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P.zza di Porta S.Donato 5, Bologna, Italy Via Sacchi 3, Cesena, Italy

asperti@cs.unibo.it agata@csr.unibo.it

Abstract

A Partial Combinatory Algebra is completable if it can be extended to a
total one. Klop [11, 12] gave a sufficient condition for completability of a
PCA M = (M, ·,K, S) in the form of ten axioms (inequalities) on terms of
M . We prove that Klop’s sufficient condition is equivalent to the existence of
an injective s-m-n function over M (that in turns is equivalent to the Padding
Lemma). This is proved by working with an alternative characterization of
PCA’s, recently introduced by the authors (Effective Applicative Structures).
As a corollary, we show that nine of Klop’s ten axioms are actually redundant
(the so called Barendregt’s axiom is enough to guarantee completability).
Moreover, we prove that any Uniformly Reflexive Structure [17, 18, 16] is
completable.

1 Introduction

A Partial Applicative Structure is a pair (A, ·), where A is an arbitrary set and · is
a partial binary operation over A, called application.

Notation

• Instead of a · b we shall often write ab; moreover, we conventionally suppose
that application is left associative.

• ab↓ means “ab is defined”
ab↑ means “ab is not defined”
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• If t1, t2 are applicative expressions, t1 ≃ t2 abbreviates t1 ↓ ∨ t2 ↓ ⇒ t1 = t2.

Definition 1.1 A Partial Combinatory Algebra (PCA) is a structure A = (A, ·,K, S),
where (A, ·) is a partial applicative structure and S and K are two distinguished
elements of A that satisfy the following conditions, for all a, b, c ∈ A:

1. Ka↓, Sa↓, Sab↓

2. Kab ≃ a

3. Sabc ≃ ac(bc)

A PCA Q = (Q, ·,K, S) is completable iff there is a total PCA Q1 = (Q1, ·,K1, S1)
and an injection φ : Q → Q1 such that φ(K) = K1, φ(S) = S1 and

∀a, a1 ∈ Q (Q |= aa1 ↓ → Q1 |= φ(aa1) = φ(a)φ̇(a1)).

Not every Partial Combinatory Algebra can be completed [11, 12]. In the same
papers, Klop proved that a sufficient condition for the completability of a PCA, is
that of having unique head normal forms.

Definition 1.2 A PCA Q has unique head normal forms (hnf) iff ∀a, b ∈ Q, the
elements K,S,Ka, Sa, Sab are pairwise distinct and Barendregt’s axiom holds in Q,
that is

Q |= ∀a, a1, b, b1 ∈ Q (Sab = Sa1b1 → a = a1 ∧ b = b1)

More precisely, we have the following ten axioms: K 6= Ka, K 6= Sa, S 6= Ka, S 6=
Sa, Ka 6= Sa1, S 6= Sab, Sa 6= Sa1b, K 6= Sa1b, Ka 6= Sa1b, Sab = Sa1b1 → a =
a1 ∧ b = b1.
In this paper we shall prove that Klop’s sufficient condition can be equivalently
expressed by the representability of an injective s-m-n function in Q. The precise
formalization of this property relies on an alternative characterization of PCA’s as
suitable collections of partial functions, recently introduced by the authors under the
name of Effective Applicative Stucture [1, 7]. We also prove that the injectivity of
the s-m-n function is equivalent to the Padding Lemma. Since Barendregt’s axiom
is enough to prove the Padding Lemma we get, as a corollary, that this axiom
is enough to ensure completability and, moreover, that any Uniformly Reflexive
Structure is completable.

