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Abstract

There is no established formal framework for expert systbased on weighted IF-
THEN rules. We discuss three mathematical models that heee tecently proposed
by the authors for CADIAG-2—a well-known system of this kinthe three frame-

works are based on fuzzy logics, probability theory and ipdistic logic, respectively.

CADIAG-2 is used here as a case study to evaluate these frarke@wWe point out

their use, advantages and disadvantages. In addition,eba&ided models provide
insight into various aspects of CADIAG-2.

Keywords: Medical expert systems, t-norm based logics, probabligpty,
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1. Introduction

Medical expert systems are intended to facilitate theadinpersonnel’s daily work
by deriving useful information from patient data in an auébed way. The range of
their applicability is wide. Their original and still typat task is to suggest a patient’s
possible diagnoses on the basis of signs, findings, tedtseswd symptoms.

The expert systems of the CADIAG family (where “CADIAG” alehiates “Com-
puter-Assisted DIAGnosis”) are well-known examples altimg line. These systems
provide decision support in several fields of internal mie@ic They have been devel-
oped since the early 80's under the supervision of K.-P. #afigg (Medical Univer-
sity of Vienna). In a first version, called CADIAG-1, relatiships were formulated
as IF-THEN rules and inferences were performed accordirgisical (two-valued)
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propositional logic [AKLGG]. Each rule had the form of an iligation; for instance,
arule could express the fact that a particular pattern ofssignd symptoms implies the
presence of a disease.

However, the information available to physicians aboutteephaand about medical
relationships is in general not fully determinate. To pescenformation of a more
general type, the successor system CADIAG-2 was designbdridle graded inputs
and weighted rules [AdKo, AKS, AKSEG, AKSG, LAK]. The ruleE@ADIAG-2 are
syntactically similar to those of the preceding system. El\av, a weight is associated
with each IF-THEN rule, telling to which degree the rule ipbgable. Consequently,
CADIAG-2 can deal not only with sharp correlations, but aisth those that are not so
clear. Moreover, medical entities are assigned truth allat can vary continuously
between the real numbers 0 and 1 rather than being limiteditogle “false” (i.e. 0) or
“true” (i.e. 1). In particular, the system can deal not onlghithe presence or absence
of a symptom, but also with borderline cases. Similarly,ardy the clear certainty or
exclusion of a diagnose is expressible, but also restrieinty.

CADIAG-2 consists of a knowledge base and an inference en@m the basis of
initial information about a patient in the form of symptorsgyns, present diseases or
any other kind of facts, CADIAG-2’s inference engine appkeiccessively the rules in
the knowledge base and outputs a weighted list of possib&ades.

Although CADIAG-2 is designed in a transparent way and itsrail accuracy,
compared with the actual physicians’ diagnoses, is higbraieg to [AKSEG], there
iSs no unique way to explain the meaning of the numerical wisigissociated to the
generated diseases. Furthermore the question why thessedegyise in the way they
do is open. A critical discussion can be found, e.g., in [DHN] fact, the method
according to which weights associated to signs, symptontiseases are to be treated
depends on the tricky question which formal framework israppate for CADIAG-2
or, more generally, for expert systems based on weightétHEN rules.

By a formal framework we mean an inference system based an pienciples in
line with the ideas upon which the system is based. Only th@necise understanding
of its inferential mechanism becomes possible. Furtheeewell-defined framework
is a prerequisite for the possibility of checking whethex thles are free of contradic-
tion (that is, whether they areonsistentand, provided they are not so, for possible
repair strategies. Still another aspect concerns possibddmsions or modifications of
the knowledge base; the representation of the medical latugel might be improved.
Furthermore we might gain insights into the portability lo¢ inference engine of the
system; we recall in this connection the unexpected faitiirdne attempt to transfer
the inferential mechanism of MYCIN—the forefather of all expsystems—to other
areas [KrNg].

Many papers deal with foundational aspects of expert systemch, like CADIAG-
2, process graded inputs and are based on weighted IF-THE®applied from symp-
toms to diseases. However, to establish a formal framewapkogriate for CADIAG-2
turns out to be tricky. Let us mention, for instance, the biatavork of J. Yen [Yen]
using the Dempster-Shafer theory of evidence. Yen evewtireefers to CADIAG-

2; he uses a modified version of its knowledge base. Yen'sregpstem GERTIS is
based on the idea to consider the weight of symptoms as laglitfo use the diseases
for the hypothesis space. The inference is not in accordaithahe one of CADIAG-



2, important aspects not being taken into account (thisalgtwas not Yen'’s aim). In
fact, it is highly questionable to interpret the inferenE€ADIAG-2 in the framework
of Dempster and Shafer’s theory.

We conclude that there is no established formal framewarlC#DIAG-2 or re-
lated systems. This is a disadvantage indicated, e.g., HN]Das an open problem
together with the question “what are the weights for diseasdculated by the sys-
tem?”. Based on the progress of recent years in the field oflettye representation,
we might, however, now have better chances to overcome timeptual dificulties.

In this paper we take the system CADIAG-2 as a case study acdsh three for-
mal frameworks recently introduced in the literature. Wmpout their use, advantages
and disadvantages, and we identify which aspects have bed®avon with success
and which aspects remain a challenge.

CADIAG-2 and similar systems handle various types of degrBegrees are asso-
ciated to symptoms to account for borderline cases, degreegssociated to diseases
to account for graded certainty and degrees are assoc@tates to account for non-
strict relationships between medical facts. The three &mpproaches we deal with
can be distinguished by the way in which these degrees arersiodd and formally
treated. In fact, each approach interprets them in a speejcand provides some
insight into CADIAG-2.

The first approach discussed here (Section 3) stressesseetjuthe aspect of
vagueness. Indeed, CADIAG-2 is often viewed as a “fuzzy ex@estem”, hence it
seems natural to identify the inference engine of CADIAG{thva particular fuzzy
logic in the sense of [Haj].

The second approach (Section 4) stresses the aspect ofaingeran aspect that
is obviously involved in any prevision process. We intetgrere CADIAG-2 prob-
abilistically, motivated by the fact that the weights of BADIAG-2 rules are often
interpreted in accordance with probability theory or gefised versions of it.

The two interpretations above were successfully used feckihg the consistency
of the system’s rules. The checks, described in [CiRu, KBIRjywed the discovery of
various errors in the knowledge representation of the ml€ADIAG-2 and also led
to concrete proposals on how to measure and repair the iistensies [Pic2].

The third approach (Section 5) is the only one which take# agueness and
uncertainty into account within one single framework. Thpr@ach is based on a new
logic, recently introduced in [ZeGo], which treats uncenyalong the line of Dubois
and Prade’s possibilistic logic.

In a concluding section (Section 6) we summarise achievesrerd open issues.
We comment on the question how CADIAG-2 and related systemgmfit from these
formal frameworks and in which respects furthéiogs are still desirable.

2. A short introduction to CADIAG-2

In this section we briefly introduce the medical expert sys@ADIAG-2.

CADIAG-2 consists of a knowledge base and an inference engihe knowledge
base consists of a collection of weighted IF-THEN rules. files are based on causal,
statistical, definitional or occasionally heuristical erpknowledge about the respec-
tive medical entities. They were designed manually; in th&pect, the expert systems



of the CADIAG family are distinguished from approaches lobse an automatic con-
struction of the knowledge base, as proposed, e.g., in [BAB]

The task of the inference engine is to derive informatiomfigrovided input data
by means of the rules contained in the knowledge base. Aspan, isymptoms, signs,
present diseases, or any other kind of facts about a patikoptionally weighted by
means of degrees, are accepted. The output of a run of CARIAG: weighted list of
possible diagnoses for this patient.

A structural operational semantics for CADIAG-2 was intnodd in [CiVe]. The
resulting calculus, calle€adL (“Cadiag Logic”), conveniently describes the mode
of operation of CADIAG-2. Accordingly, in this paper we idém the CADIAG-2
inference engine witlCadL. However, we will stress the interpretatory aspects and
stay at a semiformal level; we refer to [CiVe] for full detadoncerningCadL.

