → B,
which might violate the subformula property. The derivation on the left, to be reduced, is often
called a redex. The inference steps introducing and eliminating A→ B form a detour ; they can
indeed be considered an unnecessary deviation from a more direct way of deriving B.

Activation Reductions

These reductions enable us to transform a non-active channel which is applied to a value into
an active channel. Only active channels can communicate.

Basic Cross and Simplification Reductions

The goal of these reductions is to implement communication, namely, to transmit programs in
the form of simply typed λ-terms. Since λL-terms may contain more than one occurrence of a
channel application, the first choice to make is which occurrence should contain the next output
message. For example, here we have two communicating processes connected by the channel a:

(∗) a( a(x(a s)) ‖ a(y(aw)) )

where s, w are simply typed λ-terms not containing a. The first process a(x(a s)) contains two
occurrences of the channel a. The channel application a(x(a s)) cannot transmit the message
x(a s), because the channel a might be used with a different type in the second process, so
type preservation after reduction would fail. Therefore the only possibility here is to choose
the second channel application a s as the one containing the output message, in this case s. In
general, to make sure that the message does not contain the channel a, it is enough to choose as
application occurrence that contains the output message the rightmost occurrence of the channel
a in the process.

The second choice is which occurrence of a channel application should receive the current
message. For example, in the term (∗) above the second process a(y(aw)) contains two occur-
rences of a. Since a channel can both send and receive, and in particular, usually, first sends
and then receives, we are led to choose again the rightmost occurrence of a channel application
as the receiving one.

10



Continuing our example and summing up, we will have the following reduction:

(∗) 7→ a( a(x(a s)) ‖ a(ys) )

As we can see, the message s in correspondence of the rightmost occurrence of a in a(x(a s)) is
transmitted by the first process to the rightmost application of a in a(y(aw)).

The third choice to make is which processes should receive messages and which processes
should send them. As anticipated in the previous section, we are guided by the typing. Let us
consider for instance the term

a( x (aA→B s) ‖ y (aB→A t) )

where s and t are specific simply typed λ-terms, x : B → C and y : A → C. A basic cross
reduction rule corresponding to this typing rule admits communication in two directions, from
left to right and from right to left, because looking at the types, the second process can receive
messages from the first and vice versa. A reduction from left to right, for instance, is

a( x (aA→B s) ‖ y (aB→A t) ) 7→ a( x (aA→B s) ‖ y s )

whereas from right to left is

a( x (aA→B s) ‖ y (aB→A t) ) 7→ a( x t ‖ y (aB→A t) )

We can thus see that our reduction rules are naturally non-deterministic.
The fourth, and last, choice to make is what to do with the processes that do not contain

any communication channel. The idea is that whenever a term contains no channel occurrence,
it has already reached a result, as it does not need to interact with the context further. Hence
at the end of the computation we may wish to select some of the processes that have reached
their own results and consider them all together the global result of the computation. Thus we
introduce simplification reductions. These reductions enable us to eliminate useless communi-
cation channels and to remove unnecessary duplicates generated by other reductions. Suppose,
for example, that the process v in a(v ‖ w) does not contain occurrences of the channel a while
the process w does. This intuitively means that w is waiting to communicate with v, but the
communication is impossible. If this is the case, we simply apply the reduction a(v ‖ w) 7→ v in
order to remove the useless channel a and keep only the process v which does not need it.

We present some specific examples of basic cross reductions.

Example 3.1. Let us consider the axiom ¬A ∨ (> → A), which is an abbreviation of (A →
⊥) ∨ (> → A) and is equivalent to EM = A ∨ ¬A. The corresponding basic cross reduction is:

a(C0[aA→⊥t] ‖ C1[a>→Au]) 7→ a(C0[at] ‖ C1[t])

Example 3.2. The basic cross reductions corresponding to the axiom (A → B) ∨ (C → A) ∨
(B → C) are:

a(C0[aA→Bt] ‖ C1[aC→Au] ‖ u2) 7→ a(C0[at] ‖ C1[t] ‖ u2)

a(u0 ‖ C1[aC→At] ‖ C2[aB→Cu]) 7→ a(u0 ‖ C1[at] ‖ C2[t])

a(C0[aA→Bu] ‖ u1 ‖ C2[aB→Ct]) 7→ a(C0[t] ‖ u1 ‖ C2[at])

These reductions enable the process i to transmit the message t to the process |i+ 1|(mod 3).

11



From a proof-theoretic point of view, basic cross reductions correspond to a simple proof
simplification. If we consider, for instance, the rule below on the left – corresponding to the
axiom EM = ¬A ∨A – we have, similarly to [17], the basic cross reduction below on the right:

[¬A]
....
C

[A]
....
C

C

[¬A]
δ
A

⊥....
C

[A]
....
C

C

7→

[¬A]
δ
A

⊥....
C

δ
A....
C

C

if no assumption of δ is discharged below ⊥ and above the bottommost C. From a computational
perspective, δ corresponds to a message that does not depend on its computational environment
and hence that can be transmitted by a basic cross reduction without violating type preservation.
From the perspective of natural deduction, intuitively, the instance of the rule displayed in the
reduction might be hiding some redex that should be reduced. The reduction precisely exposes
this potential intuitionistic redex and we are thus able to reduce it. More instances of ¬A and A
might occur in the respective branches and have to be reduced. But if no formula is discharged
by the rule for EM in some branch, we can eliminate that branch by a simplification reduction:

γ
C

θ
C

C
1 7→ θ

C

where no formula is discharged by the rule application 1 in θ.
Another simple example of basic cross reduction is given by the rule for the axiom Lin =

(A→ B) ∨ (B → A):

[A→ B]
....
C

[B → A]
....
C

C

[A→ B]
δ
A

B....
C

[B → A]
θ
B

A....
C

C

7→

[A→ B]
δ
A

B....
C

δ
A....
C

C

Here the conditions are still that no assumption of δ is discharged below B but above the
bottommost C.

If we consider a generic axiom A we will have a rule application

[F1 → G1]
....
B . . .

[H → Gi]
δ
H

Gi....
B . . .

[Fj → H]
θ
Fj

H....
B . . .

[Fm → Gm]
....
B

B
(A)

where no assumption of δ is discharged below Gi but above the bottommost B, and by basic
cross reduction we obtain

[F1 → G1]
....
B . . .

[H → Gi]
δ
H

Gi....
B . . .

δ
H....
B . . .

[Fm → Gm]
....
B

B
(A)
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Parallel Operator Permutations

These reductions regulate the interaction between parallel operators and the other computational
constructs. The first two permutations in the table are the standard ∨-permutations needed for
the subformula property already in NJ. The following four are used in the normalization proof.

The remaining permutation

a(u1 ‖ . . . ‖ b(w1 ‖ . . . ‖ wn) . . . ‖ um) 7→ b(a(u1 ‖ . . . ‖ w1 ‖ . . . ‖ um) ‖ . . . ‖ a(u1 ‖ . . . ‖ wn ‖ . . . ‖ um))

addresses the scope extrusion issue of private channels. For instance, if we consider the term

b(a(v ‖ C[b (λx ax)]) ‖ w) we can see that C[b (λx ax)] wishes to send the term λx ax containing
the channel a to w along the channel b. This is not possible, though, since the channel a is
private. This issue is solved in π-calculus using the congruence νa(P |Q) |R ≡ νa(P |Q |R),
provided that a does not occur in R, condition that can always be satisfied by α-conversion.
Our logical system requires a different solution, which is not just permuting w inward but also
duplicating it:

b(a(v ‖ C[b (λx ax)]) ‖ w) 7→ a(b(v ‖ w) ‖ b(C[b (λx ax)] ‖ w))

Now C[b (λx ax)] can send λx ax to w. If b does not occur in v, we also simplify as follows:

a(b(v ‖ w) ‖ b(C[b (λx ax)] ‖ w)) 7→ a(v ‖ b(C[b (λx ax)] ‖ w))

obtaining associativity of composition as in π-calculus. However, if b occurs in v, we cannot
simplify and we keep the two copies of w to enable v and C[b (λx ax)] to communicate with w.

From a proof-theoretical perspective, these reductions are needed when we have a derivation
of the form

....
E . . .

....
E . . .

[A→ B]1

[C → D]2
....
A

B....
E . . .

....
E

E
(A′)2

. . .

....
E

E
(A)1

in which we need to simplify the rule application (A) by a basic cross reduction or cross reduction.
If we directly reduced (A), we would move the derivation of A that depends on the hypothesis
C → D above some other premiss of (A). But after such a reduction, C → D cannot be
discharged by (A′) anymore. Hence, we permute (A) upwards as follows:

7→ ....
E . . .

....
E

E
(A)

. . .

....
E . . .

[A→ B]1

[C → D]2
....
A

B....
E . . .

....
E

E
(A)1

. . .

....
E . . .

....
E

E
(A)

E
(A′)2

If we reduce (A) now, (A′) can still discharge the hypothesis C → D.

13



Cross Reductions

Basic cross reductions successfully implement the kind of communication that is used in actual
parallel programming, but they are inadequate from the proof-theoretic point of view. As it
turns out, they are not enough to guarantee that normal form proofs enjoy the subformula
property. We introduce cross reductions to solve this problem. A proof-theoretical analysis of
cross reductions is at page 16, but we first discuss the computational issues motivating them.
The computational limit of basic cross reductions is that they can only transmit messages that
do not have dependencies with their computational environment. Indeed, a message may contain
free variables which are locally bound in the process, but in some case it is necessary to transmit
the message anyway. Consider for example a particular active session a(C[a u] ‖ D[a t]). If u
did not depend on the computational environment C[ ] we could use a basic cross reduction and
send u as it is. In general, though, this is not possible. The problem is that the free variables
y of u which are bound in C[a u] by some λ cannot be permitted to become free; otherwise, the
connection between the binders λy and the occurrences of the variables y would be lost and
they could be no more replaced by actual values when the inputs for the λy are available. For
example, we could have u = v y and

C[a u] = w (λy a (v y))

and reducing as follows:

a(w (λy a (v y)) ‖ D[a t]) 7→ a(w (λy a (v y)) ‖ D[v y])

would be computationally wrong since the term v y will have no access to the actual values of
the variables y when they will become available to λy a (v y).

These problems are typical of process migration, and can be solved by the concepts of code
mobility [20] and closure [27]. Informally, code mobility is defined as the capability to dynam-
ically change the bindings between code fragments and the locations where they are executed.
Indeed, in order to be executed, a piece of code needs a computational environment and its
resources, like data, program counters or global variables. In our case the context C[ ] is the
computational environment or closure of the process u and the variables y are the resources
it needs. Now, moving a process outside its environment always requires extreme care: the
bindings between a process and the environment resources must be preserved. This is the task
of the migration mechanisms, which allow a migrating process to resume correctly its execution
in the new location.

Our particular migration mechanism works by creating a duplicate of the original session
for each process contained in it. One process for each copy of the session receives its message,
but since the communication broke some of the computational dependencies of the message, a
new communication channel b is established to connect the message to its old environment. The
channel b enables the message to access the values of the free variables of the message which are
bound in the original environment. Considering again our example and assuming that the free
variables of t which are bound in D[a t] are z we have:

a(w (λy a (v y)) ‖ D[a t]) 7→ b( a(w (λy tb 〈y〉/z) ‖ D[a t]) ‖ a(w (λy a (v y)) ‖ D[v bz]) )

where b is typed in such a way that b z has the same type as y and b 〈y〉 has the same type as
z.

The duplication of the original session produced by the cross reduction has a computational
meaning which is strictly related to the non-determinism of basic cross reductions. Indeed, while
a basic cross reduction is an individual communication, the full cross reduction produces the
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results of all possible individual communications, and keeps these results in parallel. Namely,
for every possible pair of processes that can communicate, the reduction produces a copy of the
original session in which the communication has been performed. Therefore each copy of the
original session in the result of a cross reduction is exactly the result of one possible communi-
cation. Cross reduction thus makes the communication step deterministic. The simplification
reductions that might follow a cross reduction will bring back non-determinism in the compu-
tation by discarding some of the produced results, and hence selecting one possible choice of
individual communication.

Technically, the general reduction is:

a(C1[aF1→G1 t1] ‖ . . . ‖ Cm[aFm→Gm tm]) 7→ b(s1 ‖ . . . ‖ sm)

where for 1 ≤ i ≤ m

si =

 a(C1[aF1→G1 t1] . . . ‖ Ci[t
b
Bi→Bj 〈yi〉/yj

j ] ‖ . . . ‖ Cm[aFm→Gm tm]) if Gi 6= ⊥

a(C1[aG1→G1 t1] . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm]) if Gi = ⊥

If we look at the reduction definition, the term b(s1 ‖ . . . ‖ sm) encodes the results of all possible
communications by the channel a. The unnecessary duplicates will be possibly reduced later on
by simplification reductions. In particular, each process Ck[aFk→Gk tk] transmits its message tk
to the term Cl[aFl→Gl tl] such that Fk = Gl, which is the designated receiver of the message.
If for some n, it holds Gk = Fn, the sender Ck[aFk→Gk tk] will also receive a message tn from

another process, and will reduce to Ck[t
bk〈yk〉/yn
n ]. Here the free variables yn of the message tn

are replaced by the application of the fresh communication channel bk, which has the task to
receive the values of yn when they will be forwarded. If, on the other hand, Gk = ⊥, the sender
Ck[aFk→Gk tk] is not a receiver and it will reduce to Ck[bk〈yk〉] since there is no incoming message.
In either case, the applications bk〈yk〉 will be used to forward the values of the variables yk if
and when they will be available. Technically, the redex reduces to the term b(s1 ‖ . . . ‖ sm)
where sp for p ∈ {1, . . . ,m} is a copy of the original redex and contains only one process of the

form Ck[t
bk〈yk〉/yn
n ] or Ck[bk〈yk〉] resulting from the communication. We also require that the

channel occurrences used in the communication are rightmost in the processes containing them.
This guarantees the preservation of the bindings of channel variables.

Example 3.3. The specific cross reduction rule corresponding to the axiom Lin = (A → B) ∨
(B → A) is the following:

C[aA→Bu] ‖a D[aB→Av] 7→ (C[vb〈x〉/y] ‖a D[av]) ‖b (C[au] ‖a D[ub〈y〉/x])

where x is the tuple of free variables of u which are bound in C[au] and y is the tuple of free
variables of v which are bound in D[av].

We can schematically represent the term C[aA→Bu] ‖a D[aB→Av] as
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After the reduction we obtain the following term:

In the latter term, b reconnects the messages u and v to their original environments by the
substitutions b〈y〉/x and b〈x〉/y respectively. Thus, when available, x will be sent to u and y
to v through the channel b.

A concrete example of the application of this cross reduction rule on a simple term is

a(λx a(zx) ‖ λy 〈y, a(yk)〉) 7→ b(a(λx bxk ‖ λy 〈y, a(yk)〉) ‖ a(λx a(zx) ‖ λy 〈y, (z(by))〉))

where z, k are variables, a : A → B in λx a(zx), a : B → A in λy 〈y, a(yk)〉. We use the color
blue for the new terms produced by the cross reduction.

