Cut-Elimination in a Sequents-of-Relations Calculus for Gdel Logic*

Matthias Baaz, Agata CiabatténChristian G. Fermuller
Technische Universitat Wien
A-1040 Vienna, Austria
{baaz,agata,chris@logic.at

Abstract Soundness and completeness R, were already
proved in [5] (in a more general setting). It also was shown
In [5] the analytic calculusRG., for Godel logic has  there that certain forms of cut are admissible and therefore
been introduced. RG,, operates on “sequents of rela- (semantically) redundant. However, a central topic, ngmel
tions”. We show constructively how to eliminate cuts from (constructive, stepwise) elimination of cuts from prootsw
RG.-derivations. The version of the cut rule we con- left open. Cut-elimination for a particularly useful forr o
sider allows to derive other forms of cut as well as a rule cut is the main result of this paper. The cut we consider
corresponding to the “communication rule” of Avron’s hy- allows to derive other forms of cut as well as a rule corre-
persequent calculus foG.,. Moreover, we give an ex- sponding to the “communication rule” of Avron’s hyperse-
plicit description of all the axioms A& G, and prove their  quent calculus fo6 ., [2]. Another new contribution of this
completeness. paper concerns the axioms fRG,,. Their effective con-
struction is a non-trivial problem. In [5] the set of axioms
was only presented in an indirect form and without proof.
Here we give an explicit description of all axioms and prove

1. Introduction .
their completeness.

Godel logicG,, — also called (Godel-)Dummett logic,
since Dummett [6] presented the first axiomatization match-
ing Godel's matrix characterization — is one of the most o
important many-valued logic. It naturally turns upinanum-  1he language we use for Godel logics is based on the
ber of different contexts. Already in the 1930s Godel [9] Pinary connectives\,V, and> and thetruth constants)
used it in investigations of intuitionistic logic; laterun ~ and1; ~A abbreviatest 5 0.
and Meyer [7] pointed out its relevance for relevance logic; AN interpretation7 is a mapping from propositional
Visser [13] employed it in investigations of the provalilit variables into a S(_at afgth vaIuesX_/. In the case (_)f_infinite-
logic of Heyting arithmetic; and eventually, it was recog- Valued Godel logic}” is the real interval0, 1]. Finite val-
nized as one of the most useful species of fuzzy logic (seeued Godel logics are obtained by takingladinite subsets
[10]). In contrast to other fuzzy logics, convincing analyt ~ Of [0, 1] containingd and1. An interpretationZ extends
proof systems have been presented for Godel logic. In part0 anevaluationvalz by stipulatingvalz(p) = Z(p), for
ticular, we here investigate the calculRS..., introduced ~ Propositional variables (atomic formulgs) valz(0) = 0,
in [5], which is based on so-called “sequents of relations”. v@/z(1) =1, and
In RG,, all rules are local, have at most two premises, .
introduce at most one connective at a time and are invert- valz(A D B) = { 1 if valz(A) < valz(B)
ible. These properties render this calculus particulaply a
for (human and automated) proof search. Alternative ana-
lytic systems foiG, can be found, e.g.,in[11, 1, 2, 3, 8, 4].
In particular, the axioms (basic hypersequents) introduce
in [4] are closely related to the axiomsBIG . .

2. Godel logic

valz(B) otherwise,

valz(A A B) = min(valz(A), valz(B)),
valz(A V B) = max(valz(A),valz(B)).

3. The calculusRG
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for the derivation of analytic calculi for certain types of The following version of the cut rule is part ®G.., here,
many-valued logics (projective logics). This framework is too:
based on “sequents of relations”. H|A<B H|B<A (cut )
In RG,, asequenis a finite set ofcomponentsf the H /2
form A < B or A < B for arbitrary formulas, B.

