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Abstract—We provide a standard completeness proof which
uniformly applies to a large class of axiomatic extensions of
Involutive Monoidal T-norm Logic (IMTL). In particular, we
identify sufficient conditions on the proof calculi which ensure
density elimination and then standard completeness. Our argu-
ment contrasts with all previous approaches for involutive logics
which are logic-specific.

I. INTRODUCTION

Fuzzy logics are many-valued logics that are well suited to
reasoning in the context of vagueness [15]. Their intended (or
standard) semantics is based on truth-values in the real interval
[0, 1], ranging from absolute falsity 0 to absolute truth 1.

Establishing whether a logic – introduced/described as an
Hilbert-Frege axiomatic system – is a fuzzy logic amounts
to prove that it is standard complete, that is complete with
respect to the standard semantics. Standard completeness has
been traditionally proved by algebraic methods which are
typically logic-specific, e.g. [5], [12], [13], [15], [17], [21].
An alternative approach, based instead on proof-theoretic
techniques, has been introduced in [18] (see also [20]); the
key idea in [18] is that in a logic L the admissibility (or
elimination) of the syntactic rule called density can lead to
rational completeness for L, i.e., that a formula is deriv-
able in L iff it is valid in all dense linearly ordered L-
algebras (L-chains). Standard completeness typically follows
by embedding countable dense L-chains into L-algebras with
lattice reduct [0, 1], using Dedekind-MacNeille completion.
Introduced in [22] the density rule formalized Hilbert-style
has the following form

(A→ p) ∨ (p→ B) ∨ C

(A→ B) ∨ C
(Density)

where p is an eigenvariable (propositional variable not oc-
curring in A, B, or C). Ignoring C, this can be read con-
trapositively as roughly saying “if A > B, then A > p and
p > B for some p”; hence the name “density” and the intuitive
connection with rational completeness.

The approach in [18] led to standard completeness proofs
for various logics: Godo and Esteva’s Monoidal T-norm based
Logic (MTL), its involutive version IMTL, the logic UL
of left-continuous uninorms and some of its extensions. A
different method to eliminate applications of the density rule
from derivations was introduced in [8] and later generalized
to provide uniform proofs of standard completeness for large
classes of logics; see e.g. [2] and the bibliography therein
contained. These proofs rely on: (1) the use of the algorithm

in [6] to transform Hilbert-axioms into suitable proof systems
(cut-free hypersequent calculi [1], [19]), (2) the identification
of sufficient conditions on these calculi that allow for density
elimination (and then rational completeness), and (3) the
closure under Dedekind-MacNeille-style completions, shown
e.g. in [7], of the algebraic structures for the considered logics.

The algebraic and the proof theoretic approaches have been
most successful for proving standard completeness of non
involutive logics, that is of logics in which ¬¬A is not the
same as A. Establishing standard completeness for involutive
logics appears to be a difficult task [19], which has been
carried out only for some specific logics and with ad hoc
proofs; among them for IMTL [12], [18], IMTL extended
with the n-contraction axioms (n > 2) [5], and with (wnm)
[13] (Nilpotent Minimum Logic). The absence of weakening
complicates the situation even more and, for instance, it is
not known whether the logic IUL, which is IMTL without
weakening [18], is standard complete.

In this paper we introduce a standard completeness proof
that uniformly applies to a large class of axiomatic extensions
of IMTL. Starting with the cut-free hypersequent calculi for
such logics introduced in [9] (and recalled in (Section II)):

• We identify syntactic sufficient conditions on the hy-
persequent rules that guarantee density elimination (Sec-
tion III); the results in [18] ensure that the formalized
logics are rational complete.

• Standard completeness then follows by showing that
the corresponding classes of algebras are preserved un-
der Dedekind-MacNeille completion. This is obtained in
(Section IV) by adapting/extending the results in [7] to
(algebras for) involutive logics.

Our proof applies to the axiomatic extensions of IMTL already
known to be standard complete, provides a first syntactic proof
of standard completeness for Nilpotent Minimum Logic [13],
and allows for the discovery of new fuzzy logics.

II. PRELIMINARIES

Shown in [12] (and [18]) to be the logic of involutive left
continuous t-norms1, Involutive Monoidal T-norm Logic IMTL
[13] arises by adding the prelinearity axiom (α→ β)∨ (β →
α) to Involutive Full Lambek calculus with exchange and
weakening IFLew (also known as affine Linear Logic without
exponentials).

1T -norms are the main tool in Fuzzy Logic to combine vague information.



Here we consider formulas of IMTL to be generated from
a set V = {a, b, c, . . .} of propositional variables, their duals
V ⊥ = {a⊥, b⊥, c⊥, . . .}, the constant 1 and the connectives
∧,∨,�,→ and ⊕, where α→ β abbreviates α⊥ ⊕ β.

