
Submitted to:
Gandalf 2018

c© F. Aschieri, A. Ciabattoni & F.A. Genco
This work is licensed under the
Creative Commons Attribution License.

Classical Proofs as Parallel Programs∗

Federico Aschieri
TU Wien, Vienna, Austria

Agata Ciabattoni
TU Wien, Vienna, Austria

Francesco A. Genco
TU Wien, Vienna, Austria

We introduce a first proofs-as-parallel-programs correspondence for classical logic. We define a
parallel and more powerful extension of the simply typed λ -calculus corresponding to an analytic
natural deduction based on the excluded middle law. The resulting functional language features a
natural higher-order communication mechanism between processes, which also supports broadcasting.
The normalization procedure makes use of reductions that implement novel techniques for handling
and transmitting process closures.

1 Introduction

The λ -calculus is the heart of functional programming languages. The deep connection between its
programs and intuitionistic proofs is known as Curry–Howard correspondence; useful consequences of
this correspondence are the termination of well-typed functional programs and the possibility of writing
provably correct programs, see, e.g., [24].

The extension of the Curry–Howard correspondence to classical logic came many years later, with
Griffin’s discovery [10] that Pierce’s law ((A→ B)→ A)→ A provides a type for the call/cc operator
of Scheme. Since then many λ -calculi motivated by the correspondence with classical logic have been
introduced. Remarkably, different formalizations of the same logic lead to different results. In particular
computational interpretations of classical logic are very sensible to the selected logical formalism and
the concrete coding of classical reasoning. The main two choices for the former are natural deduction
and sequent calculus, while for the latter are Pierce’s Law, reasoning by contradiction (¬A→⊥)→ A,
multi-conclusion deduction and the excluded middle law EM ¬A∨A.

For instance, reasoning by contradiction gives rise to control operators and corresponds very directly
to Parigot λ µ-calculus [17], which relates to classical natural deduction as the λ -calculus relates to
intuitionistic natural deduction NJ [20]. Examples of multi-conclusion deductions in classical sequent
calculus are [4, 22]. These Curry–Howard correspondences match perfectly classical logic and computa-
tion: each step of program reduction corresponds to a proof transformation, and the evaluation of λ -terms
corresponds to normalization, a procedure that makes proofs analytic, i.e. only containing formulas that
are subformulas of premises and conclusion.

All the functional programming languages resulting from Curry-Howard correspondences for proposi-
tional classical logic model sequential computation and extend the λ -calculus via programming concepts
such as continuations [15]. Remarkably, none of them is based on ¬A∨A, which appears to be related to
some form of parallelism, see [5]. A natural way to make this parallelism explicit would be to extend
the Curry–Howard correspondence to NJ augmented with suitable rules for EM. So far, however, it has
been a long-standing open problem to provide an analytic natural deduction based on EM and enjoying a
significant computational interpretation. In the only known Curry–Howard correspondence for EM-based
propositional natural deduction [11] proof-terms are not interpreted as parallel programs and do not
correspond to analytic proofs. The calculus in [11] extends the simply typed λ -calculus with an operator

∗Supported by FWF: grant Y544-N2 and project W1255-N23.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Classical Proofs as Parallel Programs

for exception handling. The lack of analiticity, however, implies that important reduction rules are missing:
there are some exceptions that should be raised, but are not. These exceptions contain free variables which
are locally bound and cannot be delivered to the exception handler, otherwise they would become free
variables in the whole term. Hence a crucial missing element in [11] is code mobility, along with the
techniques handling the bindings between a piece of code and its environment [8]. Parallelism and code
mobility were instead employed to define the calculus λG [1] and provide a Curry–Howard correspondence
for Gödel logic, a well known logic intermediate between classical and intuitionistic logic.

We exploit here the techniques developed for λG in order to extract from propositional classical
logic a new parallel λ -calculus with a remarkably simpler communication mechanism. The calculus
λCL, as we call it, extends simply typed λ -calculus by a communication mechanism that interprets
the natural deduction rule for A∨¬A. Processes of λCL only communicate through private channels
similar to those bound by the restriction operator ν in the π-calculus, the most widespread formalism
for modeling concurrent systems [16, 19]. These channels are introduced by the typing rule for EM
and their behavior during communication is defined by λCL reduction rules. The basic communication
reductions, called basic cross reductions, behave as follows: let C be a process ready to send a message
to another process D through a channel a, in symbols C [a u] ‖a D ; then, if u is data or a closed process,
the result of the communication is D [u/a], similarly to asynchronous π-calculus [12] or the concurrent
λ -calculus proposed in [3]. Although simple, this mechanism makes λCL more powerful than simply typed
λ -calculus and propositional λµ (see Prop. 6). Remarkably it can also model races, situations in which
several processes compete for a limited amount of resources; moreover, in contrast with calculi based on
point-to-point communication [6] as π-calculus or λG [1] (see Sec. 4) λCL also renders broadcasting.

The normalization of λCL ensures that natural deduction derivations can be transformed into analytic
ones. Similarly to the normalization for λG, this procedure requires additional reduction rules (cross
reductions) that offer a solution to a “fundamental problem in any distributed implementation of a
statically-typed, higher-order programming language”: how to send open processes and transmit function
closures from one node to another (cf. the description of Cloud Haskell in [7]). Indeed, the process
u to be sent might not be closed and might need resources that are or will be available in C . Cross
reductions allow u to be transmitted and create a new communication channel b for transferring the
complete closure of u afterwards. Not even higher-order π-calculus directly supports such a mechanism;
let alone π-calculus, whose communication only applies to data or channels. As discussed in Ex. 2, our
code mobility can be used for program optimization. The technically sophisticated normalization proof in
Sec. 3 adapts the proof for λG [1].

2 λCL: a Curry–Howard interpretation of Classical Logic

We introduce λCL, our typed parallel λ -calculus for Classical Logic. λCL extends the standard Curry–
Howard correspondence [13, 24] for the intuitionistic natural deduction NJ [18] by a parallel operator
that interprets the rule (EM) for A∨¬A. Table 1 defines a type assignment for λCL-terms, called proof
terms and denoted by t,u,v . . . , which is isomorphic to the natural deduction system NJ+(EM). The
typing rules for axioms, implication, conjunction, disjunction and ex-falso-quodlibet are those for the
simply typed λ -calculus [9]. Parallelism is introduced by the (EM) rule . The contraction rule, useful to
define parallel terms that do not communicate, is in fact redundant from the point of view of proof theory.

