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Abstract

In this paper we define cut-free hypersequent calculi for some intermediate logics semantically

characterized by bounded Kripke models. In particular we consider the logics characterized

by Kripke models of bounded width Bwk, by Kripke models of bounded cardinality Bck
and by linearly ordered Kripke models of bounded cardinality Gk. The latter family of

logics coincides with finite-valued Gödel logics. Our calculi turn out to be very simple and

natural. Indeed, for each family of logics (respectively, Bwk, Bck and Gk), they are defined

by adding just one structural rule to a common system, namely the hypersequent calculus

for Intuitionistic Logic. This structural rule reflects in a natural way the characteristic

semantical features of the corresponding logic.

1 Introduction

Kripke models provide a suitable semantical characterization of propositional inter-
mediate logics (see [8]), that is, logics including the Intuitionistic one and included in
Classical Logic.

In this paper we investigate the proof theory of some intermediate logics semanti-
cally characterized by bounded Kripke models. More precisely, for any k ≥ 1, we will
consider the logics whose semantics are given by:

1. The class of finite trees not containing k + 1 pairwise incomparable nodes (for
short, finite trees of width ≤ k);

2. The class of trees containing at most k nodes;

3. The class of trees of width ≤ 1 and with at most k nodes.

In the first case one gets the so called logics of bounded width Kripke models, Bwk. The
second case yields the logics of bounded cardinality Kripke models, Bck. Finally, in
the third case we get the intermediate logics of linear orders with at most k-elements.
These logics turn out to coincide with (k + 1)-valued Gödel logics Gk.

Hilbert style axiomatizations of Bwk and Bck are respectively obtained extending
the familiar axiomatization of Intuitionistic Logic by the axioms
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and p0 ∨ (p0→ p1) ∨ . . . ∨ (p0 ∧ . . . ∧ pk−1→ pk). Adding to Bck the linearity axiom
(p→ q) ∨ (q → p) one gets (k + 1)-valued Gödel logic.

The logics considered here have found applications in different areas of computer
science. Indeed, Bw1 coincides with infinite-valued Gödel logic, which is one of the
most important formalizations of fuzzy logic (see [15]). Bc1 is Classical Logic. Bc2,
also referred to as Sm [8] or logic of “here and there”, has been used to analyse
inference in extended logic programming (see [18]).

In this paper we define cut-free calculi for all logics Bwk, Bck and Gk, with k ≥ 1.
To the best of our knowledge no analytic calculi have been provided for the first two
families of logics. Things are not so bad for Gk. Indeed there exist general methods
to build up analytic calculi for every finite-valued logic (see, e.g., [20, 19, 7, 14]) or
projective logic ([6]), and in particular for finite-valued Gödel logics. However, the
resulting calculi are just a rewriting of the truth-tables of their associated connectives.
Thus making the proof theory of any such logic a purely “ad hoc” construct. In
particular these calculi hide all existing relationships between finite-valued Gödel
logics and the other logics considered in this paper.

In this work we will provide cut-free hypersequent calculi for logics Bwk, Bck and
Gk. Hypersequent calculi are a natural generalization of ordinary sequent calculi and
turn out to be very suitable for expressing disjunctive axioms in an analytic way (see
[5] for an overview). Indeed a common feature of the above mentioned logics is the
fact that their properties can be expressed in a disjunctive form.

Our calculi follow a standard pattern: all calculi belonging to the same family (re-
spectively, Bwk, Bck and Gk) are uniform and are simply obtained by adding just one
structural rule to the hypersequent calculus for Intuitionistic Logic. This structural
rule reflects in a natural way the characteristic property of the corresponding logic.

Since hypersequent calculi are closely related to the goal-oriented proof procedures
introduced in [13], our calculi might help to define similar kinds of deduction methods
for Bwk, Bck and Gk.

2 Preliminaries

To make the paper self contained we recall some basic notions.