A andB are calleccut-formulas and the indicated compo-
nents are referred to asit-components

So far we have not stated any axioms R& .. In fact,
the computation of a complete set of axioms, for which cuts
can be eliminated, is not trivial. In [5] the following was
stated (without proof): Axioms oRG., are all sequents

Remark 3.1 In [5] sequents were defined agquencesf
components. However, it is easy to see that it suffices to con
sider setsinstead of sequences (or multi-sets). This allows
to drop the external rules of permutation and contraction

from RGeo. that contain a sequent

Sequent calculi of relations are closely related to hyper- Ay <y Ay | Ay <o Ag || A < Ay
sequent calculi (see, e.g., [2, 3]). We denote sequents (of
relations) as for k > 1, where<; € {<,<}forall1 < i < k, but

<; =< for at least oné. In addition, all sequents that are
Ar < By | ... | Ap <Qn By, obtained from the above ones by deleting components of
) o form

Where_ the signd; (L <i < n)is elt_her< (_)r_g and plays a A4<0, 1<A4, or 1<0
role similar to the sequent arrow in traditional sequent cal
culi. are axioms.

A sequent is calledgtomicif all A;, B; are atomic for- We present a more explicit description of the set of ax-
mulas. ioms of RG.., that corresponds to the original set, up to

The separation sign|™is interpreted as disjunction (at external weakening.
the meta-level). More formally, a componeAt< B is

satisfiedby an interpretatioff if valz(A) <1 valz(B) (for (@) A1 < A | ... [ Ag <2 Az [ Ay < Ay, where<; €
a € {<,<)). Asequent is satisfied byZ if 7 satisfies at {<, <} andthe case = 1is defined as{; < A,
!eastone qf its components.is valid if it is satisfied by all (b) Ap < Ap1 | An1 < Ap2|...] A <1, where
interpretations. the caser = 1 is defined asd; <1

The logical rules ofRG,, — i.e., the rules for intro- N ="
ducing connectives at any place of a sequent — are easily (¢) 0 < 4,, | ...| A3 < A, | Ay < Ay, where the case
computed given the semantics Gf,,, as described in [5]. n=1lisdefineda® < 4,,
For convience, we restate the complete set of rules. B

For disjunction and conjunction we have: d 0< Ay | Ay < A> | ... | Ap < 1, where the case

(Ardir) ———— " (Ar<el)
CA(AAB)|H (AANB)<C | H
We call sequents of type (a), (b), (c), and (dycles 1-

CaA|CaB|H AQC|H  BaC|H cha|r_15 0-chains and0-1-chains respectively. _ _
oo (Vi<ir) (vi<:l) It is easy to check that all of the above axioms are valid

CQ(AVB)|H (AVB)<C|H .
where< stands for eithek or <, uniformly in each rule. N Goo. However, to guarantee completelness we also have
The rules(>: <:7), (D:<:1), (D:<:7) and (: <:1) for to show t_he converse: name_ly, that gll valid atomic sequents
implication are, respectively: are obtained from these axioms using external weakening
only. For this purpose it is better to consider the dual form

A<B|C<B|H C<1|H B<A|H B<C|H .
<B|C<B] <1 <Al <C] of the axioms. l.e., we make use of the fact thalt; (A) <

C<s>B A (45 B) <ClH valz (B) iff =[valz(B) < valz(A)], and thus may consider
conjunctions of components instead of disjunctions.
A<B|C<B|H 1<C|B<A|H B<CI|H
C<(ADB)|H (ADB)L<C|H

Definition 3.2 A set of components is callédal to axioms
The indicated compound formula in the lower sequent of if it does not contain any subset of one of the following
each rule is callegrincipal formula forms:
We also need (external) weakening:
(a) (anti-cycle){A4; < As, A <3 As,..., Ay < A1},
H (EW) where<; € {<,<} and the cases = 1 is defined as
A<B|H {A1 < A},



(b) (anti-1-chain){1 < Ay, ...

7An72 S AnflyAnfl <
A}, where the case = 1is defined ag1 < 4},

(©) (anti0-chain){A; < As, Ay < As,...,A, < 0},

where the case = 1is defined a§ A4; < 0},

(d) (anti-0-1-chain){1 < Ay, A, < As,..., A, < 0},

where the case = 0 is defined a1 < 0} .

