On the (fuzzy) logical content of CADIAG-2

Agata Ciabattoni
Institute for Discrete Mathematics and Geometry
Wiedner Hauptstral3e 8-10, 1040 Wien, Austria
agat a@ ogi c. at

Thomas Vetterleint
Section on Medical Expert and Knowledge-Based Systems
Medical University of Vienna
Spitalgasse 23, 1090 Wien, Austria
Thomas. Vett erl ei n@eduni wi en. ac. at

Abstract

CADIAG-2 is a successful expert system assisting in theeffitial diagno-
sis in internal medicine. With its aid, conjectures abowsent diseases are
derived from possibly vague information about a patientimgtoms. In this
paper we provide a mathematical formalisation of the inféaé mechanism
of CADIAG-2. A Gentzen-style calculus for the resulting logs introduced
and used to compare the system’s behaviour with t-norm Hagesy logics.

1 Introduction

The last decades have witnessed a considerable developfmalg-based systems
in medicine with the purpose of assisting physicians in weddiecision-making.
CADIAG-1 and CADIAG-2 — where “CADIAG” stands for “computassisted
diagnosis” — are well performing computer-based medicalsatiation systems
whose design and construction was initiated in the earlg 80the Medical Uni-
versity of Vienna by K.-P. Adlassnig; see, e.g., [AdKo, AKSEAKSG, LAK].
The aim of these systems is to support diagnostics in thedfetdernal medicine.

CADIAG-1 deals with Boolean relationships, formulated fathen rules, between
symptoms, signs, laboratory test results and clinical figslion the one hand and
diseases on the other hand. A simple and elegant formalisafi CADIAG-1's
rules into a decidable fragment of first-order classicaid@adjowed for consistency
checking of the binary rules and the detection of 17 incoesd@es out of the
50 000 rules [MoAd].

!Both authors contributed equally to this paper.



Precise and definite information about real world objectsydver, is difficult to
obtain and, in the realm of medicine, such information iddglly not accessible
to physicians when deciding about a patient’'s diagnosisti@adment. To process
vague information, the successor system CADIAG-2 was basddzzy set the-
ory, or “fuzzy logic” in Zadeh's terminology [Zad]. A cleanderstanding of the
system’s behaviour calls, however, for a mathematical &isation. This formali-
sation is also a prerequisite for consistency checkingsdfribwledge base and for
a clear distinction between degrees of presence and degreetainty, cf. [DHN].

The aim of this paper is to provide such a formalisation. Téilt is furthermore
used to compare the system’s behaviour with the princigiesiorm based logics.
We recall that a t-norm is commonly used in fuzzy logic to comeliruth degrees
in the sense of conjunction. By a t-norm based logic, we mganositional logic
which uses the real unit interval as the set of truth valuesvemch interprets the
conjunction by a (specific kind of) t-norm, see, e.g., [Haj].

Our discussion mainly follows proof theoretical argumenitisdeed, we first in-
troduce CADIAG Logic, orCadL for short, which is modelled upon the mode of
operation of CADIAG-2; what CADIAG-2 is able to derive frolssumptions can
be proved inCadL from the corresponding set of formulas. We relétell to a
calculus for the fuzzy logic closest to the natural semahfiamework forCadL.
The latter logic, which we call Godel-Zadeh logic, @ZL for short, turns out to
be a modification oRGL.., i.e. Godel logic enriched with standard negation and
rational truth constants [EGHN].

The paper is organised as follows. In Section 2 we review tathad on which
the inference of CADIAG-2 is based. Our description refoiates, in a formally
oriented way, the information contained in the thesis [Esjwell as in a recent
implementation of CADIAG-2. Section 3 introduces the l@dicalculusCadL.
We show that each CADIAG-2 run can be simulated by a prodfddL, while
only suitable proofs, which we call updating, correspon@&DIAG-2 runs.

Section 4 meets the challenge to provide a semantical fondeor CadlL, and
hence for CADIAG-2. In Section 5 we introdu&eqCadL, a Gentzen-style cal-
culus which is sound with respect to the semantics congidei&e show that
SeqCadl is equivalent toCadL under suitable conditions. Due to the presence
of a cut-like rule,SeqCadL is not analytic, that is, its derivations cannot be deter-
mined by a simple (and automatable) step-wise decomposditidghe statements

to be proved. HowevefeqCadl is used in Section 6 to compare the CADIAG-
2 inferential mechanism wit&ZL, which is the fuzzy logic sound and complete
with respect to the natural semantics fardL. To this aim we introduce an an-
alytic proof system folGZL which uses sequents-of-relations, a generalisation of



Gentzen’s sequents introduced in [BaFe]. As a result of ounparison, we get
a rather clear picture about differences and analogiesdegt¥eqCadL andGZL,
or more generally, between CADIAG-2 and fuzzy logics in tlease of [Haj].
GZL turns out to be strictly stronger th&rqCadL. Indeed the calculus fo&ZL
includes the possibility to consider sets of exhaustiveradttives, whose conse-
guences may be recombined. It is exactly this possibilityctviis not present in
CADIAG-2. This in turn seems not to mirror a weakness, buteato be a general
characteristic of reasoning in medicine, deserving furlystematic investigation.