For a proof-theoretic view of cross reductions, we first illustrate the reduction for the rule
(Lin) where Lin = (A→ B) ∨ (B → A). Consider the derivation

[A→ B]

Γ
γ
A

B....
C

[B → A]

∆
δ
B

A....
C

C

in which Γ and ∆ are the hypotheses of γ and δ that are respectively discharged below B and
A. Assume that A → B does not occur in γ and B → A does not occur in δ as hypotheses
discharged by the rule for Lin. A cross reduction transforms this derivation into

[A→ B]

Γ
γ

A

B
1

....
C

∆

Γ
3

γ

A....
C

C
1

Γ

∆
3

δ
B....
C

[B → A]

∆
δ
B

A
2

....
C

C
2

C
3

where the notation
X

Y
means that we derive each occurrence of element D of Y as follows:

[
∧
X →

∧
Y ]3

X∧
X
∧i∧

Y

D
∧e
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where
∧
X and

∧
Y are the conjunctions of the elements of X and Y respectively,

X∧
X
∧i is

the obvious derivation by conjunction introductions, and

∧
Y

D
∧e is the obvious derivation of D

by conjunction eliminations. Notice that this reduction duplicates the original rule application
once for each of its branches, and removes only one discharged formula from each copy of the
original application: this is exactly what happens in the general case.

Finally, suppose we have a generic application of (A), below left, in which all Γi for 1 ≤ i ≤ m
are discharged between Gi and B. It reduces by cross reduction as follows:

[F1 → G1]∗

Γ1
α1

F1

G1....
B . . .

[Fm → Gm]∗

Γm
αm

Fm

Gm....
B

B
∗

7→ δ1 . . . δm
B

∗∗

with δi =

. . .
B . . .

[
∧

Γi →
∧

Γj ]
∗∗

Γi∧
Γi
∧i∧

Γj

αj
∧e

Gi....
B . . .

. . .
B

B
∗

Here i ∈ {1, . . . ,m}, αj is the derivation of the premise Fj = Gi associated by A to Gi, and a
double inference line denotes a derivation only containing applications of the named rule.

Cross reductions are complex but can be used in a relatively simple way in practice, as shown
by the following example.

Example 3.4. Consider the term

a( a (λxxt) ‖ b(λz z(b(uz)π0) ‖ a ∗ (λy b〈s, y〉))) (2)

where the channels are typed as follows: a : ¬A in the leftmost process and a : > → A in the
rightmost, b : B → C in the second process and b : C → B in the rightmost, and ∗ : >. The
channel b cannot transmit 〈s, y〉 without first solving the issue of y losing connection with its
binder. However, after communicating the message (λxxt) by a basic cross reduction through
the channel a, (2) would become a( a (λxxt) ‖ b(λz z(b(uz)π0) ‖ (λxxt)(λy b〈s, y〉)) ) and then

a( a (λxxt) ‖ b(λz z(b(uz)π0) ‖ b〈s, t〉) ) and now the third process can send its message 〈s, t〉 to
the second without any issue, obtaining

a( a (λxxt) ‖ b(λz z(〈s, t〉π0) ‖ b〈s, t〉) ) 7→∗ λz zs

However, this is not the only possible communication order: instead of using basic cross reduc-
tions, we can use fully general cross reductions and directly use the channel b to send the term
〈s, y〉 to the second process without waiting for the channel a:

a( a(λxxt) ‖ b(λz z(b(uz)π0) ‖ a ∗ (λy b〈s, y〉)) )

7→ a( a(λxx t) ‖ c( b(λz z(〈s, cz〉π0) ‖ a ∗ (λy b〈s, y〉)) ‖ b(λz z(b(uz)π0) ‖ a ∗ (λy u(cy)))) )

7→ a( a(λxx t) ‖ c( b(λz zs ‖ a ∗ (λy b〈s, y〉)) ‖ b(λz z(b(uz)π0) ‖ a ∗ (λy u(cy)))) )

7→ a( a(λxx t) ‖ c( λz zs ‖ b(λz z(b(uz)π0) ‖ a ∗ (λy u(cy)))) )

7→∗ a( a(λxx t) ‖ c(λz zs ‖ a ∗ (λy u(cy))) ) 7→ a( a(λxx t) ‖ λz zs) 7→ λz zs

17



We only apply a cross reduction to a term a(u1 ‖ . . . ‖ um) when the channel a is active.
Ultimately, a channel can be activated only if one of its occurrences is directly applied to a
value or may receive a value to be transmitted sometimes in the future. Intuitively, an active
channel has or will have an argument that needs to be transmitted because it might produce new
computations in the receiving process. This activation condition would be natural in a call-by-
value reduction strategy, but here we are not transmitting messages according to a call-by-value
policy just for the sake of it. An activation condition is indeed necessary, because unrestricted
cross reductions do not always terminate. For example, reducing

a(λy
B aB→B y ‖ x(C→C)→B→B (λzC aC→Cz))

as follows generates a loop:

7→ b(a((λy b y ‖ x (λz az))) ‖ a((λy a y ‖ xλz bz))) 7→∗ b(λy b y ‖ xλz bz) 7→ . . .

We present now some examples of computations. The first one shows that some instances
of λL are strictly more expressive than simply typed λ-calculus.

Example 3.5 (Parallel OR). As is well known there is no λ-term O : Bool → Bool → Bool
such that we have OFF 7→ F, OuT 7→ T, OTu 7→ T without evaluating u. O can instead be
defined in Boudol’s calculus [10], λG [2] and λCL [3] We add the boolean type in our calculus
and we define λEM as the instance of λL based on the axiom EM = ¬A∨A. Then the term for
parallel OR is

O := λxBool λyBool( (if x thenT else (aF) efqBool) ‖a (if y thenT else aT) )

where a : Bool→ ⊥, a : > → Bool, T : > and “if u then s else t” is as usual. Now
OuT 7→∗ (if u thenT else (aF) efqBool) ‖a (if T thenT else aT) 7→∗ (if u thenT else (aF) efqBool) ‖a T 7→ T

And symmetrically OTu 7→∗ T. On the other hand

OFF 7→∗ (if F thenT else (aF) efqBool) ‖a (if F thenT else aT) 7→∗ (aF) efqBool ‖a a 7→ F

Notice that even if all λL-terms reduce to a normal form in a finite number of steps, the existence
of a term behaving as a parallel OR is not obvious. Indeed, one of the arguments of the term
might be a variable and never reduce neither to T nor to F. For instance, during the reduction of
OuT above, if u = x then the if then else construct occurring in (if u thenT else (aF) efqBool) ‖a T
could never reduce.

We now present an example which simulates the interactions of an online sale.

Example 3.6 (Buyer and Vendor). We model the following transaction: a buyer tells a
vendor a product name prod : String, the vendor computes the monetary cost price : N of prod
and communicates it to the buyer, the buyer sends back the credit card number card : String
which is used to pay.

We introduce the following functions: cost : String→ N with input a product name prod and
output its cost price; pay for : N → String with input a price and output a credit card number
card; use : String → N that produces money using as input a credit card number card : String.
The buyer and the vendor are the contexts B and V of type Bool. The communication channel a
is typed using the instance (String→ N)∨ (N→ String) of the axiom Lin = (A→ B)∨ (B → A).

The program is:

B[a(pay for(a(prod)))] ‖a V[use(a(cost(a 0)))]

7→ B[a(pay for(a(prod)))] ‖a V[use(a(cost(prod)))]

7→ B[a(pay for(a(prod)))] ‖a V[use(a(price))]

7→ B[a(pay for(price))] ‖a V[use(a(price))]

7→ B[a(card)] ‖a V[use(a(price))] 7→ B[a(card)] ‖a V[use(card)]
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Finally 7→ V[use(card)]: the buyer has performed its duty and the vendor uses the card number
to obtain the due payment.

Remark 3.2 (Ambient Calculus and Cross Reductions). The ambient calculus [13] is a
formalism where processes are represented as ambients in which the computation is carried out.
Ambients’ structure is similar to the structure of processes in process calculi, but instead of
communicating, ambients can enter, exit, or dissolve the boundaries of other ambients. Even
though the issues addressed by ambient calculus seem close to those that motivate the intro-
duction of cross reductions in λL, the operations of ambients are assumed not to break any
computational dependence, while cross reductions are meant to handle changes of environment
which violate computational dependencies by restoring such dependencies.

The proof below that reductions preserve types is standard.

Theorem 3.1 (Subject Reduction). If t : A and t 7→ u, then u : A and all the free variables of
u appear among those of t.

Proof. Since the argument for intuitionistic reductions is standard, that for simplification re-
ductions and permutations is trivial and that for basic cross reductions is just a simpler version
of that for cross reductions, we only consider the latter case. Suppose then that

a(C1[aF1→G1 t1] ‖ . . . ‖ Cm[aFm→Gm tm]) 7→ b(s1 ‖ . . . ‖ sm)

Suppose that si for 1 ≤ i ≤ m is

a(C1[aF1→G1 t1] ‖ . . . ‖ Ci[t
b
Bi→Bj 〈yi〉/yj

j ] ‖ . . . ‖ Cm[aFm→Gm tm])

where Gi 6= ⊥. Assuming that 〈yi〉 : Bi, the terms bBi→Bj 〈yi〉 are correct. Hence the term

t
bBi→Bj 〈yi〉/yj

j , by Definition 3.5, is correct as well. Now, some of the assumptions of the

reduction rule are that t
bBi→Bj 〈yi〉/yj

j has the same type as aFi→Gi ti; and that yi for 1 ≤ i ≤ m is

the sequence of the free variables of ti which are bound in Ci[aFi→Gi ti]. Hence, by construction,

all the variables yi are bound in each Ci[t
bBi→Bj 〈yi〉/yj

j ]. Since, moreover, a is rightmost in each

Ci[aFi→Gi ti] and b is fresh, no new free variable is created.
Suppose that, on the other hand, si for 1 ≤ i ≤ m is

a(C1[aF1→G1 t1] ‖ . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm])

where Gi = ⊥. Assuming that 〈yi〉 : Bi, the term bBi→⊥〈yi〉 is a correct term. Now, since
Gi = ⊥, the term bBi→⊥〈yi〉 has the same type as aFi→Gi ti. Since yi for 1 ≤ i ≤ m is the
sequence of the free variables of ti which are bound in Ci[aFi→Gi ti] and since b is fresh, no new
free variable is created.

Similarly to what happens in the embedding of hypersequent proofs into 2-systems [15],
the starting point of our normalization strategy will be to rewrite any λL-term into a parallel
composition of simply-typed λ-terms, formally defined below.

Definition 3.6 (Parallel Form). A parallel form is defined inductively as follows: a simply
typed λ-term is a parallel form; if u1, . . . , um are parallel forms, then both a(u1 ‖ . . . ‖ um) and
u1 ‖ . . . ‖ um are parallel forms.

Definition 3.7 (Normal Forms and Normalizable Terms).

• A redex is a term u such that u 7→ v for some v and basic reduction of Table 3. A term
t is called a normal form or, simply, normal, if there is no t′ such that t 7→ t′. We define
NF to be the set of normal λL-terms.

• A sequence, finite or infinite, of proof terms u1, u2, . . . , un, . . . is said to be a reduction of
t, if t = u1, and for all i, ui 7→ ui+1. A proof term u of λL is normalizable if there is a
finite reduction of u whose last term is a normal form.
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4 The Normalization Theorem

In this section, we shall prove the normalization theorem for λL: every proof term of λL reduces
in a finite number of steps to a normal form. By subject reduction, this implies that the
corresponding natural deduction proofs normalize. We remark that the permutations between
communications are necessary to solve the scope extrusion problem, but at the same time,
they undermine strong normalization, because they enable silly loops, like those generated by
cyclically permuting cuts over cuts in cut-elimination for sequent calculi.

According to our normalization strategy, we start from any term and reduce it in parallel
form by Proposition 4.2. Then we cyclically interleave three reduction phases: an intuitionistic
phase in which we reduce all intuitionistic redexes, an activation phase in which we activate all
sessions that can be activated, and a communication phase in which the active sessions exchange
all messages (cross reductions) and the processes extract information from the received messages
(projections and case distinction permutations).

Proving that this strategy terminates is not easy, as two kinds of loops might occur:
1. Intuitionistic reductions can generate new activable channels that need to transmit messages,
while message exchanges can generate new intuitionistic reductions.
2. During the communication phase new sessions may be generated after each cross reduction
and old sessions may be duplicated after each permutation. Each of these sessions may need to
send new messages, for instance to forward some message just received, and hence the count of
active sessions might increase forever and the communication phase never terminate.

We avoid the first loop by exploiting the complexity of the exchanged messages. Since
messages are values, we shall define a notion of value complexity (Definition 4.5), which will
simultaneously ensure that: (i) after reducing an intuitionistic redex which is not a projection
or a case distinction permutation, the new active sessions only transmit messages with value
complexity smaller than the complexity of such redex; (ii) after transmitting a message, all newly
generated intuitionistic redexes do not have complexity greater than the value complexity of
such message. Proposition 4.6 will settle the matter, but in turn requires a series of preparatory
lemmas. Namely, we shall study in Lemma 4.5 and Lemma 4.6 how arbitrary substitutions
affect the value complexity of a term; then we shall determine in Lemma 4.8 and Lemma 4.7
how case reductions affect the value complexity.

We prove that the second loop is not possible by showing in Lemma 4.10 that the transmission
of messages, during the communication phase, cannot produce new active sessions. Intuitively,
the newly generated channels and the old duplicated ones are frozen, in the sense that only the
reduction of an intuitionistic redex can activate them and in doing it will generate communication
redexes with smaller complexity than the redex itself.

We define now a recursive normalization algorithm that represents the constructive content of
the normalization proof. The master reduction strategy has three phases: in the first we reduce
all possible intuitionistic redexes; in the second we activate all possible sessions; in the third we
use the reduction relation � defined below. By � we men that we permute an uppermost active
session a(u1 ‖ . . . ‖ um) until all ui for 1 ≤ i ≤ m are simply typed λ-terms and then apply the
cross reductions followed by projections and case permutations.

Definition 4.1 (Side Reduction Strategy). Let t be a term and a(u1 ‖ . . . ‖ um) be an active
session occurring in t such that no active session occurs in u or v. We write t � t′ whenever
t′ has been obtained from t by applying one of the following to a(u1 ‖ . . . ‖ um):

1. a permutation reduction

a(u1 ‖ . . . ‖ b(w1 ‖ . . . ‖ wn) . . . ‖ um) 7→ b(a(u1 ‖ . . . ‖ w1 . . . ‖ um) ‖ . . . ‖ a(u1 ‖ . . . ‖ wn . . . ‖ um))

if ui = b(w1 ‖ . . . ‖ wn) for some 1 ≤ i ≤ m ;
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2. a cross reduction, if u1, . . . , um are intuitionistic terms, immediately followed by projec-
tions and case distinction permutations inside the newly generated simply typed λ-terms;

3. a simplification reduction a(u1 ‖ . . . ‖ um) 7→ uj1 ‖ . . . ‖ ujn , for 1 ≤ j1 < . . . < jn ≤ m, if
a does not occur in uj1 , . . . , ujn

Definition 4.2 (Master Reduction Strategy). Let t be any term not in normal form. We
transform it into a term u in parallel form and execute the following three-step procedure.