As shown in [6], due to the presence of the linearity
axiom, the simplest proof system for IMTL which allows for
density elimination uses hypersequents, which are disjunctive-
separated sequents [1]. Following the notation in [9] the latter
are written here one-sided, i.e. as multisets of formulas.

Definition 1: A hypersequent is a finite multiset P1 | . . . |Pn
of sequents, each called a component of the hypersequent.

Notation. In the following, Γ,∆ . . . will stand for both
multisets of formulas and metavariables for multisets of
formulas. G,H will denote hypersequents and P,C se-
quents (possibly built from metavariables). Γk will stand
for k comma-separated occurrences of Γ. We denote by
P [Σ1/Λ1, . . . ,Σn/Λn] the sequent obtained by replacing any
Λi in P with Σi, and by H[Σ1/Λ1, . . . ,Σn/Λn] the hy-
persequent obtained by applying the same substitution to
each component of H . Letting A = {Λ1, . . . ,Λn} and
B = {Σ1, . . . ,Σn}, we also use the compact forms P [B/A]
and H[B/A]. The calculus HIMTL for IMTL is presented
in Fig. 1. Notice that its rules are actually rule schemes and
that the (cut) rule is redundant (eliminable, in fact). The
structural2 rule (com), which operates on different components
of hypersequents, allows us to prove the prelinearity axiom.
A concrete instance of a rule scheme is a rule application.
Following standard practice, we do not always distinguish
explicitly between a rule instance and a rule schema.

Following [6], an algorithm to define cut-free hypersequent
calculi for axiomatic extensions of IMTL (actually, of IFLe)
was introduced in [9]. The algorithm is based on the following
classification of Hilbert axioms: the classes Pn and Nn of
positive and negative formulas are defined via the following
grammar: (P0 = N0 = V ∪ V ⊥ and ? ∈ {⊕,∧})
Pn+1 := Nn | Pn+1 � Pn+1 | Pn+1 ∨ Pn+1 | 1
Nn+1 := Pn | Nn+1 ?Nn+1 | Pn+1 → Nn+1

As shown in [9], in presence of weakening, every α ∈ P3

which in addition satisfies the acyclicity property, can be trans-
formed into a finite set Rα of analytic structural hypersequent
rules, i.e. rules satisfying the following: for each (r) ∈ Rα
• (r) consists only of metavariables for multisets of formu-

las and hypersequent contexts.
• Each metavariable for a multiset of formulas occurs at

most once in the conclusion.
• Each metavariable for a multiset of formulas occurring

in the premises of (r) also occurs in the conclusion

Given a calculus C and a set of rules R, C + R will denote
the calculus obtained by adding the elements of R to C, and
`C+R its derivability relation.

Theorem 1: [9] Let α be any acyclic P3-axiom. Γ `HIMTL+α

γ ⇔ Γ `HIMTL+Rα γ. Moreover the calculus HIMTL + Rα
admits cut-elimination.

2Structural rules are rules that do not mention any connective.

III. DENSITY ELIMINATION

Consider the extensions of HIMTL+R, where R is any set
of analytic rules, with the density rule (p 6∈ Γ,∆, G):

G |Γ, p |∆, p⊥

G |Γ,∆
(D)

Note that in hypersequent calculi (D) is (syntactically) similar
to (cut).

We prove that, when the rules in R have a certain shape (Inv-
SA rules), (D) is eliminable, i.e. that any derivation containing
applications of (D) can be transformed into a derivation of
the same end-hypersequent which does not contain (D) (a
(D)-free derivation). Our proof follows the idea, introduced
for non involutive logics in [8] and applied to HIMTL in
[19], to remove applications of (D) by suitable substitutions.
Given a cut-free derivation D ending in an application of (D)
(below left) we replace all the occurrences of p and p⊥ in an
“asymmetric” way: with ∆ and Γ, respectively. The last step
of the derivation is then transformed into an application of
(ec) (below right):

...D
G |Γ, p |∆, p⊥

G |Γ,∆
(D)

...D∗

G |Γ,∆ |∆,Γ

G |Γ,∆
(ec)

However, the labeled tree D∗ obtained after these replacements
might not be a correct derivation anymore. D might indeed
contain the following components:

Θ, p, p⊥ and G |Θ, p, p |Θ′, p⊥, p⊥

which are no longer derivable after the asymmetric substitu-
tion. We refer to Θ, p, p⊥ as a pp-component. A sequent Pi
which contains more than one occurrence of p (p⊥) is called
pp-complement of a sequent Pj that contains more than one
occurrence of p⊥(p).