2 A formal description of CADIAG-2

The aim of CADIAG-2 may be roughly described as follows. Oa blasis of a set
of symptoms known for some patient, possibly supplementedeltain already
established diagnoses, CADIAG-2 is supposed to deriveectmes about the dis-
ease(s) of the patient. In a way according to our needs, weuiline how this is
done; for further details, see, e.g., [AdKo, Fis].

CADIAG-2 comprises &nowledge basand aninference engineThe former con-
sists of if-then rules describing known causal, statittioa simply definitional

interrelations between symptoms and diagnoses. On the tiakiis general infor-
mation and the information referring to a particular pdtig¢he inference engine
can draw conclusions. We note that symptoms and diseasestasaalysed with
respect to their meaning, but are rather treated as pur@gtmms; what matters
is their mutual relationship.

An example of a proposition referring to a symptom might beffexing from a
strong abdominal pain”. It is obvious that the alternatires and false to evaluate
this proposition are not exhaustive. Accordingly, CADI&RZonsiders all state-
ments about symptoms as vague. Namely, to each symptor,ithassociated a
degree of presence, expressed by an element of the reahtewadl [0, 1]. The
second kind of propositions in CADIAG-2 refers to diagnodéamely, CADIAG-

2 processes statements expressing that a patient sufferafspecific disease. We
do not assume to deal with vagueness in this case; it is asktiraea disease is
present or not. However, it is rarely possible to provideagdosis with certainty
and consequently, in CADIAG-2, to each proposition refegtio a diagnosis, there
is associated a degree of certainty, which is again an eleofi¢h 1].

The truth values. The meaning of the truth values is understood in CADIAG-2
as follows. Asserting that a symptomapplies to the degreee [0, 1] means, as
usual in fuzzy set theory, that the patient’s state is coiblgatvith the property



expressed by to the degree. In particular, the casé = 1 means that is
clearly confirmed;t = 0 means that definitely does not hold; and otherwise a
smaller or larger choice afexpresses that applies to a smaller or larger extent.
In practice, to determing we either use the patient’s or medical doctor’s appraisal
how well a subjective observation fits to the symptom; exasmlf this type of
symptoms include “strong abdominal pain” or “suspicion ahpreatic tumour by
CT". Or asymptom refers to a measurement, like for examptledrcase of “having
high fever”; then a predefined fuzzy set over the respectiadeslike the interval
[36,42] of possible body temperatures i€, is used to determine We finally
note that CADIAG-2 also offers the possibility not to assamy truth value to a
symptomo; this means that we make no assertion alsout

In case of a diagnosi§, the situation is different. To assign a value (0, 1] to

the diagnosi$ means that we are certain to the degréeat the disease is present.

In particular, in case = 1 we assert that the disease is definitely present; and in
casel < t < 1, we are less sure, where a smaller value means a smalleredegre
of certainty. In case of, say, = 0.001, we practically do not assert anything.
Furthermore0 plays an extra role here. Saying that a diagnési®lds to the
degree) means that the negation &definitely holds, that is, it means that we are
convinced that must be excluded.

We formalise below the concept of strength of a truth value.

Definition 2.1. Fors, ¢ € [0, 1], we say that is strongerthans
if either0<s<t<1l or 0<s<1 and t=0;

in this case, we write < t. Furthermore, we cal) and1 sharptruth values.

Note that both sharp truth values are maximal w.t. The reason is that they
express definite information which cannot be improved. Nlo& < defines not a
linear, but just a partial order on the $et1] of truth values.

The input and output. Assume that we are given a specific knowledge base.
We discuss below the way CADIAG-2 makes use of it. We forneabislow the
specification given in [Fis].

Letoy,..., o, denote the symptoms a@g, . . ., ,, the diagnoses appearing in the
knowledge base. A symbol denoting either a symptom or a di&igmwill be called

a basic entity We shall identify a symptora; with the proposition “the symptom
o; is present” and, similarly, we will identify a diagnosis with the proposition
“the diagnosisj; applies”. Furthermore, we can consider compound entifiés.
connectives which are at our disposal in CADIAG-2 are thejuamgtion A, the



disjunctionV, and negation~. By an entity, we shall mean a basic entity, or a
compound entity built up by means af v, ~ from basic ones.

There are two sets of additional connectives cadidledastn out ofm andat mostn

out ofm, wherel < n < m. Their use in the medical literature is common when
diseases are specified by a set of criteria; cf., e.g., [GJEAHese connectives
are in the expected way expressible hyand Vv and are therefore not taken into
account here. As an example,

at least of (o1, @2, p3)

stands for(p1 A 2) V (1 A @3) V (92 A ©3).