The reduction rules of λCL are in Figure 1. They consist of the usual simply typed λ -calculus
reductions, instances of ∨ permutations adapted to the ‖ operator, and new communication reductions:
Basic Cross Reductions and Cross Reductions. Since we are dealing with a Curry–Howard correspondence,

F. Aschieri, A. Ciabattoni & F.A. Genco 3

xA : A
u : A v : A

u ‖ v : A
(contr.) u : A t : B

〈u, t〉 : A∧B
u : A∧B
uπ0 : A

u : A∧B
uπ1 : B

[xA : A]....
u : B

λxAu : A→ B

t : A→ B u : A
tu : B

u :⊥
uefqP : P

with P atomic and P 6=⊥

[a¬A : ¬A]....
u : B

[aA : A]....
v : B

u ‖a v : B
(EM)

where all the occurrences of a in u and v are respectively of the form a¬A and aA

Table 1: Type assignments for λCL terms and natural deduction rules.

every reduction rule of λCL corresponds to a reduction for the natural deduction calculus NJ+(EM).
Before explaining the calculus reductions, we recall the essential terminology and definitions, see

e.g. [9]. Proof terms may contain variables xA
0 ,x

A
1 ,x

A
2 , . . . of type A for every formula A; these variables

are denoted by xA, yA, zA, . . . , aA,bA,cA and whenever the type is irrelevant by x,y,z, . . . ,a,b. For clarity,
the (EM) rule variables will be often denoted by a,b,c, . . . but they are not in a syntactic category apart.
A variable xA that occurs in a term of the form λxAu is called λ -variable and a variable a that occurs
in a term u ‖a v is called channel or communication variable and represents a private communication
channel between the processes u and v. We adopt the convention that a¬A and aA are denoted by a and a
respectively, where unambiguous. Free and bound variables of a term are defined as usual. For the new
term u ‖a v, all free occurrences of a in u and v are bound in u ‖a v. We assume the standard renaming
rules and α-equivalences that are used to avoid the capture of variables in the reductions.
Notation. The connective → and ∧ associate to the right and by 〈t1, t2, . . . , tn〉 we denote the term
〈t1,〈t2, . . .〈tn−1, tn〉 . . .〉〉 (which is tt : > if n = 0) and by πi, for i = 0, . . . ,n, the sequence π1 . . .π1π0
selecting the (i+1)th element of the sequence. The expression A1∧ . . .∧An denotes > if n = 0. As usual,
we use ¬A as shorthand notation for A→⊥.

We write Γ ` t : A if Γ = x1 : A1, . . . ,xn : An and all free variables of a proof term t : A are in x1, . . . ,xn.
From the logical point of view, t represents a natural deduction of A from the hypotheses A1, . . . ,An. If the
symbol ‖ does not occur in t, then t is a simply typed λ -term representing an intuitionistic deduction.

We first explain the cross reductions from a proof-theoretical point of view. Basic cross reductions
correspond to the following transformation of natural deduction derivations

[¬A]
δ
A

⊥....
C

[A]....
C

C

7→
δ
A....
C

where no assumption in δ is discharged below ⊥ and above C. When this is the case, intuitively, the
displayed instance of (EM) is hiding some redex that should be reduced. The reduction precisely exposes
this potential redex [18] and we are thus able to reduce it. More instances of ¬A and A might occur in the
respective branches. This, in combination with the contraction rule (see Table 1), gives rise to races and
broadcasting, as explained in the computational interpretation below. Cross reductions correspond to

[¬A]1

[Γ]
δ
A

⊥....
C

[A]1....
C

C

7→

[¬
∧

Γ]2
[Γ]∧

Γ

⊥....
C

[A]1....
C

C
1

[
∧

Γ]2

Γ

δ
A....
C

C
2

4 Classical Proofs as Parallel Programs

As before, in the right derivation we prove by δ all assumptions A, but now we also need to discharge the
assumptions Γ of δ in the rightmost branch; which are discharged in the left derivation between ⊥ and C.
This is done by 2: a new application of (EM) to the conjunction

∧
Γ of such assumptions. Accordingly,

we use ¬
∧

Γ
∧

Γ

⊥
in the leftmost branch. To discharge the remaining occurrences of ¬A, we need to

keep the original instance 1 of (EM), and thus the central branch of the resulting proof is just a duplicate.
Before discussing the computational content of the calculus we introduce a few more definitions.

Definition 1 (Simple Parallel Term). A simple parallel term is a λCL-term t1 ‖ . . . ‖ tn, where each ti, for
1≤ i≤ n, is a simply typed λ -term.

Definition 2. A context C [] is a λCL-term with some fixed variable [] occurring exactly once.

• A simple context is a context which is a simply typed λ -term.

• A simple parallel context is a context which is a simple parallel term.

For any λCL-term u with the same type as [], C [u] denotes the term obtained replacing [] with u in C [],
without renaming bound variables.

Definition 3 (Multiple Substitution). Let u be a proof term, x = xA0
0 , . . . ,xAn

n a sequence of variables and
v : A0∧ . . .∧An. The substitution uv/x := u[vπ0/xA0

0 . . . vπn/xAn
n] replaces each variable xAi

i of any term u
with the ith projection of v.

Basic Cross Reductions can be fired whenever the free variables of t are also free in C [a t]. In particular,
t may represent executable code or data and directly replaces all occurrences of the channel endpoint a. In
case there is only one sender and one receiver, the reduction

C [a t] ‖a D 7→ D [t/a]

corresponds to the reduction axiom of the asynchronous π-calculus [12]. In general, C [a t] has the shape

C1 ‖ . . . ‖ Ci[a t] ‖ . . . ‖ Cn

where more than one process might have a message to send. In this case, there is a race among the
processes C j that contain some message at j and compete to transmit it to D . The sender Ci[a t] is selected
non-deterministically and communicates its message to D :

(C1 ‖ . . . ‖ Ci[a t] ‖ . . . ‖ Cn) ‖a D 7→ D [t/a]

Since the receiving term D exhausts all its channels a : A to receive t, we remove all processes containing
a : ¬A and obtain a term without a. We also point out that D is an arbitrary term, so it may well be a
sequence of parallel process D1 ‖ · · · ‖Dm. In this case, Ci[a t] broadcasts its message t to D1, . . . ,Dm:

D [t/a] = D1[t/a] ‖ · · · ‖Dm[t/a]

Cross Reductions address a crucial problem of functional languages with higher-order message ex-
change: transmitting function closures (see [7]). The solution provided by our logical types is that
function closures are transmitted in two steps: first, the function code, then, when it is available, the
evaluation environment. As a result, we can communicate open λCL-terms which are closed in their
original environment, and fill later their free variables, when they will be instantiated. The process of
handling and transmitting function closures is typed by a new instance of (EM). For example: assume

F. Aschieri, A. Ciabattoni & F.A. Genco 5

that a channel a is used to send an arbitrary sub-process u from a process C to a process D (below left).
Since u might not be closed, it might depend on its environment for providing values for its free variables
– y in the example is bound by a λ outside u. This issue is solved in the cross reduction by a fresh channel
b which redirects y – the remaining part of the closure – to the new location of u (below right).

The old channel a is kept for further messages that C might want to exchange with D . Technically, the
cross reduction has this shape: (. . . ‖ C [a u] ‖ . . .) ‖a D 7→ (C [b 〈y〉] ‖a D) ‖b D [ub/y/a] On the
one hand, the open term u is replaced in C by the new channel b applied to the sequence y of the free
variables of u; on the other hand, u is sent to the term D as ub/y, so its free variables are removed and
replaced by the channel endpoint b that will receive their future instantiation.