Looking at the derivation D bottom-up, it is clear that these
“problematic” components can only originate from applica-
tions of specific structural rules. Moreover pp-complements
are possible only in involutive logics (and hence they are not
considered in the proofs of [2], [8]).

For HIMTL the only source of problems is the (com) rule,
which is handled in the density elimination proof in [19]. Here
we identify a large class of analytic structural rules extending
HIMTL that are shown in Theorem 2 to allow for density
elimination. Although inspired by the conditions in [2] and [3]
the criteria below are stronger, and reflect the greater difficulty
of dealing with calculi for involutive logics. Consider, for
example, the contraction rule (c). Its addition to the calculus
for MTL results in a system that admits density elimination
(and in a logic – Gödel logic– that is standard complete). In
contrast, the density rule is not eliminable in HIMTL extended
with contraction. This is indeed a calculus for classical logic,
which is clearly not standard complete.

To define our sufficient conditions consider any analytic rule

G |P1 · · · G |Pm
(r)

G |C1 | · · · |Cq



G|α, α⊥
(ax) G

G|Γ
(ew)

G|Γ|Γ
G|Γ

(ec)
G|Γ, α G|∆, β
G|Γ,∆, α� β

(�)
G|Γ, αi

G|Γ, α1 ∨ α2

(∨)i (i=1,2)
G|1

(1)

G|Γ
G|Γ, α

(w)
G|Γ, α G|∆, α⊥

G|Γ,∆
(cut)

G|Γ1,∆2 G|Γ2,∆1

G|Γ1,∆1|Γ2,∆2

(com)
G|Γ, α, β
G|Γ, α⊕ β

(⊕)
G|Γ, α G|Γ, β
G|Γ, α ∧ β

(∧)

Fig. 1. Hypersequent system HIMTL

We denote by V ar(r) the set of metavariables occurring in its
conclusion and by V ar(Cs) the metavariables occurring in a
component Cs.

Definition 2: Let A ⊆ V ar(r). A is said to be anchored if
A ⊆ V ar(Cs) for a component Cs of the rule conclusion. We
say that Σ ∈ V ar(r) anchors A if there is a Λ ∈ A such that
{Σ,Λ} is anchored. We say that B ⊆ V ar(r) anchors A if
each Σ ∈ B anchors A.
Let A1, A2 ⊆ V ar(r). (A1, A2) is a unanchored pair3 iff there
is no Λ ∈ A1 such that Λ anchors A2.

Definition 3: An analytic hyperstructural rule (r) is semi-
anchored (SA for short) if for any unanchored pair (A1, A2)
contained in a premise G |Pi, there is a premise of the form
G |Pi[B/A1] (or G |Pi[B/A2]) where B ⊆ V ar(r) anchors
A2 (resp. A1).

Definition 4: An SA rule (r) is involutive (Inv-SA for short)
if for any multiset Θn (n ≥ 2) in a premise G |Π,Θn (Θ 6∈ Π)
there are either

1) Another premise G |Π,Θs,Λm such that s = {0, 1},
0 < m ≤ n− s, and {Θ,Λ} is anchored, or

2) 2 other premises G |Π,Θs,Λm1
1 , G |Π,Θs,Λm2

2 where
s ∈ {0, 1}, 0 < mi ≤ n− s, and {Λ1,Λ2} is anchored.

Example 1: Consider the analytic rules

G |Π,Θn
1 , ..., G |Π,Θn

n−1

G |Π,Θ1, ...,Θn−1
(cn)

G |Θ2,Λ,Π G |Θ,Λ2,Π

G |Θ,Λ,Π
(n)

G |Θ1,Θ2,Π G |Θ1,Θ3,Π G |Θ1,Θ1,Π G |Θ2,Θ3,Π

G |Θ1,Π |Θ2,Θ3

(wnm)

{G |Π,Θni ,Θ
n
i+(2p−1)}

1≤p≤n
n≤i≤(3n−2p)

{G |Π,Θni ,Θ
n
j }

1≤i≤(n−1)

1≤j≤(3n−1)

G |Θn, ...,Θ3n+1 |Π,Θ1, ...,Θn−1

(wnmn)

which correspond through the algorithm in [9] to the axioms:
· αn−1 → αn (cn)
· (α2 � β) ∨ (α� β2)⊕ α⊥ ⊕ β⊥ (n)
· (α� β)⊥ ∨ ((α ∧ β)→ (α� β)) (wnm)
· ((α� β)n)⊥ ∨ ((α ∧ β)n−1 → (α� β)n) (wnmn)

All of them are Inv-SA, except for contraction (c2), which is
SA but not involutive-SA.
The following lemma, first proved in [3] for extensions of
MTL will be useful for the density elimination proof.

