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Abstract

There is no established formal framework for expert systemsbased on weighted IF-
THEN rules. We discuss three mathematical models that have been recently proposed
by the authors for CADIAG-2—a well-known system of this kind.The three frame-
works are based on fuzzy logics, probability theory and possibilistic logic, respectively.
CADIAG-2 is used here as a case study to evaluate these frameworks. We point out
their use, advantages and disadvantages. In addition, the described models provide
insight into various aspects of CADIAG-2.
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1. Introduction

Medical expert systems are intended to facilitate the clinical personnel’s daily work
by deriving useful information from patient data in an automated way. The range of
their applicability is wide. Their original and still typical task is to suggest a patient’s
possible diagnoses on the basis of signs, findings, test results and symptoms.

The expert systems of the CADIAG family (where “CADIAG” abbreviates “Com-
puter-Assisted DIAGnosis”) are well-known examples alongthis line. These systems
provide decision support in several fields of internal medicine. They have been devel-
oped since the early 80’s under the supervision of K.-P. Adlassnig (Medical Univer-
sity of Vienna). In a first version, called CADIAG-1, relationships were formulated
as IF-THEN rules and inferences were performed according toclassical (two-valued)
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Picado Muĩno),Thomas.Vetterlein@jku.at (Thomas Vetterlein),m_s_elzekey@hotmail.com
(Moataz El-Zekey)

Preprint submitted to Elsevier March 7, 2013



propositional logic [AKLGG]. Each rule had the form of an implication; for instance,
a rule could express the fact that a particular pattern of signs and symptoms implies the
presence of a disease.

However, the information available to physicians about a patient and about medical
relationships is in general not fully determinate. To process information of a more
general type, the successor system CADIAG-2 was designed tohandle graded inputs
and weighted rules [AdKo, AKS, AKSEG, AKSG, LAK]. The rules of CADIAG-2 are
syntactically similar to those of the preceding system. However, a weight is associated
with each IF-THEN rule, telling to which degree the rule is applicable. Consequently,
CADIAG-2 can deal not only with sharp correlations, but alsowith those that are not so
clear. Moreover, medical entities are assigned truth values that can vary continuously
between the real numbers 0 and 1 rather than being limited to asimple “false” (i.e. 0) or
“true” (i.e. 1). In particular, the system can deal not only with the presence or absence
of a symptom, but also with borderline cases. Similarly, notonly the clear certainty or
exclusion of a diagnose is expressible, but also restrictedcertainty.

CADIAG-2 consists of a knowledge base and an inference engine. On the basis of
initial information about a patient in the form of symptoms,signs, present diseases or
any other kind of facts, CADIAG-2’s inference engine applies successively the rules in
the knowledge base and outputs a weighted list of possible diseases.

Although CADIAG-2 is designed in a transparent way and its overall accuracy,
compared with the actual physicians’ diagnoses, is high according to [AKSEG], there
is no unique way to explain the meaning of the numerical weights associated to the
generated diseases. Furthermore the question why these degrees arise in the way they
do is open. A critical discussion can be found, e.g., in [DHN]. In fact, the method
according to which weights associated to signs, symptoms, or diseases are to be treated
depends on the tricky question which formal framework is appropriate for CADIAG-2
or, more generally, for expert systems based on weighted IF-THEN rules.

By a formal framework we mean an inference system based on clear principles in
line with the ideas upon which the system is based. Only then,a precise understanding
of its inferential mechanism becomes possible. Furthermore, a well-defined framework
is a prerequisite for the possibility of checking whether the rules are free of contradic-
tion (that is, whether they areconsistent) and, provided they are not so, for possible
repair strategies. Still another aspect concerns possibleextensions or modifications of
the knowledge base; the representation of the medical knowledge might be improved.
Furthermore we might gain insights into the portability of the inference engine of the
system; we recall in this connection the unexpected failureof the attempt to transfer
the inferential mechanism of MYCIN—the forefather of all expert systems—to other
areas [KrNg].

Many papers deal with foundational aspects of expert systems which, like CADIAG-
2, process graded inputs and are based on weighted IF-THEN rules applied from symp-
toms to diseases. However, to establish a formal framework appropriate for CADIAG-2
turns out to be tricky. Let us mention, for instance, the notable work of J. Yen [Yen]
using the Dempster-Shafer theory of evidence. Yen even directly refers to CADIAG-
2; he uses a modified version of its knowledge base. Yen’s expert system GERTIS is
based on the idea to consider the weight of symptoms as beliefand to use the diseases
for the hypothesis space. The inference is not in accordancewith the one of CADIAG-
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2, important aspects not being taken into account (this actually was not Yen’s aim). In
fact, it is highly questionable to interpret the inference of CADIAG-2 in the framework
of Dempster and Shafer’s theory.

We conclude that there is no established formal framework for CADIAG-2 or re-
lated systems. This is a disadvantage indicated, e.g., in [DHN] as an open problem
together with the question “what are the weights for diseases calculated by the sys-
tem?”. Based on the progress of recent years in the field of knowledge representation,
we might, however, now have better chances to overcome the conceptual difficulties.

In this paper we take the system CADIAG-2 as a case study and discuss three for-
mal frameworks recently introduced in the literature. We point out their use, advantages
and disadvantages, and we identify which aspects have been worked on with success
and which aspects remain a challenge.

CADIAG-2 and similar systems handle various types of degrees. Degrees are asso-
ciated to symptoms to account for borderline cases, degreesare associated to diseases
to account for graded certainty and degrees are associated to rules to account for non-
strict relationships between medical facts. The three formal approaches we deal with
can be distinguished by the way in which these degrees are understood and formally
treated. In fact, each approach interprets them in a specificway and provides some
insight into CADIAG-2.

The first approach discussed here (Section 3) stresses exclusively the aspect of
vagueness. Indeed, CADIAG-2 is often viewed as a “fuzzy expert system”, hence it
seems natural to identify the inference engine of CADIAG-2 with a particular fuzzy
logic in the sense of [Haj].

The second approach (Section 4) stresses the aspect of uncertainty, an aspect that
is obviously involved in any prevision process. We interpret here CADIAG-2 prob-
abilistically, motivated by the fact that the weights of theCADIAG-2 rules are often
interpreted in accordance with probability theory or generalised versions of it.

The two interpretations above were successfully used for checking the consistency
of the system’s rules. The checks, described in [CiRu, KPP],allowed the discovery of
various errors in the knowledge representation of the rulesof CADIAG-2 and also led
to concrete proposals on how to measure and repair the inconsistencies [Pic2].

The third approach (Section 5) is the only one which takes both vagueness and
uncertainty into account within one single framework. The approach is based on a new
logic, recently introduced in [ZeGo], which treats uncertainty along the line of Dubois
and Prade’s possibilistic logic.

In a concluding section (Section 6) we summarise achievements and open issues.
We comment on the question how CADIAG-2 and related systems can profit from these
formal frameworks and in which respects further efforts are still desirable.

2. A short introduction to CADIAG-2

In this section we briefly introduce the medical expert system CADIAG-2.
CADIAG-2 consists of a knowledge base and an inference engine. The knowledge

base consists of a collection of weighted IF-THEN rules. Therules are based on causal,
statistical, definitional or occasionally heuristical expert knowledge about the respec-
tive medical entities. They were designed manually; in thisrespect, the expert systems
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of the CADIAG family are distinguished from approaches based on an automatic con-
struction of the knowledge base, as proposed, e.g., in [BAB].

The task of the inference engine is to derive information from provided input data
by means of the rules contained in the knowledge base. As an input, symptoms, signs,
present diseases, or any other kind of facts about a patient,all optionally weighted by
means of degrees, are accepted. The output of a run of CADIAG-2 is a weighted list of
possible diagnoses for this patient.

A structural operational semantics for CADIAG-2 was introduced in [CiVe]. The
resulting calculus, calledCadL (“Cadiag Logic”), conveniently describes the mode
of operation of CADIAG-2. Accordingly, in this paper we identify the CADIAG-2
inference engine withCadL. However, we will stress the interpretatory aspects and
stay at a semiformal level; we refer to [CiVe] for full details concerningCadL.

We start with two finite sets of symbols referring to medical entities: the set S of
variablesσ1, σ2, . . . that denote a patient’s signs, findings, test results or symptoms
(which we will commonly refer to assymptoms) and the set D of variablesδ1, δ2, . . .

that refer to diseases and therapies (to which we will often refer asdiagnoses). We will
use the symbolsϕ, χ, ψ to denote either kind of variable. Furthermore, thepropositions
of CadL, indicated byα, β, γ, are built up from the variables by means of∧ (“and”), ∨
(“or”), and∼(“not”).