Intermediate Logics and Kripke Models

The set of propositional well formed formulas (wff’s for short) is defined, as usual,
starting from an enumerable set of propositional variables and using the logical con-
stants ⊥, ∧, ∨,→ . We denote with p and q, possibly with indexes, propositional
variables and with A, B,. . . arbitrary wff’s. Moreover, we use ¬A as an abbreviation
for A→⊥.

Int and Cl will denote respectively both an arbitrary calculus for propositional
Intuitionistic and Classical Logic and the set of intuitionistically and classically valid
wff’s.

An intermediate propositional logic (see, e.g., [8]) is any set L of wff’s satisfying
the following conditions: (i) L is consistent; (ii) Int ⊆ L; (iii) L is closed under
modus ponens; (iv) L is closed under propositional substitution (where a propositional
substitution is any function mapping every propositional variable to a wff). It is well
known that, for any intermediate logic L, L ⊆ Cl.
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If A is a set of axiom-schemes and L is an intermediate logic, the notation L +A
will indicate both the deductive system closed under modus ponens and arbitrary
substitutions obtained by adding to L the axiom-schemes of A, and the set of theorems
of such a deductive system.

A (propositional) Kripke model is a structure K = 〈P,≤, ‖−−〉, where 〈P,≤〉 is
a poset (partially ordered set), and ‖−− (the forcing relation) is a binary relation
between elements of P and atomic wff’s such that, for any propositional variable
p, α‖−−p implies β‖−−p for every β ∈ P such that α ≤ β. The forcing relation is
extended to arbitrary wff’s as follows:

1. α‖−/−⊥;

2. α‖−−B ∧ C iff α‖−−B and α‖−−C;

3. α‖−−B ∨ C iff either α‖−−B or α‖−−C;

4. α‖−−B→C iff, for any β ∈ P such that α ≤ β, β‖−−B implies β‖−−C.

We write α‖−/−A to mean that α‖−−A does not hold. We remark that, according to
the above interpretation, α‖−−¬A iff for every β ∈ P such that α ≤ β we have β‖−/−A.
For a finite set of wff’s Γ, we write α‖−−Γ to mean that α‖−−A holds for every A ∈ Γ.
Finally, we say that a wff A is valid in a Kripke model K if α‖−−A for all α ∈ P .

It is easy to check that the forcing relation meets the monotonicity condition, that
is, for each wff A, Kripke model K = 〈P,≤, ‖−−〉 and element α in K, if α‖−−A then
β‖−−A for every β ∈ P such that α ≤ β.

If F is a non empty class of posets, we call {K = 〈P,≤, ‖−−〉 | 〈P,≤〉 ∈ F} the
class of Kripke models built on F . Let L(F) be the set of wff’s valid in all the Kripke
models built on F . It is well known that, for every non empty class F of posets, L(F)
is an intermediate logic (see, e.g., [8, 12]). We say that an intermediate logic L is
characterized by the class of posets F if L = L(F).

Hypersequent Calculi

Hypersequent calculi are a simple and natural generalization of ordinary Gentzen
calculi, see e.g. [5] for an overview.

Definition 1 A hypersequent is an expression of the form

Γ1 ` ∆1 | . . . | Γn ` ∆n

where, for all i = 1, . . . n, Γi ` ∆i is an ordinary sequent. Γi ` ∆i is called a
component of the hypersequent. We say that a hypersequent is single-conclusion if,
for any i = 1, . . . , n, ∆i consists of at most one wff.

The intended meaning of the symbol | is disjunctive.
For the purposes of this paper it is convenient to treat sequents and hypersequents

as multisets of wff’s and multisets of sequents, respectively. Moreover we only deal
with single-conclusion hypersequents.

Like in ordinary sequent calculi, in a hypersequent calculus there are initial hy-
persequents and rules. Typically, the former are identities, that is of the form A ` A,
while the latter are divided into logical and structural rules. The logical ones are es-
sentially the same as in sequent calculi, the only difference is the presence of dummy
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contexts, called side hypersequents. We will use the symbol G to denote a side hyper-
sequent.