Communication Permutations The only permutations for ‖ that are not standard ∨-permutation-like
are

(u ‖a v) ‖b w 7→ (u ‖b w) ‖a (v ‖b w) and w ‖b (u ‖a v) 7→ (w ‖b u) ‖a (w ‖b v)

These kind of permutations are between parallel operators themselves and address the scope extrusion
issue of private channels. For instance, let us consider the term (v ‖a C [ba]) ‖b w Here the process C [ba]
wishes to send the channel a to w along the channel b, but this is not possible being the channel a private.
This issue is solved in the π-calculus using the congruence νa(P |Q) |R≡ νa(P |Q |R). Classical logic
offers and actually forces a different solution, which is not just permuting w inward but also duplicating it:

(v ‖a C [ba]) ‖b w 7→ (v ‖b w) ‖a (C [ba] ‖b w) after this reduction C [ba] can send a to w.

We provide now the last definitions needed to formally define the reduction rules of λCL. We start
with the notion of strong subformula, which is key for proving Normalization (Section 3).

Definition 4 (Prime Formulas and Factors [14]). A formula is said to be prime if it is not a conjunction.
Every formula is a conjunction of prime formulas, called prime factors.

Definition 5 (Strong Subformula [1]). B is said to be a strong subformula of a formula A, if B is a proper
subformula of some prime proper subformula of A.

Note that here prime formulas are either atomic formulas or arrow formulas, so a strong subformula of
A must be actually a proper subformula of an arrow proper subformula of A. The following characterization
from [1] of the strong subformula relation will be often used.

Proposition 1 (Characterization of Strong Subformulas). If B is a strong subformula of A:

• if A = A1∧...∧An, n > 0 and A1,...,An are prime, then B is a proper subformula of some A1,...,An;

• if A =C→ D, then B is a proper subformula of a prime factor of C or D.

Unrestricted cross reductions do not always terminate. Consider, for example, the following loop

λyB a¬B y ‖a xB→¬B aB 7→ (λyby ‖a xa) ‖b xb 7→ λyby ‖b xb (1)

6 Classical Proofs as Parallel Programs

Intuitionistic Reductions
(λxA u)t 7→ u[t/xA] 〈u0,u1〉πi 7→ ui, for i = 0,1

Parallel Operator Permutations
w(u ‖a v) 7→ wu ‖a wv if a does not occur free in w

(u ‖a v)ξ 7→ uξ ‖a vξ if ξ is a one-element stack and a does not occur free in ξ

w(u ‖ v) 7→ wu ‖ wv (u ‖ v)ξ 7→ uξ ‖ vξ λxA (u ‖a v) 7→ λxA u ‖a λxA v 〈u ‖a v, w〉 7→ 〈u,w〉 ‖a 〈v,w〉
〈w, u ‖a v〉 7→ 〈w,u〉 ‖a 〈w,v〉 λxA (u ‖ v) 7→ λxA u ‖ λxA v 〈u ‖ v, w〉 7→ 〈u,w〉 ‖ 〈v,w〉 〈w, u ‖ v〉 7→ 〈w,u〉 ‖ 〈w,v〉

(u ‖a v) ‖b w 7→ (u ‖b w) ‖a (v ‖b w) if the communication complexity of b is greater than 0
w ‖b (u ‖a v) 7→ (w ‖b u) ‖a (w ‖b v) if the communication complexity of b is greater than 0
(u ‖ v) ‖b w 7→ (u ‖b w) ‖ (v ‖b w) if the communication complexity of b is greater than 0
w ‖b (u ‖ v) 7→ (w ‖b u) ‖ (w ‖b v) if the communication complexity of b is greater than 0

Communication Reductions

Basic Cross Reductions C [a u] ‖a D 7→ D [u/a]
where a : ¬A,a : A, C [] is a context; the free variables of u are also free in C [a u]; a does not occur in u ; and the communication
complexity of a is greater than 0.
Cross Reductions u ‖a v 7→ u if a does not occur in u and u ‖a v 7→ v if a does not occur in v

(. . . ‖ C [a u] ‖ . . .) ‖a D 7→ (C [b 〈y〉] ‖a D) ‖b D [ub/y/a]

where a : ¬A,a : A; (. . . ‖ C [a u] ‖ . . .) is a normal simple parallel term; y is the non-empty sequence of free variables of u
bound in C [a u]; B is the conjunction of the types of the variables in y and b/y is a multiple substitution of these variables; a is
rightmost in C [a u]; b is fresh; b : ¬B,b : B; the communication complexity of a is greater than 0.

Figure 1: Reduction Rules for λCL

To avoid such situations we need conditions on the application of cross reductions. As shown below,
our conditions are based on the complexity of the channel a of a term u ‖a v, and are determined using
logic. We consider the type B such that a occurs with type ¬B in u and thus with type B in v, the type A of
the term u ‖a v, and the types of its free variables xA1

1 , . . . ,xAn
n . The Subformula Property tells us that, no

matter what our notion of computation will turn out to be, when the computation is done, no object whose
type is more complex than the types of the inputs and the output should appear. If the prime factors of the
types B are not subformulas of A1, . . . ,An,A, then these prime factors should be taken into account in the
complexity measure we are looking for. This leads to the following definition.
Definition 6 (Communication Complexity). Let u ‖a v : A a proof term with free variables xA1

1 , . . . ,xAn
n .

Assume that a : ¬B occurs in u and a : B occurs in v.
• B is the communication kind of a.

• The communication complexity of a is the maximum among 0 and the number of symbols of the
prime factors of B that are neither proper subformulas of A nor strong subformulas of any A1,...,An.

To fire a cross reduction for u ‖a v we require that the communication complexity of a is greater
than 0. As this is a warning that the Subformula Property does not hold, we are using a logical property
as a computational criterion for determining when a computation should start and stop. To see it at
work, consider again the term λyB a¬B y ‖a xB→¬B aB : ¬B in the reduction (1). Since all prime factors of
the communication kind B of a are proper subformulas of the type ¬B of the term, the communication
complexity of a is 0 and the cross reduction is not fired, thus avoiding the loop in (1).

Finally, we recall the notion of stack [15]: a series of operations and arguments.
Definition 7 (Stack). A stack is a, possibly empty, sequence σ = σ1σ2 . . .σn such that for every 1≤ i≤ n,
exactly one of the following holds: σi = t, with t proof term or σi = π j with j ∈ {0,1}, or efqP for some
atom P. We will denote the empty sequence with ε and with ξ ,ξ ′, . . . the stacks of length 1. If t is a proof
term, t σ denotes the term (((t σ1)σ2) . . .σn).

F. Aschieri, A. Ciabattoni & F.A. Genco 7

We show now that the reductions of the calculus are sound proof transformations.