1. Intuitionistic Phase. As long as u contains intuitionistic redexes, we reduce them.

2. Activation Phase. As long as u contains activation redexes, we reduce them.

3. Communication Phase. As long as u contains active sessions, we apply the Side Reduction
Strategy (Definition 4.1) to u, then we go to step 1.

We start by defining the value complexity of messages. It represents a measure of the
complexity of the redexes that a message can generate after transmission. For terms of the form
λxu and ιi(u), which are values in the usual sense, such complexity is defined on the type of the
term. For pairs 〈u, v〉 and case distinctions t[x.u, y.v], which we consider containers for what
is usually taken to be a value, we recursively pick the maximum among the value complexities
of u and v. This is a crucial point. If we used types as value complexities for pairs and case
distinctions, our normalization argument would break down when new channels are generated
during cross reductions: their type can be more complex than the type of the original channel
and any hope of finding a decreasing measure would be shattered.

Definition 4.3 (Complexity of a Type). The complexity of a type T is defined as follows:

• if T = ⊥ or T = P for a propositional variable P , then the complexity of T is 0;

• if T = A1 → A2, T = A1 ∧ A2 or T = A1 ∨ A2 and the complexity of Ai is ni, then the
complexity of T is n1 + n2 + 1.

Definition 4.4 (Case-free). A stack σ = σ1σ2 . . . σn is case-free if σi is not of the form [z1.w1, z2.w2]
for any i ∈ {1, . . . , n}.

Definition 4.5 (Value Complexity). For any simply typed λ-term s : T , the value complexity
of s is defined as the first case that applies among the following:

• if s = λxu, s = ιi(u), then the value complexity of s is the complexity of its type T ;

• if s = 〈u, v〉, then the value complexity of s is the maximum among those of u and v.

• if s = t[x.u, y.v]σ where σ is case-free, then the value complexity of s is the maximum
among the value complexities of uσ and vσ;

• otherwise, the value complexity of s is 0.

Recall that values are supposed to be those terms that can either generate an intuitionistic
redex when plugged into another term or become a term with that capability, like an active
channel acting as the endpoint of a transmission. The value complexity of a term, as expected,
never exceeds the complexity of its type.

Proposition 4.1. Let u : T be any simply typed λ-term. Then the value complexity of u is not
greater than the complexity of T .
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Proof. By induction on u. There are several cases, according to the shape of u.

• If u is of the form λxw, ιi(w), then the value complexity of u is indeed the complexity of
T .

• If u is of the form 〈v1, v2〉 then, by the induction hypothesis, the value complexities of v1
and v2 are at most the complexity of their respective types T1 and T2, and hence at most
the complexity of T = T1 ∧ T2, and we are done.

• If u is of the form v0[z1.v1, z2.v2] then, by induction hypothesis, the value complexities of
v1 and v2 are at most the complexity of T , and we are done.

• In all other cases, the value complexity of u is 0, which trivially satisfies the thesis.

The complexity of an intuitionistic redex tξ, where ξ is a stack of length 1, is defined as the
value complexity of t.

Definition 4.6 (Complexity of the Intuitionistic Redexes). Let r be an intuitionistic redex.
The complexity of r is defined as follows:

• If r = (λxu)t, then the complexity of r is the type of λxu.

• If r = ιi(t)[x.u, y.v], then the complexity of r is the type of ιi(t).

• if r = 〈u, v〉πi then the complexity of r is the value complexity of 〈u, v〉.

• if r = t[x.u, y.v]ξ, where ξ is a stack of length 1, then the complexity of r is the value
complexity of t[x.u, y.v].

The value complexity is used to define the complexity of communication redexes as well.
Intuitively, it is the value complexity of the most complex message ready to be transmitted.

Definition 4.7 (Complexity of the Communication Redexes).

• The complexity of a channel occurrence a〈t1, . . . , tn〉 of a channel a is the value complexity
of 〈t1, . . . , tn〉.

• The complexity of a communication redex a(u1 ‖ . . . ‖ um) is the maximum among the
complexities of the occurrences of a in u1, . . . , um.

• The complexity of a permutation redex a(u1 ‖ . . . ‖ b(w1 ‖ . . . ‖ wn) . . . ‖ um) is 0.

As our normalization strategy suggests, application and injection redexes should be treated
differently from the others, because they generate the real computations.

Definition 4.8. We distinguish two groups of redexes:

• Group 1: Application and injection redexes.

• Group 2: Communication, projection and case distinction permutation redexes.

Before proving the required auxiliary results, we summarize the steps of the normalization
procedure used in the proof of Proposition 4.12. The procedure for a term t is the following:

1. We reduce t to a term t1 in parallel form (Proposition 4.2).
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2. We start the induction on the maximal complexity τ of the redexes in t1.

3. We reduce all intuitionistic redexes in t1 and obtain t2 in which the complexity of redexes
is still smaller than or equal to τ (Proposition 4.9 which requires Lemmas 4.4 and 4.8).

4. We reduce all activation redexes and obtain t3 in which the complexity of redexes is still
smaller than or equal to τ (Lemma 4.3).

5. We fire all cross reductions and obtain t4 which only contains redexes of Group 1 with
complexity smaller than or equal to τ (Lemma 4.11 which requires Lemma 4.10).

6. If t4 contains redexes of Group 1, we reduce them. The redexes of Group 2 that we thus
create have complexity smaller than τ (Proposition 4.9.2).

7. After recursively eliminating all redexes of Group 1, we obtain a term t5 which has only
redexes of complexity smaller than τ , thus we can use the induction hypothesis.

We show that any term can be reduced to a parallel form.

Proposition 4.2 (Parallel Form). Let t : A be any term. Then t 7→∗ t′, with t′ parallel form.

Proof. By induction on t. As a shortcut, if a term u reduces to a term u′ that can be denoted
as u′′ omitting parentheses, we write u⇒∗ u′′. We present here only the interesting cases. The
unabridged version of the proof is in the appendix (A.1).

• t = u v. By the induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un+1

v ⇒∗ v1 ‖ v2 ‖ . . . ‖ vm+1

and each term ui and vi, for 1 ≤ i ≤ n + 1,m + 1, is a simply typed λ-term. Applying
several permutations we obtain

t⇒∗ (u1 ‖ u2 ‖ . . . ‖ un+1) v

⇒∗ u1 v ‖ u2 v ‖ . . . ‖ un+1 v

⇒∗ u1 v1 ‖ u1 v2 ‖ . . . ‖ u1 vm+1 ‖ . . .
. . . ‖ un+1 v1 ‖ un+1 v2 ‖ . . . ‖ un+1 vm+1

• t = s[x.u, y.v]. By the induction hypothesis,

s⇒∗s1 ‖ s2 ‖ . . . ‖ sn+1

u⇒∗u1 ‖ u2 ‖ . . . ‖ um+1

v ⇒∗v1 ‖ v2 ‖ . . . ‖ vp+1

and each term si for 1 ≤ i ≤ n + 1, uj for 1 ≤ j ≤ m + 1, and vk for 1 ≤ k ≤ p + 1 is a
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simply typed λ-term. Applying several permutations we obtain

t⇒∗s1[x.u, y.v] ‖ s2[x.u, y.v] ‖ . . . ‖ sn+1[x.u, y.v]

⇒∗s1[x.u1, y.v] ‖ s1[x.u2, y.v] ‖ . . . ‖ s1[x.um+1, y.v] ‖
s2[x.u1, y.v] ‖ s2[x.u2, y.v] ‖ . . . ‖ s2[x.um+1, y.v] ‖
. . . ‖ sn+1[x.u1, y.v] ‖ sn+1[x.u2, y.v] ‖ . . . ‖ sn+1[x.um+1, y.v]

⇒∗s1[x.u1, y.v1] ‖ s1[x.u1, y.v2] ‖ . . . ‖ s1[x.u1, y.vp+1] ‖
s1[x.u2, y.v1] ‖ s1[x.u2, y.v2] ‖ . . . ‖ s1[x.u2, y.vp+1] ‖
. . . ‖ s1[x.um+1, y.v1] ‖ s1[x.um+1, y.v2] ‖ . . . ‖ s1[x.um+1, y.vp+1]

s2[x.u1, y.v1] ‖ s2[x.u1, y.v2] ‖ . . . ‖ s2[x.u1, y.vp+1] ‖
s2[x.u2, y.v1] ‖ s2[x.u2, y.v2] ‖ . . . ‖ s2[x.u2, y.vp+1] ‖
. . . ‖ s2[x.um+1, y.v1] ‖ s2[x.um+1, y.v2] ‖ . . . ‖ s2[x.um+1, y.vp+1]

sn+1[x.u1, y.v1] ‖ sn+1[x.u1, y.v2] ‖ . . . ‖ sn+1[x.u1, y.vp+1] ‖
sn+1[x.u2, y.v1] ‖ sn+1[x.u2, y.v2] ‖ . . . ‖ sn+1[x.u2, y.vp+1] ‖
. . . ‖ sn+1[x.um+1, y.v1] ‖ sn+1[x.um+1, y.v2] ‖ . . . ‖ sn+1[x.um+1, y.vp+1].

The following lemma shows that the activation phase of our reduction strategy is finite.

Lemma 4.3 (Activate!). Let t be any term in parallel form that does not contain intuitionistic
redexes and whose communication redexes have complexity at most τ . Then there exists a finite
sequence of activation reductions that results in a term t′ that contains no redexes, except cross
reduction redexes of complexity at most τ .

Proof. The proof is by induction on the number n of subterms of the form a(u1 ‖ . . . ‖ um) of
t which are not active sessions. If there are no activation redexes in t, the statement trivially
holds. Assume there is at least one activation redex r = a(v1 ‖ . . . ‖ vm). We apply an activation
reduction to r and obtain a term r′ with n− 1 subterms of the form a(u1 ‖ . . . ‖ um) which are
not active sessions. In order to apply the induction hypothesis on r′, which yields the claim, we
only need to verify that all communication redexes of r′ have complexity at most τ .

For, let c be any channel variable which is bound in r′. Since r′ is obtained from r by
renaming the non-active bound channel variable a to an active one b, every occurrence of c in
r′ is of the form (c t)[b/a] for some subterm c t of r. Thus c t[b/a] = c[b/a]〈t1[b/a], . . . , tn[b/a]〉,
where each ti is not a pair. It suffices to show that the value complexity of ti[b/a] is exactly the
value complexity of ti. We proceed by induction on the size of ti. We can write ti = r1 σ, where
σ is a case-free stack. If r1 is of the form λxw, 〈q1, q2〉, ιi(w), x, dw, with d channel variable,
then the value complexity of ti[b/a] is the same as that of ti; note that if r1 = 〈q1, q2〉, then σ
is not empty. If r1 = v0[x1.v1, x2.v2], then σ is empty, otherwise s would contain a permutation
redex. Hence, the value complexity of ti[b/a] is the maximum among the value complexities of
v1[b/a] and v2[b/a]. By the induction hypothesis, their value complexities are those of v1 and
v2, hence the value complexity of ti[b/a] is the same as that of ti, which concludes the proof.

We show a simple property of the value complexity that we will need later.

Lemma 4.4 (Why Not 0?). Let u be any simply typed λ-term and σ be a non-empty case-free
stack. Then the value complexity of uσ is 0.

Proof. By induction on the size of u.
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• If u is of the form (λx.w)ρ, ιi(w)ρ, 〈v1, v2〉ρ, aρ or xρ, where ρ is case-free, then uσ has
value complexity 0.

• If u is of the form w efqP , then P is atomic, thus σ must be empty, contrary to the
assumptions.

• If u is of the form v0[z1.v1, z2.v2]ρ, with ρ case-free, then by the induction hypothesis the
value complexities of v1ρσ and v2ρσ are 0 and since the value complexity of uσ is the
maximum among them, uσ has value complexity 0.

In order to formally study the effects of reducing a redex, we consider simple substitutions
that just replace some occurrences of a term with another, allowing capture of variables. In
practice, it will always be clear from the context which occurrences are replaced. These substi-
tutions model the kind of transformations that are performed when reducing a redex: the redex
is replaced by a new term, but with capture of variables.

Definition 4.9 (Simple Replacement). By s{t/u} we denote a term obtained by replacing some
occurrences of a subterm u of s with a term t of the same type as u, possibly with capture of
variables.

An alternative definition we could have adopted uses the familiar context notation: if s =
C[u][u] . . . [u], then s{t/u} = C[t][t] . . . [t], which clearly shows that not all occurrences of u are
replaced by t. Since our notation is simpler, we adopt it in place of this one based on contexts.

We now show an essential fact: the value complexity of w{v/s} either remains at most as it
was before the substitution or becomes exactly the value complexity of v.

Lemma 4.5 (The Change of Value). Let w, s, v be simply typed λ-terms with value complexity
respectively θ, τ, τ ′. Then the value complexity of w{v/s} is either at most θ or equal to τ ′.
Moreover, if τ ′ ≤ τ , then the value complexity of w{v/s} is at most θ.

Proof. By induction on the size of w.

• w{v/s} = x {v/s}. We have two cases.

– s = x. Then the value complexity of w{v/s} = v is τ ′. Moreover, if τ ′ ≤ τ , since
w = x = s, we have θ = τ , thus τ ′ ≤ θ.

– s 6= x. The value complexity of w{v/s} is θ and we are done.

• w{v/s} = λxu {v/s}. We have two cases.

– λxu {v/s} = λx(u{v/s}). Then the value complexity of w{v/s} is θ and we are done.

– λxu {v/s} = v. Then the value complexity of w{v/s} is τ ′. Moreover, if τ ′ ≤ τ , since
w = λxu = s, we have θ = τ , thus τ ′ ≤ θ.

• w{v/s} = 〈q1, q2〉 {v/s}. We have two cases.

– 〈q1, q2〉 {v/s} = 〈q1{v/s}, q2{v/s}〉. Then by the induction hypothesis the value
complexities of q1{v/s} and q2{v/s} are at most θ or equal to τ ′. Since the value
complexity of w{v/s} is the maximum among the value complexities of q1{v/s} and
q2{v/s}, we are done.

– 〈q1, q2〉 {v/s} = v. Then the value complexity of w{v/s} is τ ′. Moreover, if τ ′ ≤ τ ,
since w = 〈q1, q2〉 = s, we have θ = τ , thus τ ′ ≤ θ.
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• w{v/s} = ιi(u) {v/s}. We have two cases.

– ιi(u) {v/s} = ιi(u{v/s}). Then the value complexity of w{v/s} is θ and we are done.

– ιi(u) {v/s} = v. Then the value complexity of w{v/s} is τ ′. Moreover, if τ ′ ≤ τ ,
since w = ιi(u) = s, we have θ = τ , thus τ ′ ≤ θ.