The structural rules are divided into internal and external rules. The internal rules
deal with wff’s within components. They are the same as in ordinary sequent calculi.
The external rules manipulate whole components within a hypersequent. These are
external weakening (EW) and external contraction (EC).

In Table 1 we present a hypersequent calculus for Int, we call it hInt. Clearly
this calculus is redundant in the sense that, if Γ1 ` ∆1 | Γ2 ` ∆2 | . . . | Γn ` ∆n is
derivable, then for some i, Γi ` ∆i is derivable too.

A ` A
(id)

G | Γ ` B G′ | Γ, B ` A
G | G′ | Γ ` A

(CUT)

External Structural Rules

G

G | H
(EW)

G | Γ ` A | Γ ` A
G | Γ ` A

(EC)

Internal Structural Rules

G | Γ ` A
G | Γ, B ` A

(IW, l)
G | Γ `
G | Γ ` A

(IW, r)
G | Γ, B,B ` A
G | Γ, B ` A

(IC)

Logical Rules

G | Γ, Ai ` B
G | Γ, A1 ∧A2 ` B

(∧, li) for i = 1, 2
G | Γ ` A G′ | Γ ` B

G | G′ | Γ ` A ∧ B
(∧, r)

G | Γ, B ` A G′ | Γ, C ` A
G | G′ | Γ, B ∨ C ` A

(∨, l)
G | Γ ` Ai

G | Γ ` A1 ∨A2

(∨, ri) for i = 1, 2

G | Γ ` A G′ | Γ, B ` C
G | G′ | Γ, A→B ` C

(→, l)
G | Γ, A ` B
G | Γ ` A→B

(→, r)

G | Γ ` A
G | Γ,¬A `

(¬, l)
G | Γ, A `
G | Γ ` ¬A

(¬, r)

Table 1: Hypersequent calculus hInt for Intuitionistic Logic

In hypersequent calculi it is possible to define new kind of structural rules which
simultaneously act on several components of one or more hypersequents. It is this
type of rule which increases the expressive power of hypersequent calculi with respect
to ordinary sequent calculi. Effective use of this kind of rules is given by the following
examples, involving intermediate logics:
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• A Hilbert-style axiomatization for LQ logic, also known as Jankov logic [16],
is obtained by extending the axioms of Int with ¬p ∨ ¬¬p. Semantically, LQ
is characterized by the class of all finite and rooted posets with a single final
element. A cut-free calculus for this logic is defined by adding the following rule
to the hypersequent calculus for Int ([10])

G | Γ,Γ′ `

G | Γ ` | Γ′ `
(lq)

• Gödel logic, also known as Dummett’s LC logic [11], is given by Int + {(p →
q) ∨ (q → p)}. This logic can be seen both as an intermediate logic and as a
many-valued logic. Indeed, on the one hand, it is characterized by the class of
all rooted linearly ordered Kripke models. On the other hand, its connectives
can be interpreted as functions over the real interval [0, 1] as follows: A ∧ B =
min{A,B}, A ∨ B = max{A,B}, ¬A = 1 if A = 0 (¬A = 0, otherwise),
A→ B = 1 if A ≤ B (A→ B = B, otherwise).

By adding to hInt the following rule, called Communication rule,

G | Γ,Γ′ ` A G′ | Γ1,Γ
′
1 ` A′

G | G′ | Γ,Γ1 ` A | Γ′,Γ′1 ` A′
(com)

one obtains a cut-free calculus for Gödel logic, see [3].

Further examples of hypersequent calculi, ranging from modal logics to many-valued
logics, can be found, e.g., in [2, 4, 5, 10, 9].

As usual, we say that a sequent Γ ` A is valid in a Kripke model K if, for any element
α in K, either α‖−/−B for some B ∈ Γ, or α‖−−A.