2 Effective Applicative Structures

An Effective Applicative Structure is a collection of indexed partial functions that is
closed under composition, contains all projections and an interpreter, and satisfies
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the s-m-n theorem of Recursion Theory.
Formally, an Effective Applicative Structure (EAS) is a family Φn of functions

Φn : M → (Mn ⇀ M)
︸ ︷︷ ︸

partial functions

n ∈ N

over an arbitrary set M , which satisfies the following axioms1:

1. it is closed under composition, i.e.
∀s,a1,. . . ar ∈ M and ∀r, i ∈ N , ∃f ∈ M such that

Φr
s(Φ

i
a1
(x1, · · · , xi), · · ·Φ

i
ar
(x1, · · · , xi)) ≃ Φi

f (x1, · · · , xi)

∀(x1, . . . , xi) ∈ M i

2. it contains all projection functions Ini , i.e.
∀i, n ∈ N , ∃k ∈ M such that

Ini ≃ Φn
k

with I21 6= I22

3. it contains the Smn functions of the s-m-n theorem, i.e.
∀m,n ∈ N ∃j ∈ M such that Φn+1

j is total2 and

Φm

Φn+1
j

(i,x1,···,xn)
(y1, · · · , ym) ≃ Φm+n

i (x1, · · · , xn, y1, · · · , ym)

with (x1, · · · , xn) ∈ Mn

and (y1, · · · , ym) ∈ Mm

4. it contains interpreters, i.e.
∀r ∈ N , ∃i ∈ M such that

Φr+1
i (x, y1, · · · , yr) ≃ Φr

x(y1, · · · , yr)

∀x ∈ M, ∀(y1, . . . , yr) ∈ Mr

The definition of EAS looks very natural: closure under composition and existence
of projections are obvious properties of effective functions, while the s-m-n theorem
and the existence of universal functions are basic results of the theory of effective
computability. Many interesting results (such as Kleene’s fixed point theorem) can

1according to the standard notation of Recusion Theory, we write Φn
i
instead of Φn(i).

2Φn+1

j
= Sm

n

3



be proved by the only use of the previous assumptions.
There exist many other similar “axiomatic” approaches to Recursion Theory in the
literature [17, 18, 16, 9, 6, 8, 13], but all of them make stronger assumptions than
ours. The most relevant (and closest) approach is the Basic Recursive Function
Theory (BRFT) introduced by Strong [16] (a BRFT characterises the families of
functions which form Uniformly Reflexive Structures [17, 18]).

Definition 2.1 A BRFT (Basic Recursive Function Theory) is a structure
(D, F, (φn)n∈N ) satisfying:

• D is an infinite set

• F is a collection of partial functions on D, such that:

1. it is closed under composition

2. it contains all projection functions

3. it contains all constant functions on D

4. it contains the function for definition by cases

f(x, a, b, c) =

{
b if x = a

c otherwise

5. it contains the Sm
n function of the s-m-n theorem

6. it contains an interpreter

Essentially, in EAS we drop constants and definition by cases (they are inessential
to prove that all partial recursive functions are representable in the structure).
On the other side, an important consequence of having definition by cases is that
application is essentially a partial operation (in the sense that it cannot be total).
This can be proved by a simple diagonal argument. Take two distinct elements a
and b and consider the function

f(x) =

{
a if φx(x) = b

b otherwise

Since f ∈ F there exists an index c such that f = φc. Supposing φc(c) defined we
would get a contradiction.

In [1] we proved that Effective Applicative Stuctures are completely equivalent
to Partial Combinatory Algebras. We shall recall the proof in the next section,
since we need it for our discussion of completability.
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3 Equivalence of EAS and PCA

In this section we shall prove that any Partial Combinatory Algebra provides a
model of Effective Applicative Structure and, conversely, for any Effective Applica-
tive Structure its domain can be naturally equipped with a PCA-structure.

3.1 From PCA to EAS

Recall that λ-abstraction can be simulated inside Combinatory Algebras by means
of the following rules:

1. λ∗x.x ≡ SKK

2. λ∗x.M ≡ KM if M is a variable y 6= x, S or K.

3. λ∗x.(MN) ≡ S(λ∗x.M)(λ∗x.N)

Let M = (M, ·,K, S) be a PCA. Let us define a family of (partial) functions φn :
M → (Mn → M) n ∈ N as follows:

φn
p (b1, · · · , bn) ≃ pb1 · · · bn

(we shall often omit the superscript n when it is clear from the context.)
We have that

1. {φn} satisfies closure under composition. In fact
∀M1,M2, · · · ,Ml ∈ M, ∀n ∈ N , ∃F ∈ M such that

φM1
(φM2

(N1, · · · , Nn) · · ·φMl
(N1, · · · , Nn)) = φF (N1, · · · , Nn)

with F ≡ λ∗x1 · · ·xn.M1(M2x1 · · ·xn) · · · (Mlx1 · · ·xn)

2. {φn} contains projection functions, i.e.