Recall that a partial functiorf : A — B is a function from a subset; of A to
B. We write f(a) = bto express thaf (a) is defined and equals and we say that
f(a) is undefined ifa ¢ Ag. Ao will be called the domain of.

Henceforth we will denote the operationsn, max andt — 1 — ¢, when applied
to the sef0, 1] of truth values, bya, v and~, respectively.

Definition 2.2. A partial evaluation or simply anevaluation is a partial function
v from the set of entities to the real unit intenjal 1] such that, for all entities:
and 3, the following holds. (i) Ifv(a) = s andwv(5) = ¢, thenv(a A ) = sit
andv(a vV ) = svt; (i) if v(a) = 0orv(B) =0, thenv(a A B) = 0; (iii) if
v(a) =t > 0 andv(p) is undefined, op(«) is undefined and(5) = ¢ > 0, then
v(a Vv B) =t; (iv) if v(a) =t, thenv(~a) = <t; (v) if, for a compound entityy,
v(~y) cannot be determined by means of the rules (i)—(i¢},) remains undefined.

Note that an evaluation is uniquely determined by its retsbm to the basic entities.
Namely, an evaluation assigns truth values to certain, bubecessarily all basic
entities; and this assignment is extended to include as mampound entities as
possible. As usual, truth functionality applies; a compmbproposition is assigned
truth values on the basis of the assignment of its components

Furthermore, Definition 2.2 was chosen in a way to provide asminformation
as possible about compound propositions on the basis ovtiklsle knowledge.
The result is not surprising as far as the conjunction anadgation is concerned.
The disjunction, however, is treated in a peculiar way. .4, @ is assigned.3 and
the status of is unknown, thery Vv 3 is mapped td.3 rather than left undefined.
Here, the tacit assumption is made thais not checked for good reason. The
special treatment of the disjunction contributes to theatiteness of CADIAG-2.

The input of a run of CADIAG-2 is an evaluation, which we widfer to as the
initial evaluation Furthermore, we will call the elements of its domain thegut
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entities An initial evaluation describes the state of a patient. idaity, an input
entity is a symptom; but it may also refer to a prior estalggsdiagnosis.

The output of a run of CADIAG-2 is an evaluation, which we wiéfer to as the
final evaluation Its domain extends the domain of the initial evaluation.

The inferences.Starting from the initial evaluatiom,, new evaluations, ws, . . .
are obtained by successively applying the rules of the kedgé base; we explain
below how a rule is applied. Compared to its predecessoh eeuation in this
sequence encodes an increased amount of information digpatient. The pro-
cess terminates after finitely many, dagteps; theny, is the final evaluation.

As we will see, the used rule, say (R), influences the truthevaf only one specific
basic entitys. So thek-th evaluationw; wherek = 1, ... will differ from w;,_;
only in the values assigned fband the compound entities containifig On the
basis ofwy_1, (R) provides a truth valué € [0, 1]; we callb the proposed truth
valuefor 5. The new evaluationy, is defined as followswy, coincides withwy,_1
for all basic entities different froms. If 5 is not yet in the domain oy, _1, we put
wg(B) = b. If otherwisewy_1(3) > 0 andb > 0, we putw(3) = wi—1(8) vb. If
wi—1(F) =0andb < 1, orif wi_1(8) < 1 andb = 0, thenwy(8) = 0. The case
wi—1(8) = 0andb = 1 orwy_1(B) = 1 andb = 0 is considered contradictory;
then the process terminates with an error message. Fifallgpmpound entities,
wy, is defined according to Definition 2.2.

The rules. Any rule (R) in the knowledge base contains the followingpmiation:
(i) a possibly compound entity, called the antecedent, (ii) a basic entitycalled
the succedent and (iii) tgpe The following types of rules exist:

(cq), whered € (0,1]: Then (R) is said to be of typeonfirming to the degreé.
The additional valud is called theconfirmabilityof 3 by o.. We will say (R)
is of type (c) if we do not wish to mention the parameter

(me): Then (R) is said to be of typautually exclusive

(a0): Then (R) is said to be of tydways occurring

The types (c), (me), and (ao) express different ways in whieimd 3 are causally
or logically related. For the subsequent explanationsjdetssume that is an ex-
pression in symptoms and possibly additional diagnosesthats is a diagnosis.

If the rule (R) is of type (g), then (R) expresses the fact that if the given symptoms
and diagnoses fulfil the expressionto a non-zero degree, this is a hint to the
diagnosisd and this hint is the more serious the larges. Namely, if during a run

of CADIAG-2 « evaluates ta > 0, then the truth value fof will be d A ¢, unless
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0 has been already assigned a stronger truth value. In garfidux is assigned,
that is, ifa is assumed to be fully true, and if there is nothing else knatbwut,
theng is assignedi. (R) is not usable ity is assigned.