Lemma 1: Let D be a cut-free derivation of G |Γ, p |∆, p⊥
(with p, p⊥ /∈ G,Γ,∆) in HIMTL extended with any analytic
rule. Then the rule

G′ |Λ,Θ
(SD)

G |G′ |Θ,Γ |Λ,∆

is cut-free derivable in the same system.

3It is easy to see that (A1, A2) is a unanchored pair iff so is (A2, A1).

Proof: Follows by applying (cut) with the hypersequent
G |Γ,Θ |∆,Θ⊥ whose derivation is obtained by replacing p
(p⊥) in D with Θ (Θ⊥). The (cut) thus introduced can then
be removed by Theorem 1.

Definition 5: A hypersequent G is p-regular if G contains
neither pp-components nor pp-complements.
We show below that Inv-SA rules behave well with respect to
the asymmetric substitutions which replace each hypersequent
H with H[∆/p][Γ/p⊥] – henceforth denoted by H∗. Indeed,
for any premise H of an Inv-SA rule (r) that is not p-regular,
we can always find other premises of (r) from which we can
derive H∗ with possibly additional harmless components.

Theorem 2: Let R be any set of Inv-SA rules, D any cut-free
derivation of G |Γ, p |∆, p⊥ (p, p⊥ /∈ G,Γ,∆) in HIMTL +
R. For any p-regular hypersequent H , we can find a cut-free
derivation of G |H∗ in HIMTL + R.

Proof: By induction on the length of the derivation D′ of
H , distinguishing cases according to the last rule (r) applied.
When (r) is any rule of HIMTL the proof proceeds as in [19].
Suppose now that D′ ends in an Inv-SA rule (r)

...
H ′ |P1 . . .

...
H ′ |Pm

H ′ |C1 | . . . |Cq

(r)

We show how to obtain, for any premise H ′ |Pi of (r), a
cut-free derivation of G |H ′∗ |P ∗i | C∗, where C is a (possibly
empty) hypersequent of the form Cj | . . . |Cl, for Cj , . . . , Cl
arbitrary components of the conclusion of (r). The claim then
follows by (r) and (possibly many applications of) (ec). Note
that, unless specified otherwise, in the following Θ,Λ, . . .
will refer to the metavariables occurring in a rule schema,
while H ′, Pi, . . . to concrete instances of (hyper)sequents in
D′. If a premise H ′ |Pi is p-regular, the required derivation
G |H ′∗ |P ∗i follows by the i.h. Otherwise, we distinguish
cases according to the “problematic” components contained
in H ′ |Pi: (I) pp-complements and (II) pp-components.
(I) Pi is not a pp-component, contains more than one occur-
rence of either p or p⊥, and H ′ contains its pp-complement.
Assume Pi contains p, p (the case for p⊥ being similar). Let
Pi be of the form Θn1

1 , . . . ,Θnk
k ,Π, where (the instantiation

of) Π does not contain p or p⊥ and (the instantiation of) each
Θi contains p. We proceed by induction on k.

(base case) Only (the instantiation of) one metavariable Θ
contains occurrences of p, i.e. Pi = Θn,Π. By Def. 4 one of
the following holds (s ∈ {0, 1}, 0 < m,m1,m2 ≤ n− s):

I.1 There is a premise H ′ |Pj such that Pj = Θs,Λm,Π
with {Θ,Λ} anchored.

I.2 There are 2 premises H ′ |PΘ1 = H ′ |Θs,Λm1
1 ,Π and

H ′ |PΘ2 = H ′ |Θs,Λm2
2 ,Π, with {Λ1,Λ2} anchored.



(I.1) Since {Θ,Λ} is anchored, both metavariables will occur
in a component of the p-regular conclusion of (r). Hence (the
instantiation of) Λ cannot contain any occurrence of p or p⊥

and H ′ |Pj has to be p-regular. Therefore, by i.h., we get
a cut-free derivation of G |H ′∗ |P ∗j = G |H ′∗ |Θ∗s,Λm,Π.
Consider the derivation

D′′

G |H′∗ |Θ∗s,Λm,Π
(SD)

G |H′∗ |Θ∗s,∆,Λm−1
,Π |Λ,Γ

(SD)

G |H′∗ |Θ∗s,∆,Λm−1
,Π |Λ,∆ |Γ,Γ

·
·
·
(SD)× (2m− 1)