φk
R(N1, · · · , Nk) = Ni

with R ≡ λ∗x1 · · ·xk.xi

3. {φn} contains the Sm
n function of the s-m-n theorem, i.e.

∀m,n ∈ N ∃Q ∈ M such that φQ(P,N1 · · ·Nn) is defined and

φm
φQ(P,N1,···,Nn)

(M1, · · · ,Mm) = φm+n
P (N1, · · · , Nn,M1, · · · ,Mm)

with Q ≡ λ∗x1, · · ·xn+1y1 · · · ym.x1x2 · · ·xn+1y1 · · · ym
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4. {φn} contains interpreters, i.e. ∀n ∈ N ∃U ∈ M such that

φU (M,N1, · · · , Nn) = φM (N1, · · · , Nn)

with U ≡ λ∗xy1 · · · yn.xy1 · · · yn

Then φn : M → (Mn → M) n ∈ N is an Effective Applicative Structure.

3.2 From EAS to PCA

Given an Effective Applicative Structure

Φn : M → (Mn → M) n ∈ N

we use the interpreter of condition 4. to define a partial binary operation
· : M ×M → M :

a · b ≡ U2(a, b) ≡ Φ2
u(a, b) ≃ Φa(b)

(u is the index of the interpreter with 2 arguments.)
S and K are defined as follows.

• Existence of K
We prove the existence of an index K in M such that, for all i, j ∈ M

(K · i) · j ≃ i

In fact

i ≃ I21 (i, j)
≃ Φ2

l (i, j) by hp. 2. of EAS
≃ Φ1

S1
1(l,i)

(j) by def. of S1
1

≃ Φ1
Φ2

m(l,i)(j) by hp. 3. of EAS

≃ Φ1
Φ1

S1
1
(m,l)

(i)
(j) by def. of S1

1

Since Sm
n is total, letting K ≡ S1

1(m, l) we have:

i ≃ Φ1
Φ1

K
(i)(j) ≃ (K · i) · j

• Existence of S
We prove the existence of an index S ∈ M such that ∀a, b, c ∈ M

(((S · a) · b) · c) ≃ (a · c) · (b · c)

In fact
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(a · c) · (b · c) ≃ Φ2
z(Φ

2
z(a, c),Φ

2
z(b, c)) by def. of application

≃ Φ2
z(Φ

2
z(I

3
1 (a, b, c), I

3
3 (a, b, c)),Φ

2
z(I

3
2 (a, b, c), I

3
3 (a, b, c)))

≃ Φ3
h(a, b, c) by hp 1. and 2. of EAS

≃ Φ1
S1
2(h,a,b)

(c)

≃ Φ1
Φ3

j
(h,a,b)

(c) by hp. 3. of EAS

≃ Φ1
Φ1

S1
2
(j,h,a)

(b)
(c)

≃ Φ1
Φ1

Φ3
j
(j,h,a)

(b)
(c) by hp. 3. of EAS

≃ Φ1
Φ1

Φ1

S1
2
(j,j,h)

(a)
(b)

(c)

since Sm
n is total, letting S ≡ S1

2(j, j, h), we have:

(a · c) · (b · c) ≃ Φ1
Φ1

ΦS1(a)
(b)(c) ≃ (((S · a) · b) · c)

• Kx↓, Sx↓ and (S(x))y↓ for all x, y ∈ M
since Sm

n is a total function.

• It is easy to prove that if K = S then |M | = 1.

Then M = (M, ·,K, S) is a PCA.