So, if a clearly holdsd is the degree of certainty abogt This implies a way how
the parameterg can be determined. Namely, if a sufficiently large patiemabase

is available d can be taken as the proportion of patients suffering frondibease

(£ among the patients for which the statementlearly holds. We note that the
actual values included in CADIAG-2’s knowledge base wenedw@r determined
slightly differently. To make use of the data available frandatabase in a more
comprehensible way, all patients fulfillingto a non-zero degree were considered;
the cardinalities of crisp sets were replaced by cardipalibf fuzzy sets [AKSG].

The example below and the subsequent examples are take fAKBG].

Example of a rule of type (Gs5)

IF suspicion of liver metastases by liver palpation
THEN pancreatic cancer
with the confirmability degre8.55.

According to our specification, this rule works as followssstime that the diagnosiancreatic
cancerwas not yet assigned a truth value. If, due to a liver palpatibere is the evident suspi-
cion of liver metastases, we associate to the diagnosisctpatic cancer” a degree of certainty of
0.55. So we assume that the patient has pancreatic cancer, wheesdr a value 06.55 expresses
considerable uncertainty about this conclusion.

If the mentioned suspicion is not so clear, but still quasdifoy a value of at lea$t55, the result
will be the same.

If a suspicion is present, but to a degree of less thah, say0.2, then the degree of certainty about
the diagnosis “pancreatic cancer” will be degraded.®

If there is evidently no suspicion of metastases, the rulenet be used.

If (R) if of type (me), then (R) expresses the fact that the swatements exclude
each other. In particular, (R) says thatifs fully true, 5 definitely does not apply,
i.e. the truth value fof is 0.

Example of a rule of type (me)

IF positive rheumatoid factor
THEN NOT seronegative rheumatoid arthritis

If the positive rheumatoid factds evaluated, thenseronegative rheumatoid arthritis assigned.



If the positive rheumatoid factdas not evaluated, the rule is not used.

Finally, let (R) be of type (ao). Then (R) expresses the faat # implies «. It
follows that if o is excluded g definitely does not apply. So, df is evaluated),
is assigned as well.

Example of a rule of type (ao)

IF NOT (rheumatoid arthritisSAND splenomegalAND leukopenia< 4000/ ul)
THEN NOT Felty’'s syndrome

Assume that the expression in brackets, following “IF NOIE’evaluated); this means that ei-
ther rheumatoid arthritis splenomegalyr leukopenia< 4000/ul is fully excluded. TherFelty’s
syndromads excluded as well, that is, assigned the value

If the expression in brackets is evaluated to a non-zerceyahe rule is not used.

All three types of rules are also used to express relatipsdietween other kinds of
entities, namely: between two symptoms; or between twondisgs. The meaning
and the use of the rules is analogous. In case of a rule of g)pd@wever, the
confirmability is then always.

Termination. The rules are applied systematically one by one, but, as steves
here, in an arbitrary order. The process is completed if d&yaf any of the rules,
the evaluation remains unchanged. The termination of tbgram is guaranteed.
To see this, note the following. The number of truth valueschvlappear some-
where in the course of the run of CADIAG-2 is limited; we dedthithe truth val-
ues of finitely many symptoms and finitely many rules, and ¢indse truth values
together with their negation can appear. Furthermore, velften each application
of a rule the truth value of some entity is renewed the neweveluw.r.t.<, at least
as strong as the prior one; so our assertion follows.

3 CadL —the logical counterpart of CADIAG-2

In this section we introduc€adL (“CADIAG logic”), a new formal system which,
in a specific restricted sense, will turn out to be sound amdptete with respect
to inferences in CADIAG-2.

Recall that CADIAG-2 deals with entities — i.e. symptoms aignoses — with
associated truth values. AccordinglyadL uses what has been called evaluated
formulas [Pav, NPM] or graded formulas, [Haj, Ger]: pairssisting of a propo-
sition and a rational truth value.



Definition 3.1. The setF,4 of atomic proposition®f CadL consists of countably
many symbolspy, ¢, .... The setF;, of lattice propositionsof CadlL consists
of the expressions built up from the atomic propositions Bans of the binary
connectivesA and Vv and the unary connective. Moreover, let the sef; of
implicationsof CadL consist of the expressions— 3, wherea, 3 € F,. Finally,
F = Fr, U Fy is the set opropositionsof CadL.

A graded propositionis a pair(y,t) consisting of a propositiopp € F and a
rational valuet € [0, 1].

The atomic propositions are meant to correspond to basiiiesnin CADIAG-2.

It is not necessary to make a formal distinction between $gmp and diagnoses;
they are, after all, treated in the same way during the inf@e in CADIAG-2.
Similarly, there is no need to formally distinguish betwelegrees of presence and
degrees of certainty. Moreover, the compound entities ID@¥s-2 translate to
lattice propositions ofCadL. Finally an entity together with its image under an
evaluation corresponds to a graded propositioiadL.