In CadL, a pair (α, t), whereα is a proposition andt is an element of the real unit
interval [0,1], is called agraded proposition. Let us explain the intended meaning of
graded propositions by examples.

Example 2.1. Assume thatσ denotes the property “having fever”. This is a vague
property; that is, not under all circumstances it is appropriate to say that the patient has
fever or the patient does not have fever; there are borderline cases. If the patient’s body
temperature is above, say, 38.5◦C, s/he has clearly fever, and this fact is expressed by
(σ,1). If the patient’s temperature is below, say 37.5◦C, s/he has no fever, expressible
by (σ,0). Any temperature in between 37.5◦C and 38.5◦C is a borderline case of fever.
We choose in these cases a value between 0 and 1. For instance,a temperature of
37.8◦C may result in the expression (σ,0.3).

Example 2.2. Let δ denote a disease. Then (δ, c) is the statement that we are certain
about the presence ofδ to the degreec. In particular, (δ,1) means full certainty, and the
smallerc is, the less certain we are thatδ is present. Furthermore,c = 0 plays an extra
role. (δ,0) is a statement of full certainty just like (δ,1), but this time about the absence
of δ.

The input of a run of CADIAG-2 is a set of medical entities together with a weight.
We represent an input inCadL by a collection of graded propositions:

(σ1, t1), . . . , (σk, tk), (δ1, c1), . . . , (δl , cl).

which expresses the available information about a patient.
We now turn to the knowledge base of CADIAG-2 (KB for short). Each rule con-

tained in the KB represents a relationship between a patternof medical entities on the
one hand and a single medical entity on the other hand. The former is calledantecedent
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and the latterconsequent. Each rule is furthermore endowed with a weight, which is a
numberd ∈ (0,1]. Accordingly, a rule is expressed inCadL by a graded implication be-
tween a possibly compound proposition and a single variable, possibly negated. Rules
representing a relationship between two (possibly negated) variables are calledbinary,
whereas rules representing a relationship between a possibly complex proposition and
a variable are calledcompound.

There are three types of rules. A graded implication of the form

(c) (α→ ϕ, d),

whered > 0, represents a rule of type “confirming to the degreed”, or “(c)” for short.
An example, taken from CADIAG-2’KB is the following binary rule:

IF strongly increased number of urinary proteines
THEN systemic lupus erythematosus
with the degreed = 0.2.

A graded implication of the form

(ao) (∼ϕ→ ∼ψ, 1),

whereϕ andψ are variables, is of type “always occurring”, or “(ao)” for short. It
formalises the fact that ifϕ is not present in the patient thenψ is not present either.

The following binary rule is of type (ao):

IF NOT negative Waaler-Rose test
THEN NOTJuvenile idiopathic arthritis

(seronegative), polyarticular form

Finally, a graded implication of the form

(me) (ϕ→ ∼ψ, 1),

whereϕ andψ are again variables, is of type “mutually exclusive”, or “(me)” for short.
It expresses the fact that ifϕ is present thenψ is fully excluded.

For example

IF lupus erythematodes cells
THEN NOTMorbus Behçet

As our last step in this section, we have to explain how CADIAG-2 infers informa-
tion from a given input by means of the rules contained in the knowledge base. The in-
ference rules ofCadL can be divided into two groups: the evaluation and manipulation
rules. The former serve to determine the value associated toa compound proposition
from the values of the variables being given. The manipulation rules mirror the three
types of rules in the KB of CADIAG-2.
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Below, the operations̄∧ , ∨̄ , ∼̄ are applied to values from [0,1] and denote the min-
imum, maximum and standard negation (i.e.x 7→ 1− x) respectively.

Theevaluation rulesare

(∧1)
(α, s) (β, t)
(α ∧ β, s∧̄ t)

(∧2)
(α,0)

(α ∧ β,0)
(∧3)

(β,0)
(α ∧ β,0)

(∨1)
(α, s) (β, t)
(α ∨ β, s∨̄ t)

(∨2)
(α, r)

(α ∨ β, r)
(∨3)

(β, r)
(α ∨ β, r)

(∼)
(α, t)

(∼α, ∼̄t)

for any propositionα, β of CadL ands, t ∈ [0,1], r ∈ (0,1].
Themanipulation rulesare

(c)
(α→ ϕ, d) (α, t)

(ϕ,d ∧̄ t)
whered, t > 0

(me)
(ψ→ ∼ϕ, 1) (ψ,1)

(ϕ,0)
(ao)

(∼ψ→ ∼ϕ, 1) (ψ,0)
(ϕ,0)

for anyα, ϕ, ψ ∈ F such thatϕ andψ are atomic.
A theory T of CadL is a set of graded propositions and graded implications.

Clearly, the graded propositions contained in a theory describe the information known
about a patient and the graded implications represent the rules in the KB of CADIAG-2.
A run of CADIAG-2 corresponds to an inference made inCadL fromT .

For each diseaseδ, the relevant question is whether from the given theory one
can infer (δ, c) by means of the rules inCadL, for somec (i.e., whetherCadL proves
(δ, c)). In fact, it might be possible thatCadL proved both (δ, c) and (δ, c′) for somec′

distinct fromc. In this case only the best result is of interest, where “best” refers to the
following definition.

Definition 2.3. Let c, c′ ∈ [0,1]. We say thatc is betterthanc′ (in symbolsc < c′) if
eitherc ≥ c′ > 0 or c = 0 andc′ , 1. CadL proves (δ, c) optimally from a theoryT if
CadL proves (δ, c) andc < c′ for all c′ such thatCadL proves (δ, c′).

The result of a run of CADIAG-2 is a set of graded diseases. A graded disease (δ, c)
appears in this list exactly ifCadL optimally proves (δ, c) fromT .

We note that it may be the case that both (δ,0) and (δ,1) are provable. The CADIAG-
2 inference engine considers this situation as an error causing the program to quit. Here,
we assume that the theoryT does not prove both (α,0) and (α,1) for any proposition
α.

We conclude by providing an example of a short inference doneby CADIAG-2.

Example 2.4. Assume that the following is known about a patient:
σ1: “run-in” pain ; σ2: prior osteotomy of a joint(“Run-in” pain means pain when

taking the first steps in the morning or after resting.)
Consider furthermore the diseaseδ: Primary osteoarthritis.

The KB of CADIAG-2 contains the following two rules:
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• IF σ1 THEN δ with the degree 0.4.

• IF σ2 THEN δ with the degree 0.2.

All these facts are expressed by a theory ofCadL as follows:

(σ1,1), (σ2,1), (σ1→ δ, 0.4) (σ2→ δ, 0.2). (1)

Using the (c) manipulation rule,CadL proves (δ,0.4) as well as (δ,0.2). Conse-
quently,CadL proves (δ,0.4) optimally.

The result (δ,0.4) in turn means that there is a good reason to consider the presence
of δ, which is however far from being certain.

Challenges for formal frameworks

A formal framework for CADIAG-2 or similar systems should ideally be able to
provide inferences in the same way the system does, overcomeconceptual difficulties
and preserve the advantages of the system. In particular theresults should be kept
transparent: together with each output, CADIAG-2 providesa chain of arguments,
beginning with the input information and leading step by step to the result.

In the following we will discuss and compare three different approaches, recently
introduced by the authors to formalise CADIAG-2. For each ofthem we will system-
atically check whether

• the formalism can draw the conclusions that CADIAG-2 does;

• the formalism interprets the various types of degrees in an appropriate way and
justifies the inferential mechanism of CADIAG-2;

• the inferences in the formalism are comprehensible, that is, the intended meaning
of each inference rule in terms of medical relationships is clearly understood;

• the formalism gives the possibility of checking the consistency of the rules of
CADIAG-2.

We have specifiedCadL as an operational semantics for CADIAG-2. ThusCadL
will conveniently serve as the reference to which the formalisms presented in the sequel
will be compared.

3. CADIAG-2 and fuzzy logic

Our first approach to providing CADIAG-2 with a theoretical basis leads to the
field which is most often mentioned in connection with this expert system: fuzzy logic.

CADIAG-2 is indeed usually presented as an example of afuzzy expert system; see,
e.g., the monographs [KlFo] and [Zim]. The truth values for apatient’s symptoms in
CADIAG-2 are indeed mainly determined by means of fuzzy sets; 600 fuzzy sets are
predefined in the system. Moreover, the inferential mechanism of CADIAG-2 is close
to Zadeh’s max-min rule [Zad]; cf. [AKSG, DHN].
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We note at this point that calling CADIAG-2 and related systems “fuzzy” expert
systems gives rise to a common misunderstanding. Calling anexpert system “fuzzy”
seems to suggest that the system processes genuinely vague information. It is, on the
one hand, the very aim of CADIAG-2 to take the vagueness of medical information
appropriately into account. On the other hand, however, CADIAG-2 accepts as its
input only information that is crisp. For instance, CADIAG-2 allows to deal with
notions like “having high fever”. But the input for a run of CADIAG-2 is necessarily
a pairing of this information with a truth degree; and the input “having high fever”
together with a realt ∈ [0,1] refers to a precise body temperature and consequently a
crisp information. To deal with (genuinely) vague information and with uncertainty of
vague notions, several approaches exist that are conceptually quite different from those
discussed here; see, e.g., [FGM] and the references given there.

