
Proof Search and Co-NP Completeness for

Many-Valued Logics

Mattia Bongini

Department of Mathematics, Munich University of Technology, Germany

Agata Ciabattoni

Department of Computer Languages, Vienna University of Technology, Austria

Franco Montagna

Department of Information Engineering and Mathematics, University of Siena,
Italy

Abstract

We provide a methodology to introduce proof search oriented calculi for a large class
of many-valued logics, and a sufficient condition for their Co-NP completeness. Our
results apply to many well known logics including Gödel, Lukasiewicz and Product
Logic, as well as Hájek’s Basic Fuzzy Logic.

1 Introduction

The invertibility of rules 1 in a proof system is an important feature for guiding
proof search; in addition it turns out to be very useful to settle the compu-
tational complexity of the formalized logic. For many-valued logics, calculi
with invertible rules (proof search oriented calculi) have been provided for all
finite-valued logics. These calculi are defined by generalizing Gentzen sequents
A1, . . . , An ⇒ B1, . . . , Bm to many placed (or labelled) sequents, each corre-
sponding to a truth value of the logic, see e.g. the survey [9] ([12], for the
non-deterministic case). The construction of these calculi, out of the truth

Email addresses: mattia.bongini@ma.tum.de (Mattia Bongini),
agata@logic.at (Agata Ciabattoni), montagna@unisi.it (Franco Montagna).
1 The premises are derivable whenever their conclusions are.

Preprint submitted to Elsevier Science 12 January 2015

tables of the connectives, is even computerized, see [10]. This design does
not apply to infinite-valued logics where, excepting Gödel logic [8,5], proof
search oriented calculi – when available – are introduced on a logic by logic
basis and their construction requires some ingenuity; this is for instance the
case of the calculi for Lukasiewicz and Product logic [29,28,27], defined using
hypersequents, which are finite “disjunctions” of Gentzen sequents [4,3].

An important step towards the automated construction of proof search ori-
ented calculi for many-valued logics was taken in [8] with the introduction
of sequents of relations, that are disjunctions of semantic predicates over
formulas, and of a methodology to construct such calculi for all projective
logics. Intuitively a logic is projective if for each connective �, the value of
�(x1, . . . , xn) is equal to a constant or to one of the x1, . . . , xn. The method-
ology was extended in [19] to handle semi-projective logics where the value of
each �(x1, . . . , xn) can also be a term of the form p(xi) with p unary function
symbol and i ∈ {1, . . . , n}. Projective logics are quite interesting, but perhaps
not general enough: among many-valued logics, only the finite-valued logics
and Gödel logic are projective. Semi-projective logics constitute a slightly
larger class, and they capture, for instance, Nilpotent and Weak Nilpotent
Minimum logic [21], the relevance logic RM [2] and, by considering conser-
vative extensions, Hájek’s Basic Fuzzy Logic BL extended with n-contraction
[14]. All semi-projective logics have a locally finite variety as their equivalent
algebraic semantics while important many-valued logics such as Lukasiewicz
logic, Product Logic and BL do not, despite the fact that they have suitable
calculi with invertible rules [18,30,16] and are Co-NP complete. The calculi
in [18,30,16] are defined using relational hypersequents (r-hypersequents for
short) that generalize hypersequents by considering finite disjunctions of two
different types of sequents, where Gentzen’s sequent arrow ⇒ is replaced in
one by < and in the other by ≤.

In this paper we generalize r-hypersequents to disjunctions of arbitrary se-
mantic predicates (not only < and ≤) over multisets of formulas, rather than
single formulas as in the case of sequents of relations. We introduce a method-
ology to define r-hypersequent calculi for a large class of many-valued logics
(hyperprojective logics) and identify sufficient conditions on these calculi that
guarantee the Co-NP completeness of the formalized logics. Our methodol-
ogy applies to projective and semi-projective logics as well as to Lukasiewicz,
Product Logic and BL; it subsumes all existing results on sequent of relations
and on r-hypersequent calculi (e.g. [8,6,19,18,30,16]), and provides a unified
perspective on most of the known complexity results for many-valued logics.
Moreover, our method can be applied to new logics (or already known logics
not having yet proof search oriented calculi), provided that they are hyper-
projective.

In a hyperprojective logic the value of each connective �(x1, . . . , xn) is defined

2

by cases this time expressed by relations on multisets of constants, of terms
x1, . . . , xn and of p(xi), for p unary functions and i ∈ {1, . . . , n}.

We illustrate the idea behind hyperprojective logics and the way we define
r-hypersequent calculi for them with the example of Product Logic. For this
logic, as in (the projective presentation of) Gödel Logic [8,6,7] it is natural
to consider the relations < and ≤. Product Logic is neither projective nor
semi-projective, because if x, y /∈ {0, 1} then the product x&y depends on
both x and y. The idea is to represent the product by a monoidal operation ⊕
standing for the union of multisets, i.e. x&y = x⊕ y.

In general, to define invertible rules for a connective �(x1, . . . , xn) of a hy-
perprojective logic L we will consider “reductions” (based on the relations
in the semantic theory of L) that act on multisets of formulas, i.e., on Γ ⊕
�(x1, . . . , xn), where Γ is a multiset, and in which the formula �(x1, . . . , xn)
is decomposed into a multiset of smaller terms (constants, xi or p(xi)).

In the particular case of the connective x&y of Product Logic we consider
the following “reduction cases”: for Γ ⊕ x&y ⊳ ∆ as Γ ⊕ x ⊕ y ⊳ ∆ and for
Γ ⊳ ∆⊕ x&y as Γ ⊳ ∆⊕ x⊕ y, where ⊳ denotes either < or ≤. Our calculus
for Product Logic will then contain r-hypersequents consisting of disjunctions
of sequents of the form Γ < ∆ or Γ ≤ ∆, where Γ and ∆ are multisets of
formulas. As in the case of hypersequents [4,3] the disjunction will be denoted
by “|” and the union of multisets by “,”. With this notation we have that
φ&ψ,Γ ⊳ ∆ reduces (and it is indeed equivalent to) to φ, ψ,Γ ⊳ ∆ and
Γ ⊳ ∆, φ&ψ reduces to Γ ⊳ ∆, φ, ψ, which naturally lead to the following left
and right rules for the connective & w.r.t. the relation ⊳ (below H stands for
an arbitrary r-hypersequent)

H|φ, ψ,Γ ⊳ ∆

H|φ&ψ,Γ ⊳ ∆

H|Γ ⊳ ∆, φ, ψ

H|Γ ⊳ ∆, φ&ψ

Now since

x ∧ y =

x if x ≤ y

y if y < x
x ∨ y =

y if x ≤ y

x if y < x

we have:

• Γ, φ ∨ ψ ⊳ ∆ reduces to ψ < φ|Γ, ψ ⊳ ∆ and to ψ ≤ φ|Γ, φ ⊳ ∆;
• Γ ⊳ ∆, φ ∨ ψ reduces to ψ < φ|Γ ⊳ ∆, ψ and to φ ≤ ψ|Γ ⊳ ∆, φ;
• Γ, φ ∧ ψ ⊳ ∆ reduces to ψ < φ|Γ, φ ⊳ ∆ and to φ ≤ ψ|Γ, ψ ⊳ ∆;
• Γ ⊳ ∆, φ ∧ ψ reduces to ψ < φ|Γ ⊳ ∆, φ and to φ ≤ ψ|Γ ⊳ ∆, ψ.

3

Finally, recalling that in Product Logic

x→ y =

y
x

if y < x

1 if x ≤ y

and that “,” represents the product, we have the following reductions for →:

• Γ, φ → ψ ⊳ ∆ reduces to ψ < φ|Γ, 1 ⊳ ∆ and to φ ≤ ψ|Γ, ψ ⊳ ∆, φ, to be
read as: either φ ≤ ψ or (ψ < φ and then) Γ, ψ

φ
⊳ ∆, which is equivalent to

Γ, ψ ⊳ ∆, φ; moreover, either ψ < φ or (φ ≤ ψ and hence) φ→ ψ = 1, and
Γ, 1 ⊳ ∆.

• Γ ⊳ ∆, φ → ψ reduces to ψ < φ|Γ, 1 ⊳ ∆ and φ ≤ ψ|Γ, φ ⊳ ∆, ψ, whose
explanation is similar.

Note that the above reductions are nothing but invertible rules introducing a
connective ⋆ ∈ {→,∧,∨} in the left position (Γ, φ ⋆ ψ ⊳ ∆) or in the right
position (Γ ⊳ ∆, φ ⋆ ψ).

In this paper we provide a methodology to introduce relational hypersequent
calculi for all hyperprojective logics, and a sufficient condition for their Co-NP
completeness.

The paper is organized as follows: Section 2 introduces hyperprojective logics.
Similarly to the case of projective and semi-projective logics the definition
is based on the shape of their underlying first-order semantic theory. Since
proving that a logic is hyperprojective is a non trivial task, Section 2.3 con-
tains a general result on how to build such a semantic theory for a large class
of many-valued logics (algebraizable, whose equivalent semantics is generated
by a single algebra, and whose first-order theory satisfies suitable properties).
Section 3 connects hyperprojective logics to r-hypersequent calculi. Section 3.1
shows how to transform (the semantic theory behind) a hyperprojective logic
into invertible r-hypersequent rules. Soundness and completeness of the result-
ing calculi is contained in Section 3.2. Section 4 proves the co-NP complete-
ness of the validity problem of hyperprojective logics whose r-hypersequent
calculi satisfy suitable and easily checkable properties. As case studies we ap-
ply our methodology to Gödel logic, the relevance logic RM , Product logic,
 Lukasiewicz logic and Hájek’s BL by presenting for them r-hypersequent cal-
culi and alternative proofs (w.r.t., e.g., [11,24,1]) of Co-NP completeness.

4

2 Hyperprojective logics

We define the class of many-valued logics that we consider in this paper and
begin this section recalling some basic properties of multisets. For all concepts
of universal algebra we refer to [17] and for many-valued logics to [23].

2.1 Preliminaries on multisets

A finite multiset on a set S is a map µ from S into N such that the set
S(µ) = {s ∈ S | µ(s) > 0}, called the support of µ, is finite. Moreover for
every s ∈ S(µ), µ(s) is called the multiplicity of s. Notice that a multiset
µ is completely determined by its support S(µ) and the multiplicity of each
s ∈ S(µ).