We start with two finite sets of symbols referring to mediaatitees: the set S of
variableso1, 0, ... that denote a patient’s signs, findings, test results or symp
(which we will commonly refer to asymptompsand the set D of variable, 6o, . . .
that refer to diseases and therapies (to which we will oftederrasdiagnoses We will
use the symbolg, v, ¢ to denote either kind of variable. Furthermore, pin@positions
of CadL, indicated by, 3, y, are built up from the variables by means/of‘and”), v
(“or), and ~ (“not™).

In CadL, a pair @,t), wherea is a proposition andlis an element of the real unit
interval [Q 1], is called agraded proposition Let us explain the intended meaning of
graded propositions by examples.

Example 2.1. Assume that- denotes the property “having fever”. This is a vague
property; that is, not under all circumstances it is apgdetprto say that the patient has
fever or the patient does not have fever; there are boréechses. If the patient’s body
temperature is above, say,.B8&, ghe has clearly fever, and this fact is expressed by
(0, 1). If the patient’'s temperature is below, say=BT, ghe has no fever, expressible
by (o, 0). Any temperature in between 37C and 385°C is a borderline case of fever.
We choose in these cases a value between 0 and 1. For instateraperature of
37.8°C may result in the expression,(0.3).

Example 2.2. Let § denote a disease. Thef) ) is the statement that we are certain
about the presence 6fo the degree. In particular, §, 1) means full certainty, and the
smallerc s, the less certain we are thais present. Furthermore,= 0 plays an extra
role. (6, 0) is a statement of full certainty just liké, (L), but this time about the absence
of 6.

The input of a run of CADIAG-2 is a set of medical entities tthge with a weight.
We represent an input i@adL by a collection of graded propositions:

(on.t1), ..o (0w t),  (61,€1)s ..., (01, Q).

which expresses the available information about a patient.

We now turn to the knowledge base of CADIAG-2 (KB for shortpdh rule con-
tained in the KB represents a relationship between a patdfemedical entities on the
one hand and a single medical entity on the other hand. Theeius callecantecedent



and the latteconsequentEach rule is furthermore endowed with a weight, which is a
numberd € (0, 1]. Accordingly, a rule is expressed@adL by a graded implication be-
tween a possibly compound proposition and a single variglolesibly negated. Rules
representing a relationship between two (possibly neyatathbles are calledinary,
whereas rules representing a relationship between a ppssimplex proposition and
a variable are calledompound

There are three types of rules. A graded implication of tlenfo

(€) (@— ¢, d),

whered > 0, represents a rule of type “confirming to the degi&eor “(c)” for short.
An example, taken from CADIAG-2'KB is the following binaryle:

IF strongly increased number of urinary proteines
THEN systemic lupus erythematosus
with the degreel = 0.2.

A graded implication of the form

(20) Co =~y 1),

wherep andy are variables, is of type “always occurring”, or “(ao)” fonat. It
formalises the fact that if is not present in the patient thenis not present either.
The following binary rule is of type (ao):

IF NOT negative Waaler-Rose test
THEN NOT Juvenile idiopathic arthritis
(seronegative), polyarticular form

Finally, a graded implication of the form

(me) -~y 1),

wherey andy are again variables, is of type “mutually exclusive”, or gyhfor short.
It expresses the fact thatgfis present thew is fully excluded.
For example

IF lupus erythematodes cells
THEN NOT Morbus Behcet

As our last step in this section, we have to explain how CADIA(fers informa-
tion from a given input by means of the rules contained in th@Kedge base. The in-
ference rules o€adL can be divided into two groups: the evaluation and maniprat
rules. The former serve to determine the value associatacctompound proposition
from the values of the variables being given. The manipattatules mirror the three
types of rules in the KB of CADIAG-2.



Below, the operationsg, v, <~ are applied to values from J@] and denote the min-
imum, maximum and standard negation (ke-> 1 — X) respectively.
Theevaluation rulesare

(0.9 B.1) (@, 0) (8.0)
") argsy "D aago Y Gago
(@,9) B, (a,r) 8.1
" evpsy Y even Y even
(a.t)
) a0

for any propositionw, 8 of CadL ands;t € [0, 1], r € (0, 1].
Themanipulation rulesare

(c) @=¢d (@9 whered, t > 0

(o, dAt)

('ﬁ -~ 1) (l//’ 1)
(#,0)
for anya, ¢,y € F such thatp andy are atomic.

A theory 7 of CadL is a set of graded propositions and graded implications.
Clearly, the graded propositions contained in a theoryritesthe information known
about a patient and the graded implications represent kg inuthe KB of CADIAG-2.

A run of CADIAG-2 corresponds to an inference made&adL from 7.

For each diseasé, the relevant question is whether from the given theory one
can infer ¢, c) by means of the rules i@adL, for somec (i.e., whetheiCadL proves
(6,0)). In fact, it might be possible th&tadL proved both ¢, ¢) and ¢, ¢’) for somec’
distinct fromc. In this case only the best result is of interest, where “re$érs to the
following definition.

(vab — ~, 1) (lrl’9 O)

(me) ©.0)

(20)

Definition 2.3. Letc, ¢ € [0, 1]. We say that is betterthanc’ (in symbolsc 3= ¢) if
eitherc > ¢’ > 0 orc = 0 andc’ # 1. CadL proves §, c) optimallyfrom a theory7 if
CadL proves §, c) andc 3= ¢ for all ¢’ such thatCadL proves §, ).

The result of a run of CADIAG-2 is a set of graded diseases.alled diseas&,(C)
appears in this list exactly €adL optimally proves ¢, c) from 7.

We note that it may be the case that ba@itdf and 6, 1) are provable. The CADIAG-
2 inference engine considers this situation as an errofrggitise program to quit. Here,
we assume that the thedry does not prove bothy( 0) and ¢, 1) for any proposition
a.

We conclude by providing an example of a short inference dgn€ADIAG-2.

Example 2.4. Assume that the following is known about a patient:

o1: “run-in” pain ; o: prior osteotomy of a join¢*Run-in” pain means pain when
taking the first steps in the morning or after resting.)
Consider furthermore the diseasePrimary osteoarthritis

The KB of CADIAG-2 contains the following two rules:



e |F o1 THEN ¢ with the degree @.
e |F o, THEN ¢ with the degree @.

All these facts are expressed by a theorgafiL as follows:

(1), (021), (01— 6 04) (02— 6 02). 1)

Using the (¢) manipulation ruleCadL proves §,0.4) as well as {, 0.2). Conse-
quently,CadL proves §, 0.4) optimally.

The result §,0.4) in turn means that there is a good reason to consider tkenee
of ¢, which is however far from being certain.

Challenges for formal frameworks

A formal framework for CADIAG-2 or similar systems shoulceally be able to
provide inferences in the same way the system does, overconeeptual diiculties
and preserve the advantages of the system. In particulanethdts should be kept
transparent: together with each output, CADIAG-2 provideshain of arguments,
beginning with the input information and leading step bysgtethe result.

In the following we will discuss and compare thre&eient approaches, recently
introduced by the authors to formalise CADIAG-2. For eacltheim we will system-
atically check whether

e the formalism can draw the conclusions that CADIAG-2 does;

e the formalism interprets the various types of degrees inpgmagriate way and
justifies the inferential mechanism of CADIAG-2;

e the inferences in the formalism are comprehensible, thiesntended meaning
of each inference rule in terms of medical relationshipdaarnty understood,;

e the formalism gives the possibility of checking the coresisty of the rules of
CADIAG-2.

We have specifie@€adL as an operational semantics for CADIAG-2. ThZesdL
will conveniently serve as the reference to which the forsmas presented in the sequel
will be compared.

3. CADIAG-2 and fuzzy logic

Our first approach to providing CADIAG-2 with a theoreticaldis leads to the
field which is most often mentioned in connection with thipest system: fuzzy logic.