This definition can be extended to hypersequents as follows: Given a class of
posets F , we say that a hypersequent H is valid in F if for any Kripke model K built
on F at least one of its components is valid in K.

3 Logics of Bounded Width Kripke Models

This section is devoted to investigate the intermediate logics Bwk, with k ≥ 1 (Bw
stands for “bounded width”). These logics are characterized by the class Fw≤k of
posets of width ≤ k, that is, not containing an antichain of cardinality greater than
k. A Hilbert style axiomatization of Bwk is as follows

Int + {
k∨

i=0

(pi→
∨

j 6=i
pj)}

In particular Bw1 coincides with (infinite-valued) Gödel logic.
For k ≥ 1, the hypersequent calculus hBwk is given by adding to the hypersequent

calculus for Int of Table 1 the following rule

G1 | Γ0,Γ1 ` A0 . . . Gk | Γ0,Γk ` A0 . . . Gk2+1 | Γk,Γ0 ` Ak . . . Gk2+k | Γk,Γk−1 ` Ak

G1 | . . . | Gk2+k | Γ0 ` A0 | . . . | Γk ` Ak
(Bwk)
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Remark 2 The (Bw1) rule coincides with the following simplification, suggested by
Mints, of Avron’s Communication rule (see [5, p.9])

G | Γ0,Γ1 ` A0 G′ | Γ0,Γ1 ` A1

G | G′ | Γ0 ` A0 | Γ1 ` A1

We show that hBwk is sound and complete with respect to Bwk.

Theorem 3 (Soundness) If a hypersequent H is derivable in hBwk, then it is valid
in Fw≤k.

Proof Since all the rules of the hypersequent calculus for Int are valid in Fw≤k, it
remains to show that so is the (Bwk) rule. By way of contradiction, let us suppose
that the premises of the (Bwk) rule are valid in Fw≤k, but the conclusion is not. Thus
there exists a Kripke model K built on Fw≤k together with k+ 1 elements α0, . . . , αk
such that αi‖−−Γi but αi‖−/−Ai, for i = 0, . . . , k. Let us consider two different indexes
0 ≤ i, j ≤ k. Since αj‖−−Γj and Γi,Γj ` Ai is valid in Fw≤k we have αj 6≤ αi.
Analogously, since also Γj ,Γi ` Aj is valid in Fw≤k, αi 6≤ αj . Hence, α0, . . . , αk are
pairwise incomparable, and this contradicts the hypothesis that K is built on Fw≤k.

Theorem 4 (Completeness) If a wff A ∈ L(Fw≤k) then ` A is derivable in hBwk.

Proof We rely on the completeness of the axiomatization for Bwk (proved, e.g., in
[8]), and we show that all the axioms are derivable in hBwk. Since the axioms of Int
are provable in the hInt calculus, and hBwk contains the cut rule, it suffices to show
that the axiom characterizing the intermediate logic Bwk is derivable in the hBwk
calculus. As a matter of fact we can write

p1 ` p1

(IW,l)

p0, p1 ` p1

(∨,ri)
p0, p1 `

∨

j 6=0

pj . . .

pk ` pk
(IW,l)

p0, pk ` pk
(∨,ri)

p0, pk `
∨

j 6=0

pj . . .

p0 ` p0

(IW,l)

pk, p0 ` p0

(∨,ri)
pk, p0 `

∨

j 6=k

pj . . .

pk−1 ` pk−1

(IW,l)

pk, pk−1 ` pk−1
(∨,ri)

pk, pk−1 `
∨

j 6=k

pj

(Bwk)

p0 `
∨

j 6=0

pj | . . . | pk `
∨

j 6=k

pj

(→,r)
` p0→

∨

j 6=0

pj | . . . | ` pk→
∨

j 6=k

pj

(∨,ri)

`
k∨

i=0

(pi→
∨

j 6=i

pj) | . . . | `
k∨

i=0

(pi→
∨

j 6=i

pj)

(EC)

`
k∨

i=0

(pi→
∨

j 6=i
pj)