The approach discussed in this section is described in [CiVe]. Fuzzy logics are
understood here in the sense of Hájek [Haj], that is, as t-norm-based many-valued log-
ics. These logics are based on truth degrees taken from the real unit interval [0,1];
furthermore, the conjunction is interpreted by a t-norm andthe implication by the
corresponding residuum.1 Generally speaking, fuzzy logics fit conceptually well to
CADIAG-2. The system uses indeed the same set [0,1] of truth degrees. Furthermore,
fuzzy logics are truth functional; the value of a compound formula is calculated from
its constituents. CADIAG-2 does the same, the conjunction being interpreted by the
Gödel t-norm (i.e. the minimum).

To justify the decision to use fuzzy logic as a framework for CADIAG-2, some care
is nevertheless needed. Degrees appear in CADIAG-2 at threedifferent levels: attached
to symptoms, attached to diseases and attached to rules.

A symptomσ is endowed with the valuet ∈ [0,1] in case that the actual situation
fits to σ to the possibly limited degreet. In this case we have a perfect conceptual
correspondence between the expert system and fuzzy logic.

The cases of diagnoses and rules however are different. The weights express an
uncertainty, not a degree of presence, in these cases. In thepresent approach, how-
ever, all weights are interpreted as degrees of compatibility, not only when attached to
symptoms. In order to justify such an interpretation we argue as follows: letδ denote a
diagnose andc ∈ (0,1]. The statement (δ, c) means that we are confident to the degree
c that a patient suffers fromδ. (δ, c) is the conclusion of an anamnesis and a physical
examination of the patient; based on the known facts,c is the degree to which an expert
is inclined to consider the presence ofδ. Thus, the valuec is the result of a compari-
son; the expert compares his knowledge about the patient to apattern of symptoms that
would clearly imply thatδ is present. In this sense,c is the degree to which the actual
facts arecompatiblewith the conjecture thatδ is present.

A similar, and even more direct, argument applies for the weight of a rule. We
understand (α → δ, d) as the statement thatα fits to the conjecture thatδ is present to
the degreed.

1A t-norm is a commutative, associative, in both arguments monotonically increasing function
∗ : [0,1]2 → [0,1] such that 1∗ x = x for all x ∈ [0,1]. The residuum of∗ is a function⇒∗ : [0,1]2 → [0,1]
wherex⇒∗ y = max{z | x ∗ z≤ y}.
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The use of fuzzy logic may independently be motivated from the close formal rela-
tionship between the logicCadL and those fuzzy logics in whose formulas truth degrees
are used explicitly. Syntactically closely related toCadL, we may mention fuzzy log-
ics with evaluated syntax; see [Pav, NPM, Haj]. Somewhat more expressive than fuzzy
logics with evaluated syntax are those whose language contains truth constants. Fuzzy
logics of this kind have been studied extensively; see, for instance, [EGHN, EGN].

Here, we will choose a logic of the latter kind: a fuzzy logic with rational truth
constants. With this choice, however, a problem arises. In CADIAG-2, a pair (α, t)
means that the degree of presence ofα equalst. In fuzzy logic, however, (α, t) is
reasonably defined as being satisfied if the degree of presence ofα is at least t. Under
the latter interpretation all rules are sound but the rule (∼) for the negation. Indeed,
if t ∈ (0,1] is a lower bound for the truth value ofα then, taking into account the
interpretation of∼ by t 7→ 1− t, we conclude that 1− t is an upper bound of the truth
value of∼ α.

This problem can be overcome. We restrict the notion of proofin CadL in a way
which is not restrictive in practice. We allow the application of the rule (∼) only in
case that the truth value of all occurring variables is actually fixed and not only lower-
bounded.

Definition 3.1. We call a proof inCadL from a theoryT regular if the following con-
dition holds. Let (α, t) be the assumption of a rule (∼), and letϕ be an atom appearing
in α. Then either (ϕ, s) is contained inT for somes ∈ [0,1] or (ϕ, s) is contained in
the proof for somes ∈ {0,1}.

The logicGZL
Our reasoning framework is a logic that we call Gödel-Zadeh logic,GZL for short.

GZL is a fragment of G̈odel logic enriched with standard negation, the operator∆ of
[Baa] and rational truth constants.

The atomic propositionsof GZL are countably many variablesϕ1, ϕ2, . . . as well
as constants̄t for each rational numbert ∈ [0,1]. The lattice propositionsof GZL are
built up from the atomic propositions by means of the binary connectives∧ and∨, the
unary connective∼and the modality∆. A comparing propositionof GZL is a pair of
two lattice propositionsα andβ, denoted byα→ β.

Definition 3.2. A valuation vof GZL maps the lattice propositions to [0,1] as follows:
(i) v(t̄) = t for each rationalt ∈ [0,1], (ii) v(α ∧ β) = v(α) ∧̄v(β), (iii) v(α ∨ β) =
v(α) ∨̄v(β), (iv) v(∼α) = ∼̄v(α), (v) v(∆α) = ∆̄v(α), where ∨̄ , ∼̄, ∧̄ are as in Section 2
and

∆̄t =















1 if t = 1,

0 else
(2)

for t ∈ [0,1]. We say that a valuationv satisfiesa comparing propositionα → β if
v(α) ≤ v(β).

A theory of GZL is a set of comparing propositions. We say that a theoryT se-
mantically impliesa propositionα → β if any valuation satisfying every element ofT
satisfiesα→ β as well.
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How do we useGZL in order to emulate the inference engine of CADIAG-2? We
now describe how an inference inCadL translates toGZL.

Assume a theoryT be given, consisting of graded propositions and graded impli-
cations, coding the input and the rules, respectively. Eachpair (ϕ, t) is translated into
t̄ → ϕ andϕ→ t̄. A rule of type (c) (α→ β, d) is translated intoα ∧ d̄→ β. A rule of
type (me) (ψ→ ∼ϕ, 1) is translated into∆ψ→ ∼ϕ. A rule of type (ao) (∼ψ→ ∼ϕ, 1)
is translated into∆(∼ψ)→ ∼ϕ.

The relationship betweenCadL andGZL can be described as follows.

Theorem 3.3([CiVe]). LetT be the theory ofCadL associated to an input of CADIAG-
2. LetT ′ be the corresponding theory ofGZL. If there is a regular proof of(α, t) from
T in CadL, thenT ′ semantically implies̄t → α if t > 0 and ofα→ 0̄ if t = 0.

To translate inferences inCadL into syntactic proofs ofGZL an adequate proof sys-
tem forGZL was provided in [CiVe]. This uses sequents-of-relations, ageneralisation
of Gentzen’s sequents introduced in [BaFe]. In our context,asequent-of-relationsG is
a multiset of ordered triples

α1 ⊳1 β1 | . . . | αn ⊳n βn,

whereαi andβi are formulas ofGZL and⊳i ∈ {<,≤} for i = 1, . . . ,n.
G is satisfiedby some valuation ofGZL v if v(αi) ⊳i v(βi) for somei; G is valid in

GZL if satisfied by all valuations ofGZL.