A rule of CadL is a pair consisting of one or two graded propositions catted

assumption(sand one graded proposition called ttenclusion notated one upon
the other and separated by a horizontal line. The rule€4dt are divided into

evaluation and manipulation rules: the former serve tordete the truth value
associated to a compound proposition, truth values of tmsbeing given. The
manipulation rules mirror the three kinds of entries in tieDTAG-2 knowledge

base: (c), (ao), and (me).

Definition 3.2. The rules ofCadL are divided into two groups. Thevaluation
rulesare

(a,5) (B,t) (@,0) (8,0)
M) g Y Gase Y™ Gaso
(a,8) (B,1) (o, q) (8,q)
1) GV B v V) wveg Y ave
N
) 22

foranya, 8 € Fr ands,t € [0,1], g € (0, 1].
Themanipulation rulesare

(a=p,d) (1)

© — o

whered, ¢t > 0



for anya, ¢ € Fr, such thatpy is atomic.

A theoryof Cadl is a finite setZ” of graded propositions. Arooffrom 7 is a finite
sequence of graded propositions each of which is eith&r @m the conclusion of
a rule whose assumptions are among the preceding elemehesmfoof. The-th
element of a proof will be called thieth proof entry The number of entries in a
proof is theproof length

For a lattice propositiory and anyt € [0, 1], we call («, t) provablefrom 7 if
there is a proof such théty, ¢) is its last entry; in this case, we wrile - (o, t).

Remark 3.3. Note that the rule (c) is very similar to the rule known in fulagic
as the fuzzy modus ponens, see, f\NPM, Ger]

We next explain how the case is treated when a propositioaaappn a proof with
two different truth values.

Definition 3.4. Let 7 be a theory ofCadL, and leta € Fr.. If 7 I (o, 1), we say
that7 confirmse; if 7 F (o, 0), we say thaZ” excludesy.

T is calledinconsistentf, for somey € Fr, 7 both confirms and excludes.
Otherwise, we say th& is consistent

By restricting to consistent theories we will exclude in segjuel the case that, for
some lattice propositiow, both («,0) and («, 1) is provable. However, it may
well happen thaf proves both, say, 0.6) and(y,0.7); this is not considered
a contradiction. In view of the partial ordet of truth values, we rather consider
the latter statement stronger than the former. Similéflynay prove both, 0)
and(y, 0.9); this is not considered contradictory either. In this c&se() is con-
sidered stronger because it encodes the definite statehagntis to be excluded.
Note, however, that by now, we have not formalised the strenfjtruth values
within our calculusCadL.

We are going to compare the CADIAG-2 inference mechanisnpamafs inCadL.
Our aim is to establish a one-to-one correspondence; as allessle, this can be
done by adding natural conditions to the way proof<ilL are made. These
conditions will depend on the concept of strength of trutluesa.

Assume that we are given a fixed CADIAG-2 knowledge base stingiof entries
of type (c), (me) or (a0), according to our explanations iotiee 2. Let us identify
each basic entity appearing in the knowledge base with aiarsitpmic proposition
of CadL, and each compound entity with the respective lattice pibipa of CadL.
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Let v be the initial evaluation of a run of CADIAG-2, which is a pattmapping
from F4 to [0, 1]. With v, we associate the theoffj, of CadL consisting of the
following graded propositions:

(i) (p,v(p)) wheneverp € F4 is in the domain ob;

(i) (a— ¢,d), whered € (0, 1], for each rule in the knowledge base of type
(cq) with antecedent and succeden;

(i) (« — ~¢,1) for each rule in the knowledge base of type (me) with an-
tecedenty and succedenp.

(iv) (~a— ~¢,1) for each rule in the knowledge base of type (ao) with an-
tecedenty and succedenp;

Recall that in (ii)—(iv), the propositior is atomic; so an implication i, can be
uniquely identified as originating either from a rule of tyf@@ or from a rule of
one of the types (me), (ao).

Completeness.We show how to translate a run of CADIAG-2, starting from the
initial evaluationv, into a proof ofCadL from the theory7,,.

Proposition 3.5. Let G be any entity in the domain of the final evaluationof a
run of CADIAG-2. Then, identifying with the corresponding lattice proposition
in CadL, (3, w;(5)) is provable inCadL from 7,,.

Proof. Let a run of CADIAG-2 be given. Lety,...,w; be the associated se-
guence of evaluations, whete) = v. Let1 < k£ < [ and assume that we have
already built a proof inCadL from 7, such that, for each basic entify in the
domain ofwy_1, (¢, wi—1(¢)) is contained irZ, or is an entry in the proof.

In the k-th step of the run of CADIAG-2, a rule (R) of type (c), (me),(ao) from
the knowledge base is applied; tebe its antecedent andits succedent. Then
is in the domain ofw;_,. Letb be the proposed truth value ferproduced by the
rule, according to the explanations given in Section 2. Weextend the proof in
CadL such that(y, b) is its last entry.