Remark 5 By comparing their hypersequent calculi one can immediately see that
Bwk+1 ⊆ Bwk.
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By the presence of (IC), to prove the cut-elimination theorem for hBwk, we have to
consider the multi-cut rule, that is:

G | Γ ` A G′ | Γ′, An ` B

G | G′ | Γn,Γ′ ` B
(mcut)

where An and Γn stand for A, . . . , A (n times) and Γ, . . . ,Γ (n times), respectively.
It is easy to see that the cut rule is a particular case of the multi-cut rule. Con-

versely, each application of the multi-cut rule can be replaced by repeated applications
of the cut rule.

Theorem 6 (Cut-elimination) If a hypersequent H is derivable in hBwk then it
is derivable in hBwk without using the cut rule.

Proof Cut-elimination for hypersequent calculi works essentially in the same way
as for the corresponding sequent calculi.

It is enough to show that if P is a proof in hBwk of a hypersequent H ′ containing
only one multi-cut rule which occurs as the last inference of P , then H ′ is derivable
in hBwk without the multi-cut rule.

As noticed in [9], a simple way to make the inductive argument work in the
presence of the (EC) rule is to consider the number of applications of this rule in a
given derivation as an independent parameter. Let r be the number of the applications
of the (EC) rule in the proofs of the premises of the multi-cut rule, c be the complexity
of the multi-cut wff, and h be the sum of the length of the proofs of the premises of
the multi-cut rule.

The proof will proceed by induction on lexicographically ordered triple (r, c, h).
We shall argue by cases according to which inference rule is being applied imme-

diately before the application of the multi-cut rule:

1. either G | Γ ` A or G′ | Γ′, An ` B is an initial hypersequent;

2. either G | Γ ` A or G′ | Γ′, An ` B is obtained by a structural rule;

3. both G | Γ ` A and G′ | Γ′, An ` B are lower sequents of some logical rules
such that the principal formulas of both rules are just the multi-cut wff;

4. either G | Γ ` A or G′ | Γ′, An ` B is a lower sequent of a logical rule whose
principal formula is not the multi-cut wff.

We will give here a proof for some relevant cases, omitting the side hypersequents
that are not involved in the derivation.

Suppose that the last inference in the proof of one premise of the multi-cut is the
(EC) rule, and the proof ends as follows:

Γ ` A | Γ ` A
(EC)

Γ ` A An,Γ′ ` B
(mcut)

Γ′,Γn ` B
Let r′ be the number of applications of the (EC) rule in the above proof. This proof
can be replaced by
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Γ ` A | Γ ` A An,Γ′ ` B
(mcut)

Γn,Γ′ ` B | Γ ` A An,Γ′ ` B
(mcut)

Γ′,Γn ` B | Γ′,Γn ` B
(EC)

Γ′,Γn ` B
which contains two multi-cuts with r′ − 1 applications of the (EC) rule. Then, all
these multi-cuts can be eliminated by induction hypothesis.

We show how to eliminate a multi-cut involving the (Bwk) rule. Suppose, for
instance, that the proof P ends as follows:

Γ0,Γ1 ` A0 . . .Γ0,Γk ` A0 . . . Γk,Γ0 ` Ak . . .Γk,Γk−1 ` Ak
(Bwk)

Γ0 ` A0 | . . . | Γk ` Ak Σ, An0 ` B
(mcut)

Γn0 ,Σ ` B | . . . | Γk ` Ak
This proof can be replaced by

Γ0,Γ1 ` A0 Σ, An0 ` B
(mcut)

Γn0 ,Σ,Γ1 ` B . . .

Γ0,Γk ` A0 Σ, An0 ` B
(mcut)

Γn0 ,Σ,Γk ` B . . .Γk,Γk−1 ` Ak
(Bwk)

Γn0 ,Σ ` B | . . . | Γk ` Ak
in which there are k multi-cuts having the same r and c as P , while the sum of the
length of the proofs of the premises is smaller than the one of the multi-cut in P .
Then these multi-cuts can be eliminated by induction hypothesis.