The union µ1 ⊕ µ2 of two finite multisets µ1 and µ2 of S is defined as (µ1 ⊕
µ2)(s) = µ1(s) + µ2(s). Note that ⊕ is commutative and associative and
its neutral element is the zero function on S, indicated by ε. In addition,
S(µ1 ⊕ µ2) = S(µ1) ∪ S(µ2). Given two sequences of multisets µ = µ1, . . . , µn
and ν = ν1, . . . , νn, both with length n, then µ ⊕ ν denotes the sequence of
multisets µ1 ⊕ ν1, . . . , µn ⊕ νn.
Definition 1. Θn

i (ν) is the sequence ε, . . . , ν, . . . , ε of n multisets, such that
each multiset is the empty one except at position i, where it is ν.

Thus, given a sequence of multisets µ = µ1, . . . , µn, we have µ ⊕ Θn
i (ν) =

µ1, . . . , µi ⊕ ν, . . . , µn.

In the sequel, when there is no danger of confusion we identify the element
x ∈ S with the multiset µ with support {x} such that µ(x) = 1. Moreover,
given (not necessarily distinct) elements a1, . . . , an, a1 ⊕ · · · ⊕ an (written
without parentheses) denotes the multiset µ such that S(µ) = {x : x =
ai for some i with 1 ≤ i ≤ n}, and for x ∈ S(µ), µ(x) is the cardinality of the
set {i : x = ai}.

2.2 Definition and examples

As in the case of projective and semi-projective logics [8,19], a hyperprojective
logic L has an associated semantic first-order theory TL whose intended range
of discourse are sets of truth values. We will make some assumptions on TL.
The first is on its language and we assume that:

5

(TL0) The language of TL consists of: (a) an n-ary operation for each 2 n-ary
connective of L and a constant for each propositional constant of L;
(b) possibly, finitely many constants and finitely many unary function
symbols, denoted in the sequel by c1, . . . , cs and f1, . . . , fh respectively,
not in the language of L; (c) a constant ε for the empty multiset and
a binary operation ⊕ for the union of multisets; (d) some relation
symbols, not in the language of L; (e) for each n-ary relation symbol
P , we assume that either the negation of P (x1, . . . , xn) is equivalent
in TL to a disjunction of atomic formulas without function symbols,
or that the language of TL has a relation symbol P ∗, along with the
axiom P ∗(x1, . . . , xn) ⇔ ¬P (x1, . . . , xn). In any case, the negation of
an atomic formula P is equivalent to a formula which is either atomic
or the disjunction of atomic formulas, and which will be denoted by
P ∗. Moreover, we set P ∗∗ = P .

Before introducing the other conditions, we briefly comment on (TL0). Condi-
tion (a) allow us to treat formulas of L as terms of TL. As in the definition of
semi-projective logics [19], the unary function symbols and constant symbols
in condition (b) may help to “reduce” the connectives to the right format, (see
condition (TL4) below); when present in TL, we assume that the extension L′

of L by the unary connectives is a conservative extension of L. Condition (c)
allows us to represent not only formulas, but also multisets of formulas, while
condition (d) will permit to represent the proof theory of L inside TL. Finally,
condition (e) allows us to eliminate negations and to keep the language finite.
Example 2. The semantic theory TL for product logic is the theory of product
chains with large order ≤ and strict order <; ⊕ is interpreted as product, and
ε is interpreted as 1. Moreover x ≤∗ y is equivalent to y < x, and hence we
may eliminate negations.

To introduce the next conditions on TL, we need some auxiliary definitions.
Definition 3. A formula of TL is called simple if does not contain any quan-
tifier, negation, implication and function symbol with the exception of ⊕. The
formula is called weakly simple if it has no quantifiers, negation or implication
and its terms are either variables, or constants, or of the form fi(x), where
fi is a unary function symbol not in L, or of the form t1 ⊕ · · · ⊕ tk, where
t1, . . . , tk are terms of the form shown above.

The next three assumptions on TL are:

(TL1) There is a weakly simple formula Des(x) of TL such that for every
formula φ, TL |= Des(φ) iff L |= φ.

2 We assume that L has finitely many constants and connectives, and we identify
each connective with its corresponding operation and each propositional constant
with its corresponding constant symbol.

6

(TL2) The set of valid formulas of TL that are universal closures of weakly
simple formulas is decidable.

(TL3) If TL has unary function symbols f1, . . . , fh not in L, then for all i, j =
1, . . . , h, TL has an axiom of the form fi(fj(x)) = x or an axiom of the
form fi(fj(x)) = fr(x) for some r.

The next (and last) condition on TL describes the connectives of L and will
determine the logical rules of the proof systems defined in the next section. We
introduce some notation and terminology first: an overlined letter will denote
the sequence consisting of the same letter with subscripts. Thus for instance,
x will denote x1, . . . , xn for some n > 0 and δ will denote δ1, . . . , δm, for some
m > 0. As usual whenever writing P (x) or f(x) we implicitly assume that the
arities of P and f coincide with the number of xi.
Definition 4. The formulas Q1, . . . , Qs of TL form a partition of the unit if
TL |= Qi → ¬Qj for i 6= j and TL |=

∨s
j=1Qj.

We denote by L′ the logic L extended by the symbols of constant and of unary
function in TL but not in L, to be interpreted as propositional constants and
as unary connectives, respectively.

The connectives of hyperprojective logics have a case-reduction of the following
form: for every connective � in the language of L, for every unary connective u
in the language of TL but not in the language of L, for every predicate symbol
P of TL with arity k and every 1 ≤ i ≤ k

P (µ⊕ Θk
i (�(x))) =

P (µ⊕ ν
(�Pi)
1) if Q

(�Pi)
1 (x)

.

P (µ⊕ ν
(�Pi)
ℓ) if Q

(�Pi)
ℓ (x)

P (µ⊕ Θk
i (u(�(x)))) =

P (µ⊕ ν
(u(�)Pi)
1) if Q

(u(�)Pi)
1 (x)

.

P (µ⊕ ν
(u(�)Pi)
ℓ′) if Q

(u(�)Pi)
ℓ′ (x)

where:

• µ is a sequence of multisets of formulas of L′;
• ν(�Pi)a , a = 1, . . . , ℓ, and ν

(u(�)Pi)
b , b = 1, . . . , ℓ′, are sequences of length k of

multisets whose support is contained in the set

Z(x) = {x, cv, fw(x) | x ∈ {x} ∪ {c1, . . . , cs}, v = 1, . . . , s, w = 1, . . . , h};

• Q(�Pi)
a (x), a = 1, . . . , ℓ and Q

(u(�)Pi)
b (x), b = 1, . . . , ℓ′, are partitions of the

unit consisting of weakly simple formulas.

7

The dependency of ν(�Pi)a , ν
(u(�)Pi)
b , Q

(u(�)Pi)
b (x) and Q(�Pi)

a (x) on �, P, i will
be omitted in what follows. Thus, with the notation just introduced, (TL4)
reads:

(TL4) For each k-ary predicate P , for each position i with 1 ≤ i ≤ k, for
each connective � and for each unary function symbol u in TL and
not in L, there are two partitions of the unit Q1(x), . . . , Qℓ(x) and
Qu

1(x), . . . , Qu
ℓ′(x), consisting of weakly simple formulas, and sequences

of multisets νa : a = 1, . . . , ℓ, νub : b = 1, . . . , ℓ′, with support Z(x),
such that, for a = 1, . . . , ℓ, for b = 1, . . . , ℓ′, for every sequence µ of
multisets of formulas of L′ and for every substitution σ of variables
with formulas of L′, the following conditions hold:

(TL4/1) TL |= Qa(σ(x)) ⇒ (P (µ⊕ σ(Θk
i (�(x)))) ⇔ P (µ⊕ σ(νa))),

(TL4/2) TL |= Qu
b (σ(x)) ⇒ (P (µ⊕ σ(Θk

i (u(�(x))))) ⇔ P (µ⊕ σ(νub)))
where ⇒ and ∩ indicate the implication and the conjunction in TL,
and Q⇔ R stands for (Q⇒ R) ∩ (R ⇒ Q).

Definition 5. A logic L is hyperprojective if its semantic theory TL satisfies
conditions (TL0), . . ., (TL4) above. L is said to be regular if all unary function
symbols or constants in TL are already in L.
Remark 2.1. Projective and semi-projective logics are particular cases of hy-
perprojective logics (see Example 7). Indeed, every connective of a projective
logic has the following form

�(x) =

t1 if Q1(x)

.

tk if Qk(x)

where Q1(x), . . . , Qk(x) are simple formulas which form a partition of the unit
and t1, . . . , tk are either variables among x or constants. In the case of a semi-
projective logic L, we have instead that for every n-ary connective � of L and
every unary connective u in the language of the semantic theory TL:

�(x) =

t1 if Q1(x)

.

tk if Qk(x)

and u(�(x)) =

t′1 if Qu
1(x)

.

t′k if Qu
k(x)

where Q1(x), . . . , Qk(x), and Qu
1(x), . . . , Qu

k(x) respectively, still form a parti-
tion of the unit, but are now weakly simple (i.e., with unary function symbols
in TL), and ti, t

′

i are either variables in x, constants or terms of the form
fi(x), x a variable in x and fi a unary function symbols in TL.

After identifying a multiset consisting of just one formula with the formula
itself, we see that projective or semi-projective logics are a special case of

8

hyperprojective logics.

In regular hyperprojective logics weakly simple formulas are also simple, con-
dition (TL3) becomes irrelevant, and (TL4/2) does not apply.

A non regular hyperprojective logic is a logic that admits a conservative exten-
sion which is a regular hyperprojective logic. Regular hyperprojective logics
are the three most famous Fuzzy Logics [23]: Gödel, Lukasiewicz and Prod-
uct logic (see Example 7), while a hyperprojective logic that is not regular is
Hájek’s Basic Fuzzy Logic BL [23], see the example below.
Example 6. Recall that BL is complete with respect to the ordinal sum A of
ω copies of [0, 1]MV . This algebra can be defined as follows: The domain of A
is the set R+∪{∞} of non-negative reals extended with a new element ∞. Let
<+ and ≤+ stand for the usual strict and non-strict total order on R+, and
⌊x⌋ denote the greatest integer z such that z ≤ x if x ∈ R+ and ∞ if x = ∞.
Set:

• x ≤ y iff either x, y ∈ R+ and x ≤+ y, or y = ∞;
• x < y iff either x, y ∈ R+ and x <+ y, or x ∈ R+ and y = ∞;
• x≪ y iff either x ∈ R+ and y = ∞ or x, y ∈ R+, and ⌊x⌋ <+ ⌊y⌋;
• x≪= y iff y ≪ x is false;
• x ≺ y iff x, y ∈ R+, x <+ y and ⌊x⌋ = ⌊y⌋;
• x � y if either x ≺ y or x = y;
• x ≡ y iff either x � y or y ≺ x.