In a first step we extend the proof to derive wy_1 («)); by induction hypothesis
this can be done by means of the evaluation rules. Next, wig app of the three
manipulation rules (c), (me), or (ao), corresponding totthee of (R), to derive

(0, ).
It follows that there is a proof irf€adL from 7, containing (v, wy (1)) for each
atomic proposition) in the domain ofwy.
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By induction, there is a proof containin@, w; (1)) for each atom) occurring in
G. If g is not atomic we apply the evaluation rules to defigew;(3)). O

Soundness.The converse direction is more delicate as not all the prioo€adL
correspond to a run of CADIAG-2. The reason is that when a rewevis com-
puted during a run of CADIAG-2, the previously obtained ealar the same entity
may become obsolete, in which case the old value is discalkeaely, to emulate
the actual mode of operation of CADIAG-2 {tadL, the following properties of
CADIAG-2 must be kept:

(C1) If, atthe beginning of the-th step, we have for some entjfithatw;_,(5) =
t, but the rule applied in this step givésas a truth value fop, then in all
subsequent steps, only one of these values can be usedyrtaingl= 0 or
t=0,andtvt’ if ¢t,¢' > 0.

(C2) When thek-th step has settledy () = t for a certain basic entity, then
the truth value assigned to any entity containingeeds to be updated before
being used again.

Let us contrast these conditions withdL on the basis of an example.

Example 3.6. Consider the following CADIAG-2 rules, s@®,), (Rz), and(R3),
expressed as graded propositiongGatiL as follows:

(R1) (o1 — 41, 0.25)
(R2) (o2 — ~dy, 1).
(R3) (0'3/\(51\/...\/57) — 0g, 08)

Here,o; meansaldolase (serum) highly increaseshd §; denotesdermatomyosi
tis. Furthermoreg, meanschorea minor o3 meansxerostomia anddg denotes
arthritis with Spgren’s syndrome The symbolsd,, . .., 7 denote some further
diseases.

Assume to have the assumptidns, 0.7), (o2, 1), and (o3, 0.8). Then a proof in
CadL can result in the following situation. Usin@;), we derive(d;,0.25) and
using(R2) we get(d;,0). So we have that dermatomyositis is both confirmed with
certainty0.25 and excluded. Now, we may api§fys) using the former result, so

12



that we derive(dg, 0.25), that is, arthritis with Spgren’s syndrome with certainty
0.25.

However,(d1,0) is a definite statement ar(d;, 0.25) involves uncertainty; so the
former statement dominates over the latter one. However,sthtement about
arthritis relies on the statemef(t;, 0.25).

The conditions(C1) and (C2) prevent this unintended situation. Name(§1)
implies that the truth valué.25 of §; becomes obsolete onégis assigned), and
(C2) makes sure that the expressiofnA (61 V ...V d7) is evaluated again if one
of the truth values of the contained entities has changeds€guently(R3) can
no longer be used, hence a statement aldgug impossible.

We strengthen the notion of a proof radL so as to get the exact analogue of the
mode of operation of CADIAG-2.

Definition 3.7. Call a proof ofCadL from a theoryZ updatingif the following
conditions are fulfilled.

(Upl) Let thei-th proof entry be derived by a rule among whose assumpt®ns i
(o, t), wherea € Fr, andt € (0,1). If any of the proof entrieg, ...,i — 1
or any element of is of the form(a, t'), thent’ < t.

(Up2) Let thei-th proof entry be derived by a rule among whose assumpt®ns i
(o, t), wherea € Fy, is non-atomic. Then, for somg < i, the j-th proof
entry is («, t) and none of the proof entries+ 1,...,7 — 1 is of the form
(p, s), whereyp is an atom occurring in.

For a lattice propositiom and anyt € [0, 1], we call («, t) strictly provablefrom
7 if there is a updating proof such th@t, ) is its last element.

In the evident way, conditions (Upl) and (Up2) reflect theawedur of CADIAG-
2; they correspond to the conditions (C1) and (C2) above.

Proposition 3.8. Let 3 be an entity, and lef3, ¢t), whereg is viewed as a lattice
proposition inCadL, be strictly provable fron¥,, in CadL. Then there is a run of
CADIAG-2 withl steps such that; (3) = t for somel’ < [, wherewy is the
evaluation after thé’-th step.

Proof. We translate below any updating praBfin CadL from the theoryZ, into
inferences of CADIAG-2. Letn be the length of such proof; for eack=0,...,m
and each basic entity, we put

T? = {t € [0,1]: (i,1) is thej-th proof entry for somg < 4, or (¢, t) isin 7, };
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and, provided thaf, is consistent, we define an evaluatignwhich maps a basic
entity ¢ to the strongest element @}’ if 7;” is non-empty, and which leaves()
undefined otherwise (cf. Definition 2.1). Note thatcoincides with CADIAG-2's
initial evaluationv. Letng = 0, and letnq,...,ny € {1,...,m} be the entries in
P which are the result of a usage of a manipulation rule.