Definition 3.4. Axioms and rules ofSeqGZL are the following, whereG is an arbitrary
side sequent-of-relations and⊳, ⊳1, ⊳2 ∈ {<,≤}:

Axioms

α ≤ α
(A1) s̄⊳ t̄

(A2),wheres⊳ t

Logical Rules

G | α ⊳ γ | β ⊳ γ

G | α ∧ β ⊳ γ
(∧⊳)

G | γ ⊳ α G | γ ⊳ β

G | γ ⊳ α ∧ β
(⊳∧)

G | α ⊳ γ G | β ⊳ γ

G | α ∨ β ⊳ γ
(∨⊳)

G | γ ⊳ α | γ ⊳ β

G | γ ⊳ α ∨ β
(⊳∨)

G | ∼β ⊳ α

G | ∼α ⊳ β
(∼⊳)

G | β ⊳ ∼α

G | α ⊳ ∼β
(⊳∼)

G | β ⊳ α

G | ∼α ⊳ ∼β
(∼⊳ ∼)

G | α < 1 | 1 ≤ β
G | ∆α ≤ β

(∆ ≤)
G | α ≤ 0 | 1 ≤ β
G | α ≤ ∆β

(≤ ∆)

G | α < 1 G | 0 < β
G | ∆α < β

(∆ <)
G | α < 1 G | 1 ≤ β

G | α < ∆β
(< ∆)
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Rules for Constants

G | α ⊳ 0.5
G | α ⊳ ∼α

(⊳ 1
2)

G | 0.5 ⊳ α
G | ∼α ⊳ α

( 1
2⊳)

G | α ⊳ 0̄
G | α ⊳ β

(⊳0)
G | 1̄ ⊳ β
G | α ⊳ β

(1⊳)

G | ∼̄t ⊳ α
G | ∼ t̄ ⊳ α

(∼c⊳)
G | α ⊳ ∼̄t
G | α ⊳ ∼ t̄

(⊳∼c)

Structural Rules

G | α ⊳ β | α ⊳ β

G | α ⊳ β
(EC)

G | α ≤ β G | γ ⊳1 δ

G | γ ⊳1 β | α ⊳2 δ
(com)

G

G | α ⊳ β
(EW)

G | α < β G | β ≤ α

G
(cut)

The definition ofproof in SeqGZL is the usual one.

Theorem 3.5([CiVe]). LetT = {α1→ β1, . . . , αn→ βn} be a finite theory ofGZL and
let α → β be a comparing proposition ofGZL. T semantically impliesα → β if and
only if there is a proof inSeqGZL of α ≤ β from {α1 ≤ β1, . . . , αn ≤ βn}.

Notice thatSeqGZL is ananalytic calculusfor GZL, that is, proofs inSeqGZL can
be easily built bottom up as they proceed by stepwise decomposition of the formulas
(sequent-of-relations) to be proved. Recall that analyticcalculi are key for developing
automated reasoning methods (theorem provers).

Corollary 3.6. LetT be the theory ofCadL associated to an input of CADIAG-2. Let
T ′ be the corresponding set of sequents-of-relations. If there is a regular proof of(α, t)
fromT in CadL(cf. Def. 3.1), then there is a proof inSeqGZL of t̄ ≤ α if t > 0 and of
α ≤ 0̄ if t = 0.

The example below shows how to useSeqGZL to emulate the behaviour of CADIAG-
2 and recall the interpretation of the numerical values of CADIAG-2 in the fuzzy logic
approach.

Example 3.7. Let us see how the derivation inCadL shown in Example 2.4 is realised
in SeqGZL. TheCadL theory (1) translates into the following sequents-of-relations of
SeqGZL:

1̄ ≤ σ1, 1̄ ≤ σ2, σ1 ∧ 0.4 ≤ δ σ2 ∧ 0.2 ≤ δ. (3)

From1̄ ≤ σ1, we can derive0.4 ≤ σ1 ∧ 0.4 and then

0.4 ≤ δ. (4)

11



Similarly, we can use the information aboutσ2 to derive0.2 ≤ δ; but this formula
is already implied by (4).

The result (4) means that a truth degree of at least 0.4 is assigned to the presence
of δ, i.e. that (at least) 0.4 is the degree to which, based on the actual facts (3), it is
reasonable to assume thatδ is present.

3.1. Discussion
In order to decide if our formal framework is appropriate forthe expert system

CADIAG-2, we first compare the logicGZL with the original system with regard to
their strength. By Theorem 3.3, we know thatGZL is able to draw all conclusion that
CadL does and therefore to emulate CADIAG-2.

This most important requirement being fulfilled, the primary achievement of our
framework is its conceptual clarity. Our logic is built on solid grounds:GZL is seman-
tically based and rules are such that inferences are correctand complete with respect
to the chosen semantics (Theorem 3.5).

A side effect of this achievement is the following drawback. EndowingCADIAG-2
with a semantically based logic, we inevitably add more interrelations between facts
than used by the original system, which did not care about a semantic reference. In
fact, GZL is strictly stronger thanCadL. As an example, consider a knowledge base
containing the rules (α → β, 1) and (∼α → β, 1). ThenGZL can conclude thatβ has
at least the truth value 0.5, while CadL does not. The example is certainly artificial;
still, there is no criterion known to us to rule out this kind of example. We also do not
know if in practice the additional strength ofGZL would have any impact.

Furthermore, our framework allows a consistent interpretation of the numerical val-
ues processed by the system. All values are interpreted in a uniform way: as degrees
of compatibility. As regards the degrees of presence, that is, the values associated
to symptoms, this choice is satisfying without doubt. As regards the degrees of un-
certainty, that is, the values associated to rules or diagnoses, our choice is admittedly
arguable, but justifiable. Recall our argument: a rule (α → δ, d) expresses that on the
basis ofα, the presence ofδ is suggested to the degreed. The degreed is a degree
of compatibility; d is the degree to which the informationα fits to the conjecture that
δ holds. Further general considerations of this issue can be found in our concluding
Section 6.

Relying on fuzzy logic, we cannot provide a satisfactory justification of the way
truth degrees are calculated. The problematic rule in this respect is the rule (c) and
all we can say is the following. When interpreting all the degrees in the system as
compatibilities, their precise values are less important than their relative order. The
rule (c) is in fuzzy logic known as the generalised (or fuzzy) modus ponens [Ger] and
in its general version, the resulting value is calculated bymeans of a t-norm. The
Gödel (i.e. minimum) t-norm, which we use here, is the only onethat does not involve
any calculation but for which only the relative order of the conjuncts matters. To say
anything more specific in favour of the rule (c) seems hard and might not be possible
at all. For its arbitrariness, fuzzy logic itself has been subjected to criticism since the
time it was invented.

CADIAG-2 provides, together with each output, a chain of arguments, beginning
with the information provided by the user and leading step bystep to the result. Proofs
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in CadL are also largely comprehensible. In contrast, withinSeqGZL, results cannot
be presented in the same smooth way; this advantage of CADIAG-2 is not preserved.
Like in the case of any proof system based on sequent calculi or their variants, proof
rules have a rather technical character, a reasonable translation of which to natural
language is largely impossible. For instance, the relational signs≤, < in SeqGZL just
denote relations between real numbers; the original natureof the implication in a rule
contained in a knowledge base gets inevitably lost.

We summarise that we have endowed CADIAG-2 with a conceptually clear frame-
work, which can well replace the original inference engine.Certainly, progress in one
respect can mean a step back in other respects. The interpretability of proofs in fuzzy
logic is the topic of a foundational debate in which a progress would have a positive
impact for our present application.

Rules Check
As mentioned in the introduction, formal frameworks for rule-based systems may

serve to perform various checks on their rules.
Indeed, an important achievement following from the interpretation of CADIAG-2

within fuzzy logic is the reformulation of the consistency check of its KB as a satisfia-
bility problem in Logic; the actual check was performed in [CiRu] for a large portion of
the rules. In analogy with the approach in [MoAd], where the rules of CADIAG-1 were
translated into formulas of first-order classical logic, CADIAG-2 rules are translated in
[CiRu] into suitable formulas of a first-order fuzzy logic. The use of a first-order frame-
work is motivated by the need to associate medical entities with unary (i.e. monadic)
predicates. For instance, a statement like “the symptomσi is present in a patienta” is
identified with the atomic formulaSi(a), which in turn assumes values in [0,1]. The
use of a fuzzy logic is due to the interpretation of the valuesassigned to compound
medical entities.

As shown in [CiVe] the fuzzy logic that comes closest to the concepts underlying
CADIAG-2 is RGL∼, that is, G̈odel logic extended by Baaz’s∆, truth constants and an
involutive negation (GZL being a fragment ofRGL∼). The translation of CADIAG-2’s
rules was based on the meaning of the connectives inRGL∼ and on thesigma-count
interpretation2 of their weights proposed in [AKS, AKSEG, AKSG]: Given a rule
(α→ β,d), the interpretation ofd amounts to

d =
Σa∈Pv(α(a)) ∧̄v(β(a))
Σa∈Pv(α(a))

, (5)

where P represents a set of patients,v a valuation as in Definition 3.2 and thusv(α(a))
andv(β(a)) the degrees to which the possibly compound entityα and the atomic entity
β apply to patienta ∈ P.

Recall that in fuzzy logics the weights of the rules are interpreted as lower bounds.
Hence two rules assigning different degreessandt to a same diagnosis (with 0< s, t <

2The database used for the creation of the knowledge base of CADIAG-2 did not contain as many patients
as necessary for the calculation of all weights on the basis of (5). Therefore most of the rule weights were
actually estimated by different means, mainly on the basis of physicians’ advices.
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1) are not contradictory. For this reason the truth constants were not considered in the
logic used for the consistency check of [CiRu]:G∼, that is (first-order) G̈odel logic ex-
tended by an involutive negation3. Compound propositions of CADIAG-2 were there-
fore interpreted using the connectives ofG∼. The translation is consistency-preserving:
the non-existence of a valuation for all the translated formulas (that is, of a valuation
assigning the value 1 to all of them) implies errors in the knowledge base.