The cases involving the logical rules, are essentially treated as in the cut-elimination
proof of the LJ sequent calculus for Int (see, e.g., [21]).

For instance, suppose that in both the premises of the multi-cut rule the last
inference is the rule for →. Let us also assume that the proof P ends as follows:

Γ, B ` C
(→,r)

Γ ` B → C

Γ′, (B → C)n ` B Γ′, (B → C)n, C ` D
(→,l)

Γ′, B → C, (B → C)n ` D
(mcut)

Γ′,Γn+1 ` D
This proof can be replaced by

Γ′, (B → C)n, C ` D Γ ` B → C
(mcut)

Γ′,Γn, C ` D

Γ′, (B → C)n ` B Γ ` B → C
(mcut)

Γ′,Γn ` B Γ, B ` C
(mcut)

Γ′,Γn+1 ` C
(mcut)

Γ′,Γ′,Γ2n+1 ` D
(IC)

Γ′,Γn+1 ` D
in which four multi-cuts occur. In two of them, all numbers r and c are as in P , while
the sum of the length of the proofs of the premises is smaller than that of multi-cut
in P . In the two remaining multi-cuts, r is the same as in P and the complexity of
the multi-cut wff’s is strictly smaller than the one of the multi-cut in P . Then all
these multi-cuts can be eliminated by induction hypothesis.
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4 Logics of Bounded Cardinality Kripke Models

In this section we define cut-free calculi for logics Bck, with k ≥ 1 (Bc stands for
“bounded cardinality”). These logics are characterized by the class Fc≤k of rooted
posets of cardinality ≤ k, in symbols, |P | ≤ k. A Hilbert style axiomatization of Bck
is given by

Int + {p0 ∨ (p0→p1) ∨ . . . ∨ (p0 ∧ . . . ∧ pk−1→pk)}
Bc1 and Bc2 coincide with Cl and Sm ([8]), respectively. The latter, like LQ and Gödel
logic, is one of the seven propositional logics satisfying Craig’s Interpolation Theorem
(see [17]). In [1] it was defined a cut-free sequent calculus for Sm by translating a
suitable duplication-free tableau calculus originating from a semantical framework.
However in this calculus the rules for connectives are quite complex and the subfor-
mula property does not hold.

For k ≥ 1, the hypersequent calculus hBck is given by adding to the hypersequent
calculus for Int the following rule

. . . Gi,j | Γi,Γj ` Ai . . .

G0,1 | . . . | Gk−1,k | Γ0 ` A0 | . . . | Γk−1 ` Ak−1 | Γk `
(Bck)

for every i, j such that 0 ≤ i ≤ k − 1 and i+ 1 ≤ j ≤ k.

Remark 7 The (Bc1) rule coincides with the (cl) rule introduced in [10]. Therefore
hBc1 is a (single-conclusion) hypersequent calculus for Cl.

We show that hBck is sound and complete with respect to Bck.

Theorem 8 (Soundness) If a hypersequent H is derivable in hBck, then it is valid
in Fc≤k.

Proof Similar to the proof of Theorem 3. By way of contradiction, let us suppose
that the premises of the (Bck) rule are valid in Fc≤k, but the conclusion is not. Thus
there exists a Kripke model K built on Fc≤k together with k+ 1 elements α0, . . . , αk
such that αh‖−−Γh but αh‖−/−Ah for h = 0, . . . , k − 1 and αk‖−−Γk. Let the indexes
i and j satisfy the conditions 0 ≤ i ≤ k − 1, 1 ≤ j ≤ k and i ≤ j. Since Γi,Γj ` Ai is
valid in K, and αj‖−−Γj , by the monotonicity property of ‖−− we get that αj 6≤ αi
and hence αi 6= αj . Then, α0, . . . , αk are distinct elements and K has at least k + 1
elements, a contradiction.