• – w{v/s} = (v0[z1.v1, z2.v2])ρ{v/s} =v0{v/s}[z1.v1{v/s}, z2.v2{v/s}](ρ{v/s}), where
ρ is a case-free stack. If ρ is not empty, then by Lemma 4.4, v1{v/s}ρ{v/s} and
v2{v/s}ρ{v/s} have value complexity 0, so w{v/s} has value complexity 0 ≤ θ and we
are done. So assume ρ is empty. By the induction hypothesis applied to v1{v/s} and
v2{v/s}, the value complexity of w{v/s} is at most θ or equal to τ ′ and we are done.
Moreover, if τ ′ ≤ τ , then by the induction hypothesis, the value complexity of vi{v/s}
for i ∈ {1, 2} is at most θ. Hence, the value complexity of (v0[z1.v1, z2.v2])ρ{v/s} is
at most θ and we are done.

– w{v/s} = (v0[z1.v1, z2.v2]ρ){v/s} = vρj{v/s} . . . ρn{v/s}, where ρ = ρ1 . . . ρn is a
case-free stack and 1 ≤ j ≤ n. If ρj . . . ρn is not empty, then by Lemma 4.4, the
value complexity of w{v/s} is 0 ≤ θ, and we are done. So assume ρj . . . ρn is empty.
Then the value complexity of w{v/s} is τ ′. Moreover, if τ ′ ≤ τ , since it must be
s = v0[z1.v1, z2.v2], we have that the value complexity of w{v/s} = v is τ ′ ≤ τ = θ.

• In all other cases, w{v/s} = (r ρ){v/s} where ρ is a case-free non-empty stack and r is of
the form λxu, 〈q1, q2〉, ιi(u), x, or au. We distinguish three cases.

– (r ρ){v/s} = r{v/s}ρ{v/s} and r 6= s. Then by Lemma 4.4 the value complexity of
w{v/s} is 0 ≤ θ and we are done.

– (r ρ){v/s} = vρj{v/s} . . . ρn{v/s} given that r = s, ρ = ρ1 . . . ρn, and 1 ≤ j ≤ n.
Then by Lemma 4.4 the value complexity of w{v/s} is 0 ≤ θ and we are done.

– rρ{v/s} = v. Then the value complexity of w{v/s} is τ ′. Moreover, if τ ′ ≤ τ , since
w = rρ = s, we have θ = τ , thus τ ′ ≤ θ.

Lemma 4.6 studies how the complexity of redexes in a term changes with simple replacements.

Lemma 4.6 (Replace!). Let u be a term in parallel form, v, s be any simply typed λ-terms,
τ be the value complexity of v and τ ′ be the maximum among the complexities of the channel
occurrences in v. Then every redex in u{v/s} is either (i) already in v, (ii) of the form r{v/s}
and has complexity smaller than or equal to the complexity of some redex r of u, or (iii) has
complexity τ or is a communication redex of complexity at most τ ′.

Proof. We prove the following stronger statement.

(∗) Every redex and channel occurrence in u{v/s} it is either (i) already in v, (ii) of the form
r{v/s} or aw{v/s} and has complexity smaller than or equal to the complexity of some redex
r or channel occurrence aw of u, or (iii) has complexity τ or τ ′ or is a communication redex of
complexity at most τ ′.

We reason by induction on the size and by cases on the possible shapes of the term u. Only
some interesting cases are shown here. See A.2, in the appendix, for the unabridged version of
the proof.
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• w0[z1.w1, z2.w2]σ{v/s}, where σ is any case-free stack. By the induction hypothesis, (∗)
holds for w0{v/s}, w1{v/s}, w2{v/s} and σi{v/s} for 1 ≤ i ≤ n. If

w0[z1.w1, z2.w2]σ{v/s} =

w0{v/s}[z1.w1{v/s}, z2.w2{v/s}](ρ{v/s})

we first observe that by Lemma 4.5, the value complexity of w0{v/s} is at most that of
w0 or exactly τ , hence the possible injection or case distinction permutation redex

w0{v/s}[z1.w1{v/s}, z2.w2{v/s}]

satisfies the thesis. Again by Lemma 4.5, the value complexities of w1{v/s} and w2{v/s}
are respectively at most that of w1 and w2 or exactly τ . Hence the complexity of the
possible case distinction permutation redex

(w0[z1.w1{v/s}, z2.w2{v/s}])σ1{v/s}

is either τ , and we are done, or at most the value complexity of one among w1, w2, thus at
most the value complexity of the case distinction permutation redex (w0[z1.w1, z2.w2])σ1
and we are done.

If w0[z1.w1, z2.w2]σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then there could be a new intu-
itionistic redex, when v = λy q, v = 〈q1, q2〉, v = ιi(q) or v = q0[y1.q1, y2.q2]. But the
complexity of such a redex is τ .

• a t σ{v/s}, where a is a channel variable, t a term and σ = σ1 . . . σn is any case-free stack.
By the induction hypothesis, (∗) holds for t{v/s}, σi{v/s} where 1 ≤ i ≤ n.

If a t σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then v (σi{v/s}) could be an intuitionistic redex,
when v = λy w, v = 〈w1, w2〉, v = ιi(w) or v = w0[y1.w1, y2.w2]. But the complexity of
such a redex is equal to τ .

If a t σ{v/s} = a (t{v/s})(σ{v/s}), in order to verify the thesis it is enough to check the
complexity of the channel occurrence a (t{v/s}). By Lemma 4.5, the value complexity of
t{v/s} is at most the value complexity of t or exactly τ , thus either (ii) or (iii) holds.

• a(t1 ‖ . . . ‖ tm){v/s}. By the induction hypothesis, (∗) holds for ti{v/s} where 1 ≤ i ≤ m.
The only redex in a(t1 ‖ . . . ‖ tm){v/s} and not in some ti{v/s} can be a(t1{v/s} ‖ . . . ‖
tm{v/s}) itself. But the complexity of such redex equals the maximal complexity of the
channel occurrences of the form aw occurring in some ti{v/s}, hence it is τ , at most τ ′ or
equal to the complexity of a(t1 ‖ . . . ‖ tm).

We study now the complexity of the redexes generated by the reduction of injections.

Lemma 4.7 (Eliminate the Case!). Let u be a term in parallel form. Then for any redex r in
u{wi[t/xi]/ιi(t)[x1.w1, x2.w2]} of complexity θ, either ιi(t)[x1.w1, x2.w2] has complexity greater
than θ; or there is a redex in u of complexity θ which belongs to the same group as r or is a case
distinction permutation redex.

Proof. Let v = wi[t/xi] and s = ιi(t)[x1.w1, x2.w2]. We prove a stronger statement:

(∗) For any redex r in u{v/s} of complexity θ, either ιi(t)[x1.w1, x2.w2] has complexity greater
than θ; or there is a redex in u of complexity θ which belongs to the same group as r or is a case
distinction permutation redex. Moreover, for any channel occurrence in u{v/s} with complexity
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θ′, either ιi(t)[x1.w1, x2.w2] has complexity greater than θ′, or there is an occurrence of the same
channel with complexity greater than or equal to θ′.

The proof is by induction on the size of u and by cases according to its shape. We present
here only the interesting cases. The unabridged version of the proof is in the appendix (A.3).

• v0[z1.v1, z2.v2]σ{v/s}, where σ is any case-free stack. By the induction hypothesis, (∗)
holds for v0{v/s}, v1{v/s}, v2{v/s} and σi{v/s} for 1 ≤ i ≤ n. If

v0[z1.v1, z2.v2]σ{v/s} =

v0{v/s}[z1.v1{v/s}, z2.v2{v/s}](ρ{v/s})

by Lemma 4.5 the value complexity of wi[t/xi] is either at most the value complexity of wi

or the value complexity of t. In the first case, the value complexity of wi[t/xi] is at most
the value complexity of wi which is at most the value complexity of ιi(t)[x1.w1, x2.w2].
Thus, by Lemma 4.5 the value complexities of v0{v/s}, v1{v/s}, v2{v/s} are at most
the value complexity respectively of v0, v1, v2. Hence, the complexity of the possible case
distinction permutation redex

(v0[z1.v1{v/s}, z2.v2{v/s}])σ1{v/s}

is at most the complexity of v0[z1.v1, z2.v2]σ1 and we are done. Moreover, the possible
injection or case distinction permutation redex

v0{v/s}[z1.v1{v/s}, z2.v2{v/s}]

satisfies the thesis. In the second case, the value complexities of v0{v/s}, v1{v/s}, v2{v/s}
are at most the value complexities of v0, v1, v2 respectively or exactly the value com-
plexity of t. Hence the complexity of the possible case distinction permutation redex
(v0[z1.v1{v/s}, z2.v2{v/s}])σ1{v/s} is either at most the value complexity of v1, v2, and
we are done, or exactly the value complexity of t, which by Proposition 4.1 is at most
the complexity of the type of t, thus is smaller than the complexity of the injection re-
dex ιi(t)[x1.w1, x2.w2] occurring in u. Moreover, the possible injection or case distinction
permutation redex

v0{v/s}[z1.v1{v/s}, z2.v2{v/s}]

has complexity equal to the value complexity of v0 or the value complexity of t, and we
are done again.

If v0[z1.v1, z2.v2]σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then there could be a new intu-
itionistic redex, when v = λy q, v = 〈q1, q2〉, v = ιi(q) or v = q0[y1.q1, y2.q2]. If
the value complexity of v = wi[t/xi] is at most the value complexity of wi, then the
complexity of wi[t/xi](σi{v/s}) is equal to the complexity of the permutation redex
(ιi(t)[x1.w1, x2.w2])σi. If the value complexity of v = wi[t/xi] is the value complexity
of t, by Proposition 4.1 the complexity of wi[t/xi](σi{v/s}) is at most the complexity of
the type of t, thus is smaller than the complexity of the injection redex ιi(t)[x1.w1, x2.w2]
occurring in u and we are done.

• a t′ σ{v/s}, where a is a channel variable, t′ a term and σ = σ1 . . . σn is any case-free stack.
By induction hypothesis, (∗) holds for t′ and σi{v/s} for 1 ≤ i ≤ n. Since s 6= a t′ σ1 . . . σj ,
the case a t′ σ{v/s} = v (σi{v/s}) . . . (σn{v/s}) is impossible.

If a t′ σ{v/s} = a (t′{v/s})(σ{v/s}), in order to verify the thesis it is enough to check the
complexity of the channel occurrence a (t′{v/s}). By Lemma 4.5, the value complexity
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of wi[t/xi] is either at most the value complexity of wi or exactly the value complexity
of t. In the first case, the value complexity of wi[t/xi] is at most the value complexity
of wi which is at most the value complexity of ιi(t)[x1.w1, x2.w2]. Thus, by Lemma 4.5,
the value complexity of t′{v/s} is at most the value complexity of t′ and we are done. In
the second case, the value complexity of t′{v/s} is the value complexity of t, which by
Proposition 4.1 is at most the complexity of the type of t, thus smaller than the complexity
of the injection redex ιi(t)[x1.w1, x2.w2] occurring in u, which is what we wanted to show.

• a(t1 ‖ . . . ‖ tm){v/s}. By the induction hypothesis, (∗) holds for ti{v/s} for 1 ≤ i ≤ m.
The only redex in a(t1 ‖ . . . ‖ tm){v/s} and not in some ti{v/s} can be a(t1{v/s} ‖ . . . ‖
tm{v/s}){v/s} itself. But the complexity of such redex equals the maximal complexity of
the occurrences of the channel a in the ti{v/s}. Hence the statement follows.

We analyze now the complexity of the redexes generated by case distinction permutations.

Lemma 4.8 (In the Case). Let u be a term in parallel form. Then for any redex r1 of Group 1 in
u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ}, where ξ is a stack of length 1, there is a redex in u with com-
plexity greater than or equal to r1; for any redex r2 of Group 2 in u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ},
there is a redex of Group 2 in u with complexity greater than or equal to r2.

Proof. Let v = t[x1.v1ξ, x2.v2ξ] and s = t[x1.v1, x2.v2]ξ. We prove the following stronger state-
ment.

(∗) For any redex r1 of Group 1 in u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ} there is a redex in u with
complexity greater than or equal to r1; for any redex r2 of Group 2 in u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ}
there is a redex of Group 2 in u with complexity greater than or equal to r2. Moreover, for
any channel occurrence in u{v/s} with complexity θ′, there is in u an occurrence of the same
channel with complexity greater than or equal to θ′.

We first observe that the possible Group 1 redexes v1ξ and v2ξ have at most the complexity
of the case distinction permutation t[x1.v1, x2.v2]ξ. The rest of the proof is by induction on the
size of u.

Only some interesting cases are shown here. See A.4, in the appendix, for the unabridged
version of the proof.

• w0[z1.w1, z2.w2]σ{v/s}, where σ is any case-free stack. By the induction hypothesis, (∗)
holds for w0{v/s}, v1{v/s}, v2{v/s} and σi{v/s} for 1 ≤ i ≤ n. If

w0[z1.w1, z2.w2]σ{v/s} =

w0{v/s}[z1.w1{v/s}, z2.w2{v/s}](σ{v/s})

Since the value complexity of t[x1.v1ξ, x2.v2ξ] is equal to the value complexity of t[x1.v1, x2.v2]ξ,
by Lemma 4.5 the value complexities of w0{v/s}, w1{v/s} and w2{v/s} are respectively
at most that of w0, w1 and w2. The complexity of the possible case distinction permu-
tation redex (w0{v/s}[z1.w1{v/s}, z2.w2{v/s}])σ1{v/s} is thus at most the value com-
plexity of w1, w2 respectively, and hence the complexity of the case permutation redex
(w0[z1.w1, z2.w2])σ1. Moreover, the possible injection or case permutation redex

w0{v/s}[z1.w1{v/s}, z2.w2{v/s}]

has complexity equal to the value complexity of w0 and we are done.
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If w0[z1.w1, z2.w2]σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then there could be a new case dis-
tinction permutation redex because v = t[x1.v1ξ, x2.v2ξ]. If ξ is case free, by Lemma 4.4,
this redex has complexity 0 and we are done; if not, it has the same complexity as
t[x1.v1, x2.v2]ξσ1 and we are done again.

• a t σ{v/s}, where a is a channel variable, t a term and σ = σ1 . . . σn is any case-free stack.
By induction hypothesis, (∗) holds for t and σi{v/s} where 1 ≤ i ≤ n.

If a t σ{v/s} = a (t{v/s})(σ{v/s}), in order to verify the thesis it is enough to check the
complexity of the channel occurrence a (t{v/s}). Since the value complexity of t[x1.v1ξ, x2.v2ξ]
is equal to the value complexity of t[x1.v1, x2.v2]ξ, by Lemma 4.5 the value complexity of
t{v/s} is at most that of t, and we are done.

If a t σ{v/s} = a t [x1.v1ξ, x2.v2ξ] (σi{v/s}) . . . (σn{v/s}) then v (σi{v/s}) can be a new
permutation redex. If ξ is case free, this redex has complexity 0 and we are done. Other-
wise, t[x1.v1ξ, x2.v2ξ](σi{v/s}) has the same complexity as (t[x1.v1, x2.v2]ξ)σi.