We translate” to a CADIAG-2 run in a way thaty,,, vy, , - - . , v, are the associ-
ated evaluations. Namely, assume that,Ifef & < I/, we have already translated
the proof entried, ... ,n,_; of Pto k — 1 CADIAG-2 steps and that the evalua-
tion wy—; of CADIAG-2 after stepk — 1 coincides withv,,, . Theng-th proof
step is by assumption based on a manipulation ruléplet ¢, d) and(a, t) be its
assumption and lgtp, s) be its conclusion. Then the graded implication isZin
and thus corresponds to a rule of the CADIAG-2 knowledge .basghermore, if
« is not atomic, the valugis determined by application of evaluation rules applied
to the atoms of.. Conditions (Up2) and (Upl) make sure that the truth valsesiu
coincide with those given by;_,. So CADIAG-2 can do an inference reflecting
the proof steps,_; + 1,...,ny of P, and it follows thatwy, = vy, . O

By summarising translating a run of CADIAG-2adL is straightforward, whereas
the translation of a proof i€adL to a CADIAG-2 run is possible only under the
condition that at each step the values used in the proof aré&ritiht” — the “up-
dated” — ones; in other words it works only for updating psoof

4 Towards a semantical basis folCadL

We have demonstrated the mutual correspondence of runs DIA&2 and up-
dating proofs of the logi€adL. In this section we pose the questiorCidL can
be endowed with a semantical basis. We will see that thisa<é#se for the ma-
nipulation rules while suitable restrictions on the corsidl theories are needed to
deal with the evaluation rules. Under these restrictions,conditions (Upl) and
(Up?2) for updating proofs can be weakened.

The semantics fo€adL which we are going to consider, is the one which suggests
itself. Namely, we make the natural choice about how to méuelpropositions
corresponding to medical entities: lattice propositiors modelled by truth val-
ues, that is, by real numbers betwdeand1. The connectives are interpreted in
accordance with Definition 2.25 by the minimum,/ by the maximum, and- by

the standard negation. Finally, a graded proposition

(a,t), wherea € Fr, andt € (0,1],
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is, apparently, most naturally understood as “the truthevaff« is at least”. This
interpretation is not only in accordance to what is commdnzay logics; see, e.g.,
[Pav, NPM, Haj]. It is actually implied by the concepts urgery CADIAG-2;
recall that a truth value € (0, 1) is any time improvable to a larger otlec (0, 1],
in which case the former value is no longer used. Furtherpibptays a special
role; a graded propositiofr, 0) wherea € F, reflects thatx is excluded, and it
is understood as “the truth value @fis 0”.

We will first discuss the case that propositions are endowttsharp truth values
and afterwards the case that non-sharp truth values occur.

Definition 4.1. A graded proposition«,t) is calledsharpif ¢ is a sharp truth
value. («, t) is calledfuzzyotherwise.

4.1 Sharp propositions

We start our discussion by addressing the first, and actalady heavy, obstacle
to our aim of a semantical basis for CADIAG-2: the speciakrplayed by the
truth value0. It is a special feature of CADIAG-2 that sharp truth valuesnthate
over fuzzy ones. The particular role assigned tannot be easily coped with by
semantic means; instead, we propose to evade the problenmobittheoretical
means.

We will consider proofs irCadL, to be called sharp-first proofs, which first derive
the statements of the foriay, 0) or (o, 1) and only then the rest. A situation like
the one described in Example 3.6 will be excluded. Furtheemas we will see,
sharp propositions possess proofs of this form if they Essagroof at all.

Definition 4.2. A proof P of CadL from a theory7 is calledsharp-firstif P is
the concatenation of two sequendésand Py such that (i)P, contains only sharp
propositions, (i) for any entry iy of the form(«, ), wherea € F, we have that
« does not appear iR; andt is not sharp.

In other words, we require proofs iGadL to be divided into two parts: a first
one concerning sharp propositions only, and interpretaldtassical propositional
logic; and a subsequent one where only fuzzy propositioasnéerred.

Example 4.3. To illustrate the effect of this condition, recall Exam@eé. We
considered the situation that both;, 0) and (61, 0.25) occurred in a proof, where
01 denotes a specific diagnosis. In a sharp-first proof thisasitun is excluded: the
sharp propostior(d;, 0) must be derived first; but afterwards an engfy, 0.25) is
impossible as the application of any rule withas its conclusion is not allowed.
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We furthermore note that if an inconsistency is detected sharp-first proof,
meaning that an entity is assigned bétland 1, this happens necessarily in the
first part, i.e. inP; w.r.t. the notation of Definition 4.2.

The notion of a sharp-first proof makes sense only if for afspapposition prov-
able from7, also a sharp-first proof exists. This is indeed the case; beder,

in sharp-first proofs of sharp propositions, the conditiflwsl) and (Up2) always
hold.

Lemma 4.4. LetT be a consistent theory @adL and («, b) a sharp proposition.
If (a,b) is provable from7, then there is a proof of«,b) from 7" in which all
graded propositions are sharp. In particular, this proofisarp-first.