Theorem 9 (Completeness) If a wff A ∈ L(Fc≤k) then ` A is derivable in hBck.

Proof As in the proof of Theorem 4, we only have to prove that the axiom charac-
terizing the intermediate logic Bck is derivable in the hBck calculus. To this purpose
let us write
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p0 ` p0 . . .

p0 ` p0

(∧,li)
p0 ∧ . . . ∧ pk−1 ` p0 . . .

pk−1 ` pk−1
(IW,l)

p0 ∧ . . . ∧ pk−2, pk−1 ` pk−1
(∧,li)

p0 ∧ . . . ∧ pk−2, p0 ∧ . . . ∧ pk−1 ` pk−1
(Bck)

` p0 | p0 ` p1 | . . . | p0 ∧ . . . ∧ pk−1 `
(IW,r)

` p0 | p0 ` p1 | . . . | p0 ∧ . . . ∧ pk−1 ` pk
(→,r)

` p0 | ` p0 → p1 | . . . | ` p0 ∧ . . . ∧ pk−1 → pk
(∨,ri)

. . . | ` p0 ∨ (p0 → p1) ∨ . . . ∨ (p0 ∧ . . . ∧ pk−1 → pk) | . . .
(EC)

` p0 ∨ (p0 → p1) ∨ . . . ∨ (p0 ∧ . . . ∧ pk−1 → pk)

Theorem 10 (Cut-elimination) If a hypersequent H is derivable in hBck then it
is derivable in hBck without using the cut rule.

Proof The proof proceeds as in Theorem 6.

Remark 11 By comparing their hypersequent calculi it is not hard to see that, for
each k ≥ 1, both Bck+1 and Bwk are included in Bck.

As an example, we show how to prove the linearity axiom (p → q) ∨ (q → p) in the
hypersequent calculus hBc2 for Sm logic.

p ` p
(IW,l)

p, q ` p
(→,r)

p ` q → p
(∨,ri)

p ` (p→ q) ∨ (q → p)

q ` q
(IW,l)

q, p ` q
(→,r)

q ` p→ q
(∨,ri)

q ` (p→ q) ∨ (q → p)

q ` q
(IW,l)

q, p ` q
(Bc2)

` (p→ q) ∨ (q → p) | p ` q | q `
(IW,r)

` (p→ q) ∨ (q → p) | p ` q | q ` p
(→,r)

` (p→ q) ∨ (q → p) | ` p→ q | ` q → p
(∨,ri)

` (p→ q) ∨ (q → p) | ` (p→ q) ∨ (q → p) | ` (p→ q) ∨ (q → p)
(EC)

` (p→ q) ∨ (q → p)

5 Finite-Valued Gödel Logics

Gödel’s family of finite-valued propositional logics Gk, with k ≥ 1, was introduced in
the context of an investigation aimed to understand Intuitionistic Logic. Accordingly,
the connectives of these logics were defined as functions over the set {0, 1

k−1 , . . . ,
k−2
k−1 , 1},

as already described in Section 2.
An alternative characterization of their semantics in terms of Kripke models is

given by the class F
k-lo of linearly ordered posets with at most k-elements.

A Hilbert style axiomatization of Gk is

Int + {(p→q) ∨ (q→p), p0 ∨ (p0→p1) ∨ . . . ∨ (p0 ∧ . . . ∧ pk−1→pk)}

In the literature one can find sequent calculi (or dually, tableau systems) for every
finite-valued logic, and in particular for finite-valued Gödel logics, see e.g. [20, 19, 7,
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14]. In these calculi the many-valued semantics is strongly built into the proof theory.
Indeed in any n-valued logic, sequents (or tableaux) are split into n or n − 1 parts,
each corresponding, respectively, to a different truth-value of the logic ([20, 19, 7]),
or to a set of truth-values ([14]). The rules for connectives are directly drawn from
their truth-tables. Therefore these calculi are far from traditional calculi and, more
importantly, their structure makes it impossible to relate the various many-valued
systems via their corresponding calculi. In particular these calculi hide all existing
relationships between finite-valued Gödel logics and the other logics considered in this
paper.