CADIAG-2 is indeed usually presented as an examplefakay expert systersee,
e.g., the monographs [KIFo] and [Zim]. The truth values fgradient’s symptoms in
CADIAG-2 are indeed mainly determined by means of fuzzy; s fuzzy sets are
predefined in the system. Moreover, the inferential medmarmif CADIAG-2 is close
to Zadeh's max-min rule [Zad]; cf. [AKSG, DHN].



We note at this point that calling CADIAG-2 and related syste'fuzzy” expert
systems gives rise to a common misunderstanding. Callirexpart system “fuzzy”
seems to suggest that the system processes genuinely véguneation. It is, on the
one hand, the very aim of CADIAG-2 to take the vagueness oficaéthformation
appropriately into account. On the other hand, however, 32 accepts as its
input only information that is crisp. For instance, CADIAGallows to deal with
notions like “having high fever”. But the input for a run of ©MG-2 is necessarily
a pairing of this information with a truth degree; and the input “hayinigh fever”
together with a redl € [0, 1] refers to a precise body temperature and consequently a
crisp information. To deal with (genuinely) vague inforimatand with uncertainty of
vague notions, several approaches exist that are condgmiuge different from those
discussed here; see, e.g., [FGM] and the references gieea th

The approach discussed in this section is described in [CiFezzy logics are
understood here in the sense dijek [Haj], that is, as t-norm-based many-valued log-
ics. These logics are based on truth degrees taken from shemé interval [Q1];
furthermore, the conjunction is interpreted by a t-norm #mel implication by the
corresponding residuuf.Generally speaking, fuzzy logics fit conceptually well to
CADIAG-2. The system uses indeed the same sei][6f truth degrees. Furthermore,
fuzzy logics are truth functional; the value of a compoundhfola is calculated from
its constituents. CADIAG-2 does the same, the conjunctieindpinterpreted by the
Godel t-norm (i.e. the minimum).

To justify the decision to use fuzzy logic as a framework f&IAG-2, some care
is nevertheless needed. Degrees appear in CADIAG-2 atdiffeeent levels: attached
to symptoms, attached to diseases and attached to rules.

A symptomo is endowed with the valuee [0, 1] in case that the actual situation
fits to o to the possibly limited degree In this case we have a perfect conceptual
correspondence between the expert system and fuzzy logic.

The cases of diagnoses and rules however dferdnt. The weights express an
uncertainty, not a degree of presence, in these cases. frekent approach, how-
ever, all weights are interpreted as degrees of compa&ikilot only when attached to
symptoms. In order to justify such an interpretation we argsifollows: let denote a
diagnose and < (0, 1]. The statemen®(c) means that we are confident to the degree
c that a patient dtiers froms. (6, €) is the conclusion of an anamnesis and a physical
examination of the patient; based on the known fazisthe degree to which an expert
is inclined to consider the presencesofThus, the value is the result of a compari-
son; the expert compares his knowledge about the patiemgdtiern of symptoms that
would clearly imply thats is present. In this sensejs the degree to which the actual
facts arecompatiblewith the conjecture that is present.

A similar, and even more direct, argument applies for theghteof a rule. We
understandd — ¢, d) as the statement thatfits to the conjecture thatis present to
the degreel.

1A t-norm is a commutative, associative, in both arguments morwaiyiincreasing function
#: [0,1]2 — [0, 1] such that & x = x for all x € [0, 1]. The residuum of is a function=, : [0,1]° — [0, 1]
wherex =, y=maxz| x*z<yj}.



The use of fuzzy logic may independently be motivated froendlose formal rela-

tionship between the logicadL and those fuzzy logics in whose formulas truth degrees

are used explicitly. Syntactically closely relateddadL, we may mention fuzzy log-
ics with evaluated syntax; see [Pav, NPM, Haj]. Somewhaemapressive than fuzzy
logics with evaluated syntax are those whose languageiosritath constants. Fuzzy
logics of this kind have been studied extensively; see fsteince, [EGHN, EGN].

Here, we will choose a logic of the latter kind: a fuzzy logighwrational truth
constants. With this choice, however, a problem arises. ADIBG-2, a pair @,t)
means that the degree of presencexaéqualst. In fuzzy logic, however, ¢, t) is
reasonably defined as being satisfied if the degree of pres#ncis at least t Under
the latter interpretation all rules are sound but the rujef@r the negation. Indeed,
if t € (0,1] is a lower bound for the truth value af then, taking into account the
interpretation of~ by t — 1 —t, we conclude that % t is an upper bound of the truth
value of~ a.

This problem can be overcome. We restrict the notion of pro@adL in a way
which is not restrictive in practice. We allow the applicatiof the rule ¢) only in
case that the truth value of all occurring variables is ditdixed and not only lower-
bounded.

Definition 3.1. We call a proof inCadL from a theory7™ regular if the following con-
dition holds. Let &, t) be the assumption of a rule)( and lety be an atom appearing
in a. Then either ¢, s) is contained ir7~ for somes € [0, 1] or (g, S) is contained in
the proof for somes € {0, 1}.

The logicGZL

Our reasoning framework is a logic that we cabidl-Zadeh logicGZL for short.
GZL is a fragment of @del logic enriched with standard negation, the operatof
[Baa] and rational truth constants.

The atomic proposition®f GZL are countably many variables, ¢, ... as well
as constantsfor each rational numbere [0, 1]. Thelattice propositionsof GZL are
built up from the atomic propositions by means of the binamgrectivesn andv, the
unary connective-and the modalityA. A comparing propositiorof GZL is a pair of
two lattice propositions andg, denoted byr — 8.

Definition 3.2. A valuation vof GZL maps the lattice propositions to, [} as follows:
(i) v(t) = t for each rationat € [0,1], (ii) V(e A B) = V(@) AV(B), (i) V(e vV B) =
V(@) vv(B), (iv) V(~a) = ~v(a), (V) V(Aa) = av(a), wherev, =, » are as in Section 2

and
1 ift=1
I ?)
0 else

fort € [0,1]. We say that a valuation satisfiesa comparing proposition — g if
V(@) < Vv(B).

A theory of GZL is a set of comparing propositions. We say that a th&orge-
mantically impliesa propositionr — g if any valuation satisfying every element of
satisfiesy — g as well.



How do we use5ZL in order to emulate the inference engine of CADIAG-2? We
now describe how an inference@adL translates t@GZL.

Assume a theory™ be given, consisting of graded propositions and gradediimpl
cations, coding the input and the rules, respectively. Eeih(p,t) is translated into
t — ¢ andg — t. A rule of type (c) ¢ — S, d) is translated intaw A d — 8. A rule of
type (me) { — ~¢, 1) is translated intdwy — ~¢. Arule of type (a0) €y — ~¢, 1)
is translated intd\(~¢) — ~¢.

The relationship betweebadlL andGZL can be described as follows.

Theorem 3.3([CiVe]). Let7 be the theory of€adL associated to an input of CADIAG-
2. Let7” be the corresponding theory GIZL. If there is a regular proof ofe, t) from
7 in CadL, then7” semantically implies — a ift > 0and ofa — 0ift = 0.

To translate inferences adL into syntactic proofs o6ZL an adequate proof sys-
tem for GZL was provided in [CiVe]. This uses sequents-of-relatiorge@eralisation
of Gentzen’s sequents introduced in [BaFe]. In our contegéquent-of-relationg is
a multiset of ordered triples

a1 <1 fB1 [ o] an <n PBn,

wherea; andg; are formulas of5ZL and<; € {<,<}fori=1,...,n.
G is satisfiedby some valuation o6ZL v if () < v(B;) for somei; G is valid in
GZL if satisfied by all valuations d&ZL.

Definition 3.4. Axioms and rules 06eqGZL are the following, wherg is an arbitrary
side sequent-of-relations argky, < € {<, <}:

Axioms A
(A1) 1A (A2), wheres <t

a <«

Logical Rules

G| a<y | By Gly<a G| y<p

Glangey ™ Glyeang N
e R e
GToa8 ™ GTard ™ Greasp ™
¢ |§a|<Ala !rfﬁ @s ° lgafaos' AlﬁSﬂ =4
Gla<l G10<p , Gla<l GI1l<p

Gl Aa<p G|l a<AB

10



Rules for Constants

Glas<05 , G|05<a

Qla<~a(2) §I~a<a(2)

Gl a<0 G| 1<8

Gla<p Glawp ™

G| F<a Gla<

G ~tea U Glaet 9

Structural Rules
Gl a<p|asp Gla<B Gly«us

Glap  EO T GiywBlawms M
57%;¢<Ew> g'(“”gg GlB=a

The definition ofproofin SeqGZL is the usual one.