It suffices to prove the following:

Theorem 3.3 LetT" be a finite set of components< B,
< € {<, <}, whereA and B are either propositional vari-
ables or truth constants. [ is dual to axioms thef' is
satisfiable; i.e., there exists an interpretation that sfigis
all components of.

To prove Theorem 3.3 we extend ahythat is dual to
axioms to a “maximal” sef™* that is still dual to axioms.
LetuswriteB € [A] «<— {A<B,B< A} CI* It

will follow from Propostion 3.4 and Lemma 3.5, below, that
this is an equivalence relation and that the set of equicalen

classed* = {[A] : A occursin[*} is totally ordered with

respect toA] < [B]

<= A < B. The minimal ele-

ment of the ordering i$0] and its maximal element id]
(if 0 and1 occur inT"). The ordering thus allows to match

equivalence classes with truth values in a way that induces

an interpretation satisfying* and therefore alsb.
We first addA < B toT' wheneverd < B € T'. Thisis
justified by the following simple observation:

Proposition 3.4 If T" is dual to axioms theff U {A < B :
A < B €T} is dual to axioms, too.

The existence of* follows from the following:

Lemma 3.5 If T is dual to axioms then eith&rU{A < B}
or['U {B < A} is dual to axioms, too.

Proof: The proof proceeds by case distinctions:

1)

)

®3)

I' U {A < B} contains an anti-cycle. Then either al-
readyl’ contains an anti-cycledB < Uy,...,U, <
A} CT. Fromthisitfollowsthal U{B < A} is dual
to axioms iffI" is dual to axioms.

I'U {B < A} contains an anti-cycle. Then either al-
readyl’ contains an anti-cycle A < Uy, ..., Ui <
Uk+t1,...Up < B} C T'. From this it follows that
I'U{A < B} is dual to axiomsiff is dual to axioms.

Neitherl' U {4 < B} norT' U {B < A} contains an
anti-cycle.

(3.1) T U {A < B} contains an antl-chain W.l.0.g.,

the antid-chain is not already contained in.
Thereforg(a): {1 < Vi,...,V,-1 <A} CT.

(3.1.1)T U {B < A} contains an anti-chain
that is not already contained in. There-
fore {1 < Uy,...,U;—1 < B} C T and
{A < Ukgrs-o - Uggm—1 < Upgm} C T
The latter subset can be combined w(#)
to an antii-chain inI.

(3.1.2) T U {B < A} contains an ant)-chain
that is not already contained in. There-
fore {Ul < Usy... Up—1 < B} C T"and
{A < Uk+17---7Uk+m < 0} CcrT. The
latter subset can be combined w{tf) to an
anti-0-1-chain inT'.

(3.1.3) T U {B < A} contains an ant-1-chain
that is not already contained in. There-
fore {1 < Uy,...,U;—1 < B} C T and
{A < Upyr,...,Upym <0} CT. The
latter subset can be combined w{tf) to an
anti-0-1-chain inT'.

(3.2)T U {B < A} contains an antl-chain that
is not already contained ifi. Therefore(bl):
{1 < W,...,.V4-1 < B} C T and (b2):
{A<Vig1,o s Virmo1 < Vigm} CT.

(3.2.1) TU{A < B} contains an antl-chain. This
case was already settled in (3.1.1).

(3.2.2) T U {A < B} contains an ant-chain that
is not already contained ii. Then{B <
Us,...,U, < 0} C I. This subset can
be combined with(b1) to an antif-1-chain
inT.

(3.3) Neithel' U {A < B} norT' U {A < B} contain
an antid-chain.

(3.3.1) TU{A < B} contains an anti-chain that is
not already contained iRi. Then(c) {B <
Va,...,V <0} CT.

(3.31.1)T U {B < A} contains an anti-
chain that is not already contained in
T. Therefore{U1 < Usy...y Uy <
B} C r and{A < Uk+1, - ;Uk+m <
0} C I'. The first subset can be com-
bined with(c) to an anti®-chain inT".

(3.3.1.2)T U {B < A} contains an anti-1-
chain that is not already contained in
I'. Therefore{l < U,,..., Up_1 <
B} C r and{A < Uk+1, - ;Uk+m <
0} C I'. The first subset can be com-
bined with(c) to an anti®-1-chaininT".