• a(t1 ‖ . . . ‖ tm){v/s}. By the induction hypothesis, (∗) holds for ti{v/s} where 1 ≤ i ≤ m
. The only redex in a(t1 ‖ . . . ‖ tm){v/s} and not in some ti{v/s} can be a(t1{v/s} ‖ . . . ‖
tm{v/s}) itself. But the complexity of such a redex equals the maximal complexity of the
occurrences of the channel a in ti{v/s}. Hence the statement follows.

The following result is meant to guarantee that there cannot be any loop involving intu-
itionistic redexes and communication redexes of non-decreasing complexity. Intuitively, when
Group 1 redexes generate new redexes, the latter have smaller complexity than the former;
when Group 2 redexes generate new redexes, the latter do not have greater complexity than the
former. Hence, during the communication phase the complexity does not increase and during
the intuitionistic phase the complexity strictly decreases.

Proposition 4.9 (Decrease!). Let t be a term in parallel form, r be one of its redexes of
complexity τ , and t′ be the term that we obtain from t by reducing r.
1. If r is a redex of Group 1, then the complexity of each redex in t′ is not greater than the
complexity of a redex of the same group occurring in t; or not greater than the complexity of a
case distinction permutation redex occurring in t; or smaller than τ .
2. If r is a redex of Group 2 and not an activation, then the complexity of any redex in t′ is
either equal to the complexity of a redex of the same group in t or not greater than τ .

Proof.
1. Suppose that r = (λxA s) v, that s : B and let q be a redex in t′ whose complexity is different
from the complexity of any redex of the same group and any case distinction permutation
occurring in t. We apply Lemma 4.6 to the term s[v/xA]. From such lemma we can infer that
if q occurs in s[v/xA], since (i) and (ii) do not apply, it has the same value complexity as v,
which by Proposition 4.1 is at most the complexity of A, and hence strictly smaller than the
complexity of A→ B and than the complexity τ of r. Assume therefore that q does not occur
in s[v/xA]. Since s[v/xA] : B, by applying Lemma 4.6 to the term t′ = t{s[v/xA]/(λxA s) v}
we know that either q has the same complexity as the value complexity of s[v/xA] – which by
Proposition 4.1 is at most the complexity of B – or q is a communication redex of complexity
equal to the complexity of some channel occurrence a(w[v/xA]) in s[v/xA], which by Lemma
4.5 is either at most the complexity of A or at most the complexity of aw.

Suppose that r = ιi(s)[x
A.u1, y

B .u2]. By applying Lemma 4.7 to

t′ = t{ui[s/xAi
i ] / ιi(s)[x

A1
1 .u1, x

A2
2 .u2]}
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we are done.

2. Suppose that r = 〈v0, v1〉πi for i ∈ {0, 1}, that 〈v0, v1〉 : A0 ∧ A1 and let q be a redex in t′

having complexity greater than that of any redex of the same group in t. Then the assumption
just made implies that the term q cannot occur in vi, but it must have been created by the
reduction of r. Moreover, by Proposition 4.1, the value complexity of vi cannot be greater than
the complexity of Ai. By applying Lemma 4.6 to the term t′ = t{vi/r}, we know that q has
complexity equal to the value complexity of vi, because by the assumption on q the cases (i)
and (ii) of Lemma 4.6 do not apply. Such complexity is at most the complexity τ of r. Thus we
are done.

Suppose that r = s[xA.u, yB .v]ξ is a case distinction permutation redex. By applying
Lemma 4.8 we are done.

If t′ is obtained by performing a permutation of a parallelism operator, then obviously the
thesis holds.

If t′ is obtained by a simplification reduction of the form a(u1 ‖ . . . ‖ um) 7→ uj1 ‖ . . . ‖ ujn ,
for 1 ≤ j1 < . . . < jn ≤ m, then there is nothing to prove: all redexes occurring in t′ also occur
in t.

Suppose now that

r = a(C1[aF1→G1 t1] ‖ . . . ‖ Cm[aFm→Gm tm])

ti = 〈ui1, . . . , uipi
〉. Then by cross reduction, r reduces to b(s1 ‖ . . . ‖ sm) where if Gi 6= ⊥:

si = a(C1[aF1→G1 t1] . . . ‖ Ci[t
bBi→Bj 〈yi〉/yj

j ] ‖ . . . ‖ Cm[aFm→Gm tm])

and if Gi = ⊥:

si = a(C1[aG1→G1 t1] . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm])

in which Fj = Gi. and t′ = t{r′/r}. Let now q be a redex in t′ having different complexity from
the one of any redex of the same group in t. We first show that it cannot be an intuitionistic

redex: assume it is. Then it occurs in one of the terms Ci[t
bBi→Bj 〈yi〉/yj

j ] or Ci[bBi→⊥〈yi〉]. By
applying Lemma 4.6 to them, we obtain that the complexity of q is the value complexity of

t
bBi→Bj 〈yi〉/yj

j or bBi→⊥〈yi〉, which, by several applications of Lemma 4.5, are at most the value
complexity of tj or 0 and thus by definition at most the complexity of r, which is a contradiction.
Assume hence that q = c(p1 ‖ . . . ‖ pz) is a communication redex. Every channel occurrence

of c in the terms Ci[t
bBi→Bj 〈yi〉/yj

j ] or Ci[bBi→⊥〈yi〉] is of the form cw{tb
Bi→Bj 〈yi〉/yj

j /a ti} or

cw{bBi→⊥〈yi〉/a ti} where cw is a channel occurrence in t. By Lemma 4.5, each of these occur-
rences has either at most the value complexity of cw or has at most the value complexity of r,
which is again a contradiction.

The following result is meant to rule out loops between communication and activation re-
dexes: no new activation is generated after a cross reduction if there is none to start with.

Lemma 4.10 (Freeze!). Suppose that s is a term in parallel form that does not contain projec-
tion, case distinction permutation or activation redexes. Let a(q1 ‖ . . . ‖ qm) be some redex in s
of complexity τ . If s′ is obtained from s by performing first a cross reduction on a(q1 ‖ . . . ‖ qm)
and then reducing all projection and case distinction permutation redexes, then s′ contains no
activation redexes.
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Proof. Let a(q1 ‖ . . . ‖ qm) = a(C1[aF1→G1 t1σ1] ‖ . . . ‖ Cm[aFm→Gm tmσm]) where σi for 1 ≤ i ≤
m are the stacks which are applied to a ti, and t be the cross reduction redex occurring in s that
we reduce to obtain s′, or in other terms s′ = s{t′/t}. Then after performing the cross reduction
and reducing all the intuitionistic redexes, t reduces to b(s1 ‖ . . . ‖ sm) where if Gi 6= ⊥, then

si = a(C1[aF1→G1 t1] . . . ‖ Ci[t′j ] ‖ . . . ‖ Cm[aFm→Gm tm])

and if Gi = ⊥, then

si = a(C1[aG1→G1 t1] . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm])

in which Fj = Gi and t′j are the terms obtained reducing all projection and case distinction

permutation redexes in t
bBi→Bj 〈yi〉/yj

j .
We observe that a is active and hence the terms si for 1 ≤ i ≤ m are not activation redexes.

Moreover, since all occurrences of b are of the form bBi→⊥〈yi〉, t′ is not an activation redex. Now
we consider the channel occurrences in any term si. We first show that there are no activable
channels in t′j which are bound in s′. Since for any stack θ of projections b〈yi〉θ has value

complexity 0, for any subterm w of tj we can apply repeatedly Lemma 4.5 to wbBi→Bj 〈yi〉/yj

and obtain that the value complexity of wbBi→Bj 〈yi〉/yj is exactly the value complexity of w.

This implies that there is no activable channel in t
bBi→Bj 〈yi〉/yj

j because there was none in tj .
The following general statement immediately implies that there is no activable channel in t′j
which is bound in s′ either.

(∗) Suppose that r and θ are respectively a simply typed λ-term and a stack contained in s′

that do not contain projection and permutation redexes, nor activable channels bound in s′. If
r′ is obtained from rθ by performing all possible projection and case distinction permutation
reductions, then there are no activable channels in r′ which are bound in s′.

We prove (∗) by induction on the size of r and proceed by cases according to its shape.

• If r = λxw, r = ιi(w), r = wefqP , r = x or r = aw, for a channel a, then r′ = rθ and the
thesis holds.

• If r = 〈v0, v1〉 the only redex that can occur in rθ is a projection redex, when θ = πiρ.
Hence, rθ 7→ viρ 7→∗ r′. Since vi cannot be a channel because otherwise 〈v0, v1〉 would not
be a legal term, we can apply the induction hypothesis on vi and ρ. Hence, there are no
activable channels in r′ which are bound in s′.

• If r = t[x.v0, y.v1], then rθ 7→∗ t[x.v0θ, y.v1θ] 7→∗ t[x.v′0, y.v′1] = r′. By the induction
hypothesis applied to v0 and θ and to v1 and θ, there are no activable channels in v′0 and
v′1 and we are done.

• If r = pνξ, where ξ is a case free stack of length 1, then r′ = pνξ and the thesis holds.

Now, let c be any non-active channel bound in s′ occurring in Ci[t′j ] or Ci[bBi→⊥〈yi〉] but
not in u′: any of its occurrences is of the form c〈p1, . . . , pl{u′/avρ}, . . . , pn〉, where each pl is
not a pair. We want to show that the value complexity of pl{u′/avρ} is exactly the value
complexity of pl. Indeed, pl = r ν where ν is a case-free stack. If r is of the form λxw, 〈q1, q2〉,
ιi(w), x, dw, with d 6= a, then the value complexity of pl[u

′/avρ] is the same as that of pl;
note, indeed, that if r = 〈q1, q1〉, then ν is not empty because r ν is assumed not to be a pair.
If r = v0[x1.v1, x2.v2], then ν is empty, otherwise s would contain a permutation redex, so
c〈p1, . . . , pl, . . . , pn〉 is activable, and there is an activation redex in s, which is contrary to our
assumptions. The case r = av and ν = ρρ′ is also impossible, otherwise c〈p1, . . . , pl, . . . , pn〉
would be activable, and we are done.
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Definition 4.10. The height of a term t in parallel form is

• 0 if t is a simply typed λ-term

• 1 + max(m,n) if t = u ‖a v and the heights of u and v are m and n respectively.

We show that the communication phase of our reduction strategy is finite.

Lemma 4.11 (Communicate!). Let t be any term in parallel form that does not contain projec-
tion, case distinction permutation, or activation redexes. Assume moreover that all redexes in
t have complexity at most τ . Then t reduces to a term containing no redexes, except Group 1
redexes of complexity at most τ .

Proof. We prove the statement by lexicographic induction on the triple (n, h, g) where

• n is the number of subterms a(u1 ‖ . . . ‖ um) of t such that a(u1 ‖ . . . ‖ um) is an active,
but not uppermost, session.

• h is the function mapping each natural number m ≥ 2 into the number of uppermost
active sessions in t with height m.

• g is the function mapping each natural number m into the number of uppermost active
sessions a(u1 ‖ . . . ‖ um) in t containing m occurrences of a.

We employ the following lexicographic ordering between functions for the second and third
elements of the triple: f < f ′ if and only if there is some i such that for all j > i, f(j) = f ′(j) = 0
and f(i) < f ′(i).

If h(j) > 0, for some j ≥ 2, then there is at least an active session a(u1 ‖ . . . ‖ um) in
t that does not contain any active session and such that the height of a(u1 ‖ . . . ‖ um) is j.
Hence ui = b(s1 ‖ . . . ‖ sq) for some 1 ≤ i ≤ j ≤ m. We obtain t′ by applying inside t the
permutation a(u1 ‖ . . . ‖ b(s1 ‖ . . . ‖ sq) . . . ‖ um) 7→ b(a(u1 ‖ . . . ‖ s1 . . . ‖ um) . . . ‖ a(u1 ‖ . . . ‖
sq . . . ‖ um)). We claim that the term t′ thus obtained has complexity (n, h′, g′), with h′ < h.
Indeed, a(u1 ‖ . . . ‖ um) does not contain active sessions, thus b is not active and the number of
active sessions which are not uppermost in t′ is still n. With respect to t, the term t′ contains
one less uppermost active session with height j and q more of height j − 1, and hence h′ < h.
Furthermore, since the permutations do not change at all the purely intuitionistic subterms of
t, no new activation or intuitionistic redex is created. In conclusion, we can apply the induction
hypothesis on t′ and thus obtain the thesis.

If h(m) = 0 for all m ≥ 2, then let us consider an uppermost active session a(u1 ‖ . . . ‖ um)
in t such that the height of a(u1 ‖ . . . ‖ um) is 1; if there is none, we are done. We reason by
cases on the distribution of the occurrences of a. Either (i) some ui for 1 ≤ i ≤ m does not
contain any occurrence of a, or (ii) all ui for 1 ≤ i ≤ m contain some occurrence of a.

Suppose that (i) is the case and, without loss of generality, that a occurs j times in u
and does not occur in v. We then obtain a term t′ by applying a simplification reduction

a(u1 ‖ . . . ‖ um) 7→ uj1 ‖ . . . ‖ ujp . If there is an active session b(s1 ‖ . . . ‖ sq) in t such
that a(u1 ‖ . . . ‖ um) is the only active session contained in some si for 1 ≤ i ≤ n, then the
term t′ has complexity (n − 1, h′, g′), because b(s1 ‖ . . . ‖ sq) is an active session which is not
uppermost in t, but is uppermost in t′; if not, we claim that the term t′ has complexity (n, h, g′)
where g′ < g. Indeed, first, the number of active sessions which are not uppermost does not
change. Second, the height of all other uppermost active sessions does not change. Third,
g′(j) = g(j) − 1 and, for any i 6= j, g′(i) = g(i) because, obviously, no channel belonging to
any uppermost active session different from a(u1 ‖ . . . ‖ um) occurs in u. Since the reduction
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a(u1 ‖ . . . ‖ um) 7→ uj1 ‖ . . . ‖ ujp does not introduce any new intuitionistic or activation redex,
we can apply the induction hypothesis on t′ and obtain the thesis.

Suppose now that (ii) is the case and that all ui for 1 ≤ i ≤ m together contain j occurrences
of a. Then a(u1 ‖ . . . ‖ um) is of the form a(C1[aF1→G1 t1] ‖ . . . ‖ Cm[aFm→Gm tm]) where a is
active, Cj [aFj→Gj tj ] for 1 ≤ j ≤ m are simply typed λ-terms; aFj→Gj is rightmost in each of
them. Then we can apply the cross reduction a(C1[aF1→G1 t1] ‖ . . . ‖ Cm[aFm→Gm tm]) 7→ b(s1 ‖
. . . ‖ sm) in which b is fresh and for 1 ≤ i ≤ m, we define, if Gi 6= ⊥, then

si = a(C1[aF1→G1 t1] . . . ‖ Ci[t
bBi→Bj 〈yi〉/yj

j ] ‖ . . . ‖ Cm[aFm→Gm tm])

and if Gi = ⊥, then

si = a(C1[aG1→G1 t1] . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm])

where Fj = Gi; yz for 1 ≤ z ≤ m is the sequence of the free variables of tz bound in
Cz[aFz→Gz tz]; Bz for 1 ≤ z ≤ m is the type of 〈yz〉. By Lemma 4.10, after performing

all projections and case permutation reductions in all Ci[t
bBi→Bj 〈yi〉/yj

j ] and Ci[bBi→⊥〈yi〉] for
1 ≤ i ≤ m we obtain a term t′ that contains no activation redexes; moreover, by point 2. of
Proposition 4.9, t′ contains only redexes having complexity at most τ .