Theorem 3.5([CiVe]). LetT = {a1 — B1,...,an — Bn} be afinite theory o6ZL and
let@ — B be a comparing proposition gZL. 7~ semantically implies — g if and
only if there is a proof irBeqGZL of @ < B from{ay < B1,...,an < Bn}.

Notice thatSeqGZL is ananalytic calculudor GZL, that is, proofs irSeqGZL can
be easily built bottom up as they proceed by stepwise decsitipo of the formulas
(sequent-of-relations) to be proved. Recall that anabgiculi are key for developing
automated reasoning methods (theorem provers).

Corollary 3.6. Let7 be the theory o€adL associated to an input of CADIAG-2. Let
7" be the corresponding set of sequents-of-relations. Itiea regular proof ofe, t)
from7 in CadL(cf. Def. 3.1), then there is a proof BeqGZL of t < e if t > O and of
a<0ift=0.

The example below shows how to UBeqGZL to emulate the behaviour of CADIAG-
2 and recall the interpretation of the numerical values oBIXG-2 in the fuzzy logic
approach.

Example 3.7. Let us see how the derivation @adL shown in Example 2.4 is realised
in SeqGZL. TheCadL theory (1) translates into the following sequents-ofietss of
SeqGZL:

oc1A04<6 0o,AN02<6. (3)

1<o01, 1<o0y,

From1 < o1, we can derivé.4 < o, A 0.4 and then

04 <. (4)

11



Similarly, we can use the information abaut to derive0.2 < §; but this formula
is already implied by (4).

The result (4) means that a truth degree of at leabiDassigned to the presence
of 6, i.e. that (at least).@ is the degree to which, based on the actual facts (3), it is
reasonable to assume tldds present.

3.1. Discussion

In order to decide if our formal framework is appropriate fhe expert system
CADIAG-2, we first compare the logiGZL with the original system with regard to
their strength. By Theorem 3.3, we know ti&ZL is able to draw all conclusion that
CadL does and therefore to emulate CADIAG-2.

This most important requirement being fulfilled, the prisnachievement of our
framework is its conceptual clarity. Our logic is built orlidggrounds:GZL is seman-
tically based and rules are such that inferences are canectomplete with respect
to the chosen semantics (Theorem 3.5).

A side dfect of this achievement is the following drawback. Endow@#DIAG-2
with a semantically based logic, we inevitably add morernefations between facts
than used by the original system, which did not care aboutreastc reference. In
fact, GZL is strictly stronger thai€CadL. As an example, consider a knowledge base
containing the rulesa( — B, 1) and ¢ a — B, 1). ThenGZL can conclude that has
at least the truth value.®, while CadL does not. The example is certainly artificial;
still, there is no criterion known to us to rule out this kindexample. We also do not
know if in practice the additional strength GZL would have any impact.

Furthermore, our framework allows a consistent interpietaf the numerical val-
ues processed by the system. All values are interpreted mifaron way: as degrees
of compatibility. As regards the degrees of presence, thathe values associated
to symptoms, this choice is satisfying without doubt. Asarelg the degrees of un-
certainty, that is, the values associated to rules or disgmur choice is admittedly
arguable, but justifiable. Recall our argument: a rdle{ 6, d) expresses that on the
basis ofa, the presence af is suggested to the degrde The degreal is a degree
of compatibility; d is the degree to which the informatianfits to the conjecture that
¢ holds. Further general considerations of this issue cambedfin our concluding
Section 6.

Relying on fuzzy logic, we cannot provide a satisfactonificsation of the way
truth degrees are calculated. The problematic rule in #dpect is the rulecf and
all we can say is the following. When interpreting all the degy in the system as
compatibilities, their precise values are less importaanttheir relative order. The
rule (c) is in fuzzy logic known as the generalised (or fuzzy) modosgns [Ger] and
in its general version, the resulting value is calculatedr®ans of a t-norm. The
Godel (i.e. minimum) t-norm, which we use here, is the only threg does not involve
any calculation but for which only the relative order of th@incts matters. To say
anything more specific in favour of the rule) Geems hard and might not be possible
at all. For its arbitrariness, fuzzy logic itself has beehjsated to criticism since the
time it was invented.

CADIAG-2 provides, together with each output, a chain ofuangnts, beginning
with the information provided by the user and leading steptleyp to the result. Proofs
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in CadL are also largely comprehensible. In contrast, witbégGZL, results cannot
be presented in the same smooth way; this advantage of CARIAHot preserved.
Like in the case of any proof system based on sequent calcthiedr variants, proof
rules have a rather technical character, a reasonabldatiansof which to natural
language is largely impossible. For instance, the relatisigns<, < in SeqGZL just
denote relations between real numbers; the original natiuttee implication in a rule
contained in a knowledge base gets inevitably lost.

We summarise that we have endowed CADIAG-2 with a concelgtakgar frame-
work, which can well replace the original inference engi@ertainly, progress in one
respect can mean a step back in other respects. The indititgtof proofs in fuzzy
logic is the topic of a foundational debate in which a progresuld have a positive
impact for our present application.

Rules Check

As mentioned in the introduction, formal frameworks foredldased systems may
serve to perform various checks on their rules.

Indeed, an important achievement following from the intetation of CADIAG-2
within fuzzy logic is the reformulation of the consistendyeck of its KB as a satisfia-
bility problem in Logic; the actual check was performed inRG] for a large portion of
the rules. In analogy with the approach in [MoAd], where thies of CADIAG-1 were
translated into formulas of first-order classical logic, MAG-2 rules are translated in
[CiRu] into suitable formulas of a first-order fuzzy logich& use of a first-order frame-
work is motivated by the need to associate medical entiti#fs unary (i.e. monadic)
predicates. For instance, a statement like “the symptpim present in a patierd’ is
identified with the atomic formul&;(a), which in turn assumes values in,[J. The
use of a fuzzy logic is due to the interpretation of the valassigned to compound
medical entities.

As shown in [CiVe] the fuzzy logic that comes closest to thagapts underlying
CADIAG-2 isRGL., that is, Gdel logic extended by Baaz’s, truth constants and an
involutive negationGZL being a fragment odRGL..). The translation of CADIAG-2’s
rules was based on the meaning of the connectivé®3h. and on thesigma-count
interpretatioR of their weights proposed in [AKS, AKSEG, AKSG]: Given a rule
(e — B, d), the interpretation off amounts to

4 _ ZacrV(a(@) "VE(@)
Sarv(0@)

where P represents a set of patiemta,valuation as in Definition 3.2 and thug(a))
andv(B(a)) the degrees to which the possibly compound emtignd the atomic entity
B apply to patiena € P.

Recall that in fuzzy logics the weights of the rules are inteted as lower bounds.
Hence two rules assigningftérent degreesandt to a same diagnosis (with© st <

(5)

2The database used for the creation of the knowledge baseDFAIZ2 did not contain as many patients
as necessary for the calculation of all weights on the bdgi{8)o Therefore most of the rule weights were
actually estimated by fierent means, mainly on the basis of physicians’ advices.
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1) are not contradictory. For this reason the truth constastre not considered in the
logic used for the consistency check of [CIR?, that is (first-order) @del logic ex-
tended by an involutive negatibnCompound propositions of CADIAG-2 were there-
fore interpreted using the connectives®f. The translation is consistency-preserving:
the non-existence of a valuation for all the translated fde® (that is, of a valuation
assigning the value 1 to all of them) implies errors in thevideolge base.