Finally observe that i’ U {A < B} contains an anti-1-
chain then this anti-1-chain is already contained in. It
is easy to check that this settles all remaining cases.O



Remark 3.6 To obtain a calculus fon-valued Gdel logic
one only has to add tRG, the axiom

Al <11A2 |A2 <]2A3 | |A[ <]lAl+1
where<; = < for atleastn ¢, withi € {1,...1+ 1}.

Remark 3.7 As pointed out already in [5], different forms
of cuts are admissible iRG.,. Focusing on(cut. ) is
motivated by the fact that it allows to simulate other forms
of cut straightforwardly. E.g., the followingansitivity-cut

A<B|H B<C|H
A<C|H

(tr-cut.)

Replacement of compound axioms by atomic ones
(Lemma 4.2).

Reduction of cuts involving compound formulas
(Lemmas 4.4 and 4.5).

Moving atomic cuts up to atomic sequents
(Lemma 4.6).

4. Elimination of cuts involving only axioms
(Lemma 4.7).

Lemma 4.2 In RG,, non-atomic axioms are derivable
from atomic axioms.

can be derived from a 3-component-cycle by applying Proof: By induction on the structure of formulas. The in-

(cut. > ) twice in the following way:
C<B|B<A|A<C B<C|H
B<A|A<C|H
A<CI|H

A<B|H

Similar admissible rules involving instead of< can be
treated analogously. Most interestingly, (cyt) also al-
lows to derive a version of Avronc@mmunication ruleRe-
call that this rule was introduced in [2] to define a hyperse-

duction step is immediate in the case of conjunctive and
disjunctive formulas. Let us consider implicative formaila
As an example, observe that a non-atomic cycle of the form

A1<]nAn||A2§P|P<AZ,1||A2§A1

whereP = B D (C, can be derived from two cycles involv-
ing B andC, as follows:

BSC‘C<B A1<]nAn‘...‘Ai§0|C<Ai,1|...‘A2§A1

guent calculus fofi, based on Gentzen’s sequent calculus
for intuitionistic logic. Indeed, consider the rule
A<B|H C<D|H
A<D|C<BI|H

(comm)

It can be derived from a 4-component-cycle by applying
(cut. > ) twice in the following way:
A<B|H B<A|ALD|D<C|C<B
A<D|D<C|C<B|H
A<D|C<B|H

C<D|H

A different type of admissible rule, related to cut, is the so
called Takeuti-Titani rule (see [12]), which expresses the
density of the set of truth values:

F<p|p<G|H
F<G|H

(tt)

wherep is a propositional variable not occurring in the up-
per sequent. It is interesting to observe tfi@) cannot be
derived inRG, since — in contrast t¢cut. /> ) and the
other rules ofRG,, — (¢t) is not strongly sound, e.g., in
finite valued @del logics.

4. Cut-Elimination

Theorem 4.1 Every derivation of a sequerff in RG
can be stepwise transformed into a cut-free derivatioH of

The proof of Theorem 4.1 consists of four parts:

AlﬂnAn|...‘B§C‘Ai§C|P<Ai,1‘...‘AQSAl
A1<]nAn|...‘Ai§P|P<Ai_1‘...|A2§A1

O

A derivationd (in RG,) is considered, as usual, as an up-
ward rooted tree of sequents generated from subtrees by ap-
plying inference rules. This allows for the following defini
tions:

Definition 4.3 Thelength|d| of d is the maximal number of
sequents occurring on any branchdf

Thecomplexity of a cuts the number of connectives oc-
curring in a cut-component of it plus A cut of complexity
1is calledatomic

By p(d) we denote the maximal complexity of cutgin

If dis a derivation ofH{ we writed - H.

Lemma 4.4 (Inversion Lemma) If d is a derivation in
RGx of Ao BQC | HorC < Ao B | H, where

o € {A,V,D}and« € {<, <}, then one can find a deriva-
tion d; of a sequent that is the instance of the premise (or
derivationsd; andd, of sequents that are the instances of
the premises) of the rule for introducing o B such that
p(d;) < p(d), fori=1,2.