Theorem 1 (Subject Reduction). If t : A and t 7→ u, then u : A and all the free variables of u appear
among those of t.

Proof. It is enough to prove the claim for cross reductions. The proof that the intuitionistic reductions
and the permutation rules preserve the type is completely standard, see e.g. [9]. Basic cross reductions
require straightforward considerations as well. Suppose that

(. . . ‖ C [a v] ‖ . . .) ‖a D 7→ (C [b 〈y〉] ‖a D) ‖b D [vb/y/a]

Since 〈y〉 : B, then b¬B〈y〉 :⊥ and C [b〈y〉] can be assigned the correct type. Since the types of vb/y and
a are the same, the term D [vb/y/a] is correctly defined. Finally, since a is rightmost in C [av] and y is
the sequence of the free variables of t which are bound in C [av], by Def. 3, all free variables of vb/y in
D [vb/y/a] are also free in C [av]. Hence, no new free variable is created during the reduction.

3 The Normalization Theorem

We prove that every proof term of λCL reduces in a finite number of steps to a normal form. By Subject
Reduction this implies the normalization for NJ+(EM) proofs. The normalization proof is based on
the method introduced in [1], adapted here to λCL, refined and completed by the new Lemma 1 which
fills a small gap in the proof for λG. The idea behind the normalization strategy is to employ a suitable
complexity measure for terms u ‖a v and, each time a reduction has to be performed, to choose the term
of maximal complexity. Since cross reductions can be applied as long as there is a violation of the
Subformula Property, the natural approach is to define the complexity measure as a function of some
fixed set of formulas, representing the formulas that can be safely used without violating the Subformula
Property. We start by defining parallel form and normal form.

Definition 8 (Parallel Form). A parallel form is defined inductively as follows: a simply typed λ -term is
a parallel form; if u and v are parallel forms, then both u ‖a v and u ‖ v are parallel forms.

Definition 9 (Normal Forms and Normalizable Terms).
• A redex is a term u such that u 7→ v for some v and basic reduction of Figure 1. A term t is called a

normal form or, simply, normal, if there is no t ′ such that t 7→ t ′. We define NF to be the set of
normal λCL-terms.

• A sequence, finite or infinite, of proof terms u1,u2, . . . ,un, . . . is said to be a reduction of t, if t = u1,
and for all i, ui 7→ ui+1. A proof term u of λCL is normalizable if there is a finite reduction of u
whose last term is a normal form.

First established in [1], the following property of simply typed λ -terms is crucial for our normalization
proof. It ensures that every bound hypothesis appearing in a normal intuitionistic proof is a strong
subformula of one of the premises or a proper subformula of the conclusion. This implies that the types of
the new channels generated by cross reductions are smaller than the local premises.

Proposition 2. Suppose that t ∈ NF is a simply typed λ -term, xA1
1 , . . . ,xAn

n ` t : A and z : B is a variable
occurring bound in t. Then one of the following holds: (1) B is a proper subformula of a prime factor of A
or (2) B is a strong subformula of one among A1, . . . ,An.

As shown in [1], each hypothesis of a normal intuitionistic proof is followed by an elimination rule,
unless the hypothesis is ⊥, subformula of the conclusion or proper subformula of a premise.

8 Classical Proofs as Parallel Programs

Proposition 3. Let t ∈NF be a simply typed λ -term and xA1
1 , . . . ,xAn

n ,zB ` t : A One of the following holds:

1. Every occurrence of zB in t is of the form zB ξ for some proof term or projection ξ .

2. B =⊥ or B is a subformula of A or a proper subformula of one among A1, . . . ,An.

Proposition 4 (Parallel Form Property). If t ∈ NF is a λCL-term, then it is in parallel form.

Proof. Easy structural induction on t using the permutation reductions.

Definition 10 (Complexity of Parallel Terms). Let A be a finite set of formulas. The A -complexity of
u ‖a v is the sequence (c,d, l,o) of natural numbers, where:

1. if the communication kind of a is C, then c is the maximum among 0 and the number of symbols of
the prime factors of C that are not subformulas of some formula in A ;

2. d is the number of occurrences of ‖e and ‖ in u,v for any variable e;

3. l is the sum of the maximal lengths of the intuitionistic reductions of u,v;

4. o is the number of occurrences of a in u,v.

The A -communication-complexity of u ‖a v is c.

We adapt the normalization algorithm of [1] that represents the constructive content of the proofs of
Prop. 5 and Thm. 2. Essentially, the master reduction strategy consists in iterating the basic reduction
relation � defined in Def. 11 below, whose goal is to permute the smallest redex u ‖a v of maximal
complexity until u,v are simple parallel terms (see Def. 1) then normalize them and apply cross reductions.

Definition 11 (Side Reduction Strategy). Let t : A be a term with free variables xA1
1 , . . . ,xAn

n and A be
the set of the proper subformulas of A and the strong subformulas of the formulas A1, . . . ,An. Let u ‖a v
be the smallest subterm of t, if any, among those of maximal A -complexity and let (c,d, l,o) be its
A -complexity. We write t � t ′ whenever t ′ has been obtained from t by applying to u ‖a v:

1. if d > 0, a permutation that move ‖a inside u or v, such as u ‖a (v1 ‖b v2) 7→ (u ‖a v1) ‖b (u ‖a v2)

2. if d = 0 and l > 0, intuitionistic reductions normalizing all terms u1, . . . ,um;

3. if d = l = 0 and c > 0, a cross reduction possibly followed by applications of the cross reductions
w1 ‖c w2 7→ wi for i ∈ {1,2} to the whole term;

4. if d = l = c = 0, a cross reduction u ‖a v 7→ u or u ‖a v 7→ v.

Definition 12 (Master Reduction Strategy). We define a normalization algorithm N (t) which for any
term t outputs a term t ′ such that t 7→∗ t ′. Let the free variables of t be xA1

1 , . . . ,xAn
n and A be the set of

proper subformulas of A and strong subformulas of A1, . . . ,An. The algorithm behaves as follows.

1. If t is not in parallel form, then by permutation reductions t is reduced to a t ′ which is in parallel
form and N (t ′) is recursively executed.

2. If t is a simply typed λ -term, it is normalized and returned. If t = u1 ‖a u2 is not a redex, then
let N (ui) = u′i for 1 ≤ i ≤ 2. If u′1 ‖a u′2 is normal, it is returned. Otherwise, N (u′1 ‖a u′2) is
recursively executed.

3. If t is a redex, we select the smallest subterm w of t having maximal A -communication-complexity
r. A sequence of terms w� w1 � w2 � . . .� wn is produced such that wn has A -communication-
complexity strictly smaller than r. We replace w by wn in t, obtain t ′, and recursively execute
N (t ′).

F. Aschieri, A. Ciabattoni & F.A. Genco 9

We observe that in the step 2 of the algorithm N , by construction u1 ‖a u2 is not a redex. After u1,u2 are
normalized respectively to u′1,u

′
2, it can still be the case that u′1 ‖a u′2 is not normal, because some free

variables of u1,u2 may disappear during the normalization, causing a new violation of the Subformula
Property that transforms u′1 ‖a u′2 into a redex, even though u1 ‖a u2 was not.