Though the satisfiability problem (SAT) for the monadic frant of G~ is un-
decidable, SAT for the set of formulas & formalizing most of the rules in the
KB of CADIAG-2 turned out to be not only decidable, but evertidable within
classical logic. For instance this was the case of formutaisesponding to thdi-
nary rulesin the KB of CADIAG-2. For these formulas existing theorenoyers
and (counter)model generators for classical first-ordgicloould therefore be used;
the former detected unsatisfiable sets of formulas (rebatl in classical logic a set
formulas is unsatisfiable if and only if its negation is vali@nd the well known
(counter)model generatoMace 4was used to detect the minimal sets of unsatisfi-
able formulas. As a result, 11 minimal groups of inconsistates were found. For
instance, the following group:

(a) IFChorea minor

THEN NOT Reactive arthritis
(b) IF NOT Reactive arthritis

THEN NOT Rheumatic fever
(c) IF Chorea minor

THEN Rheumatic fever

with the degree @9.

Indeed from the assumptioil€horea minof, two almost opposite conclusions, are
derived; the diagnoseRheumatic fevéris both excluded and confirmed to the degree
0.99, meaning that it is almost sure.

In order to check the consistency of the full knowledge bd$2ADIAG-2, classi-
cal logic is not enough. Nevertheless the translation ofdles as proposed in [CiRuU]
still applies and the satisfiability of the resulting forrasilofG~ was shown in [BCP]
to be decidable (and even NP-complete, as in the case ofoehgsopositional logic).

A full check could therefore be performed provided that pdulgcounter)model gen-
erators are designed f@~, capable of handling the 20,000 rules of CADIAG-2. Note
however that the majority of the rules in the KB of CADIAG-2Zumary and a check of
the latter, as done in [CiRu], is therefore very useful. Cilyrules out of 20,000 are
compound. The compound rules contain a complete speatficafithe rheumatologi-
cal diseases and due to the use in CADIAG-2 of the (derivalniehectives "at least

out ofm” and "at mostn out of Mm”, some of these rules are rather complex (e.g., when
expressed in disjunctive normal form, the antecedentsesfethiules can contain up to
30.000.000 disjuncts). A check of the full knowledge bas€ADIAG-2 is feasible in
principle but still to be done.

3Baaz’sA is also used but it is a derivable operatoGin.
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4. CADIAG-2 and probability theory

Our second approach towards a formalisation and intetwataf CADIAG-2 in
this paper is based on probability theory. The approach piiesented in [Picl], is mo-
tivated by the interpretation of the rules of the fora-6 6, d) in the KB as conditional
probabilistic statements, whedtds the conditioning event, is the uncertain event and
d is the probability thab is a correct diagnose for the patient given thas present in
the patient. This interpretation is also favoured by someedture about CADIAG-2 as
the intended interpretation of the rules of the system,sge, [AdI].

In order to formalise the inference process on probahilgtounds and analyse its
adequacy with probability theory we need also a suitablbgidistic interpretation of
the graded propositions of the fornr, ) taken as input by the system. For example,
we can interpret the valudn (o, t) as the degree of belief that a medical doctor has in
the truth or presence of in the patient given the evidence supporting it. In this sens
tis interpreted as a probability.

Formally, we will identify a graded statement of the form 1) in the input of the
system with a graded implication of the form © o, t), wherex represents the facts
that support the presence @fin the patient and the probability that- is present in
the patient given.

The logicCadPL

We describe the syste@adPL, aimed at formalising CADIAG-2's inference when
restricted to the set of binary rules.

As above, letS andD contain the variables denoting symptoms and diseases, re-
spectively. Furthermore, l&t, ..., «, n > 1, be an additional set of variables that we
shall call thefactual variables; each of it refers to the actual—crisp—fact thaegiv
rise to the assumption that a particular—possibly vague—symjs present.

Note that in the present framework, the variables of all@hserts denote crisp
facts. Let® the set of formulas built up from the variables3) D andK by means
of the Boolean connectives, v, ~ For someaxr € P, we write « to denote classical
validity; for a,8 € P, we writea E S to denote classical entailment and= g to
denote classical equivalence.

Definition 4.1. A mappingw: # — [0, 1] is called aprobability functionon # if the
following two conditions hold for alk, 8 € #:

e If Eathenw(a)=1.
o If E ~a Ap), thenw(a Vv pB) = w(a) + w(B).

From Definition 4.1 the standard properties of probabililmdtions on proposi-
tional languages follow (see, e.g., [Par]).

We are now ready to define satisfiability@adPL. The graded implicationa —
B, d) is satisfiedby the probability functiorw on® if w(a) > 0 and

w(a AB) _

w(a)
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If there exists a probability function satisfying (— S,d) we say that¢ — 3,d) is
satisfiable

We continue our description @fadPL defining the notion of a theory. We note that,
in contrast with the fuzzy logic approach, here we need andisbn between graded
implications representing the initial evidence about agmatand graded implications
representing the system’s rules.

Definition 4.2. A theory 7 of CadPL is a pair of the form ¢, R) characterised as
follows:

e @ is a finite set of graded implications.

e R=RUR™UR®s a collection of graded implications of type (c), (me) and
(ao) respectively.

@ is intended to represent the input of a run of the inferenggnenof CADIAG-2
which, as explained earlier, consists of a collection ofigthimplications of the form

(k1 = @1,m), ..., (Kn = @n.1n),

wherex;, ... are factual variables angl, ... are either variables or negated variables
from S or D. The sef«s, ..., kn} C P constitutes the initial evidence about the patient,
which is propagated along the inference process by thecgpigh of the rules of the
system. FurthermordR represents the binary rules in CADIAG2's knowledge base.
For what follows, let/” = (®, R) be a theory ofcadPL.

The systenCadPL is defined by the following rules:

e Reflexivity and valuation rules

(k> a,d) ed
T+ (k> a,d)

T+ (@ — B,d)
T+ (- ~8,1-d)

(Ref) (Neg

a=B T r(y—ad)
T+ (y—pB,d)

(Eq)

e Manipulation rules

TrE—->acC (@—pdeR
T + (k > B,cad)

(Min 1)

Trk—->a1l (@—-B1) ecR"™URP®

(Minl) T+ ((k—p1)

Within this frame, final outputs of the forna(d) produced by the inference engine
shall be interpreted as conditionals of the fomn £ ... A ks, — «,d), that is, as the
probability of @ given all the medical evidenas, ..., k, available about the patient. In
order to make such interpretation operative and formalige ineed to exten@adPL
by introducing two new inference rules. The first of thesesudbrmalises the maximi-
sation process done by the system in order to yield as outpuget of diagnoses along
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with the maximal value generated by it, with respect to thdedng set in Definition
2.3:

TrFgA... Ak = @,C) T F (ki Ao Akp, — @,d)
T F (kg Aoo Ak, = @, €)

for{c,d} # {0,1}ande=cif c:=dande=dif d = c.
An additional rule is necessary to produce the desired ouwtco

(Conj)

T F (ki A... Ak = a@,C)  thereis nad such that + (xk — «a,d)

Exh
(Bxh) Tk kg Ao Ak Ak — @,C)

This last rule, which we calExhas abbreviation oféxhaustivg simply states that,
if kis a piece of evidence that says nothing about the presenca tiie patient, that is,
if k anda are probabilistically independent, then the probability @ivenx; A . .. A kg
does not change if in addition we consider the piece of eieen

Theorem 4.3([Picl]). Let7 = (®,R) be a theory inCadPL, «, ..., k, the factual
variables occurring in the graded implications @, 7 the theory ofCadL that cor-
responds tar (i.e., with graded implications i expressed by graded propositions)
anda a proposition.(k1 A ... A kn — «, d) follows maximally frony™ in CadPL if and
only if 7 proves(a, d) optimally inCadL.

Let us apply the present framework to Example 2.4.

Example 4.4. The theory (1) of Example 2.4 translates to

(k1 —>01,1), (k2> 02 1), (01—6 04) (02— 6 0.2), (6)

whereki, k, are factual variables, denoting the facts from which we tatecthe pres-
ence ofo; andor,, respectively. By (Min 1), we derivex{ — ¢, 0.4) and &, — 6, 0.2),
and by (Conj), we get

(k1 A kg — 6, 0.4). (7

Thus we conclude that the probability of the presencéiafthe patient given the
evidencex; A k2 is 0.4.