4 Completability of Partial Combinatory Algebras

In this section we prove that unicity of hnf in PCA’s corresponds to the existence
of an injective Sm

n function in EAS’s.
We say that the function Sm

n is injective if

Sm
n (a) = Sm1

n1
(b) ⇒ m = m1 ∧ n = n1 ∧ a = b

(that is, injectivity in n, m, and all its arguments) 3.
First of all we notice that in order to prove the unicity of hnf in a PCA, it is not
necessary to check the 10 cases that are possible, i.e. K 6= Ka, K 6= Sa, S 6=
Ka, S 6= Sa, Ka 6= Sa1, S 6= Sab, Sa 6= Sa1b, K 6= Sa1b, Ka 6= Sa1b, Sab =
Sa1b1 → a = a1 ∧ b = b1.
As a matter of fact, the two conditions S 6= Ka and K 6= Ka
( ∀a) are true in every PCA, while a PCA that satisfies S = Sa or K = Sa is
already complete.

3It is interesting to note that in many texts of Recursion Theory, such as [14], the Sm
n function

is explicitly introduced with the additional hypothesis to be injective.
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Proposition 4.1 In any PCA M, S 6= Ka and K 6= Ka.

Proof: Suppose S = Ka. Then ∀b, c, Sb = Kab = a = Kac = Sc. So, ∀b, c, x, y,
Sbxy ≃ Scxy. Let I ≡ SKK. Taking b ≡ K, c ≡ I, y ≡ I, x ≡ K, we have:

I = SKKI = SIKI = KI

This is absurd, since for any x we would have x = Ix = KIx = I.
Similarly, K = Ka would imply that all terms are equal to a.

Proposition 4.2 If a PCA M satisfies S = Sa or K = Sa, then it is total.

Proof: Suppose S = Sa. Then ∀b, c ∈ M, Sabc ≃ ac(bc) = Sbc. Thus ∀b, c (bc)↓.
Similarly if K = Sa, ∀b, c ∈ M, Sabc ≃ ac(bc) ≃ Kbc = b. Thus ∀b, c (bc)↓.

These propositions allow us to restrict the sufficient conditions for completability
to the remaining 6 cases.

4.1 From injectivity of Sm

n
to completability

Let us consider the Partial Combinatory Algebra M = (M, ·,K, S) as defined in
3.2, and suppose that the Sm

n function of s-m-n theorem is injective. We proceed
in proving the completability of M by considering all remaining cases of Klop’s
sufficient conditions, namely ∀a, a1, b, b1:

1. Ka 6= Sa1

2. S 6= Sab

3. Sa 6= Sa1b

4. K 6= Sab

5. Ka 6= Sa1b

6. Sab = Sa1b1 ⇒ a = a1 ∧ b = b1

Let us recall first that, by definition,

K ≡ S1
1(m, l)

where m is the index in EAS of S1
1 and l of I21 , and

S ≡ S1
2(j, j, h)

where j is the index in EAS of S1
2 .
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1. Ka 6= Sa1

Ka = U2(S1
1(m, l), a) by def. of application

= ΦS1
1(m,l)(a)

= Φm(l, a) by def. of S1
1

= S1
1(l, a). since m is the index of S1

1

Conversely,

Sa1 = U2(S1
2(j, j, h), a1) by def. of application

= ΦS1
2(j,j,h)

(a1)

= Φj(j, h, a1) by def. of S1
2

= S1
2(j, h, a1) since j is the index of S1

2

Since Sm
n is injective,

Ka = S1
1(l, a) 6= S1

2(j, h, a1) = Sa1 ∀a, a1

2. S 6= Sab

Sab = U2(U2(S1
2(j, j, h), a), b) by def. of application

= Φj(h, a, b)
= S1

2(h, a, b) since j is the index of S1
2

If S = Sab, from injectivity of Sm
n it follows that j = h = a = b. Since

Sa = S1
2(j, h, a), we would have S = Sa, and by Proposition 5, M is already

complete.

3. Sa1 6= Sab
We already proved that

Sa1 = S1
2(j, h, a1)

Sab = S1
2(h, a, b)

If Sa1 = Sab, the injectivity of Sm
n implies that j = h, so

S = S1
2(j, j, h) = S1

2(j, h, h) = Sh

and by Proposition 5, M is already complete.