Though the satisfiability problem (SAT) for the monadic fragment of G∼ is un-
decidable, SAT for the set of formulas ofG∼ formalizing most of the rules in the
KB of CADIAG-2 turned out to be not only decidable, but even decidable within
classical logic. For instance this was the case of formulas corresponding to thebi-
nary rules in the KB of CADIAG-2. For these formulas existing theorem provers
and (counter)model generators for classical first-order logic could therefore be used;
the former detected unsatisfiable sets of formulas (recall that in classical logic a set
formulas is unsatisfiable if and only if its negation is valid), and the well known
(counter)model generatorsMace 4was used to detect the minimal sets of unsatisfi-
able formulas. As a result, 11 minimal groups of inconsistent rules were found. For
instance, the following group:

(a) IFChorea minor
THEN NOTReactive arthritis

(b) IF NOT Reactive arthritis
THEN NOTRheumatic fever

(c) IF Chorea minor
THEN Rheumatic fever
with the degree 0.99.

Indeed from the assumption “Chorea minor”, two almost opposite conclusions, are
derived; the diagnose “Rheumatic fever” is both excluded and confirmed to the degree
0.99, meaning that it is almost sure.

In order to check the consistency of the full knowledge base of CADIAG-2, classi-
cal logic is not enough. Nevertheless the translation of therules as proposed in [CiRu]
still applies and the satisfiability of the resulting formulas ofG∼ was shown in [BCP]
to be decidable (and even NP-complete, as in the case of classical, propositional logic).
A full check could therefore be performed provided that powerful (counter)model gen-
erators are designed forG∼, capable of handling the 20,000 rules of CADIAG-2. Note
however that the majority of the rules in the KB of CADIAG-2 isbinary and a check of
the latter, as done in [CiRu], is therefore very useful. Only81 rules out of 20,000 are
compound. The compound rules contain a complete specification of the rheumatologi-
cal diseases and due to the use in CADIAG-2 of the (derivable)connectives ”at leastn
out ofm” and ”at mostn out ofm”, some of these rules are rather complex (e.g., when
expressed in disjunctive normal form, the antecedents of these rules can contain up to
30.000.000 disjuncts). A check of the full knowledge base ofCADIAG-2 is feasible in
principle but still to be done.

3Baaz’s∆ is also used but it is a derivable operator inG∼.
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4. CADIAG-2 and probability theory

Our second approach towards a formalisation and interpretation of CADIAG-2 in
this paper is based on probability theory. The approach, first presented in [Pic1], is mo-
tivated by the interpretation of the rules of the form (α→ δ,d) in the KB as conditional
probabilistic statements, whereα is the conditioning event,δ is the uncertain event and
d is the probability thatδ is a correct diagnose for the patient given thatα is present in
the patient. This interpretation is also favoured by some literature about CADIAG-2 as
the intended interpretation of the rules of the system, see,e.g., [Adl].

In order to formalise the inference process on probabilistic grounds and analyse its
adequacy with probability theory we need also a suitable probabilistic interpretation of
the graded propositions of the form (σ, t) taken as input by the system. For example,
we can interpret the valuet in (σ, t) as the degree of belief that a medical doctor has in
the truth or presence ofσ in the patient given the evidence supporting it. In this sense
t is interpreted as a probability.

Formally, we will identify a graded statement of the form (σ, t) in the input of the
system with a graded implication of the form (κ → σ, t), whereκ represents the facts
that support the presence ofσ in the patient andt the probability thatσ is present in
the patient givenκ.

The logicCadPL

We describe the systemCadPL, aimed at formalising CADIAG-2’s inference when
restricted to the set of binary rules.

As above, letS andD contain the variables denoting symptoms and diseases, re-
spectively. Furthermore, letκ1, . . . , κn, n ≥ 1, be an additional set of variables that we
shall call thefactual variables; each of it refers to the actual—crisp—fact that gives
rise to the assumption that a particular—possibly vague—symptom is present.

Note that in the present framework, the variables of all three sorts denote crisp
facts. LetP the set of formulas built up from the variables inS, D andK by means
of the Boolean connectives∧,∨,∼. For someα ∈ P, we write |= α to denote classical
validity; for α, β ∈ P, we writeα |= β to denote classical entailment andα ≡ β to
denote classical equivalence.

Definition 4.1. A mappingω : P → [0,1] is called aprobability functiononP if the
following two conditions hold for allα, β ∈ P:

• If |= α thenω(α) = 1.

• If |= ∼(α ∧ β), thenω(α ∨ β) = ω(α) + ω(β).

From Definition 4.1 the standard properties of probability functions on proposi-
tional languages follow (see, e.g., [Par]).

We are now ready to define satisfiability inCadPL. The graded implication (α →
β,d) is satisfiedby the probability functionω onP if ω(α) > 0 and

ω(α ∧ β)
ω(α)

= d.
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If there exists a probability function satisfying (α → β,d) we say that (α → β,d) is
satisfiable.

We continue our description ofCadPL defining the notion of a theory. We note that,
in contrast with the fuzzy logic approach, here we need a distinction between graded
implications representing the initial evidence about a patient and graded implications
representing the system’s rules.

Definition 4.2. A theoryT of CadPL is a pair of the form (Φ,R) characterised as
follows:

• Φ is a finite set of graded implications.

• R = Rc ∪ Rme∪ Rao is a collection of graded implications of type (c), (me) and
(ao) respectively.

Φ is intended to represent the input of a run of the inference engine of CADIAG-2
which, as explained earlier, consists of a collection of graded implications of the form

(κ1→ ϕ1, η1), . . . , (κn→ ϕn, ηn),

whereκ1, . . . are factual variables andϕ1, . . . are either variables or negated variables
from S or D. The set{κ1, ..., κn} ⊂ P constitutes the initial evidence about the patient,
which is propagated along the inference process by the application of the rules of the
system. Furthermore,R represents the binary rules in CADIAG2’s knowledge base.
For what follows, letT = (Φ,R) be a theory ofCadPL.

The systemCadPL is defined by the following rules:

• Reflexivity and valuation rules

(Ref)
(κ → α,d) ∈ Φ
T ⊢ (κ → α,d)

(Neg)
T ⊢ (α→ β,d)

T ⊢ (α→ ∼β,1− d)

(Eq)
α ≡ β T ⊢ (γ → α,d)
T ⊢ (γ → β,d)

• Manipulation rules

(Min I)
T ⊢ (κ → α, c) (α→ β,d) ∈ Rc

T ⊢ (κ → β, c∧̄d)

(Min II)
T ⊢ (κ → α,1) (α→ β,1) ∈ Rme∪ Rao

T ⊢ (κ → β,1)

Within this frame, final outputs of the form (α,d) produced by the inference engine
shall be interpreted as conditionals of the form (κ1 ∧ . . . ∧ κn → α,d), that is, as the
probability ofα given all the medical evidenceκ1, ..., κn available about the patient. In
order to make such interpretation operative and formalise it we need to extendCadPL
by introducing two new inference rules. The first of these rules formalises the maximi-
sation process done by the system in order to yield as output the set of diagnoses along
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with the maximal value generated by it, with respect to the ordering set in Definition
2.3:

(Conj)
T ⊢ (κk1 ∧ . . . ∧ κkl → α, c) T ⊢ (κkl+1 ∧ . . . ∧ κks → α,d)

T ⊢ (κk1 ∧ . . . ∧ κks → α,e)

for {c,d} , {0,1} ande= c if c < d ande= d if d < c.
An additional rule is necessary to produce the desired outcome:

(Exh)
T ⊢ (κk1 ∧ . . . ∧ κkl → α, c) there is nod such thatT ⊢ (κ → α,d)

T ⊢ (κk1 ∧ . . . ∧ κkl ∧ κ → α, c)

This last rule, which we callExhas abbreviation of “exhaustive”, simply states that,
if κ is a piece of evidence that says nothing about the presence ofα in the patient, that is,
if κ andα are probabilistically independent, then the probability of α givenκ1∧ . . .∧ κk

does not change if in addition we consider the piece of evidenceκ.

Theorem 4.3([Pic1]). Let T = (Φ,R) be a theory inCadPL, κ1, . . . , κn the factual
variables occurring in the graded implications inΦ, T ′ the theory ofCadL that cor-
responds toT (i.e., with graded implications inΦ expressed by graded propositions)
andα a proposition.(κ1∧ . . .∧ κn→ α, d) follows maximally fromT in CadPL if and
only ifT ′ proves(α, d) optimally inCadL.