4.1. Discussion

The calculuCadPL and the concepts it builds onftr substantially fronGZL and
its underlying fuzzy logic approach. Thus our evaluatiorCatiPL comes to results
that are very dierent from those oBZL.

Theorem 4.3 shows that the inference€adPL are equivalent to those @fadL.
In contrast withGZL, CadPL is not stronger thagadL (and therefore of CADIAG-2).
HoweverCadPL takes only binary rules into accodnt

“4Introducing the evaluation rules @adPL would greatly modify the framework and, if still operative, it
would be even more further away from probabilistic soundifestce that except for the negation rule, the
evaluation rules o€adL are not probabilistically sound).
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As a consequence of being so close to (the binary fragmer@aif)., CadPL is
not sound and complete with respect to probabilistic seit&rin particular, the rules
(Min 1) and (Conj) are not based on probability theory andi{(Exssumes probabilistic
independence among propositions that may actually not be so

In interpretive respect€adPL scores naturally quite well. Again, numerical val-
ues are interpreted in a uniform way; all the degrees arepiregged probabilistically.
In particular, the degrees of uncertainty are modelled enrttost common and best
accepted way. The interpretation of degrees of presenceinkabilistic framework
involves, on the other hand, some artificiality.

The inference rules i€@adPL are chosen in accordance with probability theory to
the extent to which this is possible in order to formaliseitiference of CADIAG-2.
Thus, for the probabilistically sound rules, a justificatis ensured. The remaining
rules, for instance (Min I) or (Conj), which correspond te ffc) rule ofCadL and to
the maximisation process in CADIAG-2 respectively, are ingpired by probability
theory but taken directly from CADIAG-2. In these cases,ditgation is similar to the
previous approach: a proper justification of the inferdmtiachanism of CADIAG-2
seems very hard in this framework, if possible at all.

The advantage ofadL to present traceable results is preserved. This might be
surprising, as interpretability is a serious issue of philiig based expert systems.
The reason is, however, clear: The rulesGafdPL are chosen in accordance with
CadL, even where the probabilistic interpretation does not fit.

Summarising, the present approach manages the challeagplioprobability the-
ory to an expert system based on weighted IF-THEN rules. a@edrawbacks are
present but must be considered as unavoidable, provided/éhaim at treating uncer-
tainty within the best accepted formalism.

Rules Check

Possibly the main achievement in connection with the pribistib framework con-
cerns the satisfiability check of thenary fragment of CADIAG-2's knowledge base
described in [KPP]. Such a satisfiability check is primabi§sed on a probabilistic in-
terpretation of the system’s rules. However, such intégpian is also in keeping with
the sigma-couninterpretation suggested in [AKS, AKSEG, AKSG] (see thenfala
(5) in Section 3.1).

In terms of the sigma-count interpretation, satisfiabitifya certain set of binary
rules in CADIAG-2 means the existence of a valuatithat yields the weights of all
the rules in the set when calculated according to equatiprit(s proved in [KPP] that
such a valuatiow existsif and only ifthere exists a probability function that satisfies all
the rules in the set under the natural probabilistic intetagion. Thus, a satisfiability
check of sets of rules of this form based on a probabilistierpretation of them is
itself a satisfiability check with respect to the sigma-ddaterpretatiorr.

51t is worth noting that in our probabilistic check in [KPP]les of type (me) and (ao) are expressed
as they actually occur in CADIAG-2's knowledge base: a ruleype (me) of the form¢ —~ B,1) is
expressed asy(— B,0) and a rule of type (ao) of the form (@ —~ B, 1) is expressed in its original form,
as the (probabilistically) non-equivalet & a, 1).
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[KPP] presents a general methodology for a satisfiabiligcktof sets of rules like
those in the binary fragment of CADIAG-2’s knowledge base,an case of unsatisfi-
ability, for the detection of all minimal unsatisfiable setss(i.e, conflicts). Two main
algorithms have been considered for this purpose: a PSATridigh and a conflict-
finding algorithm. The PSAT algorithm (i.e., probabilissiatisfiability algorithm) em-
ployed in [KPP] is based on column generation techniqueim@al programming and
the conflict finding algorithm (i.e., the algorithm that, iarmection with the previous
one, searches the database in order to identify all coniiigty on the hitting set tree
algorithm HST and other techniques that are well known infigld, see, e.g., [Rei].
In order to make the implementation of such algorithms f#dasin large collections
of rules (e.g., CADIAG-2’s binary fragment) modularity ketiques are introduced in
[KPP] in order to split the knowledge base into smaller, ildasragments.

The implementation of the methodology to (a slightly reveterpretation of)
CADIAG-2’s binary rules detected the four types of confliotdow:

e Type 1 given by a collection of rules of the form

(@ - B.d), (@ > .0, B—-71)
with d > c¢. 420 conflicts of this type were found.

o Type 2 given by a set of rules of the form

(@ = B,d), (@ —> v,0), (B—v,0),
for c+d > 1. Of this type 5 conflicts were found.

e Type 3 given by a collection of rules of the form

(@ >0, B—-71), (@—>81),
for c < 1. A single conflict of this type was found.

e Type 4 given by a set of rules of the form
(@ = B,0), (@ > y.,d), (@ >, B—-70), B-091), (y—>91),
fore<c+d < 1andcd < e 269 conflicts of this type were found.

Notice that, given the reduction to satisfiability in classiogic of CADIAG-2's binary
rules in the approach described in Section 3.1, the condletiscted in relation to such
approach are contained in the above list.

In addition to the consistency check and the identificatibonamflicts, inconsis-
tency measures aimed at evaluating and quantifying the atr@iunconsistency in
CADIAG-2-like knowledge bases and related repair stra®gire also considered in
[KPP] itself and, in more detall, in [Pic2]. The approach teasuring inconsistency

6An interpretation that consists of the replacement of paaties liked in (@ — g, d), whenever < d <
1, for the interval §l — 0.01, d + 0.01]—see [KPP] for more details.
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in these papers is based on the consideratiaminfmal adjustments, with respect to
suitable distance criteria, in the probability degreesheftorresponding propositions
necessary to make the knowledge base consistent.

It turns out that the amount of inconsistency of the binaagfment of CADIAG-
2's KB is only infinitesimal, despite the large number of cantdl that it contains. For
instance a conflict of any of the types mentioned above caegmEredby replacing 0
(or 1) in any of its rules having this probability value by asther value strictly greater
than 0 (or any other value strictly smaller than 1, respebtj»—for more details see
[KPP].

5. CADIAG-2 and possibilistic logic

The basic requirement that we set for the theoretical fraonkewf a decision sup-
port system is a coherent interpretation of all involvedor. We recall that in case of
the expert system CADIAG-2, the challenge is to treffiedent types of numerical de-
grees in an appropriate way, although all values are trdatélde system in a uniform
way.

In the approaches discussed so far, values are interpretedniform way. In the
framework based on fuzzy logic, all values are taken as cthiliizes; in particular,
the values attached to diagnoses are understood in thislwalge framework based
on probability theory, all values are taken as probabdijtieven the values attached to
symptoms are interpreted in this way. The third approachichvive describe below,
takes both aspects into account; it is thus the only appravaath formalises vagueness
and uncertainty in an independent way. The approach is basexdlogic recently
introduced in [ZeGO].

Let us outline how degrees are treated. The degrees of peaesm handled within
the framework of a fuzzy logic, similarly to the approachaésed in Section 3. In-
deed, the fuzzy logi®GL.. is used: @del logic enriched with rational truth constants,
the standard negation and the@perator [EGHN]. (We note that RGL ., A is actually
definable; we still include it in the language for its impartaole.) The implication is
included as a connective RGL..; for this reasorRGL.. is stronger thaiGZL.

The aspect of uncertainty is not, like in the approach dbedrin Section 4, treated
probabilistically. Degrees of uncertainty are understasdiegrees of necessity in the
sense of Dubois and Prade’s possibility theory [DuPr]. Foroer example of the use
of possibilistic logic in medical decision support, we mafer, e.g., to [BCPV].