The first step of the normalization consists in reducing the term in parallel form.

Proposition 5. Let t : A be any term. Then t 7→∗ t ′, where t ′ is a parallel form.

Proof. Easy structural induction on t.

We now prove that any term in parallel form can be normalized using the algorithm N .

Lemma 1. Let t : A be a term in parallel form which is not simply typed and A contain all proper
subformulas of A and be closed under subformulas. Assume that r > 0 is the maximum A -communication-
complexity of the subterms of t. Assume that the free variables xA1

1 , . . . ,xAn
n of t are such that for every i,

either each strong subformula of Ai is in A , or each proper prime subformula of Ai is in A or has at most
r symbols. Suppose moreover that no subterm u1 ‖a u2 with A -communication-complexity r contains a
subterm of the same A -communication-complexity. Then there exists t ′ such that t �∗ t ′ and the maximal
among the A -communication-complexity of the subterms of t ′ is strictly smaller than r.

Proof. We prove the lemma by lexicographic induction on the pair (ρ,k) where k is the number of
subterms of t with maximal A -complexity ρ among those with A -communication-complexity r.

Let u1 ‖a u2 be the smallest subterm of t having A -complexity ρ . Four cases can occur.
(a) ρ = (r,d, l,o), with d > 0. We first show that the term u1 ‖a u2 is a redex. Now, the free variables of
u1 ‖a u2 are among xA1

1 , . . . ,xAn
n ,aB1

1 , . . . ,aBp
p and the communication kind of a is D. Hence, suppose by

contradiction that all the prime factors of D are proper subformulas of A or strong subformulas of one
among A1, . . . ,An,B1, . . . ,Bp. Given that r > 0 there is a prime factor P of D such that P has r symbols
and does not belong to A . The possible cases are two: (i) P is a proper subformula of a prime proper
subformula A′i of Ai such that A′i /∈A ; (ii) P, by Prop. 1, is a proper subformula of a prime factor of Bi.
If (i), then the number of symbols of A′i is less than or equal to r, so P cannot be a proper subfomula of
A′i, which is a contradiction. If (ii), then, since by hypothesis aBi

i is bound in t, there is a prime factor of
Bi having a number of symbols greater than r, hence we conclude that there is a subterm w1 ‖b w2 of t
having A -complexity greater than ρ , which is absurd.

Now, since d > 0, we may assume that for some 1≤ i≤ 2, ui = w1 ‖b w2. Suppose i = 2. The term
u1 ‖a (w1 ‖b w2) is then a redex of t and by replacing it with (∗): (u1 ‖a w1) ‖b (u1 ‖a w2) we obtain from
t a term t ′ such that t � t ′ according to Def. 11. We must verify that we can apply to t ′ the main induction
hypothesis. Indeed, the reduction t � t ′ duplicates all the subterms of v, but all of their A -complexities
are smaller than r, because u1 ‖a u2 by choice is the smallest subterm of t having maximal A -complexity
ρ . The terms (u1 ‖a wi) for 1 ≤ i ≤ 2 have smaller A -complexity than ρ , because they have numbers
of occurrences of the symbol ‖ strictly smaller than in u1 ‖a u2. Moreover, the terms in t ′ with (∗) as a
subterm have, by hypothesis, A -communication-complexity smaller than r and hence A -complexity
smaller than ρ . Assuming that the communication kind of b is F , the prime factors of F that are not in A
must have fewer symbols than the prime factors of D that are not in A , again because u1 ‖a u2 by choice
is the smallest subterm of t having maximal A -complexity ρ ; hence, the A -complexity of (∗) is smaller
than ρ . Hence the number of subterms of t ′ with A -complexity ρ is strictly smaller than k. By induction
hypothesis, t ′ �∗ t ′′, where t ′′ satisfies the thesis.
(b) ρ = (r,d, l,o), with d = 0 and l > 0. Since d = 0, u1,u2 are simple parallel terms – and thus strongly
normalizable [9] – so we may assume that for 1 ≤ i ≤ 2, ui 7→∗ u′i ∈ NF by a sequence intuitionistic

10 Classical Proofs as Parallel Programs

reduction rules. By replacing in t the subterm u1 ‖a u2 with u′1 ‖a u′2, we obtain a term t ′ such that
t � t ′ according to Def. 11. Moreover, the terms in t ′ with u′1 ‖a u′2 as a subterm have, by hypothesis,
A -communication-complexity smaller than r and hence A -complexity is smaller than ρ . By induction
hypothesis, t ′ �∗ t ′′, where t ′′ satisfies the thesis.
(c) ρ = (r,d, l,o), with d = l = 0. Since d = 0, u1,u2 are simply typed λ -terms. Since l = 0, u1,u2 are
in normal form and thus satisfy conditions 1. and 2. of Prop. 2. We need to check that u1 ‖a u2is a redex,
in particular that the communication complexity of a is greater than 0. Assume that the free variables of
u1 ‖a u2 are among xA1

1 , . . . ,xAn
n ,aB1

1 , . . . ,aBp
p and that the communication kind of a is D. As we argued

above, we obtain that not all the prime factors of D are proper subformulas of A or strong subformulas of
one among A1, . . . ,An,B1, . . . ,Bp. By Def. 6, u1 ‖a u2 is a redex.

We now prove that every occurrence of a in u1,u2 is of the form aξ for some term or projection ξ .
First of all, a occurs with arrow type in all u1,u2. Moreover, u1 : A,u2 : A, since t : A and t is a parallel
form; hence, the types of the occurrences of a in u1,u2 cannot be subformulas of A, otherwise r = 0,
and cannot be proper subformulas of one among A1, . . . ,An,B1, . . . ,Bp, otherwise the prime factors of D
would be strong subformulas of one among A1, . . . ,An,B1, . . . ,Bp and thus we are done. Thus by Prop. 3
we are done. Two cases can occur.
• a does not occur in ui for 1≤ i≤ 2. By performing a cross reduction, we replace in t the term u1 ‖a u2
with ui and obtain a term t ′ such that t � t ′ according to Def. 11. After the replacement, the number of
subterms having maximal A -complexity ρ in t ′ is strictly smaller than the number of such subterms in t.
By induction hypothesis, t ′ �∗ t ′′, where t ′′ satisfies the thesis.
• a occurs in all the subterms u1,u2. Let u1 = (. . . ‖ C [a w] ‖ . . .) where a : ¬D, (. . . ‖ C [a w] ‖ . . .) is a
normal simple parallel term, C [] is a simple context, and the displayed occurrence of a is rightmost in
C [a w]. By applying a cross reduction to C [a w] ‖a u2 we obtain either the term u2[w/a] or the term (∗∗)
(C [b〈y〉] ‖a u2) ‖b u2[wb/y/a] where b : ¬B, y is the sequence of the free variables of wz which are bound
in C [a w] and a does not occur in w. In the former case, the term has A -complexity strictly smaller than
ρ and we are done. In the latter case, since u1,u2 satisfy conditions 1. and 2. of Prop. 2, the types Y1, . . . ,Yk
of the variables y are proper subformulas of A or strong subformulas of the formulas A1, . . . ,An,B1, . . . ,Bp.
Hence, the types among Y1, . . . ,Yk which are not in A are strictly smaller than all the prime factors of the
formulas B1, . . . ,Bp. Since the communication kind of b consists of the formulas Y1∧ . . .∧Yk, by Def. 10
the A -complexity of the term (∗∗) above is strictly smaller than the A -complexity ρ of u1 ‖a u2.