Let us apply the present framework to Example 2.4.

Example 4.4. The theory (1) of Example 2.4 translates to

(κ1→ σ1, 1), (κ2→ σ2, 1), (σ1→ δ, 0.4) (σ2→ δ, 0.2), (6)

whereκ1, κ2 are factual variables, denoting the facts from which we conclude the pres-
ence ofσ1 andσ2, respectively. By (Min I), we derive (κ1→ δ, 0.4) and (κ2→ δ, 0.2),
and by (Conj), we get

(κ1 ∧ κ2→ δ, 0.4). (7)

Thus we conclude that the probability of the presence ofδ in the patient given the
evidenceκ1 ∧ κ2 is 0.4.

4.1. Discussion
The calculusCadPL and the concepts it builds on differ substantially fromGZL and

its underlying fuzzy logic approach. Thus our evaluation ofCadPL comes to results
that are very different from those ofGZL.

Theorem 4.3 shows that the inferences inCadPL are equivalent to those ofCadL.
In contrast withGZL, CadPL is not stronger thanCadL (and therefore of CADIAG-2).
HoweverCadPL takes only binary rules into account4.

4Introducing the evaluation rules inCadPL would greatly modify the framework and, if still operative, it
would be even more further away from probabilistic soundness(notice that except for the negation rule, the
evaluation rules ofCadL are not probabilistically sound).
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As a consequence of being so close to (the binary fragment of)CadL, CadPL is
not sound and complete with respect to probabilistic semantics. In particular, the rules
(Min I) and (Conj) are not based on probability theory and (Exh) assumes probabilistic
independence among propositions that may actually not be so.

In interpretive respects,CadPL scores naturally quite well. Again, numerical val-
ues are interpreted in a uniform way; all the degrees are interpreted probabilistically.
In particular, the degrees of uncertainty are modelled in the most common and best
accepted way. The interpretation of degrees of presence in aprobabilistic framework
involves, on the other hand, some artificiality.

The inference rules inCadPL are chosen in accordance with probability theory to
the extent to which this is possible in order to formalise theinference of CADIAG-2.
Thus, for the probabilistically sound rules, a justification is ensured. The remaining
rules, for instance (Min I) or (Conj), which correspond to the (c) rule ofCadL and to
the maximisation process in CADIAG-2 respectively, are notinspired by probability
theory but taken directly from CADIAG-2. In these cases, thesituation is similar to the
previous approach: a proper justification of the inferential mechanism of CADIAG-2
seems very hard in this framework, if possible at all.

The advantage ofCadL to present traceable results is preserved. This might be
surprising, as interpretability is a serious issue of probability based expert systems.
The reason is, however, clear: The rules ofCadPL are chosen in accordance with
CadL, even where the probabilistic interpretation does not fit.

Summarising, the present approach manages the challenge toapply probability the-
ory to an expert system based on weighted IF-THEN rules. Certain drawbacks are
present but must be considered as unavoidable, provided that we aim at treating uncer-
tainty within the best accepted formalism.

Rules Check
Possibly the main achievement in connection with the probabilistic framework con-

cerns the satisfiability check of thebinary fragment of CADIAG-2’s knowledge base
described in [KPP]. Such a satisfiability check is primarilybased on a probabilistic in-
terpretation of the system’s rules. However, such interpretation is also in keeping with
thesigma-countinterpretation suggested in [AKS, AKSEG, AKSG] (see the formula
(5) in Section 3.1).

In terms of the sigma-count interpretation, satisfiabilityof a certain set of binary
rules in CADIAG-2 means the existence of a valuationv that yields the weights of all
the rules in the set when calculated according to equation (5). It is proved in [KPP] that
such a valuationv existsif and only ifthere exists a probability function that satisfies all
the rules in the set under the natural probabilistic interpretation. Thus, a satisfiability
check of sets of rules of this form based on a probabilistic interpretation of them is
itself a satisfiability check with respect to the sigma-count interpretation.5

5It is worth noting that in our probabilistic check in [KPP] rules of type (me) and (ao) are expressed
as they actually occur in CADIAG-2’s knowledge base: a rule of type (me) of the form (α →∼ β,1) is
expressed as (α → β,0) and a rule of type (ao) of the form (∼ α →∼ β,1) is expressed in its original form,
as the (probabilistically) non-equivalent (β→ α,1).
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[KPP] presents a general methodology for a satisfiability check of sets of rules like
those in the binary fragment of CADIAG-2’s knowledge base and, in case of unsatisfi-
ability, for the detection of all minimal unsatisfiable subsets (i.e, conflicts). Two main
algorithms have been considered for this purpose: a PSAT algorithm and a conflict-
finding algorithm. The PSAT algorithm (i.e., probabilisticsatisfiability algorithm) em-
ployed in [KPP] is based on column generation techniques in linear programming and
the conflict finding algorithm (i.e., the algorithm that, in connection with the previous
one, searches the database in order to identify all conflictsin it) on the hitting set tree
algorithm HST and other techniques that are well known in thefield, see, e.g., [Rei].
In order to make the implementation of such algorithms feasible on large collections
of rules (e.g., CADIAG-2’s binary fragment) modularity techniques are introduced in
[KPP] in order to split the knowledge base into smaller, feasible fragments.

The implementation of the methodology to (a slightly relaxed interpretation of)6

CADIAG-2’s binary rules detected the four types of conflictsbelow:

• Type 1, given by a collection of rules of the form

(α→ β,d), (α→ γ, c), (β→ γ,1),

with d > c. 420 conflicts of this type were found.

• Type 2, given by a set of rules of the form

(α→ β,d), (α→ γ, c), (β→ γ,0),

for c+ d > 1. Of this type 5 conflicts were found.

• Type 3, given by a collection of rules of the form

(α→ γ, c), (β→ γ,1), (α→ β,1),

for c < 1. A single conflict of this type was found.

• Type 4, given by a set of rules of the form

(α→ β, c), (α→ γ,d), (α→ ϑ,e) (β→ γ,0), (β→ ϑ,1), (γ → ϑ,1),

for e< c+ d ≤ 1 andc,d ≤ e. 269 conflicts of this type were found.

Notice that, given the reduction to satisfiability in classical logic of CADIAG-2’s binary
rules in the approach described in Section 3.1, the conflictsdetected in relation to such
approach are contained in the above list.

In addition to the consistency check and the identification of conflicts, inconsis-
tency measures aimed at evaluating and quantifying the amount of inconsistency in
CADIAG-2-like knowledge bases and related repair strategies are also considered in
[KPP] itself and, in more detail, in [Pic2]. The approach to measuring inconsistency

6An interpretation that consists of the replacement of point values liked in (α→ β,d), whenever 0< d <
1, for the interval [d − 0.01,d + 0.01]—see [KPP] for more details.
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in these papers is based on the consideration ofminimal adjustments, with respect to
suitable distance criteria, in the probability degrees of the corresponding propositions
necessary to make the knowledge base consistent.

It turns out that the amount of inconsistency of the binary fragment of CADIAG-
2’s KB is only infinitesimal, despite the large number of conflicts that it contains. For
instance a conflict of any of the types mentioned above can berepairedby replacing 0
(or 1) in any of its rules having this probability value by anyother value strictly greater
than 0 (or any other value strictly smaller than 1, respectively)—for more details see
[KPP].

5. CADIAG-2 and possibilistic logic

The basic requirement that we set for the theoretical framework of a decision sup-
port system is a coherent interpretation of all involved notions. We recall that in case of
the expert system CADIAG-2, the challenge is to treat different types of numerical de-
grees in an appropriate way, although all values are treatedby the system in a uniform
way.

In the approaches discussed so far, values are interpreted in a uniform way. In the
framework based on fuzzy logic, all values are taken as compatibilities; in particular,
the values attached to diagnoses are understood in this way.In the framework based
on probability theory, all values are taken as probabilities; even the values attached to
symptoms are interpreted in this way. The third approach, which we describe below,
takes both aspects into account; it is thus the only approachwhich formalises vagueness
and uncertainty in an independent way. The approach is basedon a logic recently
introduced in [ZeGo].

Let us outline how degrees are treated. The degrees of presence are handled within
the framework of a fuzzy logic, similarly to the approach described in Section 3. In-
deed, the fuzzy logicRGL∼ is used: G̈odel logic enriched with rational truth constants,
the standard negation and the∆ operator [EGHN]. (We note that inRGL∼, ∆ is actually
definable; we still include it in the language for its important role.) The implication is
included as a connective inRGL∼; for this reasonRGL∼ is stronger thanGZL.