The relation symbol ≤ induces a total order on A with bottom element 0 and
top element ∞: hence the constant 0 of BL is interpreted as the number 0 and
the constant 1 is interpreted as ∞. To avoid ambiguity, in the sequel we will
denote the real number 1 by 1+, in order to distinguish it from the constant 1
of BL.

Join and meet are naturally induced by ≤, while conjunction and implication
can be defined on A with the help of the newly introduced relation symbols as
follows:

x&y =

∞ if 1 � x and 1 � y,

x if x≪ y,

y if y ≪ x,

⌊x⌋ if x ≡ y, x≪ 1 and x+ y < 2 ⌊x⌋ + 1+,

x+ y − ⌊x⌋ − 1+ otherwise.

9

x→ y =

∞ if x ≤ y,

y if y ≪ x,

y + ⌊x⌋ + 1+ − x otherwise.

Notice that, whenever x ≡ y and x ≪ 1, the operation x + y is well defined
since x, y ∈ R+, and that 1 � x is equivalent to x = ∞.

We now introduce relations between multisets whose elements are formulas in
the language of BL enriched with the constant 1+. In the sequel we identify
formulas with their truth values. Thus, with reference to an arbitrary valuation
v, we write for instance φ≪ ψ to mean that v(φ) ≪ v(ψ), and we write φ+ψ
for v(φ) + v(ψ).

Valuations can be extended to multisets of formulas in the following way: if
σ = (Sσ, µσ) is a multiset, then

v(σ) =
∑

φ∈Sσ

µσ(φ) · (φ− ⌊φ⌋) + µσ(1+).

This extension is consistent with the union of multisets ⊕, in the sense that
if σ and ν are two multisets then v(σ ⊕ ν) = v(σ) + v(ν).

Relations of the form σ ≪ ν are only allowed when σ and ν both consist of a
single formula, that is, they are of the form φ ≪ ψ, where both φ and ψ are
formulas in the extended language of BL. For the sake of definiteness, we will
consider false by definition any relation of the form σ ≪ ν where either σ or
ν or both do not consist of a single formula. By contrast, we allow relations
σ � ν and σ ≺ ν where σ and ν are multisets whose elements are formulas in
the language of BL enlarged with 1+.

If σ = (Sσ, µσ) and ν = (Sν , µν) are multisets whose elements are formulas
in the language of BL enriched with 1+, then we set σ ≺ ν to be true if the
following conditions hold:

(1) for all φ, ψ ∈ Sσ ∪ Sν φ, ψ 6= ∞ and ⌊φ⌋ = ⌊ψ⌋;
(2)

∑

φ∈Sσ

µσ(φ) · (φ− ⌊φ⌋) + µσ(1+) <
∑

ψ∈Sν

µν(ψ)(ψ − ⌊ψ⌋) + µν(1
+).

Moreover we set σ � ν if either for all φ ∈ Sσ ∪ Sν, φ = 1, or condition (1)
above holds and

∑

φ∈Sσ

µσ(φ) · (φ− ⌊φ⌋) + µσ(1+) ≤
∑

ψ∈Sν

µν(ψ)(ψ − ⌊ψ⌋) + µν(1
+).

Notice that if σ is the singleton of φ and ν is the singleton of ψ, then σ � ν
iff φ � ψ, and σ ≺ ν iff φ ≺ ψ.

10

We shall indicate with A∗ the structure A enriched with the new relation and
function symbols, and we take TBL to be the first-order theory of A∗.

With the help of the relation symbols introduced above, we shall now see how
to reduce any formula ✷(φ, ψ) occurring in a relation σ⊳ν to a multiset whose
elements are φ, ψ, 1+ or 1, for any binary connective ✷ of BL and any relation
symbol ⊳ of TBL. We have the following reductions:

(1) If φ ≤ ψ, then φ ∧ ψ reduces to φ and φ ∨ ψ reduces to ψ.
(2) If ψ < φ, then φ ∧ ψ reduces to ψ and φ ∨ ψ reduces to φ.

Hence, the partition of the unit used in the reduction of φ ∧ ψ or of
φ ∨ ψ is φ ≤ ψ; ψ < φ.

(3) If φ ≪= ψ, then the condition φ&ψ ≪ γ is equivalent to φ ≪ γ, and
the condition γ ≪ φ&ψ is equivalent to γ ≪ φ. Moreover if ψ ≪ φ, then
φ&ψ ≪ γ is equivalent to ψ ≪ γ and γ ≪ φ&ψ is equivalent to γ ≪ ψ.

(4) If φ ≪ ψ, then for ⊳ ∈ {≺,�} the condition σ ⊕ (φ&ψ) ⊳ ν is equivalent
to σ ⊕ φ ⊳ ν, and the condition σ ⊳ ν ⊕ (φ&ψ) is equivalent to σ ⊳ ν ⊕ φ.

(5) Likewise, if ψ ≪ φ, then for ⊳ ∈ {≺,�} the condition σ ⊕ (φ&ψ) ⊳ ν is
equivalent to σ ⊕ ψ ⊳ ν, and the condition σ ⊳ ν ⊕ (φ&ψ) is equivalent to
σ ⊳ ν ⊕ ψ.

(6) If φ ≡ ψ, if φ 6= 1 and φ + ψ ≤ 2⌊φ⌋ + 1+, that is, if φ ≡ ψ, φ ≪ 1 and
φ⊕ ψ � 1+, then for ⊳ ∈ {≺,�}, both σ ⊕ (φ&ψ) ⊳ ν and σ ⊳ ν ⊕ (φ&ψ)
are equivalent to σ ⊳ ν.

(7) If φ ≡ ψ, if φ 6= 1 and φ + ψ > 2⌊φ⌋ + 1+, that is, if φ ≡ ψ, φ ≪ 1
and 1+ ≺ φ ⊕ ψ, then for ⊳ ∈ {≺,�}, σ ⊕ (φ&ψ) ⊳ ν is equivalent to
σ⊕φ⊕ψ ⊳ ν ⊕ 1+ and σ ⊳ ν ⊕ (φ&ψ) is equivalent to σ ⊳ 1+ ≺ ν ⊕φ⊕ψ.

(8) If φ = ψ = 1, that is, if 1 � φ and 1 � ψ, then for ⊳ ∈ {≺,�,≪},
σ⊕ (φ&ψ)⊳ν (where if ⊳ is ≪, then ν is the singleton of a formula and σ
is empty) is equivalent to σ⊕ 1 ⊳ ν. Moreover σ ⊳ ν ⊕ (φ&ψ) is equivalent
to σ ⊳ ν ⊕ 1 (where if ⊳ is ≪, then σ is the singleton of a formula and ν
is empty).

Hence, the partition of the unit used in the reduction of φ&ψ is: 1 � φ
and 1 � ψ; φ ≪ ψ; ψ ≪ φ; φ ≡ ψ and φ ≪ 1 and φ ⊕ ψ � 1+; φ ≡ ψ
and φ≪ 1 and 1+ ≺ φ⊕ψ. This is really a partition of the unit: the first
three elements of the partition are clearly pairwise incompatible and cover
the case where either φ = ψ = ∞, or φ ∈ R+ and ψ = ∞ (because then
φ ≪ ψ), or φ = ∞ and ψ ∈ R+ (because then ψ ≪ φ) or φ, ψ ∈ R+ and
⌊φ⌋ 6= ⌊ψ⌋ (because then either φ≪ ψ or ψ ≪ φ). It remains to consider
the case where φ, ψ ∈ R+ and ⌊φ⌋ = ⌊ψ⌋, that is, the case where φ ≡ ψ
and φ ≪ 1. This case splits into two mutually incompatible subcases,
namely, φ − ⌊φ⌋ + ψ − ⌊ψ⌋ ≤ 1+ and 1+ < φ − ⌊φ⌋ + ψ − ⌊ψ⌋, that is,
φ ⊕ ψ � 1+ and 1+ ≺ φ ⊕ ψ. Hence, the cases in the reduction of φ&ψ
form a partition of the unit.

(9) If φ ≤ ψ, then for ⊳ ∈ {≺,�,≪}, σ⊕(φ→ ψ)⊳ν is equivalent to σ⊕1⊳ν

11

(again, if ⊳ is ≪, then σ is empty and ν is the singleton of a formula).
Moreover σ ⊳ ν ⊕ (φ→ ψ) is equivalent to σ ⊳ ν ⊕ 1 (if ⊳ is ≪, then σ is
a singleton and ν is empty).

(10) If ψ ≪ φ, then σ⊕(φ→ ψ)⊳ν is equivalent to σ⊕ψ⊳ν and σ⊳ν⊕(φ→ ψ)
is equivalent to σ ⊳ ν ⊕ ψ (usual restrictions when ⊳ is ≪).

(11) If ψ ≺ φ, then σ ⊳ ν ⊕ (φ → ψ) reduces to σ ⊕ φ ⊳ ν ⊕ 1+ ⊕ ψ and
σ ⊕ (φ→ ψ) ⊳ ν reduces to σ ⊕ ψ ⊕ 1+ ⊳ ν ⊕ φ.

Hence, the partition of the unit used in the reduction of φ → ψ is
φ ≤ ψ; ψ ≪ φ; ψ ≺ φ.

Each reduction has the form (C1∩C2∩· · ·∩Cn) ⇒ C, and we represent it as a
disjunction C∗

1∪C
∗

2∪· · ·∪C
∗

n∪C, where C∗

i is the negation of Ci. If we write ⊳∗

for the negation of the relation symbol ⊳, we see that for ⊳ ∈ {≪,≪=,≡,�,≺}
we can rewrite ⊳∗ in the following way:

φ≪∗ ψ ⇔ (ψ ≪ φ) ∪ (ψ � ψ) ∪ (ψ ≺ φ).

φ≪∗

= ψ ⇔ ψ ≪ φ.

φ ≡∗ ψ ⇔ (φ≪ ψ) ∪ (ψ ≪ φ).

φ �∗ ψ ⇔ (φ≪ ψ) ∪ (ψ ≪ φ) ∪ (ψ ≺ φ).

φ⊕ ψ �∗ 1+ ⇔ (φ≪ ψ) ∪ (ψ ≪ φ) ∪ (1+ � φ⊕ ψ).

1+ ≺∗ φ⊕ ψ ⇔ (φ≪ ψ) ∪ (ψ ≪ φ) ∪ (φ⊕ ψ � 1+).

We thus immediately see that TBL satisfies condition (TL0), and we put em-
phasis on the fact that with the exception of 1+ and of the multiset union ⊕,
all function and constant symbols of TBL are already in the language of BL.
Regarding condition (TL1), we may take Des(x) := 1 � x. As regards to
condition (TL2), the axioms of the theory are the formulas Φ such that:

(1) Φ is a disjunction of formulas of the form φ ≪ ψ or σ � ν or σ ≺ ν,
where φ and ψ are atomic formulas, σ and ν are multisets consisting of
atomic formulas or 1+;

(2) Φ is true in A∗.