4. K 6= Sab
By the injectivity of Sm

n ,

K ≡ S1
1(m, l) 6= S1

2(h, a, b) ≡ Sab

5. Ka1 6= Sab
Similar to 4.

6. Sab = Sa1b1 ⇒ a = a1 ∧ b = b1
Direct consequence of the injectivity of Sm

n .
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4.2 From unique head normal form to injectivity of Sm

n

Let us prove that Klop’s conditions for completability are enough to ensure the
existence of injective Sm

n functions.
Recall that, according to our definition,

Sm
n = λ∗x0x1 . . . xny1 . . . ym.x0x1 . . . xny1 . . . ym

Then, by definition of φ
φn+1
Sm
n

(b, a1, . . . , an) =

(λ∗x0x1 . . . xny1 . . . ym.x0x1 . . . xny1 . . . ym)b a1 . . . an =

(λ∗y1 . . . ym.x0x1 . . . xny1 . . . ym)[b/x0
,a1 /x1

, . . . ,an /xn
]

We must prove that, if

(∗) φn+1
Sm
n

(b, a1, . . . , an) = φq+1
S

p
q
(b′, a′1, . . . , a

′
q)

then m = p, n = q, b = b′ and for all i, ai = a′i.
Let us prove first that (*) implies m = p.
The term

λ∗y1 . . . ym.x0x1 . . . xny1 . . . ym

(and all its instances) has the following shape, for any m (trivial induction):

SMλ∗y1 . . . ym.ym

where M = λ∗y1 . . . ym.x0x1 . . . xny1 . . . ym−1.
So, by Barendregt’s axiom, (*) would imply

λ∗y1 . . . ym.ym = λ∗y1 . . . yp.yp

Suppose that m 6= p, and assume p < m. If we apply p terms M1, . . . ,Mp to both
arguments of the previous equation, we get

λ∗yp+1 . . . ym.ym = Mp

that is absurd, since every term would be equal to λ∗yp+1 . . . ym.ym.
So we can assume m = p, and the hypothesis (*) becomes

(∗∗) φn+1
Sm
n

(b, a1, . . . , an) = φq+1
Sm
q
(b′, a′1, . . . , a

′
q)

Let us prove that n = q. Let us apply to both arguments of the above equation
m− 1 terms c1, . . . , cm−1. In particular, (**) becomes:

λ∗ym.x0x1 . . . xny1 . . . ym[b/x0
,a1 /x1

, . . . ,an /xn
,c1 /y1

, . . . ,cm−1 /ym−1
] =
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λ∗ym.x0x1 . . . xqy1 . . . ym[b
′

/x0
,a

′

1 /x1
, . . . ,a

′

q /xq
,c1 /y1

, . . . ,cm−1 /ym−1
]

The term λ∗ym.x0x1 . . . xny1 . . . ym has the shape

S(S . . . (S (. . . (S(K x0)(K x1)) . . .)(K xn)) . . . (K ym−1))I

and thus

λ∗ym.x0x1 . . . xny1 . . . ym[b/x0
,a1 /x1

, . . . ,an /xn
,c1 /y1

, . . . ,cm−1 /ym−1
] =

S(S . . . (S (. . . (S(K b)(K a1)) . . .)(K an)) . . . (K cm−1))I

Suppose that n 6= q, and assume q < n. By a repeated use of Barendregt’s axiom
we would obtain

K a′q = SP (K an)

for some term P . But this is impossible due to axiom 5. So n = q.
Finally, by a similar argument (a repeated use of Barendregt’s axiom) we easily
prove that b = b′ and for all i, ai = a′i.

Remark 4.3 In the previous proof, we just used the axiom Ka 6= Sa1b and Baren-
dregt’s axiom. So, these two axioms are enough to guarantee completability. It is
possible to give a more direct proof of this fact: if we define, K1 ≡ λ∗xy.Kxy and
S1 ≡ λ∗xyz.Sxyz, it is easy to show that the two axioms above for K and S imply
all other axioms for K1 and S1.