We claim that the term t′ thus obtained has complexity 〈n, h, g′〉 where g′ < g. Indeed,
the value n does not change because all newly introduced occurrences of b are not active. The

new active sessions si = a(C1[aF1→G1 t1] . . . ‖ Ci[t
bBi→Bj 〈yi〉/yj

j ] ‖ . . . ‖ Cm[aFm→Gm tm]) or

si = a(C1[aG1→G1 t1] . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm]) for 1 ≤ i ≤ m all have height
1 and contain j − 1 occurrences of a. Since furthermore the reduced term does not contain
channel occurrences of any uppermost active session different from a(u1 ‖ . . . ‖ um) we can infer
that g′(j) = g(j)− 1 and that, for any i such that i > j, g′(i) = g(i).

We can apply the induction hypothesis on t′ and obtain the thesis.

We combine the main results achieved so far to prove that the normalization procedure,
applied to a proof term in parallel form, terminates and yields a term in normal form.

Proposition 4.12 (Normalize!). Let t : A be any term in parallel form. Then t 7→∗ t′, where t′

is in parallel normal form.

Proof. By induction on the maximum complexity τ of redexes in t. Starting from t, we reduce all
intuitionistic redexes and obtain a term t1 that, by Proposition 4.9, does not contain redexes of
complexity greater than τ . By Lemma 4.3, t1 7→∗ t2 where t2 does not contain any redex, except
cross reduction redexes of complexity at most τ . By Lemma 4.11, t2 7→∗ t3 where t3 contains
only Group 1 redexes of complexity at most τ . Suppose t3 7→∗ t4 by reducing all Group 1
redexes, starting from t3. By Proposition 4.9, every Group 1 redex generated in the process has
complexity at most τ , thus every Group 2 redex which is generated has complexity smaller than
τ , thus t4 can only contain redexes with complexity smaller than τ . By the induction hypothesis
t4 7→∗ t′, with t′ in parallel normal form.

The normalization of all λL proof terms easily follows.

Theorem 4.13 (Normalization Theorem). Suppose that t : A is a λL proof term. Then t 7→∗
t′ : A, where t′ is a normal parallel form.

Proof. By Proposition 4.2 and 4.12.
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5 The Subformula Property

We prove that normal λL-terms satisfy the subformula property: they represent proofs only
containing concepts that already appear in their premises or conclusion. Hence, the Curry–
Howard correspondence for λL is meaningful from a logical perspective.

We first show that every normal λL-term is in parallel form.

Proposition 5.1 (Parallel Form Property). If t ∈ NF is a λL-term, then it is in parallel form.

Proof. By induction on the structure of t. See A.5, in the appendix, for the proof.

For the subformula property, we shall need the following definition.

Definition 5.1 (Prime Formulas and Factors [26]). A formula is said to be prime if it is not
a conjunction. Every formula is a conjunction of prime formulas, called prime factors.

Theorem 5.2 (Subformula Property). If xA1
1 , ... , xAn

n , aD1
1 , ... , aDm

m ` t : A and t ∈ NF, then:

1. For each channel variable aB→C occurring bound in t, the prime factors of B,C are
subformulas of A1, . . . , An, A or proper subformulas of D1, . . . , Dm.

2. The type of any subterm of t is either a subformula or a conjunction of subformulas of
A1, . . . , An, A and of proper subformulas of D1, . . . , Dm.

Proof. By structural induction on t and reasoning on the form of t.

• t = 〈u, v〉 : F ∧G. Since t ∈ NF, by Proposition 5.1 it is in parallel form, thus is a simply
typed λ-term. Hence no communication variable can be bound inside t, thus 1. trivially
holds. By the induction hypothesis, 2. holds for u : F and v : G. Hence, the type of
any subterm of u is either a subformula or a conjunction of subformulas of A1, . . . , An, of
F and of proper subformulas of D1, . . . , Dm and any subterm of v is either a subformula
or a conjunction of subformulas of some A1, . . . , An, of G and of proper subformulas of
D1, . . . , Dm. Moreover, any subformula of F and G must be a subformula of the type F∧G
of t. Hence the type of any subterm of 〈u, v〉 is either a subformula or a conjunction of
subformulas of A1, . . . , An, F ∧G or a proper subformula of D1, . . . , Dm and the statement
holds for t as well.

• t = λxF u : F → G. Since t ∈ NF, by Proposition 5.1 it is in parallel form, thus is a simply
typed λ-term. Hence no communication variable can be bound inside t, thus 1. trivially
holds. By the induction hypothesis, 2. holds for u : G. Hence the type of any subterm of
u is either a subformula or a conjunction of subformulas of some A1, . . . , An, F , of G and
of proper subformulas of D1, . . . , Dm. Since the type F of x is a subformula of F → G,
the type of any subterm of λxF u is either a subformula or a conjunction of subformulas
of A1, . . . , An, F → G or a proper subformula of D1, . . . , Dm and the statement holds for
t as well.

• t = ιi(u) : F ∨ G for i ∈ {0, 1}. Without loss of generality assume that i = 1 and u : G.
Since t ∈ NF, by Proposition 5.1 it is in parallel form, thus is a simply typed λ-term.
Hence no communication variable can be bound inside t, thus 1. trivially holds. By the
induction hypothesis, 2. holds for u : F . Hence, the type of any subterm of u is either a
subformula or a conjunction of subformulas of some A1, . . . , An, of F or proper subformulas
of D1, . . . , Dm. Moreover, any subformula of G must be a subformula of the type F ∨ G
of t. Hence the type of any subterm of ιi(u) is either a subformula or a conjunction of
subformulas of A1, . . . , An, F ∨G or a proper subformula of D1, . . . , Dm and the statement
holds for t as well.
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• t = xAi σ : A for some Ai among A1, . . . , An and stack σ. Since t ∈ NF, it is in parallel
form, thus is a simply typed λ-term and no communication variable can be bound inside
t. By the induction hypothesis, for any element σj : Sj of σ, the type of any subterm of
σj is either a subformula or a conjunction of subformulas of some A1, . . . , An, of the type
Sj of σj and of proper subformulas of D1, . . . , Dm.

If σ is case-free, then every Sj is a subformula of Ai, or of A, when σ = σ′efqA. Hence,
the type of any subterm of xAi σ is either a subformula or a conjunction of subformulas
of A1, . . . , An, A or of proper subformulas of D1, . . . , Dm and the statement holds for t as
well.

In case σ is not case-free, then, because of case distinction permutations, σ = σ′[yG.v1, z
E .v2],

with σ′ case-free. By the induction hypothesis we know that the type of any subterm of
v1 : A or v2 : A is either a subformula or a conjunction of subformulas of some A1, . . . , An,
of A,G,E and of proper subformulas of D1, . . . , Dm. Moreover, G and E are subformulas
of Ai due to the properties of stacks. Hence, the type of any subterm of xσ′[yG.v1, z

E .v2]
is either a subformula or a conjunction of subformulas of A1, . . . , An, A and of proper
subformulas of D1, . . . , Dm and also in this case the statement holds for t as well.

• t = aDiuσ : A for some Di among D1, . . . , Dn and stack σ. As in the previous case.

• t = b(u1 ‖ . . . ‖ uk) : A and bGi→Hi occurs in ui. Suppose, for the sake of contradiction,
that the statement does not hold. We know by the induction hypothesis that the statement
holds for u1 : A, . . . , uk : A. We first show that it cannot be the case that

(∗) all prime factors of G1, H1, . . . , Gk, Hk are subformulas of A1, . . . , An, A or
proper subformulas of D1, . . . , Dm.

Indeed, assume by contradiction that (∗) holds. Let us consider the type T of any
subterm of t which is not a bound communication variable and the formulas B,C of
any bound communication variable aB→C of t. Let P be any prime factor of T or
B or C. By the induction hypothesis applied to u1, . . . , un, we obtain that P is ei-
ther subformula or conjunction of subformulas of A1, . . . , An, A and of proper subfor-
mulas of D1, . . . , Dm, G1, H1, . . . , Gk, Hk. Moreover, P is prime and so it must be sub-
formula of A1, . . . , An, A or a proper subformula of D1, . . . , Dm or a prime factor of
G1, H1, . . . , Gk, Hk. Since (∗) holds, P must be a subformula of A1, . . . , An, A or proper
subformula of D1, . . . , Dm, and this contradicts the assumption that the subformula prop-
erty does not hold for t.

We shall say from now on that any bound channel variable aF1→F2 of t violates the sub-
formula property maximally (due to Q) if (i) some prime factor Q of F1 or F2 is neither
a subformula of A1, . . . , An, A nor a proper subformula of D1, . . . , Dm and (ii) for every
other bound channel variable cS1→S2 of t, if some prime factor Q′ of S1 or S2 is neither a
subformula of A1, . . . , An, A nor a proper subformula of D1, . . . , Dm, then Q′ is complex
at most as Q. If Q is a subformula of F1 we say that aF1→F2 violates the subformula
property maximally in the input.

It follows from (∗) that a channel variable maximally violating the subformula property
must exist. We show now that there also exists a subterm cF1→F2w of t such that c
maximally violates the subformula property in the input due to Q, and w does not contain
any channel variable that violates the subformula property maximally.

In order to prove the existence of such term, we prove

(∗∗) Let t1 be any subterm of t such that
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– t1 contains at least a maximally violating channel of t

– all maximally violating channels of t that are free in t1 are maximally violating in
the input.

Then there is a simply typed subterm s of t1 such that s contains at least a maximally
violating channel of t, and such that all occurrences of maximally violating channels of t
occurring in s violate the subformula property in the input.

Intuitively, in order to find such a simply typed λ-term s we consider by induction the
immediate subterms of t1. If we find a subterm d(v1 ‖ . . . ‖ vn) such that d is not
maximally violating, we continue the search in the subterms v1, . . . , vn. If we find a
subterm d(v1 ‖ . . . ‖ vn) such that d is maximally violating, we continue the search in
the subterm vi for i ∈ {1, . . . , n} that contains the occurrences of d which are maximally
violating in the input. Formally, we proceed by induction on the number n of ‖ operators
that occur in t1.channels.

If n = 0, it is enough to pick s = t1.

If n > 0, let t1 = d(v1 ‖ . . . ‖ vn) and assume dEi→Fi occurs in vi. If no dEi→Fi maximally
violates the subformula property, we obtain the thesis by applying the induction hypothesis
to the terms vi. Assume hence that some dEi→Fi maximally violates the subformula
property due to Q. Then there is some dEj→Fj such that Q is a prime factor of Ei or Ej .
By the induction hypothesis applied to vi or vj , we obtain the thesis.

By (∗∗) we can infer that in t there is a simply typed λ-term s that contains at least
one occurrence of a maximally violating channel of t and only occurrences of maximally
violating channels of t that are maximally violating in the input. Which means that the
rightmost of the maximally violating channel occurrences in s is of the form cF1→F2w
where c maximally violates the subformula property in the input and w does not contain
any channel variable maximally violating the subformula property.

Consider now the term cF1→F2w. Since Q is a prime factor of F1, it is either an atom P
or a formula of the form Q′ → Q′′ or of the form Q′ ∨ Q′′. Let w = 〈w1, . . . , wj〉, where
each wi is not a pair, and let k be such that Q occurs in the type of wk.

We start by ruling out the case that wk = λy s or wk = ιi(s) for i ∈ {0, 1}, otherwise,
since w would be a value, it would be possible to perform an activation reduction or a
cross reduction to some subterm c(u

′
1 ‖ . . . ‖ u′m′), which must exist since c is bound.

Suppose now, by contradiction, that wk = xT σ where σ is a stack. It cannot be the
case that σ = σ′[yE1 .v1, z

E2 .v2] or that σ = σ′efqP , because otherwise we could apply an
activation reduction or a cross reduction. Hence σ is case-free and does not contain efqP .
Moreover, xT cannot be a free variable of t, because then T would be equal to some Ai

for 1 ≤ i ≤ n, and Q would be a subformula of Ai, which contradicts the assumptions.
Suppose hence that xT is a bound intuitionistic variable of t, such that t has a subterm
λxT s : T → Y or, without loss of generality, s[xT .v1, z

E .v2], with s : T∨Y for some formula
Y . By the main induction hypothesis, T → Y and T ∨Y are subformulas of A1, . . . , An, A
or proper subformulas of D1, . . . , Dm, G → H. But T → Y and T ∨ Y contain Q as
a proper subformula and cF1→F2 w violates maximally the subformula due to Q. Hence
T → Y and T ∨ Y are neither subformulas of A1, . . . , An, A nor proper subformulas of
D1, . . . , Dm and thus must be proper subformulas of G→ H. Since cF1→F2 w violates the
subformula property maximally due to Q, T → Y and T ∨ Y must be at most as complex
as Q, which is a contradiction. Suppose now that xT is a bound channel variable, thus
wk = aT r σ, where aT is a bound communication variable of t, with T = T1 → T2. Since
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cF1→F2 w is rightmost, a 6= c. Moreover, Q is a subformula of a prime factor of T2, whereas
aT1→T2 occurs in w, which is impossible by choice of c. This contradicts the assumption
that the term is normal and ends the proof.

6 Conclusions and Open Problems

We defined Curry–Howard correspondences for a large class of intermediate logics characterized
by cut-free hypersequent calculi. These logics include well-known systems such as classical and
Gödel–Dummett logic. The correspondences give rise to typed concurrent λ-calculi, each of
which features specific communication mechanisms; moreover the reductions needed to obtain
the subformula property (cross reductions) have a natural interpretation in terms of code mo-
bility. This confirms Avron’s intuition on the computational content of the intermediate logics
formalized as hypersequent calculi [5].

Although the paper’s results are conclusive in this respect, they open new research lines.
The first one concerns the extension of our correspondences to first-order logics. Even though
the research direction is very natural, already in the case of hypersequents, the definition of
suitable quantifier rules is not straightforward. Hypersequent rules for quantifiers were first
introduced in [7] for Gödel logic, also known as Intuitionistic Fuzzy logic. The eigenvariable
condition for them, which became the standard for first-order hypersequent calculi, hinders the
translation of hypersequent rules into systems of rules [15]. This condition also interferes with
the transformation of proofs into parallel form – see Proposition 4.2 – which is essential for
the normalization procedure used in the present work. Thus, new ideas are required to define
normalizing natural deduction calculi with a natural computational interpretation for first-order
intermediate logics.