In [16, Lemma 4.5], it is proved that the set of axioms is in the complexity
class P.

Condition (TL3) is empty since we do not add any extra unary connective to
TBL.

Notice that the above reductions (1),. . . ,(11) are neither projective nor semi-
projective, since there are terms appearing in the decomposition which involve
⊕. As an example we show how to obtain the conditions in (TL4) in the case

12

of the binary predicate ≺, the position 1 (thus at the left hand side of ≺) and
the connective &.

Consider a substitution of variables with formulas which associates the (generic)
formulas φ and ψ in L′ (whose language coincides with that of BL enriched
with the constant 1+) to x and y, respectively. Taking into account all we have
said, for every pair of multisets of formulas Γ and ∆ we have the following
conditions for (TL4/1) (below we write a comma “,” instead of ⊕):

• (φ≪ ψ) ⇒ ((Γ, φ&ψ ≺ ∆) ⇔ (Γ, φ ≺ ∆))
• (ψ ≪ φ) ⇒ ((Γ, φ&ψ ≺ ∆) ⇔ (Γ, ψ ≺ ∆))
• ((1 � φ) ∩ (1 � ψ)) ⇒ ((Γ, φ&ψ ≺ ∆) ⇔ (Γ, 1 ≺ ∆))
• ((φ ≡ ψ) ∩ (φ≪ 1) ∩ (ψ, φ � 1+)) ⇒ ((Γ, φ&ψ ≺ ∆) ⇔ (Γ ≺ ∆))
• ((φ ≡ ψ) ∩ (φ≪ 1) ∩ (1+ ≺ φ, ψ)) ⇒ ((Γ, φ&ψ ≺ ∆) ⇔ (Γ, φ, ψ ≺ ∆, 1+))

The remaining reductions are obtained in a similar way and can be extracted
from the r-hypersequent calculus for BL displayed in Section 4.3.1.

2.3 How to build the semantic theory for a hyperprojective logic

Proving that a logic is hyperprojective is, in general, a non trivial task. We
show below how to automate this process for a large class of many-valued
logics, which includes Lukasiewic and Product Logic.

To show that a logic L is hyperprojective we need indeed to provide a semantic
theory TL satisfying conditions (TL0), . . ., (TL4) (cf. Definition 5). Though
this process could be tricky in general, it can be automated for every logic that
is algebraizable and its equivalent algebraic semantics is a variety V generated
by a single algebra A, and whose first-order theory satisfies suitable conditions,
which will be described below.

If L is algebraizable, then the connectives of L may be regarded as operation
symbols and formulas of L as terms in the language of V . Let A be an algebra
which generates V as a variety, with universe A. Let Am be the family of
all multisets with support included in A (without loss of generality, we may
assume that A∩Am = ∅). We equip A∪Am with the operations of A, extended
by the clause f(a1, . . . , an) = ε if some ai is in Am, with the operation ⊕ for
the union of multisets, extended by the condition a ⊕ b = ε if either a /∈ Am

or b /∈ Am, and, possibly, with finitely many additional unary operations and
constants. Moreover we equip A ∪ Am with some relations, thus getting a
structure A∗. We assume that:

(A1) There is a weakly simple formula Des(x) such that for each formula φ
of L we have: L |= φ iff A∗ |= Des(φ).

13

(A2) The set of weakly simple formulas valid in A∗ is decidable.
(A3) If f, g are unary operations not in the language of L, there is a unary

operation h not in the language of L such that A∗ |= ∀x(f(g(x)) = h(x)).
(A4) Let t = (t1, . . . , tn) be a sequence of terms. Given a valuation v into A

and a multiset µ = y1 ⊕ . . . ⊕ yk with yi ∈ {t1, . . . , tn} we set v(µ) to
be the multiset v(y1) ⊕ . . . ⊕ v(yk). Moreover, let x = (x1, . . . , xn) be a
sequence of variables and let Ux be the set of all terms which are either
of the form xi or of the form u(xi), u a unary operation symbol in the
language of TL but not in the language of L. Then, with the notation
used in the definition of hyperprojective logic, for each k-ary predicate
P , for each position i with 1 ≤ i ≤ k, for each connective ✷, and for each
unary function symbol u in TL and not in L, there are two partitions
of the unit Q1(x), . . . , Qℓ(x) and Qu

1(x), . . . , Qu
ℓ′(x), consisting of weakly

simple formulas, and sequences of multisets νa : a = 1, . . . , ℓ, νub : b =
1, . . . , ℓ′, whose support is included in Ux, such that, for a = 1, . . . , ℓ, for
b = 1, . . . , ℓ′, for every sequence µ of multisets of elements of A and for
every valuation v into A, the following conditions hold:
(A4/1) A∗ |= Qa(v (x)) ⇒ (P (µ⊕Θk

i (�(v (x)))) ⇔ P (µ⊕ v (νa))), and
(A4/2) A∗ |= Qu

b (v (x)) ⇒ (P (µ⊕ Θk
i (u(�(v(x))))) ⇔ P (µ⊕ v (νub))).

When conditions (A1), . . ., (A4) are satisfied, we take TL to be the first-order
theory of the model A∗.
Example 7.

(1) As seen in Remark 2.1, every projective [8] or semi-projective logic [19] is
hyperprojective, provided that we identify any formula φ with the multiset
with cardinality 1 whose support is {φ}.

(2) Though Product Logic is neither projective nor semi-projective, it is hy-
perprojective. To see this, let A be the product algebra on [0, 1], (see [23]),
and let us extend A to a structure A∗ on A∪Am along the lines indicated
at the beginning of this section. We introduce the relations � and ≺ on
multisets, defined as follows:

σ � ν iff
∏

x∈S(σ)

xµ(x) ≤
∏

y∈S(ν)

yµ(y)

σ ≺ ν iff
∏

x∈S(σ)

xµ(x) <
∏

y∈S(ν)

yµ(y)

(an empty product is 1 by definition).
Let TL be the first-order theory of A∗, where we write < instead of ≺

and ≤ instead of �. Then TL, along with the decomposition rules for the
connectives of Product Logic presented in the introduction, witnesses the
fact that product logic is hyperprojective. The predicate Des can be defined
by Des(x) := 1 � x.

(3) Lukasiewicz Logic [20] is hyperprojective. To build its semantic theory, let
A be the standard MV-algebra on [0, 1], and construct A∗ following our

14

strategy, with the extra binary predicates ≺ and � on multisets, defined
as follows:

σ ≺ ν iff
∑

x∈S(σ)

µ(x) · x <
∑

y∈S(ν)

µ(y) · y

σ � ν iff
∑

x∈S(σ)

µ(x) · x ≤
∑

y∈S(ν)

µ(y) · y

(where an empty sum is 0 by definition).
The predicate Des can be defined by Des(x) := 1 � x. Moreover, re-

calling that x ∗ y = max{x + y − 1, 0} and x → y = min{1 − x + y, 1},
and writing “,” instead of ⊕, < instead of ≺ and ≤ instead of �, we can
easily build the case reductions for its connectives.

3 Proof search oriented calculi for hyperprojective logics

Proof systems for various many-valued logics have been defined using hyper-
sequents [3], that are finite ”disjunctions” of standard sequents; these logics
include Gödel, Lukasiewicz and Product logic, as well as Monoidal T-norm
based logic MTL [21]; see [27] for an overview. A hypersequent is a multiset
of the form

Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n,

where each component Γi ⇒ ∆i is an ordinary sequent, i.e. of the form
φi1, . . . φ

i
n ⇒ ψi1, . . . , ψ

i
m. In contrast with the above mentioned logics, Hájek’s

basic fuzzy logic BL (cf. Example 6) seems to escape an analytic formalization
using hypersequents, that is a hypersequent calculus whose proofs proceed by
stepwise decomposition of the formulas to be proved. Moreover, even when
analytic, hypersequent calculi are in general not suitable for proof search. The
main reason being that their rules are usually not invertible (exceptions are
the calculi in [29,28]). For instance, termination is still an open problem for
the hypersequent calculus of MTL, that also does not help characterizing the
computational complexity of the logic.

Relational hypersequents are a generalization of hypersequents introduced in
[18] to define proof search oriented calculi for Gödel, Lukasiewicz and Product
logic. A relational hypersequent (r-hypersequent for short) is defined in [18] as
a multiset of two different types of sequents, where Gentzen’s sequent arrow
⇒ is replaced in one by < and in the other by ≤. Relational hypersequents
were also used in [30] to define analytic calculi for (a conservative extension
of) BL. All these calculi are however defined on a logic by logic basis and their
discovery has required some ingenuity.

In this section we introduce a methodology to define relational hypersequent
calculi for all hyperprojective logics. To this purpose along the line of sequents

15

of relations [8,19] we generalize r-hypersequents to objects understood as a dis-
junction of arbitrary predicates (not only the binary ones < and ≤) belonging
to a chosen semantic theory.

3.1 From hyperprojective logics to r-hypersequent calculi

Let L be a hyperprojective logic with semantic theory TL. A relational hyper-
sequent for TL, has the form

P1(µ1) | . . . | Pℓ(µℓ)

(each Pi(µi) is called a component of the r-hypersequent) where P1, . . . Pℓ are
predicate symbols of TL and µ1, . . . , µℓ are sequences of multisets of formulas
of the conservative extension L′ of L. In what follow, according to a long
standing tradition in proof theory we will often write “,” for ⊕ and multisets
of formulas φ1 ⊕ · · · ⊕ φn will be represented as φ1, . . . , φn. In a relational
hypersequent, | is interpreted as a disjunction, that is, for any sequence of
multisets µ = µ1, . . . , µr,

M, v |= P1(µ1) | . . . | Pℓ(µℓ) iff M, v |= P1(µ1) ∪ . . . ∪ Pℓ(µℓ).

The TL formula P1(µ1) ∪ . . . ∪ Pℓ(µℓ) will be called the formula associated to
the r-hypersequent P1(µ1) | . . . | Pℓ(µℓ).

Conditions (TL4/1) and (TL4/2) can be translated into logical rules as follows:
first of all, we can assume that Qa(x) and Qu

b (x) are conjunctions of multisets
of atomic formulas. Since the negation of a conjunction of atomic formulas
is equivalent to a disjunction of negations of atomic formulas (and since our
semantic theory satisfies condition (TL0), each negation of an atomic formula
is equivalent to an atomic formula), the negations of Qa(x) and Qu

b (x) can be
written as r-hypersequents. We denote such r-hypersequents by (Qa)

∗(x) and
(Qu

b)
∗(x). Hence we have

Definition 8 (Logical rules). For any n-ary connective � of L (and for any
unary function symbol u in the language of TL and not in that of L), any
predicate symbol P of TL with arity r, and for any position i with 1 ≤ i ≤ r we
have the rule (P,�, i) (resp. (P, u(�), i)) for introducing �(x) (resp. u(�(x)))
at position i into a component of an r-hypersequent containing the symbol P .