The aspect of uncertainty is not, like in the approach described in Section 4, treated
probabilistically. Degrees of uncertainty are understoodas degrees of necessity in the
sense of Dubois and Prade’s possibility theory [DuPr]. For afurther example of the use
of possibilistic logic in medical decision support, we may refer, e.g., to [BCPV].

The logicPGL

The logicPGL combinesRGL∼ with Possibilistic Logic, see [ZeGo] for details.
We start with two sets of variables:S andD. The variablesσ1, . . . ∈ S are called

many-valuedand are used to model the presence of symptoms. The variablesδ1, . . . ∈

D are calledBooleanand are used to model the presence of diseases. Formulas of
PGL are split into two classes: Boolean formulas and N-formulas, where “N” refers to
“necessity”.
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• TheBoolean formulasare built up from the Boolean variables and the constants
⊥,⊤ by means of∧, ∨, and¬. Boolean formulas are denoted by the lower case
Greek lettersα, β, γ.

• An atomicN-formulais a many-valued variable, a constant ¯r for somer ∈ [0,1]∩
Q, or of the form�α, whereα is a Boolean formula. A (general)N-formulais
built up from atomic N-formulas by means of the binary operations∧,→ and the
unary operations∼,∆. N-formulas are denoted by the lower case Greek letters
ζ, η, ϑ.

A model forPGL, called aPG-structure, is a four-tuple

(v,W,e, π),

specified as follows:

• Recall that the many-valued variablesS refer to the symptoms of a patient.v
describes the state of a patient by assigning to eachσ ∈ S a valuev(σ) ∈ [0,1].
v(σ) is meant to be the degree to which the symptom applies to a patient.

• W is a non-empty set, called theset of possible worlds. Eachw ∈W corresponds
to a possible health state of the patient, specified by the presence or absense of
diseases.

• Recall that the Boolean variablesD refer to diseases. The possible health states
of the patient is described bye ∈ W × D → {0,1}. For eachw ∈ W andδ ∈ D,
e(w, δ) is 1 if δ is present atw and it is 0 otherwise. Moreover,e(w, ·) extends to
a classical valuation ofD.

• For eachw ∈ W, π(w) is the degree to which, in the sense of possibility theory,
the agent believesw to be possible; that is,π(w) is the degree to which the agent
is inclined to assume thatw can be the actual world. We requireπ(w) = 1 for at
least one worldw.

Let (v,W,e, π) be a PG-structure. In what follows,∧̄ , ∼̄ denote again the minimum
and standard negation on [0,1]; moreover,→̄ is the residuum associated to∧̄ , that is,

s→̄t =















1 if s≤ t,

t else;

and∆̄ is the evaluation of∆ on [0,1] defined by (2).
Furthermore, for each Boolean formulaα, let [α] denote the set of worlds in which

α holds. PuttingP(A) = maxw∈A π(w) for any A ⊆ W, P is a possibility measure, and
N, defined byN(A) = 1− P(W\A) for A ⊆W, is the corresponding necessity measure.

For each N-formulaζ, its truth value‖ζ‖ is recursively defined as follows:

(i) For a many-valued variableσ, we put‖σ‖ = v(σ)

(ii) For a Boolean formulasα, we put‖�α‖ = N([α])
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(iii) For formulasζ and η, we put ‖ζ ∧ η‖ = ‖ζ‖ ∧̄ ‖η‖, ‖ζ → η‖ = ‖ζ‖ →̄ ‖η‖, and
‖∼ζ‖ = ∼̄ ‖ζ‖, furthermore‖∆(ζ)‖ = ∆̄ ‖ζ‖, and‖r̄‖ = r for eachr ∈ [0,1]Q.

A formula ζ such that‖ζ‖ = 1 is calledsatisfiedin (v,W,e, π).
The meaning of the truth values is as follows.σ being a symptom,‖σ‖ is the

degree to whichσ is present.δ being a disease,‖�(δ)‖ is the degree of certainty that
δ is present, in the sense of possibility theory. The truth degree of compound formulas
are calculated in a truth-functional way, following the semantics of G̈odel logic with
the additional involutive negation, the operator∆, and rational truth constants.

As shown in [ZeGo] a sound and complete Hilbert-style axiomatization for PGL
consists of:

• the axioms and rules of classical propositional logic for Boolean formulas;

• the axioms of G̈odel logic with rational constants, involutive negation, and∆ for
N-formulas;

• the axioms

∼�⊥, �(α→ β)→ (�α→ �β), (�α ∧�β)→ �(α ∧ β)

for Boolean formulasα, β;

• modus ponens and the necessitation rule

α α→ β

β
,

α

�α

for Boolean formulasα, β;

• modus ponens and the∆-necessitation rule

ζ ζ → η

η
,

ζ

∆ζ

for N-formulasζ, η.

The encoding inPGL of the rules of CADIAG-2 and of the initial information about
a patient is easy. Let us first consider the input information. An input (σ, t) is translated
into (σ → t̄) ∧ (t̄ → σ). We express in this way that the truth value ofσ is exactly
t. Furthermore, letδ denote a disease. The input (δ,d), whered > 0, reflects gradual
uncertainty aboutδ and is accordingly translated intōd→ �δ. This expresses that we
are certain to the degree at leastd about the presence ofδ. Similarly, (δ,0) is translated
into�∼δ, which says thatδ can be excluded.

To encode the rules, we have to distinguish subcases according to the entities the
rules apply to.

For the rule (c) we distinguishsymptom-disease rules(the antecedent is a possibly
compound proposition, built up from symptoms and possibly also from diseases, and
the consequent is a disease),disease-disease rules(the antecedent and the consequent
are both diseases) andsymptom-symptom rules(the antecedent and the consequent
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are both symptoms). Notice that weights of disease-diseaserules and of symptom-
symptom rules are always 1.

Let (σ → σ′, 1) be a symptom-symptom rule. The corresponding N-formula is
σ → σ′. In this way we ensure, as intended, that the truth value ofσ′ is at least
as large as the truth value ofσ. A disease-disease rule (δ → δ′, 1) is translated into
�δ → �δ′. In this case we express that the certainty aboutδ′ is at least as large as the
certainty aboutδ. Finally, consider the symptom-disease rule (σ → δ, d). We have to
express the degree to which are certain aboutη is at least the minimum ofd and the
truth degree ofζ, that is,

‖σ‖ ∧̄d ≤ N([δ]). (8)

Consequently, the translation is simplyσ ∧ d̄→ �δ.
For the translation of a rule of type (me), we again have to distinguish cases. Rules

of the form (σ1 → ∼σ2, 1), (σ → ∼δ, 1), (δ → ∼σ, 1), and (δ1 → ∼δ2, 1) are
expressed by the formulas∆σ1 → ∼σ2, ∆σ → �¬δ, ∆�δ → ∼σ, andδ1 → ¬δ2,
respectively.

For rules of type (ao) we proceed similarly. Rules of the form(∼σ1 → ∼σ2, 1),
(∼σ → ∼δ, 1), (∼δ → ∼σ, 1), and (∼δ1 → ∼δ2, 1) are translated into∆∼σ1 →

∼σ2, ∆∼σ→ �¬δ, ∆�¬δ→ ∼σ, and¬δ1→ ¬δ2, respectively.
The mode of operation of CADIAG-2 is precisely reflected byPGL. Indeed, the

truth value of compound N-formulas is determined in a compositional way, just like
in CadL. Furthermore, the manipulation rules translate to inferences inPGL with the
same effect.

Example 5.1. Again, we consider the inference of Example 2.4. The known facts are
this time expressed by the following formulas:

σ1, σ2, σ1 ∧ 0.4→ �δ, σ2 ∧ 0.2→ �δ. (9)

The inference is particularly simple and results in

0.4→ �δ. (10)

The conclusion is that the necessity degree ofδ is at least 0.4; in other words, the
degree to which we are inclined to say thatδ is 0.4.

5.1. Discussion

Like in case of the other two approaches, our first concern about PGL is its strength
compared toCadL. PGL extends a fuzzy logic; thus it is not surprising that this ques-
tion answers similarly to the case of the fuzzy logicGZL. NamelyPGL can reproduce
the inference ofCadL in its full extent. However, like in the case ofGZL, the calculus
is unintendedly stronger than required.

PGL is, like GZL and unlikeCadPL, a calculus sound and complete with respect
to a well-motivated semantics.