Now, since C [a w],u2 normal simple parallel terms, C [b〈y〉] is normal too and contain fewer occur-
rences of a than C [a w] does; hence, the A -complexity of the term C [b〈y〉] ‖a u2 is strictly smaller
than the A -complexity ρ of u1 ‖a u2. Let now t ′ be the term obtained from t by replacing the term
C [a w] ‖a u2 with (∗∗). By construction t � t ′. Moreover, the terms in t ′ with (∗∗) as a subterm have,
by hypothesis, A -communication-complexity smaller than r and hence A -complexity smaller than ρ .
Hence, we can apply the main induction hypothesis to t ′ and obtain by induction hypothesis, t ′ �∗ t ′′,
where t ′′ satisfies the thesis.
(d) ρ = (r,d, l,o), with d = l = o = 0. Since o = 0, u1 ‖a u2 is a redex. Let us say a does not occur in ui

for 1≤ i≤ 2. By performing a cross reduction, we replace u1 ‖a u2 with ui according to Def. 11. Hence,
by induction hypothesis, t ′ �∗ t ′′, where t ′′ satisfies the thesis.

Theorem 2. Let t : A be a λCL-term. Then t 7→∗ t ′ : A, where t ′ is a normal parallel form.

Proof. By Prop. 5, we can assume that t : A is in parallel form. Assume now that the free variables of t are
xA1

1 , . . . ,xAn
n and let A be the set of the proper subformulas of A and the strong subformulas of the formulas

A1, . . . ,An. We prove the theorem by lexicographic induction on the quadruple (|A |,r,k,s) where |A | is

F. Aschieri, A. Ciabattoni & F.A. Genco 11

the cardinality of A , r is the maximal A -communication-complexity of the subterms of t, k is the number
of subterms of t having maximal A -communication-complexity r and s is the size of t. If t is a simply
typed λ -term, it has a normal form [9] and we are done; so we assume t is not. There are two main cases.
• First case: t is not a redex. Let t = u1 ‖a u2 and let C be the communication kind of a. Then, the
communication complexity of a is 0 and by Def. 6 every prime factor of C belongs to A . Let the types of
the occurrences of a in ui for 1≤ i≤ 2 be Bi, with Bi = ¬C or Bi =C. Let now Ai be the set of the proper
subformulas of A and the strong subformulas of A1, . . . ,An,Bi. By Prop. 1, every strong subformula of Bi

is a proper subformula of a prime factor of C, and this prime factor is in A . Hence, Ai ⊆A .
If Ai =A , the maximal Ai-communication-complexity of the terms of ui is less than or equal to r and

the number of terms with maximal Ai-communication-complexity is less than or equal to k; since the size
of ui is strictly smaller than that of t, by induction hypothesis ui 7→∗ u′i, where u′i is a normal parallel form.

If Ai ⊂A , again by induction hypothesis ui 7→∗ u′i, where u′i is a normal parallel form.
Let now t ′ = u′1 ‖a u′2, so that t 7→∗ t ′. If t ′ is normal, we are done. Otherwise, since u′j for 1≤ j ≤ 2

are normal, the only possible redex remaining in t ′ is the whole term itself, i.e., u′1 ‖a u′2: this happens
only if the free variables of t ′ are fewer than those of t; w.l.o.g., assume they are xA1

1 , . . . ,xAi
i , with i < n.

Let B be the set of the proper subformulas of A and the strong subformulas of the formulas A1, . . . ,Ai.
Since t ′ is a redex, the communication complexity of a is greater than 0; by def. 6, a prime factor of C is
not in B, so we have B ⊂A . By I.H., t ′ 7→∗ t ′′, where t ′′ is a parallel normal form.
• Second case: t is a redex. Let u1 ‖a u2 be the smallest subterm of t having A -communication-complexity
r. The free variables of u1 ‖a u2 satisfy the hypotheses of Lem. 1 either because have type Ai and A
contains all the strong subformulas of Ai, or because the prime proper subformulas of their type have
at most r symbols, by maximality of r. By Lem. 1 u1 ‖a u2 �∗ w where the maximal among the A -
communication-complexity of the subterms of w is strictly smaller than r. Let t ′ be the term obtained
replacing w for u1 ‖a u2 in t. We apply the I.H. and obtain t ′ 7→∗ t ′′ with t ′′ in parallel normal form.

We prove now that the Subformula Property holds: a normal proof does not contain concepts that do
not already appear in the premises or in the conclusion.

Theorem 3 (Subformula Property). Suppose xA1
1 , . . . ,xAn

n ` t : A, with t ∈ NF. Then (i) for each commu-
nication variable a occurring bound in t and with communication kind C1, . . . ,Cm, the prime factors of
C1, . . . ,Cm are proper subformulas of A1, . . . ,An,A; (ii) the type of any subterm of t which is not a bound
communication variable is either a subformula or a conjunction of subformulas of A1, . . . ,An,A.

Proof. By induction on t.

4 On the expressive power of λCL

We discuss the relative expressive power of λCL and its computational capabilities.

Comparison with π-calculus and λG In contrast with the π-calculus [16, 19] which is a formalism for
modeling concurrent systems, λCL is a parallel functional language intended (as a base) for programming.
The first similarity between the two calculi is in the channel restrictions: the a of u ‖a v in λCL and of
νa(P |Q) in π-calculus have the same rôle. Moreover the result of communicating in λCL a closed process
or data is as in the asynchronous π-calculus [12]. In contrast with the π-calculus whose communication
only applies to data or channels, the communication in λCL is higher-order. Moreover, the latter can handle
not only closed and open processes, but also processes that are closed in their original environment, but

12 Classical Proofs as Parallel Programs

become open after the communication. The number of recipients of a communication is another difference
between π-calculus and λCL. While in pure π-calculus both sender and recipient of a communication
might be selected non-deterministically, in λCL, since the communication is a broadcasting to all recipients,
only the sender, Ci[a ti] for i ∈ {1, . . . ,n} in the following example, can be non-deterministically selected:

(C1[a t1] ‖ . . . ‖ Cn[a tn]) ‖a D 7→ D [ti/a]

Furthermore, in π-calculus only one process can receive each message whereas in λCL we can have
one-to-many communications, or broadcast:

C [a u] ‖a (D1 ‖ . . . ‖Dm) 7→ D1[u/a] ‖ . . . ‖Dm[u/a]

Finally, while in π-calculus there is no restriction on the use of channels between processes, in λCL
there are strict symmetry conditions; similar conditions are adopted in typed versions of π-calculus (see
[21, 23]). Hence λCL cannot encode a dialogue between two processes: if a process u receives a message
from a process v, then v cannot send a message to u. To model these exchanges, more complex calculi
such as λG [1] are needed. If a λCL channel connects two processes as shown below on the left, a λG

channel connects them as shown below on the right.