Proof: By Lemma 4.2 we may assume that all the axioms
in d are atomic. The proof proceeds by induction|dh
Cases are distinguished according to the form of the indi-
cated component of the last sequent. As an example we
illustrate the casé - (A D B) < C' | H in detalil.



Letd - (A D B) < C | H then we have to find a
derivationd; of 1 < C' | B < A | H and a derivatiom, of
B < C'| H werep(d;) < p(d), fori = 1,2. Let R be the
last inference inl. Three possibilities arise:

(1) Risalogical inference.

(1.1) The indicated occurrence df O B is the prin-
cipal formula of R. Thend; andd, are obtained
as the two immediate sub-derivationsbf

(1.2) The principal formula of? is not the indicated
occurrence ofA O B. Suppose, e.g., that =
C1 ACy andd ends in a ruléA: <:r) as follows

(ADB)<Ci|H
(ADB) <

(ADB)<Cy | H
(CyANC) | H

By the induction hypothesis, we obtain the four
proofse; 1< C; | B< A|Handf; F B <

C; | H fori = 1,2, with the required properties.
Clearly,(A: <:7) can be applied te; and f; (e
and f,) to obtaind; (ds).

The case in which the principal formula &foc-
curs in# is handled analogously.

(2) Ris (EW).

(2.1) R introduces the indicated component. Thin
is obtained by adding the components. C' and
B < Ato the premise oR, using(EW) twice.
Similarly for ds.

(2.2) R introduces a component 6{. We apply the
induction hypothesis to the premise®f d; and
d, are then obtained by applyif{d ).

(3) Ris (cut./>). Analogous to case (1.2).

The cases for the connectives are similar. O

Lemma 4.5 (Reduction Lemma)Letd + H be a deriva-
tion in RG ending in a cut of maximal complexity with
a cut-formulad o B, (o € {A,V,D}). Then one can find
a derivationd’ of # where this cut is replaced by cuts in-
volving as cut formulas only, B, 0, or 1; thus ind’ the
number of cuts with complexipfd) is strictly smaller than
in d; moreoverp(d') < p(d).

Proof: The proof proceeds by cases, according to the form
of the cut-component. We illustrate one case in detail. Sup-

posed ends with
H|C<(ADB H|(ADB)LC
C<UDB) HIUDDC gy
then we apply the Inversion Lemma to obtain derivations
A<LB|C< B|7—L,d2|—0<1|7{,d3|-1§0|

B < A|H, andds - B < C' | H, wherep(d;) < p(d),

1 < i < 4. These can be joint to the required derivatifin

of A as follows:

C<1|H 1<C|B<A|H
B<A|H

A<B|C<B|H
C<B|H

B<C|H

H

The other cases are similar. O

Lemma4.6 Letd - #H be a derivation inRG,, from
atomic axioms whose last inference is an atomic cut. Then
one can find a derivatior’ of , with p(d") < p(d), where
this cut is replaced by cuts applied to atomic sequents.

Proof: The proof proceeds by induction on the number of
connectives irt{ and applying Lemma 4.4. |

Lemma 4.7 The conclusion of every cut between two ax-
ioms contains an axiom.

Proof: The proof proceeds by cases according to the types
of axioms involved. Let:; and¥, be the two premises of
the cut andT its conclusion. The following table gives the
type of axiom contained ifil for all 16 cases:

[Z\% | ¢ [o[1 ][ o1 |
(o c 0 1 0,1,o0r0-1
0 0 0 | 0-1 0-1
1 1 0-1 1 0-1
0-1 0,1,o0r0-1 | 0-1 | 0-1 —

We present two cases in detalil.

e The entry c in the c-column of the c row is to be read as
follows: If both ¥y andX:; are cycles theil contains
acycle.