The logicPGL

The logicPGL combinesRGL . with Possibilistic Logic, see [ZeGo] for detalils.

We start with two sets of variable§ andD. The variablesry,... € S are called
many-valuedind are used to model the presence of symptoms. The varigblese
D are calledBooleanand are used to model the presence of diseases. Formulas of
PGL are split into two classes: Boolean formulas and N-formuddeere “N” refers to
“necessity”.
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e TheBoolean formulasre built up from the Boolean variables and the constants
L, T by means of, v, and—. Boolean formulas are denoted by the lower case
Greek lettersy, 83, .

e An atomicN-formulais a many-valued variable, a constafor somer € [0, 1]n
Q, or of the formOa, wherea is a Boolean formula. A (generdy-formulais
built up from atomic N-formulas by means of the binary opera A, — and the
unary operations, A. N-formulas are denoted by the lower case Greek letters
,(’ n, 19

A model forPGL, called aPG-structureis a four-tuple
(v, W e ),
specified as follows:

e Recall that the many-valued variabl8srefer to the symptoms of a patient.
describes the state of a patient by assigning to eaels a valuev(o) € [0, 1].
V(o) is meant to be the degree to which the symptom applies toenpat

e Wis a non-empty set, called tiset of possible world€Eachw € W corresponds
to a possible health state of the patient, specified by theepie or absense of
diseases.

¢ Recall that the Boolean variabl&srefer to diseases. The possible health states
of the patient is described lye W x D — {0, 1}. For eachw € W andé € D,
e(w, 6) is 1 if § is present av and it is O otherwise. Moreoveg(w, -) extends to
a classical valuation db.

e For eachw € W, n(w) is the degree to which, in the sense of possibility theory,
the agent believes to be possible; that is(w) is the degree to which the agent
is inclined to assume that can be the actual world. We requitéwn) = 1 for at
least one worldv.

Let (v, W. e, ) be a PG-structure. In what follows, < denote again the minimum
and standard negation on [IJ; moreovers is the residuum associated 1o that is,

B 1 ifs<t,
sst =
t else;

anda is the evaluation oA on [0, 1] defined by (2).
Furthermore, for each Boolean formutalet [«] denote the set of worlds in which
a holds. PuttingP(A) = maxyea m(w) for any A € W, P is a possibility measure, and
N, defined byN(A) = 1 - P(W\A) for A C W, is the corresponding necessity measure.
For each N-formuld, its truth value||Z|| is recursively defined as follows:

(i) For a many-valued variabte, we put||o|| = V(o)

(i) For a Boolean formulas, we put||Ca|| = N([a])
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(iii) For formulasZ andn, we put|iZ Anll = [IZll A lill, 11§ = nll = Il linll, and
I~ &Il = =il furthermoreA(Q)Il = ali¢ll, and||r]| = r for eachr € [0, 1]q.

A formula¢ such that|Z]| = 1 is calledsatisfiedn (v, W, e, r).

The meaning of the truth values is as follows. being a symptomj|o| is the
degree to whiclr is present.s being a diseasé|[1(6)| is the degree of certainty that
¢ is present, in the sense of possibility theory. The truthréle@f compound formulas
are calculated in a truth-functional way, following the sertics of Gdel logic with
the additional involutive negation, the operatgrand rational truth constants.

As shown in [ZeGo] a sound and complete Hilbert-style axitmasion for PGL
consists of:

e the axioms and rules of classical propositional logic fooRBan formulas;

o the axioms of @del logic with rational constants, involutive negationgda for
N-formulas;

e the axioms
~01L, O@—-p)— da—-06), @DdaAdp) — OaAp)
for Boolean formulag, 3;

e modus ponens and the necessitation rule
a a—-pf a
B T Oa
for Boolean formulag, g;

e modus ponens and thenecessitation rule

{ {-n ¢
n A

for N-formulasZ, .

The encoding ifPGL of the rules of CADIAG-2 and of the initial information about
a patientis easy. Let us first consider the input informatAminput (o, t) is translated
into (o — t) A (t — o). We express in this way that the truth valuecofs exactly
t. Furthermore, les denote a disease. The inpudtd), whered > 0, reflects gradual
uncertainty aboug and is accordingly translated intb— 5. This expresses that we
are certain to the degree at ledstbout the presence 6f Similarly, (5, 0) is translated
into [~ &, which says thaé can be excluded.

To encode the rules, we have to distinguish subcases angaalihe entities the
rules apply to.

For the rule (c) we distinguistymptom-disease ruléthe antecedent is a possibly
compound proposition, built up from symptoms and possitdp &#om diseases, and
the consequent is a diseasdisease-disease ruléte antecedent and the consequent
are both diseases) amymptom-symptom rulgghe antecedent and the consequent
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are both symptoms). Notice that weights of disease-disedes and of symptom-
symptom rules are always 1.

Let (c — o/, 1) be a symptom-symptom rule. The corresponding N-formsila i
o — o’. In this way we ensure, as intended, that the truth value’af at least
as large as the truth value of A disease-disease rulé & ¢, 1) is translated into
0s — 0¢. In this case we express that the certainty alboig at least as large as the
certainty abous. Finally, consider the symptom-disease rute-6 6, d). We have to
express the degree to which are certain aljoistat least the minimum af and the
truth degree of, that is,

llorfl ~d < N([6]). (8)

Consequently, the translation is simptyAn d — 6.

For the translation of a rule of type (me), we again have tordjsish cases. Rules
of the form ¢ —» ~03, 1), (c —» ~6,1), © —» ~0o,1),and 61 — ~d, 1) are
expressed by the formulasr; —» ~o3, Ao — 0=, AJS — ~o, andd; — -8,
respectively.

For rules of type (ao0) we proceed similarly. Rules of the fgrar; — ~o, 1),
(~o - ~6,1), (~6 - ~0, 1), and £6; —» ~6, 1) are translated intd~o; —
~0p, A~o — [O-6, A0=§ — ~0o, and—d; — —6,, respectively.

The mode of operation of CADIAG-2 is precisely reflectedR§L. Indeed, the
truth value of compound N-formulas is determined in a corntjpogl way, just like
in CadL. Furthermore, the manipulation rules translate to infeesinPGL with the
same fect.

Example 5.1. Again, we consider the inference of Example 2.4. The knowtsfare
this time expressed by the following formulas:

o1, 0, o01A04—505, o102 — 6. (9)

The inference is particularly simple and results in

0.4 — [6. (10)

The conclusion is that the necessity degreé if at least O4; in other words, the
degree to which we are inclined to say thas 0.4.

5.1. Discussion

Like in case of the other two approaches, our first concernta®@L is its strength
compared tacCadL. PGL extends a fuzzy logic; thus it is not surprising that thisstue
tion answers similarly to the case of the fuzzy loGigL. NamelyPGL can reproduce
the inference oCadL in its full extent. However, like in the case GZL, the calculus
is unintendedly stronger than required.

PGL is, like GZL and unlikeCadPL, a calculus sound and complete with respect
to a well-motivated semantics.

The model contains tferent features to take vagueness and uncertainty into ac-
count. For this reason, the present approaters particular benefits in interpretive
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respects.PGL distinguishes between twoftkrent sorts of degrees and the aspects
of vagueness and uncertainty are treated ffetBnt ways. Indeed, symptoms are
formalised by many-valued variables. These variables asgyaed the degrees of
presence of the respective symptom, and formulas composedmany-valued vari-
ables are evaluated in a truth-functional way, interpgethre connectives in the way
CADIAG-2 does. Furthermore, diseases are formalised byvalwed variables, cor-
responding to the fact that a disease is simply assumed toelsemnt or not. Finally,

a modality is used to express uncertainty about diseasé®inridgical combination.
Uncertainty in turn is modelled in accordance with posgipitheory. Accordingly,
this is the way how the weights assigned to diseases after af QADIAG-2 are to be
understood: as the degree to which an agent is inclined tdHisdlisease a necessary
consequence from the assumptions.