G |H′∗ |Θ∗s,∆m
,Π |Λ,∆ |Γ,Γ | . . . |Λ,∆ |Γ,Γ

We then apply (w) to the components of the hypersequent
above as follows: we turn Θ∗s,∆m,Π into P ∗i ; each compo-
nent Λ,∆ into C∗l for a component of the conclusion Cl (recall
that {Λ,Θ} is anchored and the instantiation of Θ contains p);
each component Γ,Γ into the substituted version of the pp-
complement of Pi (which already occurs in H ′∗). The desired
derivation of G |H ′∗ |P ∗i |C∗l follows by suitable applications
of (ec).
(I.2) Let the premises H ′ |PΘ1 = H ′ |Θs,Λm1

1 ,Π and
H ′ |PΘ2 = H ′ |Θs,Λm2

2 ,Π be such that {Λ1,Λ2} is anchored.
We distinguish four sub-cases according to the presence of p
and p⊥ in (the instantiations of) Λ1,Λ2.
(I.2a) p ∈ Λ1. Being {Λ1,Λ2} anchored, Λ2 cannot contain
p or p⊥, as otherwise the conclusion would not be p-regular.
Then, the i.h. leads to a cut-free derivation of G |H ′∗ |P ∗Θ2.
From this, we can obtain G |H ′∗ |P ∗i |C∗l by a derivation
similar to D′′ followed by applications of (w).
(I.2b) p⊥ ∈ Λ1, p

⊥ 6∈ Λ2. If s = 0, i.e. Θ does not occur in
PΘ1

, the latter is p-regular and we can get G |H ′∗ |P ∗i |C∗l
proceeding as in D′′ in (I.1). Otherwise, let us consider the
premise H ′ |PΘ2. Since {Λ1,Λ2} is anchored, Λ2 cannot
contain p. Therefore H ′ |PΘ2 is p-regular and by i.h. we have
a cut-free derivation of G |H ′∗ |P ∗Θ2 = G |H ′∗ |Θ∗s,Λm2

2 ,Π.
We can then derive G |H ′∗ |P ∗i |C∗l as follows:

G |H′∗ |Π,Θ∗s,Λ∗2
m2

(SD)

G |H′∗ |Π,Θ∗s,∆,Λm2−1
2 |Λ2,Γ

·
·
·
(SD)× (m− 1)

G |H′∗ |Π,Θ∗s,∆m2 |Λ2,Γ | . . . |Λ2,Γ

Since ∆ occurs in Θ∗ and Γ in Λ∗1, we can use (w) to turn the
sequent Π,Θ∗,∆m2 into Π,Θn and each sequent Λ2,Γ into
Λ∗1,Λ2. Suitable applications of (ec) lead to G |H ′∗ |P ∗i |C∗l .
(I.2c) p⊥ ∈ Λ1, p⊥ ∈ Λ2. If s = 0, as before, PΘ1

is p-regular
and we proceed as in D′′ in (I.1). If s = 1, ({Θ}, {Λ1})
is a unanchored pair, as otherwise the conclusion would not
be p-regular. Then, by Def. 3 there is a premise H ′ |Pl
such that either Pl = PΘ1 [Σ/Λ1] and Σ anchors Θ, or Pl
= PΘ1

[Σ/Θ] and Σ anchors Λ1. In the first case, since Σ
anchors Θ, its instantiation can contain neither p nor p⊥. Then,
H ′ |Pl is p-regular and by i.h. we have a cut-free derivation
of G |H ′∗ |P ∗l , from which we can derive G |H ′∗ |P ∗i |C∗l ,
proceeding as in D′′ in (I.1). In case we have Pl = PΘ1 [Σ/Θ]
with {Σ,Λ1} anchored, (the instantiation of) Σ cannot contain

p. Hence, again, H ′ |Pl is p-regular and by i.h. we have a
cut-free derivation of G |H ′∗ |P ∗l . From here, by a single ap-
plication of SD, we obtain G |H ′∗ |Π,Θ∗,Λ∗1

m1 |Σ,Γ; since
Γ occurs in Λ∗1, we can apply (w) to the sequent Σ,Γ and get
Σ,Λ∗1. Therefore, we have G |H ′∗ |P ∗Θ1

|C∗l , from which we
can obtain G |H ′∗ |P ∗i | C∗ proceeding as in case (I.2b).
(I.2d) Λ1 and Λ2 do not contain any occurrence of p or p⊥.
Hence, both PΘ1 and PΘ2 are p-regular and by i.h. we have
cut-free derivations of G |H ′∗ |P ∗Θ1 and G |H ′∗ |P ∗Θ2. From
these hypersequents, proceeding as in D′′ in (I.1), we can get
the premises of the following application of (com):

G |H ′∗ |P ∗i |Λ1,∆ G |H ′∗ |P ∗i |Λ2,∆

G |H ′∗ |P ∗i |Λ1,Λ2 |∆,∆
(com)

Since ∆ occurs in Θ∗, we can apply (w) to the sequent
∆,∆, obtaining Π,Θ∗n = P ∗i , that can be removed by (ec).
Moreover, since {Λ1,Λ2} is anchored, Λ1 and Λ2 occur in
the same component Cl of the conclusion. Therefore, by an
application of (w) to the sequent Λ1,Λ2 we get C∗l , obtaining
the desired derivation of G |H ′∗ |P ∗i |C∗l .