A problem of concurrency theory which has remained open for several decades is the defini-
tion of a formalism providing a foundation for concurrent functional programs. For sequential
computation, such a foundation is provided by λ-calculus. According to Milner, the introduction
of CCS itself – the forefather of process calculi – was due to the unsuccessful attempts to define
satisfactory concurrent extensions of λ-calculus [29]. While the definition of such an untyped
concurrent λ-calculus lies outside the scope of this work, the set of reductions presented for λL
might shed light on possible approaches to the solution of this problem.

References

[1] S. Abramsky. Computational interpretations of linear logic. Theor. Comput. Sci., 111(1-
2):3–57, 1993.

[2] F. Aschieri, A. Ciabattoni, and F.A. Genco. Gödel logic: from natural deduction to parallel
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A Appendix

For the reviewers convenience we write below full proofs of various propositions and lemmas.
The idea was to keep in the main text only the non-trivial cases in those proofs.

We present the proof of Proposition 4.2 in full.

A.1 (Parallel Form). Let t : A be any term. Then t 7→∗ t′, with t′ parallel form.

Proof. By induction on t. As a shortcut, if a term u reduces to a term u′ that can be denoted
as u′′ omitting parentheses, we write u⇒∗ u′′.

• t = x. Trivial.

• t = λxu. By the induction hypothesis, u ⇒∗ u1 ‖ u2 ‖ . . . ‖ un+1 and each term ui, for
1 ≤ i ≤ n+ 1, is a simply typed λ-term. Applying several permutations we obtain

t⇒∗ λxu1 ‖ λxu2 ‖ . . . ‖ λxun+1

which is the thesis.

• t = u v. By the induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un+1

v ⇒∗ v1 ‖ v2 ‖ . . . ‖ vm+1

and each term ui and vi, for 1 ≤ i ≤ n + 1,m + 1, is a simply typed λ-term. Applying
several permutations we obtain

t⇒∗ (u1 ‖ u2 ‖ . . . ‖ un+1) v

⇒∗ u1 v ‖ u2 v ‖ . . . ‖ un+1 v

⇒∗ u1 v1 ‖ u1 v2 ‖ . . . ‖ u1 vm+1 ‖ . . .
. . . ‖ un+1 v1 ‖ un+1 v2 ‖ . . . ‖ un+1 vm+1

• t = 〈u, v〉. By the induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un+1

v ⇒∗ v1 ‖ v2 ‖ . . . ‖ vm+1

and each term ui and vi, for 1 ≤ i ≤ n + 1,m + 1, is a simply typed λ-term. Applying
several permutations we obtain

t⇒∗ 〈u1 ‖ u2 ‖ . . . ‖ un+1, v〉
⇒∗ 〈u1, v〉 ‖ 〈u2, v〉 ‖ . . . ‖ 〈un+1, v〉
⇒∗ 〈u1, v1〉 ‖ 〈u1, v2〉 ‖ . . . ‖ 〈u1, vm+1〉 ‖ . . .

. . . ‖ 〈un+1, v1〉 ‖ 〈un+1, v2〉 ‖ . . .

. . . ‖ 〈un+1, vm+1〉

• t = uπi. By the induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un+1

and each term ui, for 1 ≤ i ≤ n+ 1, is a simply typed λ-term. Applying several permuta-
tions we obtain

t⇒∗ u1 πi ‖ u2 πi ‖ . . . ‖ un+1 πi.
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• t = ιi(u). By the induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un+1

and each term ui, for 1 ≤ i ≤ n+ 1, is a simply typed λ-term. Applying several permuta-
tions we obtain

t⇒∗ ιi(u1) ‖ ιi(u2) ‖ . . . ‖ ιi(un+1).

• t = s[x.u, y.v]. By the induction hypothesis,

s⇒∗s1 ‖ s2 ‖ . . . ‖ sn+1

u⇒∗u1 ‖ u2 ‖ . . . ‖ um+1

v ⇒∗v1 ‖ v2 ‖ . . . ‖ vp+1

and each term si for 1 ≤ i ≤ n + 1, uj for 1 ≤ j ≤ m + 1, and vk for 1 ≤ k ≤ p + 1 is a
simply typed λ-term. Applying several permutations we obtain

t⇒∗s1[x.u, y.v] ‖ s2[x.u, y.v] ‖ . . . ‖ sn+1[x.u, y.v]

⇒∗s1[x.u1, y.v] ‖ s1[x.u2, y.v] ‖ . . . ‖ s1[x.um+1, y.v] ‖
s2[x.u1, y.v] ‖ s2[x.u2, y.v] ‖ . . . ‖ s2[x.um+1, y.v] ‖
. . . ‖ sn+1[x.u1, y.v] ‖ sn+1[x.u2, y.v] ‖ . . . ‖ sn+1[x.um+1, y.v]

⇒∗s1[x.u1, y.v1] ‖ s1[x.u1, y.v2] ‖ . . . ‖ s1[x.u1, y.vp+1] ‖
s1[x.u2, y.v1] ‖ s1[x.u2, y.v2] ‖ . . . ‖ s1[x.u2, y.vp+1] ‖
. . . ‖ s1[x.um+1, y.v1] ‖ s1[x.um+1, y.v2] ‖ . . . ‖ s1[x.um+1, y.vp+1]

s2[x.u1, y.v1] ‖ s2[x.u1, y.v2] ‖ . . . ‖ s2[x.u1, y.vp+1] ‖
s2[x.u2, y.v1] ‖ s2[x.u2, y.v2] ‖ . . . ‖ s2[x.u2, y.vp+1] ‖
. . . ‖ s2[x.um+1, y.v1] ‖ s2[x.um+1, y.v2] ‖ . . . ‖ s2[x.um+1, y.vp+1]

sn+1[x.u1, y.v1] ‖ sn+1[x.u1, y.v2] ‖ . . . ‖ sn+1[x.u1, y.vp+1] ‖
sn+1[x.u2, y.v1] ‖ sn+1[x.u2, y.v2] ‖ . . . ‖ sn+1[x.u2, y.vp+1] ‖
. . . ‖ sn+1[x.um+1, y.v1] ‖ sn+1[x.um+1, y.v2] ‖ . . . ‖ sn+1[x.um+1, y.vp+1].

• t = u efqP . By the induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un+1

and each term ui, for 1 ≤ i ≤ n+ 1, is a simply typed λ-term. Applying several permuta-
tions we obtain

t⇒∗ u1 efqP ‖ u2 efqP ‖ . . . ‖ un+1 efqP

We present the proof of Lemma 4.6 in full.

A.2 (Replace!). Let u be a term in parallel form, v, s be any simply typed λ-terms, τ be the
value complexity of v and τ ′ be the maximum among the complexities of the channel occurrences
in v. Then every redex in u{v/s} it is either (i) already in v, (ii) of the form r{v/s} and has
complexity smaller than or equal to the complexity of some redex r of u, or (iii) has complexity
τ or is a communication redex of complexity at most τ ′.
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Proof. We prove the following stronger statement.

(∗) Every redex and channel occurrence in u{v/s} it is either (i) already in v, (ii) of the form
r{v/s} or aw{v/s} and has complexity smaller than or equal to the complexity of some redex
r or channel occurrence aw of u, or (iii) has complexity τ or τ ′ or is a communication redex of
complexity at most τ ′.

We reason by induction on the size and by cases on the possible shapes of the term u.

• (λx t)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By the induction hypothesis, (∗)
holds for t{v/s} and σi{v/s} where 1 ≤ i ≤ n. If (λx t)σ{v/s} = (λx t{v/s}) (σ{v/s}), all
the redexes and channel occurrences that we have to check are either in t{v/s}, σ{v/s} or
possibly the head redex, thus the thesis holds. If (λx t)σ{v/s} = v (σi{v/s}) . . . (σn{v/s}),
then v (σi{v/s}) could be a new intuitionistic redex, when v = λy w, v = 〈w1, w2〉, v =
ιi(w) or v = w0[y1.w1, y2.w2]. But the complexity of such a redex is equal to τ .

• 〈t1, t2〉σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By the induction hypothesis, (∗)
holds for ti{v/s} and σi{v/s} where 1 ≤ i ≤ n. If 〈t1, t2〉σ{v/s} = 〈t1{v/s}, t2{v/s}〉 (σ{v/s}),
all the redexes and channel occurrences that we have to check are in ti{v/s}, σ{v/s}
or, possibly, the head redex. The former are dealt with using the inductive hypothesis.
As for the latter, by Lemma 4.5, the value complexity of ti{v/s} for i ∈ {1, 2} must
be at most the value complexity of ti or exactly τ , thus either (ii) or (iii) holds. If
〈t1, t2〉σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then v (σi{v/s}) could be a new intuitionistic
redex, when v = λy w, v = 〈w1, w2〉, v = ιi(w) or v = w0[y1.w1, y2.w2]. But the complexity
of such a redex is equal to τ .

• ιi(t)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. Obviously σ must be empty since it
is case-free. By the induction hypothesis, (∗) holds for t′{v/s}. If ιi(t){v/s} = ιi(t{v/s}),
all the redexes and channel occurrences that we have to check are in t{v/s} and thus the
thesis holds. If ιi(t){v/s} = v then (i) holds.

• w0[z1.w1, z2.w2]σ{v/s}, where σ is any case-free stack. By the induction hypothesis, (∗)
holds for w0{v/s}, w1{v/s}, w2{v/s} and σi{v/s} for 1 ≤ i ≤ n. If

w0[z1.w1, z2.w2]σ{v/s} =

w0{v/s}[z1.w1{v/s}, z2.w2{v/s}](ρ{v/s})

we first observe that by Lemma 4.5, the value complexity of w0{v/s} is at most that of
w0 or exactly τ , hence the possible injection or case distinction permutation redex

w0{v/s}[z1.w1{v/s}, z2.w2{v/s}]

satisfies the thesis. Again by Lemma 4.5, the value complexities of w1{v/s} and w2{v/s}
are respectively at most that of w1 and w2 or exactly τ . Hence the complexity of the
possible case distinction permutation redex

(w0[z1.w1{v/s}, z2.w2{v/s}])σ1{v/s}

is either τ , and we are done, or at most the value complexity of one among w1, w2, thus at
most the value complexity of the case distinction permutation redex (w0[z1.w1, z2.w2])σ1
and we are done.

If w0[z1.w1, z2.w2]σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then there could be a new intu-
itionistic redex, when v = λy q, v = 〈q1, q2〉, v = ιi(q) or v = q0[y1.q1, y2.q2]. But the
complexity of such a redex is τ .
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• xσ{v/s}, where x is any simply typed variable and σ = σ1 . . . σn is any case-free stack.
By the induction hypothesis, (∗) holds for σi{v/s} where 1 ≤ i ≤ n. If xσ{v/s} =
x (σ{v/s}), all its redexes and channel occurrences are in σ{v/s}, thus the thesis holds.
If xσ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then v (σi{v/s}) could be an intuitionistic redex,
when v = λy w, v = 〈w1, w2〉, v = ιi(w) or v = w0[y1.w1, y2.w2]. But the complexity of
such a redex is equal to τ .

• a t σ{v/s}, where a is a channel variable, t a term and σ = σ1 . . . σn is any case-free stack.
By induction hypothesis, (∗) holds for t{v/s}, σi{v/s} where 1 ≤ i ≤ n.

If a t σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then v (σi{v/s}) could be an intuitionistic redex,
when v = λy w, v = 〈w1, w2〉, v = ιi(w) or v = w0[y1.w1, y2.w2]. But the complexity of
such a redex is equal to τ .

If a t σ{v/s} = a (t{v/s})(σ{v/s}), in order to verify the thesis it is enough to check the
complexity of the channel occurrence a (t{v/s}). By Lemma 4.5, the value complexity of
t{v/s} is at most the value complexity of t or exactly τ , thus either (ii) or (iii) holds.

• a(t1 ‖ . . . ‖ tm){v/s}. By the induction hypothesis, (∗) holds for ti{v/s} where 1 ≤ i ≤ m.
The only redex in a(t1 ‖ . . . ‖ tm){v/s} and not in some ti{v/s} can be a(t1{v/s} ‖ . . . ‖
tm{v/s}) itself. But the complexity of such redex equals the maximal complexity of the
channel occurrences of the form aw occurring in some ti{v/s}, hence it is τ , at most τ ′ or
equal to the complexity of a(t1 ‖ . . . ‖ tm).

We present the proof of Lemma 4.7 in full.

A.3 (Eliminate the Case!). Let u be a term in parallel form. Then for any redex r in

u{wi[t/xi]/ιi(t)[x1.w1, x2.w2]}

of complexity θ, either ιi(t)[x1.w1, x2.w2] has complexity greater than θ; or there is a redex in u
of complexity θ which belongs to the same group as r or is a case distinction permutation redex.

Proof. Let v = wi[t/xi] and s = ιi(t)[x1.w1, x2.w2]. We prove a stronger statement:

(∗) For any redex r in u{v/s} of complexity θ, either ιi(t)[x1.w1, x2.w2] has complexity greater
than θ; or there is a redex in u of complexity θ which belongs to the same group as r or is a case
distinction permutation redex. Moreover, for any channel occurrence in u{v/s} with complexity
θ′, either ιi(t)[x1.w1, x2.w2] has complexity greater than θ′, or there is an occurrence of the same
channel with complexity greater than or equal to θ′.

The proof is by induction on the size of u and by cases according to the possible shapes of
u.

• (λx t′)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By the induction hypothesis,
(∗) holds for t′{v/s} and σi{v/s} for 1 ≤ i ≤ n. If (λx t′)σ{v/s} = (λx t′{v/s}) (σ{v/s}),
all the redexes and channel occurrences that we have to check are in t′{v/s}, σ{v/s} or,
possibly, the head redex, thus the thesis holds. Since s 6= (λx t′)σ1 . . . σj , there is no other
possible case.

• 〈t1, t2〉σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By the induction hypothesis,
(∗) holds for t1{v/s}, t2{v/s} and σi{v/s} for 1 ≤ i ≤ n.

If 〈t1, t2〉σ{v/s} = 〈t1{v/s}, t2{v/s}〉 (σ{v/s}) all the redexes and channel occurrences
that we have to check are either in σ{v/s} or, possibly, the head redex. By Lemma 4.5,
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the value complexity of wi[t/xi] is either at most the value complexity of wi or the value
complexity of t. In the first case, the value complexity of wi[t/xi] is at most the value
complexity of wi, which is at most the value complexity of ιi(t)[x1.w1, x2.w2]. Thus,
by Lemma 4.5, the value complexities of t1{v/s}, t2{v/s} are at most the value com-
plexities respectively of t1, t2, thus the value complexity of 〈t1{v/s}, t2{v/s}〉, and hence
that of the possible head redex, is at most the value complexity of 〈t1, t2〉 and we are
done. In the second case, the value complexity of 〈t1{v/s}, t2{v/s}〉, and hence that
of the head redex, is either at most the value complexity of 〈t1, t2〉, and we are done,
or exactly the value complexity of t, which is smaller than the complexity of the injec-
tion redex ιi(t)[x1.w1, x2.w2] occurring in u, which is what we wanted to show. The
case in which 〈t1, t2〉σ{v/s} = v (σi{v/s}) . . . (σn{v/s}) is impossible due to the form of
s = ιi(t)[x1.w1, x2.w2].