Let Q1(x), . . . , Qℓ(x) and Qu
1(x), . . . , Qu

ℓ′(x) be two partitions of the unit, con-
sisting of weakly simple formulas, and νa, ν

u
b be sequences of multisets with

support in Z(x), such that, for a = 1, . . . , ℓ, for b = 1, . . . , ℓ′, for any sequence
µ of multisets of formulas of L′ and for every substitution σ of variables with

16

formulas of L′, conditions (TL4/1) and (TL4/2) hold. Then we have the rules

H|(Q1)
∗(σ(x))|P (µ⊕ σ(ν1)) . . . H|(Qℓ)

∗(σ(x))|P (µ⊕ σ(νℓ))

H|P (µ⊕ Θr
i (�(σ(x))))

(P,�, i)

H|(Qu1)∗(σ(x))|P (µ⊕ σ(νu1)) . . . H|(Quℓ′)
∗(σ(x))|P (µ⊕ σ(νuℓ′))

H|P (µ⊕ Θr
i (u(�(σ(x)))))

(P, u(�), i)

where H is any side r-hypersequent.

In the above rules, the formula P (µ⊕Θr
i (�(σ(x)))) (resp. P (µ⊕Θr

i (u(�(σ(x))))))
is called main formula of the rule, while (Qa)

∗(σ(x)) (resp., (Qu
b)

∗(σ(x)))) are
called contexts of the rule. For each a = 1, . . . , ℓ (resp., for b = 1, . . . , ℓ′),
P (µ ⊕ σ(νa)) (resp. P (µ ⊕ σ(νub))) is called reduced formula of the main for-
mula.
Example 9. The calculus rules for Lukasiewicz logic (see Example 7) are
given below (we omit the side hypersequent H for space reasons):

1 ≤ φ, ψ|Γ ⊳ ∆ φ, ψ < 1|Γ, φ, ψ ⊳ ∆, 1

Γ, φ&ψ ⊳ ∆

1 ≤ φ, ψ|Γ ⊳ ∆ φ, ψ < 1|Γ, 1 ⊳ ∆, φ, ψ

Γ ⊳ ∆, φ&ψ

φ < ψ|Γ, ψ ⊳ ∆ ψ ≤ φ|Γ, φ ⊳ ∆

Γ, φ ∧ ψ ⊳ ∆

φ < ψ|Γ ⊳ ∆, ψ ψ ≤ φ|Γ ⊳ ∆, φ

Γ ⊳ ∆, φ ∧ ψ

φ < ψ|Γ, φ ⊳ ∆ ψ ≤ φ|Γ, ψ ⊳ ∆

Γ, φ ∨ ψ ⊳ ∆

φ < ψ|Γ ⊳ ∆, φ ψ ≤ φ|Γ ⊳ ∆, ψ

Γ ⊳ ∆, φ ∨ ψ

ψ < φ|Γ, 1 ⊳ ∆ φ ≤ ψ|Γ, ψ, 1 ⊳ ∆, φ

Γ, φ→ ψ ⊳ ∆

ψ < φ|Γ ⊳ ∆, 1 ψ ≤ φ|Γ, φ ⊳ ∆, ψ, 1

Γ ⊳ ∆, φ→ ψ

where ⊳ stands for < or ≤ uniformly in each rule.

Given a hyperprojective logic L, we denote by HL the r-hypersequent calculus
whose rules are defined as indicated above and whose axioms are
Definition 10 (Axioms). Suppose that P1(µ1), . . . , Pℓ(µℓ) are weakly simple
atomic formulas. Then the r-hypersequent P1(µ1) | . . . | Pℓ(µℓ) is an axiom of
HL iff the universal closure of the formula associated to it is valid in TL.
Remark 3.1. As it often happens for semantic-based calculi (e.g. in the case
of display logic [13]) the calculus HL is formulated in the language of the
conservative extension L′ of L.

From condition (TL4) of TL immediately follows that each rule constructed
as in Definition 8 is sound and invertible for L, i.e. for any rule

H1 . . . Hn

H

in HL and for any model M of TL, M |= Hi for any i = 1, . . . , n iff M |= H.

17

3.2 Soundness, completeness and decidability

Let L be a hyperprojective logic. We show that the calculus HL is sound and
complete for L and use it to show that L is decidable. Towards this section
we fix a hyperprojective logic L with semantic theory TL and r-hypersequent
calculus HL. An r-hypersequent H of TL is said to be provable in HL if there
is an upward tree of r-hypersequents rooted in H, such that every leaf is
an axiom of HL and every other r-hypersequent is obtained from the ones
standing immediately above it by application of one of the rules of HL. Such
a tree is called a derivation of H; we define the length of a derivation as the
number of inferences in a maximal branch of that derivation.

Being Des a simple formula (cf. condition (TL1)), it can be written as a
conjunctions of disjunctions of atomic simple formulas, indicated in what fol-
lows as Des1, . . . , Desk. The two results below establish the soundness and
completeness of HL with respect to L.
Theorem 11 (Soundness). Let φ be any formula in the language of L. If
Des1(φ), . . . , Desk(φ) are provable in HL then φ is valid in L.

Proof. Arguing by induction on the length l of the derivation of H, we prove
the more general statement: if H is provable in HL then for every model M
of TL and for every valuation v of M, M, v |= H.

Base step: if l = 0 then H is an axiom of HL, and the associated formula is
valid in TL.

Inductive step: assume that the claim holds for derivations with length n
and let l = n + 1. If the r-hypersequents above H are H1, . . . , Hn, then by
the inductive hypothesis, M, v |= Hi for i = 1, . . . , n. The claim follows by
condition (TL4).

Thus, if Des1(φ), . . . , Desk(φ) are provable in HL then TL |= Des(φ), and
(TL1) proves the claim.

Theorem 12 (Completeness). Let φ be any formula in the language of L. If
φ is valid in L then Des1(φ), . . . , Desk(φ) are provable in HL.

Proof. If φ is valid in L then, by (TL1), Des1(φ), . . . , Desk(φ) are provable
in TL, and hence for every model M of TL and for every valuation v of M,
M, v |= Desi(φ) for i = 1, . . . k. Applying the rules of HL backwards to
every Desi(φ) we can build a tree, called the reduction tree of Desi(φ). The
leaves of the reduction tree are r-hypersequents P1(µ1) | . . . | Pℓ(µℓ) such that
P1(µ1)∪. . .∪Pℓ(µℓ) is a weakly simple formula of TL, and by the invertibility of
the rules of HL, their universal closure is valid in TL. Hence the reduction tree

18

of Desi(φ) is actually a derivation of Desi(φ), and thus Des1(φ), . . . , Desk(φ)
are provable in HL.

A first, easy but important property of hyperprojective logics is given by the
following result.
Theorem 13. Any hyperprojective logic L is decidable.

Proof. Given a formula φ of L, we apply the rules of HL backwards, starting
from Des(φ). We can assume that no consecutive occurrences of unary func-
tions not in L occur in φ (otherwise, we eliminate them using (TL3)). Let a(φ)
denote the number of occurrences of function symbols in φ in the language of
L, and b(φ) be the number of occurrences of unary function symbols in φ and
not in L, and set c(φ) = 2a(φ) + b(φ) (so, function symbols in L count more
than unary function symbols not in L in the computation of c(φ)). We call
c(φ) the complexity of φ. Now let for each r-hypersequent H, c(H) denote the
maximum complexity of the formulas in H and k(H) denote the number of
occurrences of formulas of maximum complexity. We reduce first the formu-
las with maximal complexity. It is easily seen that if H ′ is any premise of a
rule acting on a formula of maximal complexity and H is its conclusion, then
(c(H ′), k(H ′)) < (c(H), k(H)). It follows that every path of the reduction tree
terminates with a r-hypersequent containing formulas which are either atomic
or of the form fj(p) with p a propositional variable or a constant and fj a
unary operation not in L. These r-hypersequents are weakly simple formulas
and hence they are decidable by our assumptions on TL. This shows that L is
decidable.

Remark 3.2. Being invertible, the rules of our calculi decompose the main
formula in a set of reduced formulas which have strictly lower complexity (in
the sense of the above proof) than the main formula. This justifies our use of
the word reduction in place of rule, to underline the fact that whenever we
read a reduction tree starting from the root, each rule is actually reducing the
complexity of the starting r-hypersequent.

4 Co-NP completeness

We identify sufficient conditions for a hyperprojective logic L to be in Co-NP.
The conditions are on TL and on the r-hypersequent calculus HL. Since we
manly deal with substructural logics, i.e. axiomatic extensions of Full Lambek
calculus, the logics treated in this paper are also Co-NP hard by [25], and
hence, when they are in Co-NP they are also Co-NP complete.

19

4.1 Uniform sets of rules

We start discussing uniformity of contexts, a useful property of r-hypersequent
rules, and show that all calculi for hyperprojective logics can be modified in
order to fulfill it. Intuitively, having a uniform set of rules means that the
rules for introducing the same connective have all the same form, i.e. they
only depend on the formula and not on the particular predicate symbol or the
position inside it.
Definition 14. Let L be an hyperprojective logic with semantic theory TL
and r-hypersequent calculus HL. We say that HL has a uniform set of rules
if for each rule (P,�, i) (resp., (P, u(�), i)), the contexts (Qa)

∗(σ(x)) (resp.,
(Qu

b)
∗(σ(x))) and the number of premises in the rule (P,�, i) (resp., (P, u(�), i))

only depend on � (resp., on u and on �) but not on P or on i.

Uniform rules allow us to reduce several occurrences of the same formula
simultaneously and make the proof search algorithm more efficient, as the
following example shows.
Example 15. In Product Logic we can simultaneously reduce all occurrences
of A → B in the sequent H := A → B ≤ C|D < A → B, where A,B,C and
D are propositional variables, taking advantage of the fact that the contexts
are the same in each rule. As already outlined in Section 1, the rules for →
are (where ⊳ is either ≤ or < and H ′ is any side-sequent)

H ′|ψ < φ|Γ, 1 ⊳ ∆ H ′|φ ≤ ψ|Γ, ψ ⊳ ∆, φ

H ′|Γ, φ→ ψ ⊳ ∆
(⊳,→, left)

H ′|ψ < φ|Γ, 1 ⊳ ∆ H ′|φ ≤ ψ|Γ, φ ⊳ ∆, ψ

H ′|Γ ⊳ ∆, φ→ ψ
(⊳,→, right)

Thus, by repeatedly applying them to the sequent H we have the following
(compact) reduction:

B < A|1 ≤ C|D < 1 A ≤ B|B ≤ A,C|D,A < B

A→ B ≤ C|D < A→ B .