(inductive step) (The instantiation of) more than one multi-
set in Pi contains occurrences of p, i.e. Pi = Θn1

1 , . . . ,Θnk
k ,Π.

Consider the premise H |Pi, let AΘ1
= {Θk} and AΘ2

=
{Θ1, . . . ,Θk−1}. Note that no Θi ∈ AΘ2 can anchor
{Θk}. Hence, (AΘ1 , AΘ2) has to be a unanchored pair, as
otherwise the conclusion of (r) would not be p-regular.
Thus, by Def. 3 there is a premise H ′ |Pl such that ei-
ther H ′ |Pl = H ′ |Pi[B/AΘ1

] where B anchors AΘ2
or

H ′ |Pl = H ′ |Pi[B/AΘ2 ] where B anchors AΘ1 . Since in
both cases B cannot contain p or p⊥, the induction hypothesis
gives us G |H ′∗ |P ∗l | C∗. From the latter we can easily derive
G |H ′∗ |P ∗i | C∗, proceeding as in D′′ in (I.1).
(II) Pi is a pp-component.
Assume that Pi = Θ,Λi11 , . . . ,Λ

ik
k ,Λ

ik+1

k+1 . . . ,Λ
in
n , where

A1 = {Λ1, . . . ,Λk} is the set of metavariables whose in-
stantiation contains some ps and A2 = {Λk+1, . . . ,Λn} the
set of those containing some p⊥s. Note that (A1, A2) is a
unanchored pair (no Λi ∈ A1 can anchor a Λj ∈ A2, as
otherwise the conclusion of (r) would not be p-regular). We
consider the subcases:
(II.1) H ′ |Pi does not contain a pp-complement of Pi.
By Def. 3 we have either a premise H ′ |Pj of the form
Pi[B1/A2], where B1 = {Σk+1, . . . ,Σn} anchors A1, or of
the form Pi[B2/A1], where B2 = {Σ1, . . . ,Σk} anchors A2.
Consider the first case, the other being similar. The premise
H ′ |Pj is p-regular, as p⊥ does not occur in the instantiation of
any Σl in B1. We thus have a derivation of H ′∗ |P ∗j . Applying
repeatedly SD, we obtain

(∗)H ′∗ |Θ,Λi11 , . . . ,Λ
ik
k ,Γ

ik+1 , . . . ,Γin |Σk+1,∆ | . . . |Σn,∆

Note that any Σl ∈ B1 anchors a Λi ∈ A1, and that any Λ∗i
contains ∆ (as any instance of Λi ∈ A1 contains p). Hence,
by applying (w) to any sequent in (∗) of the form Σl,∆, we
obtain a component C∗s of the conclusion. By applying (w)
to the component Θ,Λi11 , . . . ,Λ

ik
k ,Γ

ik+1 , . . . ,Γin of (*), we
obtain P ∗i . Hence we get a derivation of G |H ′∗ |P ∗i | C∗.



(II.2) H ′ contains a pp-complement of Pi, e.g. with p⊥, p⊥

(the other case is analogous). By Def. 3, there is a premise
H ′ |Pj such that either Pj = Pi[B/A2] and B anchors A1, or
Pj = Pi[B/A1] and B anchors A2. In the first case, H ′ |Pj is
not immediately p-regular (recall that any instance of Λi in A1

contain p and H ′ contains the pp-complement of Pi), but we
can obtain a cut-free derivation of G |H ′∗ |P ∗j proceeding as
in (I). In the second case, H ′ |Pj has to be p-regular and we
get G |H ′∗ |P ∗j by i.h. In both cases, the desired derivation
of G |H ′∗ |P ∗i | C∗ is obtained by G |H ′∗ |P ∗j as in (II.1).

Remark 1: The above proof relies essentially on the pres-
ence of (w).

Corollary 1: HIMTL + (D) + Inv-SA rules admits density
elimination.

Proof: By Th. 2 we can replace the top-most application
of (D) with a cut-free, (D)-free derivation of the same
hypersequent. The claim follows as shown, e.g., in [19].