5 On the Padding Lemma

An interesting property of the theory of effectively computable functions is the
Padding Lemma (see for instance [15]). Essentially, it states that each recursive
function f has a recursive infinite set of indexes.
In the framework of applicative structures, such as PCA or URS (BRFT), the
Padding Lemma is usually expressed in the following form:

Definition 5.1 Let M = (M, ·) be an applicative structure. It satisfies the Padding
Lemma if and only if ∃P ∈ M such that, ∀a, b, x ∈ M

• Pab↓

• Pabx ≃ ax

• Pab = Pa1b1 ⇒ a = a1 ∧ b = b1.

In general, PCA’s (EAS’s) do not satisfy the Padding Lemma. A simple counterex-
ample is provided by extensional PCA’s.
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Definition 5.2 A PCA Q is extensional iff

Q |= ∀x, y (∀z (xz ≃ yz) → x = y)

Obviously, in extensional Partial Combinatory Algebras each function is represented
by just one element. The existence of extensional PCA’s has been proved by Bethke
in [5]; in the same paper, it is proved that Barendregt’s axiom is incompatible with
extensionality in nontotal PCA’s.
The interesting fact is that, in PCA’s, Barendregt’s axiom implies the Padding
Lemma, and conversely the Padding Lemma implies both Barendregt’s axiom and
Ka 6= Sa1b (and thus completability).

Proposition 5.3 If M = (M, ·,K, S) satisfies Barendregt’s axiom, then it satisfies
the Padding Lemma.

Proof: Take P = λ∗yzx.K(yx)z. The rest is easy.

Proposition 5.4 If a PCA M satisfies the Padding Lemma, then there exist S′

and K ′ ∈ M that satisfy both Barendregt’s axiom and K ′a 6= S′bc ∀a, b, c ∈ M .

Proof: Let K ′ ≡ λ∗x.P (Kx)(PKx) and S′ = λ∗xy.P (P (Sxy)S)(Pxy).
Let us prove that S′ satisfies Barendregt’s axiom. Note that S′ab = P (P (Sab)S)(Pab).
If S′ab = S′cd then P (P (Sab)S)(Pab) = P (P (Scd)S)(Pcd). Since P is injective,
Pab = Pcd and by the same reason, a = c and b = d.
Suppose now that there are a, b, c such that K ′a = S′bc. Then P (Ka)(PKa) =
P (P (Sbc)S)(Pbc). By the injectivity of P , Ka = P (Sbc)S, K = b, a = c. In
particular, Ka = P (SKa)S. So, ∀x ∈ M ,

a = Kax = P (SKa)Sx = SKax = Kx(ax) = x

that is absurd.

Corollary 5.5 Barendregt’s axiom implies completability.

Proposition 5.6 Any Uniformly Reflexive Structure satisfies the Padding Lemma.

Proof: See [18], th.4.3.

Corollary 5.7 Any URS is completable.

Note that we can merely extend the PCA-structure of a URS (and not its BRFT-
structure), since the axioms of BRFT imply partiality (in particular, we have no
way to extend definition by cases to the completed domain).
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6 Conclusions

In this paper we proved that a sufficient condition for the completability of a Par-
tial Combinatory Algebra M is the representability of an injective s-m-n function of
Recursion Theory. This fact has some interesting corollaries: we reduce Klop’s suf-
ficient conditions for completability from ten to just one axiom; morevoer we prove
that all Uniformely Reflexive Structures (a subclass of PCA’s that contains Kleene’s
applicative structure) are completable. The proof uses an alternative characterisa-
tion of PCA’s, recently proposed by the authors (Effective Applicative Structures).
An Effective Applicative Structure is a collection of indexed partial functions that is
closed under composition, contains all projections and an interpreter, and satisfies
the s-m-n theorem of Recursion Theory. Due to their close relation with the The-
ory of Recursive Functions and Effective Computability, EAS’s seem to provide a
more natural and friendly framework than Partial Combinatory Algebras. For this
reason, it looks very interesting to rephrase open problems and results from PCA’s
to EAS’s; our work on completability can be seen as a first step in this direction.
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