Our first result is that in any hyperprojective logic we can always get unifor-
mity for free. This is based on the following facts:

(1) Given two partitions of the unit Q1, . . . , Qn and R1, . . . , Rk, the partition
consisting of all formulas Wi,j = Qi ∩ Rj, i = 1, . . . , n j = 1, . . . , k is a
common refinement of the original partitions.

(2) Hence, for every connective � of L and every unary function symbol u in
TL and not in L, we can find a common refinement W (x) of all partitions
used for the rules of all sequents of the form P (µ⊕Θn

i (�(x))) for any i =
1, . . . , n, and, respectively, a common refinement W u(x) of all partitions
of unit used in the rules of all sequents of the form P (µ⊕Θn

i (u(�(x)))) for

20

any i = 1, . . . , n. Now we may suppose that each element Wa(x) of W (a =
1, . . . , ℓ) and each element W u

b (x) (b = 1, . . . , ℓ′) of W u is a conjunction
of atomic formulas, and hence using our assumptions on negations we
may write their negations as r-hypersequents, which will be denoted by
(Wa)

∗(x) and (W u
b)∗(x), respectively. It follows that the original rules can

be replaced by the uniform rules

H|(W1(σ(x)))∗|P (µ⊕ σ(ν1)) . . . H|(Wℓ(σ(x)))∗|P (µ⊕ σ(νℓ))

H|P (µ⊕ Θn
i (�(σ(x))))

(P,�, i)

H|(W u
1 (σ(x)))∗|P (µ⊕ σ(νu1)) . . . H|(W u

ℓ′ (σ(x)))∗|P (µ⊕ σ(νuℓ′))

H|P (µ⊕ Θn
i (u(�(σ(x)))))

(P, u(�), i)

Hence it follows
Proposition 16. Every hyperprojective logic L has a uniform set of rules.

In the sequel, we tacitly assume to apply rules for (different occurrences of)
the same formula simultaneously, whenever possible.

4.2 Resource-boundedness

We define the size of an r-hypersequent as the number of symbols occurring
in each formula contained in it. To guarantee that the size of each leaf of the
reduction tree is polynomial in the size of the end r-hypersequent we need a
further assumption on the calculus’ rules.
Example 17. Assume to have a hyperprojective logic L with a binary con-
nective � such that P (x) is unary predicate symbol of TL and that its r-
hypersequent calculus HL has the rule

P (Γ, φ, ψ, ψ)

P (Γ,�(φ, ψ))
(P,�, 1)

where Γ is an arbitrary multiset of formulas and φ and ψ are metavariables
for formulas in L′. Clearly the rule is uniform (it has no context). Now let
Φ0 = φ and Φn+1 = �(φ,Φn). Then the size of Φn is linear in n, but, writing
hφ for φ, . . . , φ h times, the nodes in the unique branch of the reduction tree
with root P (Φn) are

P (φ, 2Φn−1), P (3φ, 4Φn−2), P (7φ, 8Φn−3), . . . , P ((2n+1 − 1)φ).

Hence, the size of the leaf of the tree is exponential in the size of the root.

To avoid such situations, we introduce the following constraint.
Definition 18. A rule of the form (P,�, i) (resp., (P, u(�), i)), cf. Definition
8, is said to be resource-bounded if for all P, i (resp., P, i, u, where u is a unary

21

function in the language of TL but not in L), every element of the union of
the multisets in νa, a = 1, . . . , ℓ (resp. νub , b = 1, . . . , ℓ′) in condition (TL4)
has multiplicity at most 1.

A steady example of a family of logics with resource-bounded r-hypersequent
calculi is given by semi-projective logics (and thus also projective logics). We
have seen that, for the calculi of these logics, multisets of formulas can be
replaced simply by formulas, and hence Definition 18 is trivially true for their
rules.

An easy corollary of Proposition 16 states that resource-boundedness is stable
when replacing a set of rules with a uniform set of rules.
Corollary 19. If L has a resource bounded proof system, then it has a proof
system which is both uniform and resource bounded.

4.3 Main Theorem

A final condition for the Co-NP containment of a hyperprojective logic is that
the set of valid weakly simple formulas of its semantic theory is in Co-NP. The
main result of this section reads:
Theorem 20. Let L be a hyperprojective logic with semantic theory TL and
r-hypersequent calculus HL with uniform and resource bounded rules. Suppose
further that the set of weakly simple formulas which are valid in TL is in P.
Then the set of theorems of L is in Co-NP.

Proof. We show that the set of formulas of L that are not valid is in NP. Let φ
be any such formula. Again, write Des(φ) as a conjunction of disjunctions of
atomic formulas Des1(φ), . . . , Desk(φ); then, for some 1 ≤ i ≤ k, the reduction
tree starting from Desi(φ) has a leaf which is not an axiom. Let J be the
maximum cardinality of all multisets occurring in some context of a rule of
L (remember that a context is a disjunction of atomic formulas of the form
Q(µ1, . . . , µn), where each µi is a multiset of the form φ1 ⊕ · · · ⊕ φh, with
φ1, . . . , φh formulas of L′). Let K be the sum of the arities of all predicates
occurring in a context of some rule (if a predicate occurs n times, its arity is
multiplied by n). Note that, due to the fact that each rule is resource-bounded,
the total size of a reduced formula does not exceed the size of the main formula.
Hence, denoting, for each expression E, the size of E by s(E), if H is the
conclusion of a rule and H ′ is one of its premises, we have s(H ′) ≤ J ·K·s(H).
If we reduce all occurrences of the main formula simultaneously, the situation
does not change, because the contexts are the same, and the size of reduced
formulas does not exceed the size of the main formula after performing all
possible reductions. Hence, if the length of a branch starting from Desi(φ) is I,
the maximal size of a node in the branch is bounded by s(Desi(φ))+I·J·K·s(φ).

22

Proving the following lemmas will yield the desired result.

Lemma 21. Each branch of the reduction tree starting from Desi(φ) has
length linear in the size of φ.

Proof. Since we have uniform rules, we reduce all occurrence of a formula
together, starting from the formula of highest complexity. So, if a subformula
of φ is reduced in one node, it does not appear in the nodes above it. Hence,
the length of the branch does not exceed the number of subformulas of φ, and
thus it is linear in the size of φ.

Continuing with the proof of Theorem 20, the total size of a branch starting
from Desi(φ) is bounded by s(Desi(φ)) + J ·K ·M ·(s(φ))2, where M ·s(φ) is a
bound for the length of the branch I, by the claim above. Hence, it is possible
to guess a branch of the reduction tree and to reach its leaf in polynomial
time (since the length of the branch is linear in there size of φ). It follows that
a non-deterministic polynomial-time algorithm for non-provability in L is the
following:

(1) Guess an i with 1 ≤ i ≤ k.

(2) Guess a maximal branch in the reduction tree of Desi(φ) and reach its
leaf (in polynomial time). Note that this leaf is a weakly simple formula.

(3) Apply a deterministic polynomial algorithm to check if the leaf is not valid
in TL (by assumption, this algorithm exists).

Lemma 22. If an r-hypersequent calculus is resource bounded and uniform
and the set of its axioms is in Co-NP (and possibly not in P), then the set of
its theorems is in Co-NP.

Proof. Let us encode formulas, r-hypersequents, reduction trees, and in general
any procedure involving them, by binary strings via an encoder 〈·〉, and let |w|
denote the length of the binary string w. If the set of axioms is in Co-NP, then
there are a P-time relation R(H,w) and a polynomial Q(x) such that H is not
an axiom iff there is a binary string w with |w| ≤ Q(|〈H〉|) such that R(H,w)
(which can be meta-interpreted as “w encodes a procedure which provides a
counterexample for H”).

Now we have seen that the size of any branch b in the reduction tree of any
formula φ is polynomially bounded in the size of φ, and hence, there is a
polynomial P (x) such that |〈b〉| ≤ P (|〈φ〉|). Let l(b) denote the only leaf of b.
Then φ is not a theorem iff there is a branch b in the reduction tree such that
|〈b〉| ≤ P (|〈φ〉|) and there is w with |w| ≤ Q(|〈l(b)〉|) ≤ Q(P (|〈φ〉|)) such that
R(l(b), w).

23

Hence, a non-deterministic polynomial time algorithm to check non-provability
of theorems is:

(a) guess non-deterministically a branch b with |〈b〉| ≤ P (|〈φ〉|) in the reduc-
tion tree of φ;

(b) guess non-deterministically a w with |w| ≤ Q(P (|〈φ〉|)) such thatR(l(b), w).

Of course, the two guesses may be replaced by a single guess: guess a pair (b, w)
such that b is a branch of the reduction tree of φ and R(l(b), w). It follows
that being unprovable is in NP, and hence, being provable is in Co-NP.

Corollary 23. Each hyperprojective logic L having a resource bounded proof
system and whose axioms are in Co-NP is in Co-NP. If in addition L is a
(consistent) substructural logic, then L is Co-NP complete.

Proof. Proposition 16 and Theorem 20 ensure that L is in Co-NP. The Co-NP
completeness follows from [25].

Remark 4.1. Although assuming that the axioms are in Co-NP is a suffi-
cient condition for a hyperprojective resource-bounded logic to be in Co-NP,
we believe that in a reasonable proof system the axiom set should be in P. R-
hypersequent calculi whose axiom set are in Co-NP (but possibly not in P) are
the calculus for Weak Nilpotent Minimum WNM of [19] and that for Hájek’s
BL in [30].

4.3.1 Examples

We discuss some known logics that fall into our framework. We provide an
r-hypersequent calculus for them and prove that they are Co-NP complete.

Projective and semi-projective logics:

From the projective definition of connectives it follows that projective and
hyperprojective logics have a resource bounded and uniform set of rules. Hence
when their axioms are in Co-NP, the logics are Co-NP complete. We discuss
below three of them: Gödel and classical logic (both projective logics) and the
logic RM (semi-projective logic).