• ιi(t′)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. Obviously σ must be empty since
it is case-free. By the induction hypothesis, (∗) holds for t′{v/s}. If ιi(t

′) = ιi(t
′{v/s}),

all the redexes and channel occurrences that we have to check are in t′{v/s} and thus
the thesis holds. Indeed, the case in which ιi(t

′) = v is impossible due to the form of
s = ιi(t)[x1.w1, x2.w2].

• xσ{v/s}, where x is any simply typed variable and σ = σ1 . . . σn is any case-free stack. By
the induction hypothesis, (∗) holds for σi{v/s} for 1 ≤ i ≤ n. If xσ{v/s} = x (σ{v/s}),
all its redexes and channel occurrences are in σ{v/s}, thus the thesis holds. The case
in which xσ{v/s} = v (σi{v/s}) . . . (σn{v/s}) is impossible due to the form of s =
ιi(t)[x1.w1, x2.w2].

• v0[z1.v1, z2.v2]σ{v/s}, where σ is any case-free stack. By the induction hypothesis, (∗)
holds for v0{v/s}, v1{v/s}, v2{v/s} and σi{v/s} for 1 ≤ i ≤ n. If

v0[z1.v1, z2.v2]σ{v/s} =

v0{v/s}[z1.v1{v/s}, z2.v2{v/s}](ρ{v/s})

By Lemma 4.5 the value complexity of wi[t/xi] is either at most the value complexity of wi

or the value complexity of t. In the first case, the value complexity of wi[t/xi] is at most
the value complexity of wi which is at most the value complexity of ιi(t)[x1.w1, x2.w2].
Thus, by Lemma 4.5 the value complexities of v0{v/s}, v1{v/s}, v2{v/s} are at most
the value complexity respectively of v0, v1, v2. Hence, the complexity of the possible case
distinction permutation redex

(v0[z1.v1{v/s}, z2.v2{v/s}])σ1{v/s}

is at most the complexity of v0[z1.v1, z2.v2]σ1 and we are done. Moreover, the possible
injection or case distinction permutation redex

v0{v/s}[z1.v1{v/s}, z2.v2{v/s}]

satisfies the thesis. In the second case, the value complexities of v0{v/s}, v1{v/s}, v2{v/s}
are at most the value complexities of v0, v1, v2 respectively or exactly the value com-
plexity of t. Hence the complexity of the possible case distinction permutation redex
(v0[z1.v1{v/s}, z2.v2{v/s}])σ1{v/s} is either at most the value complexity of v1, v2, and
we are done, or exactly the value complexity of t, which by Proposition 4.1 is at most
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the complexity of the type of t, thus is smaller than the complexity of the injection re-
dex ιi(t)[x1.w1, x2.w2] occurring in u. Moreover, the possible injection or case distinction
permutation redex

v0{v/s}[z1.v1{v/s}, z2.v2{v/s}]

has complexity equal to the value complexity of v0 or the value complexity of t, and we
are done again.

If v0[z1.v1, z2.v2]σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then there could be a new intu-
itionistic redex, when v = λy q, v = 〈q1, q2〉, v = ιi(q) or v = q0[y1.q1, y2.q2]. If
the value complexity of v = wi[t/xi] is at most the value complexity of wi, then the
complexity of wi[t/xi](σi{v/s}) is equal to the complexity of the permutation redex
(ιi(t)[x1.w1, x2.w2])σi. If the value complexity of v = wi[t/xi] is the value complexity
of t, by Proposition 4.1 the complexity of wi[t/xi](σi{v/s}) is at most the complexity of
the type of t, thus is smaller than the complexity of the injection redex ιi(t)[x1.w1, x2.w2]
occurring in u and we are done.

• a t′ σ{v/s}, where a is a channel variable, t′ a term and σ = σ1 . . . σn is any case-free stack.
By induction hypothesis, (∗) holds for t′ and σi{v/s} for 1 ≤ i ≤ n. Since s 6= a t′ σ1 . . . σj ,
the case a t′ σ{v/s} = v (σi{v/s}) . . . (σn{v/s}) is impossible.

If a t′ σ{v/s} = a (t′{v/s})(σ{v/s}), in order to verify the thesis it is enough to check the
complexity of the channel occurrence a (t′{v/s}). By Lemma 4.5, the value complexity
of wi[t/xi] is either at most the value complexity of wi or exactly the value complexity
of t. In the first case, the value complexity of wi[t/xi] is at most the value complexity
of wi which is at most the value complexity of ιi(t)[x1.w1, x2.w2]. Thus, by Lemma 4.5,
the value complexity of t′{v/s} is at most the value complexity of t′ and we are done. In
the second case, the value complexity of t′{v/s} is the value complexity of t, which by
Proposition 4.1 is at most the complexity of the type of t, thus smaller than the complexity
of the injection redex ιi(t)[x1.w1, x2.w2] occurring in u, which is what we wanted to show.

• a(t1 ‖ . . . ‖ tm){v/s}. By the induction hypothesis, (∗) holds for ti{v/s} for 1 ≤ i ≤ m.
The only redex in a(t1 ‖ . . . ‖ tm){v/s} and not in some ti{v/s} can be a(t1{v/s} ‖ . . . ‖
tm{v/s}){v/s} itself. But the complexity of such redex equals the maximal complexity of
the occurrences of the channel a in the ti{v/s}. Hence the statement follows.

We present the proof of Lemma 4.8 in full.

Lemma A.4 (In the Case). Let u be a term in parallel form. Then for any redex r1 of Group 1 in
u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ}, where ξ is a stack of length 1, there is a redex in u with com-
plexity greater than or equal to r1; for any redex r2 of Group 2 in u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ},
there is a redex of Group 2 in u with complexity greater than or equal to r2.

Proof. Let v = t[x1.v1ξ, x2.v2ξ] and s = t[x1.v1, x2.v2]ξ. We prove the following stronger state-
ment.

(∗) For any redex r1 of Group 1 in u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ} there is a redex in u with
complexity greater than or equal to r1; for any redex r2 of Group 2 in u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ}
there is a redex of Group 2 in u with greater or equal complexity than r2. Moreover, for any
channel occurrence in u{v/s} with complexity θ′, there is in u an occurrence of the same channel
with complexity greater or equal than θ′.
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We first observe that the possible Group 1 redexes v1ξ and v2ξ have at most the complexity
of the case distinction permutation t[x1.v1, x2.v2]ξ. The rest of the proof is by induction on the
size of u.

• (λx t′)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By the induction hypothesis, (∗)
holds for t′{v/s} and σi{v/s} where 1 ≤ i ≤ n. If (λx t′)σ{v/s} = (λx t′{v/s}) (σ{v/s}),
all the redexes and channel occurrences that we have to check are either in σ{v/s} or,
possibly, the head redex, thus the thesis holds. If

(λx t′)σ{v/s} = t[x1.v1ξ, x2.v2ξ] (σi{v/s}) . . . (σn{v/s})

then t[x1.v1ξ, x2.v2ξ](σi{v/s}) can be a new permutation redex. If ξ is case free, this redex
has complexity 0 by Lemma 4.4 and we are done. If ξ is not case free, t[x1.v1ξ, x2.v2ξ](σi{v/s})
has the same complexity as the permutation (t[x1.v1, x2.v2]ξ)σi.

• 〈t1, t2〉σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By the induction hypothesis,
(∗) holds for t1{v/s}, t2{v/s} and σi{v/s} where 1 ≤ i ≤ n. If

〈t1, t2〉σ{v/s} = 〈t1{v/s}, t2{v/s}〉 (σ{v/s})

all the redexes and channel occurrences that we have to check are either in σ{v/s} or,
possibly, the head redex. The former are dealt with using the inductive hypothesis. As
for the latter, it is immediate to see that the value complexity of t[x1.v1ξ, x2.v2ξ] is equal
to the value complexity of t[x1.v1, x2.v2]ξ. By Lemma 4.5, the value complexity of ti{v/s}
is at most that of ti, and we are done. If 〈t1, t2〉σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then
v (σi{v/s}) = t[x1.v1ξ, x2.v2ξ](σi{v/s}) can be a new permutation redex. If ξ is case free,
this redex has complexity 0 by Lemma 4.4 and we are done. Otherwise,

t[x1.v1ξ, x2.v2ξ](σi{v/s})

has the same complexity as (t[x1.v1, x2.v2]ξ)σi.

• ιi(t′)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. Obviously, σ must be empty since
it is case-free. By the induction hypothesis, (∗) holds for t′{v/s}. If ιi(t

′) = ιi(t
′{v/s}),

all the redexes and channel occurrences that we have to check are in σ{v/s} and thus the
thesis holds.

• w0[z1.w1, z2.w2]σ{v/s}, where σ is any case-free stack. By the induction hypothesis, (∗)
holds for w0{v/s}, v1{v/s}, v2{v/s} and σi{v/s} for 1 ≤ i ≤ n. If

w0[z1.w1, z2.w2]σ{v/s} =

w0{v/s}[z1.w1{v/s}, z2.w2{v/s}](σ{v/s})

Since the value complexity of t[x1.v1ξ, x2.v2ξ] is equal to the value complexity of t[x1.v1, x2.v2]ξ,
by Lemma 4.5 the value complexities of w0{v/s}, w1{v/s} and w2{v/s} are respectively
at most that of w0, w1 and w2. The complexity of the possible case distinction permu-
tation redex (w0{v/s}[z1.w1{v/s}, z2.w2{v/s}])σ1{v/s} is thus at most the value com-
plexity of w1, w2 respectively, and hence the complexity of the case permutation redex
(w0[z1.w1, z2.w2])σ1. Moreover, the possible injection or case permutation redex

w0{v/s}[z1.w1{v/s}, z2.w2{v/s}]

has complexity equal to the value complexity of w0 and we are done.
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If w0[z1.w1, z2.w2]σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then there could be a new case dis-
tinction permutation redex because v = t[x1.v1ξ, x2.v2ξ]. If ξ is case free, by Lemma 4.4,
this redex has complexity 0 and we are done; if not, it has the same complexity as
t[x1.v1, x2.v2]ξσ1 and we are done again.

• xσ{v/s}, where x is any simply typed variable and σ = σ1 . . . σn is any case-free stack.
By induction hypothesis, (∗) holds for σi{v/s} where 1 ≤ i ≤ n. If xσ{v/s} = x (σ{v/s}),
all its redexes and channel occurrences are in σ{v/s}, thus the thesis holds. If

xσ{v/s} = t[x1.v1ξ, x2.v2ξ] (σi{v/s}) . . . (σn{v/s})

then v (σi{v/s}) can be a new permutation redex. If ξ is case free, this redex has complexity
0 and we are done. Otherwise, t[x1.v1ξ, x2.v2ξ](σi{v/s}) has the same complexity as
t[x1.v1, x2.v2]ξσi.

• a t σ{v/s}, where a is a channel variable, t a term and σ = σ1 . . . σn is any case-free stack.
By induction hypothesis, (∗) holds for t and σi{v/s} where 1 ≤ i ≤ n.

If a t σ{v/s} = a (t{v/s})(σ{v/s}), in order to verify the thesis it is enough to check the
complexity of the channel occurrence a (t{v/s}). Since the value complexity of t[x1.v1ξ, x2.v2ξ]
is equal to the value complexity of t[x1.v1, x2.v2]ξ, by Lemma 4.5 the value complexity of
t{v/s} is at most that of t, and we are done.

If a t σ{v/s} = a t [x1.v1ξ, x2.v2ξ] (σi{v/s}) . . . (σn{v/s}) then v (σi{v/s}) can be a new
permutation redex. If ξ is case free, this redex has complexity 0 and we are done. Other-
wise, t[x1.v1ξ, x2.v2ξ](σi{v/s}) has the same complexity as (t[x1.v1, x2.v2]ξ)σi.

• a(t1 ‖ . . . ‖ tm){v/s}. By the induction hypothesis, (∗) holds for ti{v/s} where 1 ≤ i ≤ m
. The only redex in a(t1 ‖ . . . ‖ tm){v/s} and not in some ti{v/s} can be a(t1{v/s} ‖ . . . ‖
tm{v/s}) itself. But the complexity of such redex equals the maximal complexity of the
occurrences of the channel a in ti{v/s}. Hence the statement follows.

We present the proof of Proposition 5.1.

Proposition A.5 (Parallel Form Property). If t ∈ NF is a λL-term, then it is in parallel form.

Proof. By induction on the structure of t. The case t is a variable is trivial.

• t = λx v. Since t is normal, v cannot be of the form a(u1 ‖ . . . ‖ um), otherwise one could
apply the permutation

t = λxA a(u1 ‖ . . . ‖ um) 7→ a(λx
A u1 ‖ . . . ‖ λxA.um)

and t would not be in normal form. Hence, by i.h. v must be a simply typed λ-term.

• t = 〈v1, v2〉. Since t is normal, neither v1 nor v2 can be of the form a(u1 ‖ . . . ‖ um),
otherwise one could apply one of the permutations

〈a(u1 ‖ . . . ‖ um), w〉 7→ a(〈u1, w〉 ‖ . . . ‖ 〈um, w〉)

〈w, a(u1 ‖ . . . ‖ um)〉 7→ a(〈w, u1〉 ‖ . . . ‖ 〈w, um〉)

and t would not be in normal form. Hence, by i.h. v1 and v2 must be simply typed
λ-terms.
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• t = v1 v2. Since t is normal, neither v1 nor v2 can be of the form a(u1 ‖ . . . ‖ um), otherwise
one could apply one of the permutations

a(u1 ‖ . . . ‖ um)w 7→ a(u1w ‖ . . . ‖ umw)

w a(u1 ‖ . . . ‖ um) 7→ a(wu1 ‖ . . . ‖ wum)

and t would not be in normal form. Hence, by i.h. v1 and v2 must be simply typed
λ-terms.

• t = v efqP . Since t is normal, v cannot be of the form a(u1 ‖ . . . ‖ um), otherwise one
could apply the permutation

a(u1 ‖ . . . ‖ um) efqP 7→ a(u1 efqP ‖ . . . ‖ um efqP )

and t would not be in normal form. Hence, by the induction hypothesis u1, . . . , um must
be simply typed λ-terms.

• t = uπi. Since t is normal, v can be of the form a(u1 ‖ . . . ‖ um), otherwise one could
apply the permutation

a(u1 ‖ . . . ‖ um)πi 7→ a(u1πi ‖ . . . ‖ umπi)

and t would not be in normal form. Hence, by induction hypothesis u must be a simply
typed λ-term, which is the thesis.

• t = a(u1 ‖ . . . ‖ um). By the induction hypothesis the thesis holds for ui where 1 ≤ i ≤ m
and hence trivially for t.
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