We may furthermore critically ask how the degrees of presgrovided in the
input are related to the degrees of certainty provided irotitput. The crucial role is
played by the rules (c), which are translated accordingecctindition (8). It follows
thatPGL processes values just in the same wagadl . A full justification of the rule
(c) remains open, as in the case of the other two approaches.

We finally ask if proofs are of value for the user of CADIAG-2ppided the latter
is based orPGL rather thanCadL. The situation is analogous ®ZL, hence the
answer is negative: results provided by the system canneiabiy traced back to
the assumptions. In addition, as the only availlable cak@br PGL is Hilbert-style,
derivations are also flicult to find.

Finally, PGL, and possibilistic logic in general, does not deal propeurith the
following situation. Assume that is a symptom that is fully present and that implies
to some degreab> 0 two mutually exclusive diseas&sands,. For instance, consider
the following case, formulated in the languageQafdL:

(0,1), (0—>61,08), (00— 6207 (61— ~62, 1)

In PGL, we can derivéd.7 — (61 A 62) as well as1-(51 A 67), resulting in the
inconsistency.7 — 0.

We conclude that the present approach is based on a fuzay, kbgis the major
advantages and disadvantages of our first approach apmyakexell. However, the
present approach goes one step further ¥8Zh. Weights assigned to diseases and
rules are not treated as compatibilities, but as degreesagfrtainty; the main achieve-
ment is the successful combination of both aspects.

Rules Check

In contrast with the approaches based on fuzzy logic ancaitity theory, the one
based on possibilistic logic does not seem to be suitableHecking the consistency
of the rules for the formalized system. Indeed the definitibsuitable SAT-solvers or
theorem provers foPGL seem to be beyond the current state of the art, if possible at
all (note here that the only availlable proof systemP@&L in [ZeGo] is Hilbert-style,
which is not usable for this purpose).
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6. Conclusion

Although the interest among Al researchers in rule-baspéresystems seems to
be lesser today than some years ago, these systems are petgrpgamong computer
scientists and engineers working in various fields. Manmhsystems are in use and
more are being built.

By processing graded inputs on the basis of weighted IF-TiHE&5, CADIAG-2
and related systems are indeed very flexible: they can bly ¢éaised by the addition
or deletion of rules or by a change of their weights. Morepgespite of their ad-hoc
design, their performance is notable. For example, theath@srrectness of proposed
diagnoses for CADIAG-2, compared with the actual diagnageshysicians, is more
than 80%, according to [AKSEG]. We note that similar reshtikl for MY CIN—the
forefather of all rule-based medical expert systems; sge,[8uSh].

As a common problem, we observe that CADIAG-2-like systerasnat designed
on the basis of clear principles. Consequently, the inggpion of the numbers dealt
with—in particular the outcoming values—is open. As put in [BHafter propagating
a patient’s data through the rules and composing the coitvits of the rules and
attaching the result to a diagnosis, the user may ask: “Hawldh actually understand
this number?”

This is the main point addressed in the present paper. Takingystem CADIAG-
2 as a specific example, we discussed three mathematicalsmedently introduced
by the authors in [CiVe, Picl, ZeGo] to interpret the numtzerd the inferential mech-
anism. We compiled the features of the three quitedént approaches; we mentioned
advantages and disadvantages and we focused on the questioich way numerical
values are understood.

We now rise the question: for which reason one of the threadveorks should be
chosen? Recall that our system is based on IF-THEN rule§S'HEN rules may be
understood in many ways; let us mention two:

(V) The weightc € [0, 1] of a rule contained in a medical IF-THEN rule is under-
stood as a degree of compatibility. Theis the degree to which the conclusion
fits to the assumptions. We indicate to which degree to whigwk facts indi-
cate that the unkown fact is true.

(P) The weight of a rule is understood as a conditional probability. Thé&wunder-
stood as a proportion in a long-term run, which can be detethby objective
data or by an expert's estimation. In the ideal case, we droléhe probability
of an unknown fact.

In case of option (V), we need what could be called a “logic ajweness”. The
main obstacle for the design of such a logic is well-knownerBhis no canonical way
to connect truth values that are understood as compasbililf some factr fits to3 to
the degreal, and if « itself holds to the degreg how should we determine to which
degrees holds? Apparently, there are only two possibilities: perfing experiments
to test the actual estimation of subjects in such a case;testdf the system performs
well with a particular choice.
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The fuzzy-logic based approach, discussed in SectionIBwsithe lines of option
(V). For the connection of degrees, it makes the choice ior@ance with the origi-
nal system CADIAG-2, which was tested to perform wgllis present to the degree
min{d, t}.

Approaches opting for some form of option (V) have been suligecriticism, e.g.,
in [DHN]. The complaints are untenable, however. The awglof{DHN] do accept
the fact that degrees assigned to inputs are degrees ofpeesad they expect results
to reflect degrees of certainty. This is not inappropriate: they inappropriately focus
on a probabilistic interpretation of these degrees. If vagtstith compatibilities and
process compatibilities, the result cannot be a probgbi#livhy should it be? What
we get are compatibilities as well, which in turn cantakenas degrees of certainty,
not probabilities, and just reflect to which degree the presiguation provides hints to
something unknown.

Option (P), in contrast, calls for a probabilistic framewoDesign choices have
to be made also in this case, but for other reasons. Nameggtoke probabilities are
not available in the numbers that would be needed for systentarge as CADIAG-
2. Furthermore, values provided by CADIAG-2 being intetpdeprobabilistically, the
rule weights alone do not allow significant inferences.

The probabilistic approach, discussed in Section 4, fdltine ideas underlying
option (P). The approach is based on the subjective intexpra of probabilities. Fur-
thermore, to provide ghicient derivational strength without the need of additiateth,

a variant of the rule (c) is used, which is not based on prditabieory but originates
from fuzzy logic.

Both these points show that the conceptual gap between -fogay based ap-
proach and the probabilistic approaches is not as wide amiiticeem at first sight.
What makes the flierence is the interpretation of the numerical degrees dmpilities
rather than compatibilities. In this case, well-founded/svep process these values do
exist, and are made use of. Furthermore, in the literatuoeta®ADIAG-2, rules are
frequently interpreted according to (5); only the probiabd interpretation processes
the data accordingly.

Finally, an enhancement of the first approachfiered in the third approach. De-
grees are degrees of compatibility as well, and the aboweisiison about fuzzy logic
fully applies also here. However, the degrees of compdiilaissigned to unkown facts
are taken as degrees of certainty and further processed fretinework of a theory of
uncertainty. As a framework, possibility theory is chosather than probability theory.

Besides providing suitable semantics for the system, theoaghes based on fuzzy
logic and probability theory are also useful to check thesgstency of the system’s
rules. The checks were actually performed in [CiRu, KPP] alfmved the discovery
of various errors in the knowledge representation of thesraf CADIAG-2. The check
based on probability theory turned out to be more powerfurérthan 600 conflict
detected) and complete, that is the satisfiability of the&ailes implies the existence
of a model with respect to the sigma-count interpretationrédver, it suggested some
reparing strategies. However, the feasibility of this ¢hiee CADIAG-2 in particular
is lost when also considering the compound rules. In contthe check based on
fuzzy logic can in principle be applied also to compound suf@ovided that suitable
(counter)model generators for the considered fuzzy lag@idgl logic with involutive
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negation, in case of CADIAG-2) are designed.

Though the three mathematical models described in thisrpege introduced for
CADIAG-2, they can be used to formalize related systems dk Wer instance they
apply to MONI (MONItoring of nosocomial infections) — a sessful expert system
recently developed under the supervision of K.-P. AdlasfBBMA]. MONI is cur-
rently used to detect nosocomial infections in intensive ceits in one of the largest
hospitals in Europe, the Vienna General Hospital. MONI aorg a data base of rules
having the same structure as those in CADIAG-2 and a closganfial mechanism.
Therefore considerations and results similar to those driiw CADIAG-2 can be
inferred. Moreover the approaches based on fuzzy logic aolapility theory also
indicate how to perform consistency checks for the rules 6Nl
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