Uniform and resource-bounded rules for Gödel Logic are (⊳ stands for either
< or ≤, uniformly in each rule)

H|φ < ψ|ψ ⊳ χ H|ψ ≤ φ|φ ⊳ χ

H|φ ∧ ψ ⊳ χ

H|φ < ψ|χ ⊳ ψ H|ψ ≤ φ|χ ⊳ φ

H|χ ⊳ φ ∧ ψ

H|φ < ψ|φ ⊳ χ H|ψ ≤ φ|ψ ⊳ χ

H|φ ∨ ψ ⊳ χ

H|φ < ψ|χ ⊳ φ H|ψ ≤ φ|χ ⊳ ψ

H|χ ⊳ φ ∨ ψ

24

H|φ ≤ ψ|ψ ⊳ χ H|ψ < φ|1 ⊳ χ

H|φ→ ψ ⊳ χ

H|φ ≤ ψ|χ ⊳ ψ H|ψ < φ|χ ⊳ 1

H|χ ⊳ φ→ ψ

The above rules differ from those of the calculus in [8] and from the r-
hypersequent rules in [18] that are not uniform.

Axioms for Gödel Logic are all r-hypersequents that either contain 0 ≤ φ or
φ ≤ 1 or a cycle φ1 ⊳1 φ2|φ2 ⊳2 φ3 . . . |φn ⊳n φ1 where for all i ⊳i is either < or
≤ and at least one ⊳i is ≤, see [7].
Remark 4.2. Being a two-valued logic, Classical Logic CL is a regular hyper-
projective logic with an r-hypersequent calculus which has a uniform, resource-
bounded set of rules. An alternative sequent-style calculus for CL is obtained by
adding to the above calculus for Gödel logic axioms of the form φ ≤ ψ|ψ ≤ χ.
Note that, in contrast with Gentzen sequent calculus LK [22] for CL, the log-
ical rules above are uniform in the sense of Definition 14 (i.e., the left and
right rules for the same connective have the same structure).

R-mingle:

The next example of an hyperprojective logic is the relevant logic R-Mingle [2],
indicated in the following by RM . This logic has binary connectives &,→,∧,∨
and unary connective ¬, axiomatized Hilbert-style by the following set of
formulas:

(B) (φ→ ψ) → ((ψ → χ) → (φ→ χ)) (∧1) (φ ∧ ψ) → φ

(C) (φ→ (ψ → χ) → (ψ → (φ→ χ)) (∧2) (φ ∧ ψ) → ψ

(I) φ→ φ (∧3) ((φ→ ψ) ∧ (φ→ χ)) → (φ→ (ψ ∧ χ))

(& 1) φ→ (ψ → (φ&ψ)) (∨1) φ→ (φ ∨ ψ)

(& 2) ψ → (φ→ (φ&ψ)) (∨2) ψ → (φ ∨ ψ)

(DIS) (φ ∧ (ψ ∨ χ)) → ((φ ∧ ψ) ∨ (φ ∧ χ)) (∨3) ((φ→ χ) ∧ (ψ → χ)) → ((φ ∨ ψ) → χ)

(¬ 1) (φ→ ¬ψ) → (ψ → ¬φ) (C) φ→ (φ&φ)

(¬ 2) ¬¬φ→ φ (M) (φ&φ) → φ

and rules (modus ponens and adjunction):

φ φ→ ψ

ψ

φ ψ

φ ∧ ψ

A first analytic calculus for this logic was defined in [4] using hypersequents.
The rules of this calculus are however not invertible and do not help prov-
ing that the validity problem of RM is Co-NP complete (see, e.g., [26] for a
semantic-based proof).

25

It is a well-known fact that the logic RM has the variety of Sugihara algebras
as equivalent algebraic semantics. This variety is generated by the algebra

Z
¬

◦
= 〈Z\{0},&,→,∨,∧,−, 1〉

where Z is the ordered set of integers, ∧ and ∨ are min and max respectively,
and the other connectives are defined as follows:

x&y =

x ∧ y if |x| = |y|

x if |x| < |y|

y if |y| < |x|

x→ y =

(−x) ∨ y if x ≤ y

(−x) ∧ y if y < x

where | · | is the absolute value function. The following format of the above
connectives makes evident the semi-projective nature of RM :

x&y =

x if x < −y and y ≤ x

y if x < −y and x < y

y if − y ≤ x and y ≤ x

x if − y ≤ x and x < y

x→ y =

−x if x ≤ y and y ≤ −x

y if x ≤ y and − x < y

y if y < x and y ≤ −x

−x if y < x and − x < y

Hence, RM is semi-projective, and multisets are not needed. The rules for ∨,
∧, −∨ and −∧ are as in Nilpotent Minimum logic NM (with − in place of
¬, see [19]), and the rules for the connectives &, −(&), → and −(→) are as
follows (having used “,” in place of ⊕):

The premises of the rule (⊳,&, left) are

H | −ψ ≤ φ | φ < ψ | φ ⊳ χ H | −ψ ≤ φ | ψ ≤ φ | φ ⊳ χ

H | φ < −ψ | φ < ψ | φ ⊳ χ H | φ < −ψ | ψ ≤ φ | φ ⊳ χ

and the conclusion is H | φ&ψ ⊳ χ. The premises of the (⊳,&, left) rule are:

H | −ψ ≤ φ | φ < ψ | χ ⊳ φ H | −ψ ≤ φ | ψ ≤ φ | χ ⊳ φ

H | φ < −ψ | φ < ψ | χ ⊳ φ H | φ < −ψ | ψ ≤ φ | χ ⊳ φ

and the conclusion is H | χ ⊳ φ&ψ. The premises of the (⊳,−(&), left) rule
are:

H | −ψ ≤ φ | φ < ψ | −φ ⊳ χ H | −ψ ≤ φ | ψ ≤ φ | −φ ⊳ χ

H | φ < −ψ | φ < ψ | −φ ⊳ χ H | φ < −ψ | ψ ≤ φ | −φ ⊳ χ

26

and the conclusion is H | −(φ&ψ) ⊳ χ. The premises of the (⊳,−(&), right)
rule are:

H | −ψ ≤ φ | φ < ψ | χ ⊳−φ H | −ψ ≤ φ | ψ ≤ φ | χ ⊳−φ

H | φ < −ψ | φ < ψ | χ ⊳−φ H | φ < −ψ | ψ ≤ φ | χ ⊳−φ

and the conclusion is H | χ ⊳ −(φ&ψ). The premises of the (⊳,→, left) rule
are:

H | ψ < φ | −φ < ψ | −φ ⊳ χ H | ψ < φ | ψ ≤ φ | −φ ⊳ χ

H | φ ≤ ψ | −φ < ψ | −φ ⊳ χ H | φ ≤ ψ | ψ ≤ −φ | −φ ⊳ χ

and the conclusion is H | φ → ψ ⊳ χ. The premises of the (⊳,→, right) rule
are:

H | ψ < φ | −φ < ψ | χ ⊳−φ H | ψ < φ | ψ ≤ φ | χ ⊳−φ

H | φ ≤ ψ | −φ < ψ | χ ⊳−φ H | φ ≤ ψ | ψ ≤ −φ | χ ⊳−φ

and the conclusion is H | χ⊳φ→ ψ. The premises of the (⊳,−(→), left) rule
are:

H | ψ < φ | −φ < ψ | φ ⊳ χ H | ψ < φ | ψ ≤ φ | φ ⊳ χ

H | φ ≤ ψ | −φ < ψ | φ ⊳ χ H | φ ≤ ψ | ψ ≤ −φ | φ ⊳ χ

and the conclusion is H | −(φ→ ψ)⊳χ. The premises of the (⊳,−(→), right)
rule are:

H | ψ < φ | −φ < ψ | χ ⊳ φ H | ψ < φ | ψ ≤ φ | χ ⊳ φ

H | φ ≤ ψ | −φ < ψ | χ ⊳ φ H | φ ≤ ψ | ψ ≤ −φ | χ ⊳ φ

and the conclusion is H | χ ⊳−(φ→ ψ).

The semantic theory, TRM , for RM is just the first-order theory of the structure
Z

¬

◦
and the designated truth predicate Des(x) := 1 ≤ x. Clearly, for every

formula φ of RM , we have RM |= φ iff TRM |= Des(φ).
Theorem 24. There is a P-time procedure for deciding whether a weakly
simple formula of TRM is valid.

Proof. Any weakly simple formula Q of TRM is equivalent to a formula of the
form Q1 ∩ . . . ∩ Qn, such that for every i = 1, . . . , n there is an m > 0 such
that

Qi = (ui1 ⊳i1 vi1) ∪ · · · ∪ (uim ⊳im vim)

where uij , vij are either variables or constants or terms of the form −x, where
x is a variable, and ⊳i ∈ {≤, <}. Then the negation of Q is the disjunction
of conjunctions of atomic formulas of the form u ⊳ v (since the negation of an
atomic formula is equivalent to another atomic formula in TRM). Denote by Σi

the set of atomic formulas in Qi, and let Σ♯
i be the set of inequalities obtained

from Σi by adding, for each inequality t ⊳ s, the inequality −s⊳− t, where ⊳ is

27

≤ if ⊳ and is < vice versa, and where we identify −(−t) with t. It is readily
seen that Σ♯

i is satisfiable if and only if Σi is. Hence, Q is valid in TRM if and
only if all sets Σ♯

i are satisfiable.

To check whether Σ♯
i is satisfiable, set SL(t, t′) iff t < t′ is in Σ♯

i, and LE(t, t′)
iff t ≤ t′ is in Σ♯

i. Set s ≤♯ t if there is a finite sequence s = u1, . . . , un = t
such that for i = 1, . . . , n − 1, either LE(ui, ui+1) or SL(ui, ui+1) and s <♯ t
if there is a sequence s = u1, . . . , un = t as above, such that in addition for at
least one i, SL(ui, ui+1). Then Σ♯

i is satisfiable in TRM if and only if for every
term t in Σ♯

i, we do not have t <♯ t or t ≤♯ −t and −t ≤♯ t (remember that in
Z

¬

0 the function − has no fixed point). If these conditions are satisfied, then
we may map the set of terms in Σ♯

i into Z
¬

0 so that the relations ≤♯ and <♯,
as well as the function −, are preserved.

Since the procedure outlined above is polynomial in the size of Q, the theorem
is proved.

Product, Lukasiewicz and Hájek’s Basic Logic:

As shown before, Product Logic and Lukasiewicz Logic are examples of regu-
lar hyperprojective logics having uniform rules. These rules are easily proved
to be resource-bounded. Moreover the set of weakly simple formulas of the
corresponding semantic theory is in P (which is the complexity of linear pro-
gramming [31]), and hence these logics are Co-NP complete.

One of the most important Co-NP complete many-valued logics is Hájek’s
Basic Logic BL. We are going to introduce a uniform and resource-bounded
proof system for this logic whose axiom set is in P. Note that Vetterlein intro-
duced in [30] a simpler system for BL, which is uniform and resource-bounded.
However, it is not clear whether his axiom set is in P (it is clearly in Co-NP,
because the whole logic BL is in Co-NP).