Namely, a λG channel can transmit messages between the processes in both directions. Even though
the communication mechanism of λG enables us to define unidirectional channels as well, the technical
details of λG and λCL communications differ considerably since they are tailored, respectively, to the
linearity axiom (A→ B)∨ (B→ A) and to EM. In λCL indeed all occurrences of the receiver’s channel
are simultaneously replaced by the message, but this is not possible in λG. As a consequence, λG cannot
implement broadcast communication. Finally, while the closure transmission mechanisms of λG and
λCL have the same function and capabilities – a version of Example 2 for λG is presented in [1] – λCL
mechanism is considerably simpler.

We establish first the relation of λCL with the simply typed λ -calculus and Parigot’s λµ [17], by
proving in particular that λCL, as λG, can code the parallel OR. Then we show the use of λCL closure
transmission for code optimization.

Proposition 6. λCL is strictly more expressive than simply typed λ -calculus and propositional λµ .

Proof. The simply typed λ -calculus can be trivially embedded into λCL. The converse does not hold,
as λCL can encode the parallel OR, which is a term O : Bool→ Bool→ Bool such that OFF 7→∗ F,
OuT 7→∗ T, OTu 7→∗ T for every term u. By contrast, as a consequence of Berry’s sequentiality theorem
(see [2]) there is no parallel OR in simply typed λ -calculus. Assuming to add the boolean type in our
calculus, that a : Bool∧S→⊥, and that a : Bool∧S, “if then else ” is as usual, the λCL term for such
parallel OR is

O := λxBool λyBool(if x then T else a〈F,s〉efqBool ‖a if y then T else aπ0)

for any flag term s : S, introduced for a complete control of the reduction. Now, OuT reduces to T by

(if u then T else a〈F,s〉efqBool) ‖a (if T then T else aπ0) 7→∗ (if u then T else a〈F,s〉efqBool) ‖a T 7→ T

F. Aschieri, A. Ciabattoni & F.A. Genco 13

And symmetrically OTu 7→∗ T. On the other hand, OFF reduces to F by

(if F then F else a〈F,s〉efqBool) ‖a (if F then F else aπ0) 7→∗ a〈F,s〉efqBool ‖a aπ0 7→ 〈F,s〉π0 7→ F

The claim follows by Ong’s embedding of propositional λµ in the simply typed λ -calculus, see Lemma
6.3.7 of [20]. Indeed the translation u of a λ µ-term u is such that st = s t and x = x for any variable x, if
there were a typed λ µ-term O for parallel OR, then

OxT = OxT 7→∗ T = T OTx = OTx 7→∗ T = T OFF = OFF 7→∗ F = F

and O would be a parallel OR in simply typed λ -calculus, which is impossible.

Example 1 (Classical Disjunction). Since in classical logic disjunction is definable, the corresponding
computational constructs of case distinction and injection can be defined in λCL. By contrast, these
constructs are usually added as new primitives in simply typed λ -calculus, as simulating them requires
complicated CPS-translations.

The λCL terms ι0(u), ι1(u) and t[x0.v0,x1.v1] such that for i ∈ {0,1} we have ιi(u)[x0.v0,x1.v1] 7→
vi[u/xi] are defined as follows: Let A∨B := (A→⊥)→ (B→⊥)→⊥

ι0(u) := λxA→⊥
λyB→⊥ xu : A∨B ι1(u) := λxA→⊥

λyB→⊥ yu : A∨B

t [x0.v0,x1.v1] := (efqF(t a b) ‖a v0[a/x0]) ‖b v1[b/x1] : F

where a : A, a : A→⊥, b : B ,b : B→⊥, v0 : F, v1 : F, t : A∨B and efqF is a closed term of type ⊥→ F .
We can then verify, for example, that

ι0(u) [x0.v0,x1.v1] := (efqF ((λxA→⊥λyB→⊥ xu)a b) ‖a v0[a/x0]) ‖b v1[b/x1]

7→∗ (efqF (a u) ‖a v0[a/x0]) ‖b v1[b/x1] 7→ v0[u/x0] ‖b v1[b/x1] 7→ v0[u/x0]

Example 2 (Cross reductions for program efficiency). We show how to use cross reductions to com-
municate processes that are still waiting for some arguments. Consider the process M ‖a (Q ‖b P). The
process Q contains a channel b to send a message (yellow pentagon) to P (below left), but the message is
missing a part (yellow square) which is computed by M and sent to Q by a. In a system without a closure
handling mechanism, the whole interaction needs to wait until M can communicate to Q (below right).

The cross reduction handles precisely this kind of missing arguments. It enables Q to send immediately
the message through the channel a and establishes a new communication channel c on the fly (below left)
which redirects the missing term, when ready, to the new location of the message inside P (below right).

We can now partially evaluate P, which in the best case will not even need the yellow square.

14 Classical Proofs as Parallel Programs

Both reductions terminate then with

the former, sending the whole message (yellow pentagon and square) by b; the latter, redirecting the
missing part of the message (yellow square) by the new channel c. For a concrete example assume that

M 7→∗ (a (λxT→⊥ xt))efqS Q = (a(λyT b〈s,y〉))efqS P = bπ0

where s : S and t : T are closed terms, the complexity of S is much higher than that of T , b : S∧T,b :
¬(S∧T),a : (T →⊥)→⊥ and a : ¬((T →⊥)→⊥). Without a special mechanism for sending open
terms, Q must wait for M to normalize. Afterwards M sends λxT→⊥ xt by a to Q:

M ‖a (Q ‖b P)
since a is not in P

7→∗ (M ‖a Q) ‖b P 7→∗ ((a (λxT→⊥ xt))efqS ‖a Q) ‖b P 7→
((λxT→⊥ xt)(λyT b〈s,y〉))efqS ‖b P 7→ ((λyT b〈s,y〉)t)efqS ‖b P 7→ (b〈s, t〉)efqS ‖b bπ0 7→ 〈s, t〉π0 7→ s

Clearly P does not need t at all. Even though it waited for the pair 〈s, t〉, P only uses the term s.
Our normalization instead enables Q to directly send 〈s,y〉 to P by executing a full cross reduction:

M ‖a (Q ‖b P) = M ‖a ((a(λyT b〈s,y〉))efqS ‖b bπ0) 7→∗ M ‖a (((a(λyT cy))efqS ‖b P) ‖c 〈s,c〉π0)

where the channel c handles the redirection of the data yT in case it is available later. In our case P already
contains all it needs to terminate its computation, indeed

7→ M ‖a (((a(λyT cy))efqS ‖b P) ‖c s) 7→∗ s

since s does not contain communications anymore. Notice that the time-consuming normalization of the
term M does not even need to be finished at this point.