The model contains different features to take vagueness and uncertainty into ac-
count. For this reason, the present approach offers particular benefits in interpretive
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respects.PGL distinguishes between two different sorts of degrees and the aspects
of vagueness and uncertainty are treated in different ways. Indeed, symptoms are
formalised by many-valued variables. These variables are assigned the degrees of
presence of the respective symptom, and formulas composed from many-valued vari-
ables are evaluated in a truth-functional way, interpreting the connectives in the way
CADIAG-2 does. Furthermore, diseases are formalised by two-valued variables, cor-
responding to the fact that a disease is simply assumed to be present or not. Finally,
a modality is used to express uncertainty about diseases or their logical combination.
Uncertainty in turn is modelled in accordance with possibility theory. Accordingly,
this is the way how the weights assigned to diseases after a run of CADIAG-2 are to be
understood: as the degree to which an agent is inclined to findthis disease a necessary
consequence from the assumptions.

We may furthermore critically ask how the degrees of presence provided in the
input are related to the degrees of certainty provided in theoutput. The crucial role is
played by the rules (c), which are translated according to the condition (8). It follows
thatPGL processes values just in the same way asCadL. A full justification of the rule
(c) remains open, as in the case of the other two approaches.

We finally ask if proofs are of value for the user of CADIAG-2, provided the latter
is based onPGL rather thanCadL. The situation is analogous toGZL, hence the
answer is negative: results provided by the system cannot beeasily traced back to
the assumptions. In addition, as the only availlable calculus forPGL is Hilbert-style,
derivations are also difficult to find.

Finally, PGL, and possibilistic logic in general, does not deal properlywith the
following situation. Assume thatσ is a symptom that is fully present and that implies
to some degreesd > 0 two mutually exclusive diseasesδ1 andδ2. For instance, consider
the following case, formulated in the language ofCadL:

(σ, 1), (σ→ δ1, 0.8), (σ→ δ2, 0.7) (δ1→ ∼δ2, 1).

In PGL, we can derive0.7 → �(δ1 ∧ δ2) as well as�¬(δ1 ∧ δ2), resulting in the
inconsistency0.7→ 0̄.

We conclude that the present approach is based on a fuzzy logic, thus the major
advantages and disadvantages of our first approach apply here as well. However, the
present approach goes one step further thanGZL. Weights assigned to diseases and
rules are not treated as compatibilities, but as degrees of uncertainty; the main achieve-
ment is the successful combination of both aspects.

Rules Check
In contrast with the approaches based on fuzzy logic and probability theory, the one

based on possibilistic logic does not seem to be suitable forchecking the consistency
of the rules for the formalized system. Indeed the definitionof suitable SAT-solvers or
theorem provers forPGL seem to be beyond the current state of the art, if possible at
all (note here that the only availlable proof system forPGL in [ZeGo] is Hilbert-style,
which is not usable for this purpose).
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6. Conclusion

Although the interest among AI researchers in rule-based expert systems seems to
be lesser today than some years ago, these systems are very popular among computer
scientists and engineers working in various fields. Many such systems are in use and
more are being built.

By processing graded inputs on the basis of weighted IF-THENrules, CADIAG-2
and related systems are indeed very flexible: they can be easily tuned by the addition
or deletion of rules or by a change of their weights. Moreover, despite of their ad-hoc
design, their performance is notable. For example, the overall correctness of proposed
diagnoses for CADIAG-2, compared with the actual diagnosesof physicians, is more
than 80%, according to [AKSEG]. We note that similar resultshold for MYCIN—the
forefather of all rule-based medical expert systems; see, e.g., [BuSh].

As a common problem, we observe that CADIAG-2-like systems are not designed
on the basis of clear principles. Consequently, the interpretation of the numbers dealt
with—in particular the outcoming values—is open. As put in [DHN]: after propagating
a patient’s data through the rules and composing the contributions of the rules and
attaching the result to a diagnosis, the user may ask: “How should I actually understand
this number?”

This is the main point addressed in the present paper. Takingthe system CADIAG-
2 as a specific example, we discussed three mathematical models recently introduced
by the authors in [CiVe, Pic1, ZeGo] to interpret the numbersand the inferential mech-
anism. We compiled the features of the three quite different approaches; we mentioned
advantages and disadvantages and we focused on the questionin which way numerical
values are understood.

We now rise the question: for which reason one of the three frameworks should be
chosen? Recall that our system is based on IF-THEN rules. IF-THEN rules may be
understood in many ways; let us mention two:

(V) The weightc ∈ [0,1] of a rule contained in a medical IF-THEN rule is under-
stood as a degree of compatibility. Thenc is the degree to which the conclusion
fits to the assumptions. We indicate to which degree to which known facts indi-
cate that the unkown fact is true.

(P) The weightc of a rule is understood as a conditional probability. Thenc is under-
stood as a proportion in a long-term run, which can be determined by objective
data or by an expert’s estimation. In the ideal case, we are led to the probability
of an unknown fact.

In case of option (V), we need what could be called a “logic of vagueness”. The
main obstacle for the design of such a logic is well-known: There is no canonical way
to connect truth values that are understood as compatibilities. If some factα fits toβ to
the degreed, and ifα itself holds to the degreet, how should we determine to which
degreeβ holds? Apparently, there are only two possibilities: performing experiments
to test the actual estimation of subjects in such a case; or totest if the system performs
well with a particular choice.
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The fuzzy-logic based approach, discussed in Section 3, follows the lines of option
(V). For the connection of degrees, it makes the choice in accordance with the origi-
nal system CADIAG-2, which was tested to perform well:β is present to the degree
min{d, t}.

Approaches opting for some form of option (V) have been subject to criticism, e.g.,
in [DHN]. The complaints are untenable, however. The authors of [DHN] do accept
the fact that degrees assigned to inputs are degrees of presence; and they expect results
to reflect degrees of certainty. This is not inappropriate; but they inappropriately focus
on a probabilistic interpretation of these degrees. If we start with compatibilities and
process compatibilities, the result cannot be a probability—why should it be? What
we get are compatibilities as well, which in turn can betakenas degrees of certainty,
not probabilities, and just reflect to which degree the present situation provides hints to
something unknown.

Option (P), in contrast, calls for a probabilistic framework. Design choices have
to be made also in this case, but for other reasons. Namely, objective probabilities are
not available in the numbers that would be needed for systemsas large as CADIAG-
2. Furthermore, values provided by CADIAG-2 being interpreted probabilistically, the
rule weights alone do not allow significant inferences.

The probabilistic approach, discussed in Section 4, follows the ideas underlying
option (P). The approach is based on the subjective interpretation of probabilities. Fur-
thermore, to provide sufficient derivational strength without the need of additionaldata,
a variant of the rule (c) is used, which is not based on probability theory but originates
from fuzzy logic.

Both these points show that the conceptual gap between fuzzy-logic based ap-
proach and the probabilistic approaches is not as wide as it could seem at first sight.
What makes the difference is the interpretation of the numerical degrees as probabilities
rather than compatibilities. In this case, well-founded ways to process these values do
exist, and are made use of. Furthermore, in the literature about CADIAG-2, rules are
frequently interpreted according to (5); only the probabilistic interpretation processes
the data accordingly.

Finally, an enhancement of the first approach is offered in the third approach. De-
grees are degrees of compatibility as well, and the above discussion about fuzzy logic
fully applies also here. However, the degrees of compatibility assigned to unkown facts
are taken as degrees of certainty and further processed in the framework of a theory of
uncertainty. As a framework, possibility theory is chosen rather than probability theory.

Besides providing suitable semantics for the system, the approaches based on fuzzy
logic and probability theory are also useful to check the consistency of the system’s
rules. The checks were actually performed in [CiRu, KPP] andallowed the discovery
of various errors in the knowledge representation of the rules of CADIAG-2. The check
based on probability theory turned out to be more powerful (more than 600 conflict
detected) and complete, that is the satisfiability of the setof rules implies the existence
of a model with respect to the sigma-count interpretation. Moreover, it suggested some
reparing strategies. However, the feasibility of this check for CADIAG-2 in particular
is lost when also considering the compound rules. In contrast, the check based on
fuzzy logic can in principle be applied also to compound rules, provided that suitable
(counter)model generators for the considered fuzzy logic (Gödel logic with involutive
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negation, in case of CADIAG-2) are designed.

Though the three mathematical models described in this paper were introduced for
CADIAG-2, they can be used to formalize related systems as well. For instance they
apply to MONI (MONItoring of nosocomial infections) – a successful expert system
recently developed under the supervision of K.-P. Adlassnig [KBBMA]. MONI is cur-
rently used to detect nosocomial infections in intensive care units in one of the largest
hospitals in Europe, the Vienna General Hospital. MONI contains a data base of rules
having the same structure as those in CADIAG-2 and a close inferential mechanism.
Therefore considerations and results similar to those drown for CADIAG-2 can be
inferred. Moreover the approaches based on fuzzy logic and probability theory also
indicate how to perform consistency checks for the rules of MONI.
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