With reference to the semantic theory for BL described in Example 6, and
taking reductions (1), . . . , (11) into account, we have the following rules:

For ⊳ ∈ {≪,≺,�}, we have the rules (we use “,” in place of ⊕; moreover
⊳ ∈{≪,�,≺}, but when ⊳ is ≪, in the left rules Γ is empty and ∆ is a
singleton, and in the right rules ∆ is empty and Γ is a singleton):

H|φ < ψ|Γ, ψ ⊳ ∆ H|ψ ≤ φ|Γ, φ ⊳ ∆

H|Γ, φ ∧ ψ ⊳ ∆

H|φ < ψ|Γ ⊳ ∆, ψ H|ψ ≤ φ|Γ ⊳ ∆, φ

H|Γ ⊳ ∆, φ ∧ ψ

H|φ < ψ|Γ, φ ⊳ ∆ H|ψ ≤ φ|Γ, ψ ⊳ ∆

H|Γ, φ ∨ ψ ⊳ ∆

H|φ < ψ|Γ ⊳ ∆, φ H|ψ ≤ φ|Γ ⊳ ∆, ψ

H|Γ ⊳ ∆, φ ∨ ψ

28

For the &-rules and for the →-rules we must distinguish between the case
where ⊳ is ≪ and the case where ⊳ is � or ≺ (the partition of the unit is the
same, but the reductions are different). If ⊳ is � or ≺, the rules are as follows:
The premises of the (⊳,&, left) rule are

H|φ≪ 1|ψ ≪ 1|Γ, 1 ⊳∆ H|ψ ≪= φ|Γ, φ ⊳∆

H|φ≪= ψ|Γ, ψ ⊳∆ H|φ ≡∗ ψ|1 � φ|1+ ≺ φ, ψ|Γ ⊳∆

H|φ ≡∗ ψ|1 � φ|φ, ψ � 1+|Γ, φ, ψ ⊳∆, 1+

and the conclusion is H|Γ, φ&ψ ⊳ ∆.

The premises of the (⊳,&, right) rule are

H|φ≪ 1|ψ ≪ 1|Γ ⊳∆, 1 H|ψ ≪= φ|Γ ⊳∆, φ

H|φ≪= ψ|Γ ⊳∆, ψ H|φ ≡∗ ψ|1 � φ|1+ ≺ φ, ψ|Γ ⊳∆

H|φ ≡∗ ψ|1 � φ|φ, ψ � 1+|Γ, 1+ ⊳∆, φ, ψ

and the conclusion is H|Γ ⊳ φ&ψ,∆.

When ⊳ ∈ {�,≺}, the rules for (⊳,→) are:

H|ψ < φ|Γ, 1 ⊳ ∆ H|φ≪= ψ|Γ, ψ ⊳ ∆ H|φ ≤ ψ|ψ ≪ φ|Γ, 1+, ψ ⊳ ∆, φ

H|Γ, φ→ ψ ⊳ ∆

H|ψ < φ|Γ, 1 ⊳ ∆ H|φ≪= ψ|Γ ⊳ ∆, ψ H|φ ≤ ψ|ψ ≪ φ|Γ, φ ⊳ ∆, 1+, ψ

H|Γ ⊳ ∆, φ→ ψ

The premises of the rule (≪,&, left) are

H|φ≪ 1|ψ ≪ 1|1 ≪ γ H|ψ ≪= φ|φ≪ γ

H|φ≪= ψ|ψ ≪ γ H|φ ≡∗ ψ|1 � φ|1+ ≺ φ, ψ|φ≪ γ

H|φ ≡∗ ψ|1 � φ|φ, ψ � 1+|φ≪ γ

and the conclusion is H|φ&ψ ≪ γ.

The premises of the rule (≪,&, right) are

H|φ≪ 1|ψ ≪ 1|γ ≪ 1 H|ψ ≪= φ|γ ≪ φ

H|φ≪= ψ|γ ≪ ψ H|φ ≡∗ ψ|1 � φ|1+ ≺ φ, ψ|γ ≪ φ

H|φ ≡∗ ψ|1 � φ|φ, ψ � 1+|γ ≪ φ

29

and the conclusion is H|γ ≪ φ&ψ.

Finally, we have the rules

H|ψ < φ|1 ≪ γ H|φ≪= ψ|ψ ≪ γ H|φ ≤ ψ|ψ ≪ φ|ψ ≪ γ

H|φ→ ψ ≪ γ

H|ψ < φ|γ ≪ 1 H|φ≪= ψ|γ ≪ ψ H|φ ≤ ψ|ψ ≪ φ|γ ≪ ψ

H|γ ≪ φ→ ψ

Remark 4.3.

(1) The rules might be simplified considerably: for instance, in the ≪-rules
the same reduction corresponds to different contexts, and in the ≺ rule
for →, the condition Γ, 1 ≺ ∆ is impossible and may be deleted. However,
we have chosen this more complicated formalization in order to make the
rules of each connective uniform.

(2) An important advantage of our system w.r.t. that in [30] is that its axiom
set is in P (see [16, Lemma 4.5] for a proof).

Acknowledgments: M. Bongini is supported by the ERC Starting Grant HD-
SPCONTR - 306274 and by the International Research Training Group IGDK
1754 of the German Science Found. A. Ciabattoni is supported by the FWF
Austrian Science Fund project START Y544-N23.

References

[1] S. Aguzzoli and B. Gerla. Comparing the expressive power of some fuzzy logics
based on residuated t-norms. In Proceedings of FUZZ-IEEE 2006, pp. 2012–
2019, 2006.

[2] A.R. Anderson and N.D. Belnap. Entailment, vol. 1, Princeton University Press,
Princeton, N.J., 1975.

[3] A. Avron. The Method of Hypersequents in the Proof Theory of Propositional
Nonclassical Logics. In W. Hodges, M. Hyland, C. Steinhorn and J. Truss
editors, Logic: from Foundations to Applications, European Logic Colloquium,
pp. 1–32, 1996.

[4] A. Avron. A constructive analysis of RM. Symbolic Logic, vol. 52, pp. 939–951,
1987.

[5] A. Avron and B. Konikowska. Decomposition Proof Systems for Gödel-
Dummett Logics. Studia Logica, 69(2): 197–219, 2001.

30

[6] M. Baaz, A. Ciabattoni, and C. Fermüller. Sequent of Relations Calculi: a
Framework for Analytic Deduction in Many-Valued Logics. Beyond two: Theory
and applications of Multiple-Valued Logics, pp. 157–180, 2003.

[7] M. Baaz, A. Ciabattoni, and C. Fermüller. Cut-Elimination in a Sequents-of-
Relations Calculus for Gödel Logic. Proceedings of ISMVL 2001, pp. 181–186.

[8] M. Baaz and C. Fermüller. Analytic Calculi for Projective Logics. Proceedings
of Automated Reasoning with Tableaux and Related Methods (Tableaux’99), pp.
36–51, 1999.

[9] M. Baaz, C. Fermüller, and G. Salzer. Automated Deduction for Many-Valued
Logics. Handbook of Automated Reasoning, pp. 1355–1402, 2001.

[10] M. Baaz, C. Fermüller, G. Salzer, and R. Zach. MUltlog 1.0: Towards an Expert
System for Many-Valued Logics, Proceedings of CADE 1996, pp. 226–230, 1996.

[11] M. Baaz, P. Hájek, F. Montagna, and H. Veith. Complexity of t-tautologies,
Ann. Pure Appl. Logic, 2001

[12] M. Baaz, O. Lahav, and A. Zamansky. Finite-valued Semantics for Canonical
Labelled Calculi. J. Automat. Reason., 51(4): 401-430, 2013.

[13] N.D. Belnap. Display Logic. J. Philos. Logic, 11(4), 375–417, 1982.

[14] M. Bianchi and F. Montagna. n-Contractive BL-logics. Archive Math. Logic,
50(3-4): 257–285, 2011.

[15] W. Blok and D. Pigozzi. Algebraizable logics. Mem. Amer. Math. Soc., 1989.

[16] S. Bova and F. Montagna. Proof Search in Hájek’s Basic Logic, ACM Trans.
Comput. Log., 9: 1-26, 2008.

[17] S. Burris and H.P. Sankappanavar. A course in Universal Algebra, Graduate
texts in Mathematics, Springer-Verlag, 1981.

[18] A. Ciabattoni, C. Fermüller, and G. Metcalfe. Uniform Rules and Dialogue
Games for Fuzzy Logics. Proceedings of LPAR 2004, pp. 496–510, 2004.

[19] A. Ciabattoni and F. Montagna. Proof Theory for Locally Finite Many-Valued
Logics: Semi-projective Logics. Theoret. Comput. Sci., 480: 26–42, 2013.

[20] R. Cignoli, I. M. L. D’Ottaviano, and D. Mundici. Algebraic Foundations of
Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht, 1999.

[21] F. Esteva and L. Godo. Monoidal t-norm based Logic: towards a logic for left-
continuous t-norms. Fuzzy Sets and Systems, 3: 271–288, 2001.

[22] G. Gentzen. Untersuchungen über das logische Schliessen I, II. Mathematische
Zeitschrift, 39: 176–210, 405–431. 1934.

[23] P. Hájek. Metamathematics of Fuzzy Logic, Kluwer Acad. Publ., Dordrecht,
1998.

31

[24] Z. Hanikova. A note on the complexity of propositional tautologies of individual
t-algebras. Neural Network World, 12(5): 453–460, 2002.

[25] R. Horč́ık and K. Terui. Disjunction Property and Complexity of Substructural
Logics. Theoret. Comput. Sci., 412(31): 3992–4006, 2011.

[26] E. Marchioni. On Computational Complexity of Semilinear Varieties. J. Logic
Comput., 18(6): 941–958, 2008.

[27] G. Metcalfe, N. Olivetti, and D. Gabbay. Proof Theory for Fuzzy Logics,
Springer Series in Applied Logic Vol. 36, 2008.

[28] G. Metcalfe, N. Olivetti, and D. Gabbay. Sequent and Hypersequent Calculi
for Abelian and Lukasiewicz Logics. ACM Trans. Comput. Log., 6(3): 578–613,
2005.

[29] G. Metcalfe, N. Olivetti, and D. Gabbay. Analytic Proof Calculi for Product
Logics. Arch. Math. Logic, 43(7): 859–889, 2004.

[30] T. Vetterlein. Analytic Calculi for Logics of Ordinal Multiples of Standard t-
Norms, J. Logic Comput., 18(1): 35-57, 2008.

[31] A. Schrijver. Theory of Linear and Integer Programming, John Wiley and Sons,
1987.

32