Conclusions

We introduced λCL, a parallel extension of simply typed λ -calculus. The calculus λCL provides a first
computational interpretation of classical proofs as parallel programs. Our calculus is defined via Curry–
Howard correspondence using a natural deduction system based on the EM axiom A∨¬A. The definition
of λCL exploits ideas and techniques developed in [1] for the calculus λG based on the linearity axiom,
but the specific features of EM made it possible to define a significantly simpler calculus with more
manageable reductions – including those for the transmission of closures. In spite of its simplicity, the
resulting calculus is more expressive than simply typed λ -calculus and Parigot’s λµ [17]. Furthermore
terms typed by (EM) admit communication reductions including broadcast communications and races.

Finally, we remark that the permutation reductions of parallel operators undermine a strong nor-
malization result for the calculus. Indeed, such reductions enable loops similar to those occurring in
cut-elimination procedures for sequent calculi. Restrictions on the permutations might be enough to prove
strong normalization, but we leave this as an open problem.

References
[1] F. Aschieri, A. Ciabattoni & F.A. Genco (2017): Gödel logic: From natural deduction to parallel computation.

In: LICS 2017, pp. 1–12, doi:10.1109/LICS.2017.8005076.

http://dx.doi.org/10.1109/LICS.2017.8005076

F. Aschieri, A. Ciabattoni & F.A. Genco 15

[2] H.P. Barendregt (1984): The Lambda Calculus, its Syntax and Semantics. Amsterdam: North-Holland,
doi:10.1016/c2009-0-14341-6.

[3] G. Boudol (1989): Towards a lambda-calculus for concurrent and communicating systems. In: TAPSOFT
1998, pp. 149–161, doi:10.1007/3-540-50939-9 130.

[4] P.-L. Curien & H. Herbelin (2000): The duality of computation. In: ICFP 2000, pp. 233–243,
doi:10.1145/351240.351262.

[5] V. Danos & J.-L. Krivine (2000): Disjunctive Tautologies as Synchronisation Schemes. CSL 2000, pp.
292–301, doi:10.1007/3-540-44622-2 19.

[6] C. Ene & T. Muntean (1999): Expressiveness of point-to-point versus broadcast communications. In: FCT
1999, pp. 258–268, doi:10.1007/3-540-48321-7 21.

[7] J. Epstein, A.P. Black & S.L. Peyton Jones (2011): Towards Haskell in the cloud. In: ACM Haskell Symposium
2011, pp. 118–129, doi:10.1145/2034675.2034690.

[8] A. Fuggetta, G.P. Picco & G. Vigna (1998): Understanding Code Mobility. IEEE Trans. Software Eng. 24(5),
pp. 342–361, doi:10.1109/32.685258.

[9] J.-Y. Girard, Y. Lafont & P. Taylor (1989): Proofs and Types. Cambridge University Press. Available at
http://www.paultaylor.eu/stable/prot.pdf.

[10] T.G. Griffin (1990): A Formulae-as-Type Notion of Control. In: POPL 1990, pp. 47–58,
doi:10.1145/96709.96714.

[11] P. de Groote (1995): A Simple Calculus of Exception Handling. In: TLCA 1995, pp. 201–215,
doi:10.1007/BFb0014054.

[12] K. Honda & M. Tokoro (1991): An Object Calculus for Asynchronous Communication. In: ECOOP 1991, pp.
133–147, doi:10.1007/BFb0057019.

[13] W.A. Howard (1980): The formulae-as-types notion of construction. In: To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus, and Formalism, Academic Press, pp. 479–491.

[14] J.-L. Krivine (1990): Lambda-calcul types et modèles. In: Studies in Logic and Foundations of Mathematics,
Masson, pp. 1–176.

[15] J.-L. Krivine (2009): Realizability in classical logic. Panoramas et synthèses, pp. 197–229. Available at
https://hal.archives-ouvertes.fr/hal-00154500.

[16] R. Milner (1992): Functions as Processes. Mathematical Structures in Computer Science 2(2), pp. 119–141,
doi:10.1017/S0960129500001407.

[17] M. Parigot (1997): Proofs of Strong Normalization for Second-Order Classical Natural Deduction. J. Symbolic
Logic 62(4), pp. 1461–1479, doi:10.2307/2275652.

[18] D. Prawitz (1971): Ideas and Results in Proof Theory. In: Proceedings of the Second Scandinavian Logic
Symposium, pp. 235–307, doi:10.2307/2271904.

[19] D. Sangiorgi & D. Walker (2003): The pi-calculus: a Theory of Mobile Processes. Cambridge University
Press.

[20] M.H.B. Sørensen & P. Urzyczyn (1998): Lectures on the Curry-Howard Isomorphism. Elsevier,
doi:10.1016/s0049-237x(06)80005-4.

[21] B. Toninho, L. Caires & F. Pfenning (2013): Higher-Order processes, functions, and sessions: a monadic
integration. In: ESOP 2013, pp. 350–369, doi:10.1007/978-3-642-37036-6 20.

[22] P. Wadler (2003): Call-by-value is dual to call-by-name. SIGPLAN Notices 38(9), pp. 189–201,
doi:10.1145/944746.944723.

[23] P. Wadler (2012): Propositions as Sessions. J. of Functional Programming 24, pp. 384–418,
doi:10.1145/2398856.2364568.

[24] P. Wadler (2015): Propositions as Types. Communications of the ACM 58(12), pp. 75–84,
doi:10.1145/2699407.

http://dx.doi.org/10.1016/c2009-0-14341-6
http://dx.doi.org/10.1007/3-540-50939-9_130
http://dx.doi.org/10.1145/351240.351262
http://dx.doi.org/10.1007/3-540-44622-2_19
http://dx.doi.org/10.1007/3-540-48321-7_21
http://dx.doi.org/10.1145/2034675.2034690
http://dx.doi.org/10.1109/32.685258
http://www.paultaylor.eu/stable/prot.pdf
http://dx.doi.org/10.1145/96709.96714
http://dx.doi.org/10.1007/BFb0014054
http://dx.doi.org/10.1007/BFb0057019
https://hal.archives-ouvertes.fr/hal-00154500
http://dx.doi.org/10.1017/S0960129500001407
http://dx.doi.org/10.2307/2275652
http://dx.doi.org/10.2307/2271904
http://dx.doi.org/10.1016/s0049-237x(06)80005-4
http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1145/944746.944723
http://dx.doi.org/10.1145/2398856.2364568
http://dx.doi.org/10.1145/2699407

	Introduction
	CL : a Curry–Howard interpretation of Classical Logic
	The Normalization Theorem
	On the expressive power of CL