In this section we define cut-free hypersequent calculi for finite-valued Gödel logics.
These calculi are obtained by simply adding to the calculus for Int some suitable
structural rules.

A first method to define a hypersequent calculus for Gk is to add both the rules
(Bw1) and (Bck) to the hypersequent calculus for Int of Table 1. From a semantical
point of view, the (Bw1) rule forces the states of the model to be linearly ordered,
while the (Bck) rule establishes that these states can be at most k. Soundness and
completeness of this calculus with respect to Gk directly follow from the results proved
in the previous sections.
An alternative cut-free calculus for Gk can be defined replacing the (Bw1) and (Bck)
rules by the following single rule which semantically combine the meaning of (Bw1)
and (Bck)

G1 | Γ0,Γ1 ` A0 G2 | Γ1,Γ2 ` A1 . . . Gk | Γk−1,Γk ` Ak−1

G1 | . . . | Gk | Γ0 ` A0 | . . . | Γk−1 ` Ak−1 | Γk `
(Gk)

For k ≥ 1, let hGk be the hypersequent calculus obtained by adding to hInt the
(Gk) rule.

Remark 12 hG1 and hG2 are respectively a (single-conclusion) hypersequent calcu-
lus for Cl and a hypersequent calculus for Sm logic. Notice that hG1 coincides with
hBc1, while hG2 is simpler than hBc2.

We show that hGk is sound and complete with respect to (k+ 1)-valued Gödel logic.

Theorem 13 (Soundness) If a hypersequent H is derivable in hGk, then it is valid
in Fk-lo.

Proof The proof proceeds as in Theorem 3. By way of contradiction, let us suppose
that the premises of the (Gk) rule are valid in Fk-lo, but the conclusion is not. Then
there exists a Kripke model K built on Fk-lo together with elements α0, . . . , αk such
that αi‖−−Γi but αi‖−/−Ai for i = 0, . . . , k− 1 and αk‖−−Γk. Let 0 ≤ i ≤ k− 1. Since
αi+1‖−−Γi+1 and Γi,Γi+1 ` Ai is valid, we must have αi+1 6≤ αi. Being K linearly
ordered, we must have α0 < α1 < . . . < αk. Therefore K is built on a linearly ordered
poset with at least k + 1 distinct elements, which is impossible.

Theorem 14 (Completeness) If a wff A ∈ L(Fk-lo) then ` A is derivable in hGk.
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Proof It suffices to observe that both the (Bw1) and the (Bck) rules are derivable
in hGk. This is trivial for the latter rule since its premises are strictly included in the
premises of the (Gk) rule. Let k be an odd number. To derive the (Bw1) rule in the
hGk calculus let us write

G | Γ0,Γ1 ` A0 G′ | Γ0,Γ1 ` A1 . . . G | Γ0,Γ1 ` A0

(Gk)

G | G′ | . . . | G | Γ0 ` A0 | Γ1 ` A1 | . . . | Γ0 ` A0 | Γ1 `
(IW,r)

G | G′ | . . . | G | Γ0 ` A0 | Γ1 ` A1 | . . . | Γ0 ` A0 | Γ1 ` A1

(EC)

G | G′ | Γ0 ` A0 | Γ1 ` A1

The derivation of the (Bw1) rule for k being even is similar. Therefore the claim
follows by Theorems 4 and 9.

Theorem 15 (Cut-elimination) If a hypersequent H is derivable in hGk then it
is derivable in hGk without using the cut rule.

Proof Similar to the proof of Theorem 6.

Remark 16 By comparing their hypersequent calculi one can immediately see that
Gk+1 ⊆ Gk. Moreover it follows that for each n ≥ k, both Bwn and Bcn are included
in (k + 1)-valued Gödel logic.
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