IV. FROM DENSITY ELIMINATION TO STANDARD
COMPLETENESS

The results on density elimination for hypersequent calculi
in Section III lead to the rational completeness of the corre-
sponding logics, i.e. the completeness w.r.t. algebras over the
rationals on [0, 1] (see, e.g. [2], [18], [19]). Proving that such
algebras can be embedded into complete ones (in other terms,
that they are preserved under completions) provides the final
step towards standard completeness.

Preservation of algebras under completions is a widely in-
vestigated topic and general proofs have been provided, e.g., in
[7]. The idea there is to transform suitable classes of algebraic
equations into equivalent so-called analytic structural clauses
and then show the preservation of the latter under Dedekind-
Macneille completion (DM-completion in the following). This
mirrors the transformation of axioms into analytic rules shown
in [6] for non-involutive logics and in [9] for the involutive
ones. However, unlike the proof-theoretic counterpart, the
algebraic results in [7] have not been so far extended to
involutive algebras. This issue is addressed in the following.

We assume the reader to be familiar with basic notions of
universal algebra, such as the satisfaction of an equation by
an algebra and the consequence relation |=K determined by a
class of algebras K. For these and other unexplained concepts
below we refer, e.g., to [4], [14].

It is relatively simple to provide completeness results for
the logic IMTL and its extensions w.r.t. to a general class of
algebraic structures, the so-called involutive FLew-chains. We
recall their definition in the following.

Definition 6: An FLew-algebra is a structure A =
(A,∧,∨,→,�, 0, 1) where (A,∧,∨, 0, 1) is a bounded lattice,
(A,�, 1) is a commutative monoid, and for any x, y, z ∈ A the
residuation property holds, i.e. x� y ≤ z ⇐⇒ x ≤ y → z.

Negation in a FLew-algebra is defined as ¬x = x → 0.
An involutive FLew-algebra, IFLew-algebra for short, is an
FLew-algebra satisfying ¬¬x = x. An IFLew-algebra is said
to be a chain if the lattice ordering is total.

Note that in IFLew-algebras x⊕ y = ¬(¬x� ¬y)4.
For any logic L which extends IMTL with a set of axioms
α1, . . . , αn, let us call L-algebras the corresponding class of
IFLew-algebras satisfying the equations 1 ≈ α1, . . . , 1 ≈ αn.
We call L-chains the L-algebras which are chains. Useful
general completeness results from the literature are:

Theorem 3: For any axiomatic extension L of IMTL, cal-
culus HL for L, and set of formulas T ∪ γ of L:

1) T `L γ ⇔ {1 ≈ β}β∈T |=K 1 ≈ γ where K is the
class of L-chains.

2) If the density rule is admissible for HL then K in 1)
can be restricted to the class of dense L-chains.

Proof: 1. follows, e.g., from [10], 2. from [19].
Let L be any axiomatic extension of IMTL with a set of acyclic
P3 axioms {α1, . . . , αn}. We say that L is an Inv-SA logic if
all the rules in Rα1

∪· · ·∪Rαn obtained using the algorithm in
[9] are Inv-SA rules. Theorems 1-3 ensure that any Inv-SA logic
L is complete w.r.t. the corresponding class of dense L-chains.
The latter are order-isomorphic to the rationals on [0, 1], hence
our logics are rational complete. We now show that any dense
L-chain is embeddable into a complete one. Towards this aim,
adapting from [7] we first introduce the notions of structural
and analytic clauses, which mirror the corresponding notions
for hypersequent rules.

Definition 7: A structural clause is a classical first-order
formula of the form:

1 ≈ t1 and ... and 1 ≈ tm ⇒ 1 ≈ tm+1 or ... or 1 ≈ tn (q)

where and, or, ⇒ are the classical connectives and any ti is
of the form xi1⊕· · ·⊕xiki , with xij variable or constant. (q)
is a quasiequation if n = m+ 1.
As usual, an algebra A satisfies (q) if, for any evaluation v
into A, if 1 = v(ti) for all premises 1 ≈ ti, then there is at
least one conclusion 1 ≈ tj such that 1 = v(tj).

Definition 8: A structural clause (q) is analytic if: (Lin-
earity) each variable in t1, . . . , tm occurs exactly once in the
conclusions, and (Inclusion) each of t1, . . . , tm is a ⊕-sum of
variables in tm+1, . . . , tn.
Clearly analytic clauses correspond to analytic rules. More
formally, let (r) be any analytic hypersequent rule of the form

G |Γ11, . . . ,Γ1k1 G |Γm1, . . . ,Γmkm
G | {Γi1, . . . ,Γiki}ni=m+1

(r)

We call (qr) the corresponding clause

And {1 ≈ xi1⊕· · ·⊕xiki}mi=1 ⇒ Or {1 ≈ xi1⊕· · ·⊕xiki}ni=m+1

where each (distinct) xik corresponds to the multiset metavari-
able Γik in (r) and the comma is replaced by ⊕. It can be
easily checked that (qr) is an analytic clause.