We illustrate one subcase. Let

Si = Ar<nAp | oo | Ag gt Ap_y || Ay < Ay

where<; € {<,<}and

Yo =B1 <, By |...| B3 <y By | By < By,
where<} € {<,<}. If A;, = By and4;_, = B> and
g—1 = < then we can cut upon the underlined com-
ponentsand obtaili = A; <1, A, | ... | Ag41 <Ag |
Ap 1 <1 Ao | | Ay < Ay |Bl<];an | |

Bs <1I2 Bs.

IT is easily recognized as a cycle by ordering its
components according to the following sequence
of its left hand formulas: A1, A,,, An—1, ..., Ax[=
Bl]) B’m,Bmfl, s B3,B2 [E Akfl],Ak72 sy A2-



e The entry0-1 in the 0-column of thel-row says that
if 31 is a0-chain andX, a 1-chain thenll contains a
0-1-chain. E.g., let

(3]

A. Avron. The method of hypersequents in the proof
theory of propositional nonclassical logics. llngic:

from Foundations to Applications, European Logic
Colloquium pages 1-32. Oxford Science Publica-

U1 =0< A4, ... [A3 <Ay [ A < A tions. Clarendon Press. Oxford, 1996.
and [4] A. Avron. A tableau system for Godel-Dummett
logic based on a hypersequential calculus. Alrto-
Yo=Bn<Bn_1]|...|Bx<Bp_1]|...| B <1. mated Reasoning with Tableaux and Related Methods

(Tableaux’2000) number 1847 in Lectures Notes in
If A = By, andA; = B then we can cut upon Artificial Intelligence, pages 98—112, 2000.
the underlined components. The conclusibrcon-

tains the sequent [5] M. Baaz and C. Fermdller. Analytic calculi for pro-
jective logics. InAutomated Reasoning with Tableaux
and Related Methods (Tableaux’9®ectures Notes

in Artificial Intelligence, vol. 1617, pages 36-51,

1999.

0<An|...|A3<A2|A2<Bk,2|...|Bl<1
which is a0-1-chain.

(6]

M. Dummett. A propositional logic with denumerable
matrix. J. of Symbolic Logic24:96-107, 1959.

e The entry =" in the last column of the last row asserts
that there can be no cut between t«@-chains. O

[7]1 J.M. Dunn and R. K. Meyer. Algebraic completeness
results for dummett'dc and its extensionsZ. Math.

Logik Grundlagen Math17:225-230, 1971.

Proof of Theorem 4.1

Letd - #H. The transformation of into a cut-free deriva-
tion from atomic axioms proceeds in 4 steps:

[8] R. Dyckhoff. A deterministic terminating sequent cal-
culus for Godel Dummett logicLogic Journal of the

IGPL, 7:319-326, 1999.

1. Apply Lemma 4.2 to obtaid’ + H, where all axioms
in d’ are atomic.

2. Apply the Reduction Lemma (Lemma 4.5) to a sub-
derivation ofd’ that ends with a cut of maximal com-
plexity. Repeat this step until all cuts are atomic.

9]

K. Godel. Zum intuitionistischen aussagenkalkul.
Anz. Akad. Wiss. Wie69:65-66, 1932.

[10] P. Hajek. Metamathematics of Fuzzy Logi&luwer,

3. Apply Lemma 4.6 to obtain a derivatie¥ in which 1998.

cuts are only applied to atomic sequents.

[11] O. Sonobe. A Gentzen-type formulation of some in-
termediate propositional logicsl. of Tsuda College
7:7-14, 1975.

4. Observe thatEWW) and (cut. /> ) are the only infer-
ence rules that can occur in a sub-derivationothat
ends in a cut. Led* be such a sub-derivation of maxi-
mal length. Lemma 4.7 implies that the last sequent [12] G. Takeuti and T. Titani. Intuitionistic fuzzy logic én
of d* contains an axiom. We therefore can replace intuitionistic fuzzy set theory.J. of Symbolic Logic
d* by this axiom, possibly followed by applications 49:851-866, 1984.
of (EW'). This is repeated until all cuts have been

removed - [13] A. Visser. On the completeness principle: a study of

provability in heyting’s arithmetic. Annals of Math.
Logic, 22:263—-295, 1982.
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