Henceforth, we fix L to be any Inv-SA logic extending IMTL
with axioms {α1, . . . , αn}, R = Rα1

∪ · · · ∪ Rαn the set of
corresponding analytic rules (see Th. 1), HL = HIMTL + R,

4IFLew-algebras can be equivalently defined over the signature
{∧,∨,⊕,¬, 0}.



and Q the set of corresponding clauses. We call QL-algebras
the class of IFLew-algebras satisfying the clauses in Q.

Theorem 4: Let K be the class of L-chains and QK the
class of QL-chains. We have |=K=|=QK .

Proof: By Th. 1 and 3.1, for any set of formulas T ∪ γ :

(∗) T `L γ ⇔ T `HL γ ⇔ {1 ≈ β}β∈T |=K 1 ≈ γ

Hence for |=L ⊆ |=QL it suffices to show the soundness of
HL w.r.t. evaluations on QL algebras. This amounts to check
that any rule in R is sound with respect to a clause Q, which
is an easy task. For the other direction we show that any QL
chain is an L-chain, i.e. it satisfies 1 ≈ α1, . . . , 1 ≈ αn. Note
that, by (∗), any axiom αi is derivable in the hypersequent
calculus HL. The soundness of HL w.r.t. QL chains ensures
that 1 ≈ α1, . . . , 1 ≈ αn hold in any QL-chain.

By Theorem 4, showing preservation under completions
for L-chains amounts at showing the same for QL chains.
We will now show that analytic clauses are preserved under
DM-completion. Recall [16] that a completion of an IFLew-
algebra A is a pair (B, e) such that B is a complete IFLew-
algebra and e : A→ B is an embedding. In what follows, for
simplicity we will usually identify the subalgebra e(A) of B
with A.

A DM completion of an algebra A is a join-dense and meet-
dense completion DM(A) i.e. a completion such that for
every x ∈ DM(A), x =

∨
X =

∧
Y for some X,Y ⊆ A. It

is a well known fact [16] that DM-completions are unique up
to isomorphism and that the embedding e : A → DM(A) is
regular, i.e. it preserves all existing meets and joins in A.
Adapting from [7], we prove the following

Theorem 5: If an IFLew-algebra A satisfies an analytic
clause (q), its DM-completion DM(A) satisfies (q) as well.

Proof: Consider an evaluation v into DM(A) that sat-
isfies the premises of (q) (cfr. Definition 7), i.e. 1 = v(ti) for
any i = 1, . . . ,m and assume, by contradiction, that for any
j = m+ 1, . . . , n we have 1 6= v(tj). If any tj is of the form
xj1 ⊕ · · · ⊕ xjkj we have 1 6= v(tj) = v(xj1)⊕ · · · ⊕ v(xjkj )
for any j = m + 1, . . . , n. As A is meet dense in DM(A),
we have that v(xjl) = ∧Xjl for some Xjl ⊆ A. We can thus
take an evaluation v′ on A such that v′(xjl) ∈ Xjl ⊆ A for
any j = m+ 1, . . . , n and

(∗) 1 6= v′(xj1)⊕ · · · ⊕ v′(xjkj ).

The linearity of (q) (cfr. Definition 8) ensures that we are
taking exactly one element for each Xjl. By the inclusion
properties, v′ will be defined for any variable on the left hand
side of the clause. For any premise 1 ≈ ti we have now

v′(ti) = v′(xi1)⊕· · ·⊕v′(xiki) ≥
∧

Xi1 ⊕· · ·⊕
∧

Xiki = v(ti)

Since v(ti) = 1, we have v′(ti) = 1 for any premise of (q).
Therefore one of the 1 ≈ tj in the conclusion will be satisfied
as well by v′, which contradicts (*).

Theorem 6: Any Inv-SA logic L is standard complete.
Proof: Theorems 1, 3 and Corollary 1 ensure that L is

rational complete. By Theorem 4 and 5 the class of L-chains
is preserved under DM-completions. It has been shown, e.g.

in [19], that the DM-completion of a dense L-chain is still
dense. There is thus an embedding from any dense L-chain
into a complete dense one: its DM-completion. The latter is
an L-algebra order-isomorphic to [0, 1]. Standard completeness
follows by canonical arguments, e.g., as in [11].

Corollary 2: IMTL extended with any of (wnm), (wnmm)
and (cn), with n > 2 (see Example 1) is standard complete.
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