Furthermore, any sharp-first proof of a sharp propositioanfr7 is an updating
proof.

Proof. If a sharp proposition is the conclusion of an evaluatior,relither both
assumptions are sharp as well, or one is sharp and the otaeraonbe discarded
from the proof. If a sharp proposition is the conclusion of anipulation rule,
then evidently the two assumptions are sharp as well. Weludachat if («, b)

is provable from7, («, b) can be proved using sharp propositions only. Naturally,
this proof is sharp-first.

Furthermore, any sharp-first proof ending with a sharp sitiom contains only
sharp propositions. In view of the consistency assumptomutl ", such a proof is
always updating. O

Corollary 4.5. Let7 be a consistent theory @fadL and («, b) a sharp proposi-
tion. Then(a, b) is provable fromZ if and only if («, b) is strictly provable from
7.

In contrast to sharp propositions, a fuzzy proposition magtoictly provable, but
might not possess a sharp-first proof.

~1y—x, 0.8)} be atheory o€adL. Then(x, 0.6) is provable fronZ", but a proof
necessarily contains botfy, 0.6) and (¢, 0) and thus cannot be sharp-first.

In view of Examples 3.6 and 4.6, we conclude that requirirgpfs of CadL to be
sharp-first means an improvement in transparency. Acogiydime propose the
following modification of CADIAG-2:

(1) Restrict the initial evaluation to those basic entitiesvhich 0 or 1 is as-
signed and calculate the consequences. If an inconsisteacys, quit.
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(2) Extend the resulting evaluation to cover also thosechasiities of the ini-
tial evaluation to which non-sharp truth values are assigigmore all rules
from the knowledge base whose succedent is already evalogteor 1 and
calculate the consequences until there is no more change.

Call a run of CADIAG-2 subject to these requirements a sliasp+un. Then
Propositions 3.5 and 3.8 may be modified in the obvious wagstablish a one-to-
one correspondence between sharp-first runs of CADIAG-2erohe hand and
sharp-first updating proofs @fadL on the other hand.

4.2 Fuzzy propositions

The semantic interpretation proposed at the beginningeo$éiation is adequate for
all rules when restricted to sharp values but it is not forrtile (~) for negation
when fuzzy values are involved. Indeed,tife (0,1] is a lower bound for the
truth value ofa, then, taking into account the interpretation ofby [0,1] —
[0,1], t— 1— ¢, we conclude that — ¢ is an upper bound of the truth value of
~ « rather than a lower bound. This problem does not arise arg/ihae make the
assumptions below. These assumptions are desirable frogical point of view,
but are certainly restrictive from the point of view of théanded application.

Definition 4.7. A proof in CadL from a theory7 is calledregular if the following
condition holds. Leta,t) be the assumption of a rule-J, and lety be an atom
appearing inv. Then either(y, s) is contained ifZ” for somes € [0, 1] or (¢, s) is
contained in the proof for someec {0, 1}.

Furthermore, a theor¢” of CadlL is called assumption-preserving whenever
(a,t) € T for somea € Fr, and we can provéw, t’) from 7, thent’ = ¢.

Note that whenever the rule-§ is used in a regular proof, we know that, w.r.t. our
proposed semantical interpretation, the conclusion dghesxact truth value of the
concerned negated proposition, not only a bound from abobelow. Regularity

is the key condition to endoWadL with a semantical basis.

Moreover, the condition for a theory to be assumption-prasg reflects a natural
requirement, namely, that assumptions made should be takgranted and not be
“corrected”.

By using the conditions above the notion of updating proafisneeded anymore.

Lemma 4.8. Let7 be an assumption-preserving consistent theor§aefl. and «
be atomic. Assume that there is a regular proof®ft), where0 < ¢ < 1, fromT
such that the following condition is fulfilled:
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(Upl) If the i-th proof entry is derived by a rule among whose assumptisns i
(p,t), p € Fr,t > 0, then neither of the proof entrids..., i — 1 nor of the
elements ir? is of the form(y, 0).

Then there is & > t such that there is an updating regular proof (@f, ¢') from
7.

Proof. Let P be a proof of(a, t), wheret € (0, 1), such that (Upl’) is fulfilled.
We modify the proof as follows.

Assume that we have modified the proof up tothel-th step,i > 1, such that up
to this point, conditions of updating are fulfilled, and eémtentries(3, ), where
B € Fr andr € (0,1), in the original proof have been changedthr’), ' > r.
Consider now the subsequent use of a manipulation rule.

If the conclusion is sharp, we know by the proof of Lemma 4.4 tize conditions
of updating can be achieved.

Otherwise, the manipulation rule is of type (c). (et s) be its right premises is
the result of an evaluation of from the truth values of its atoms. The conditions
of updating are fulfilled if for each atom, the best truth wa#ippearing in the proof
so far, is used. If an atom appearing iny is in the scope of a negation, then its
truth value is sharp and thus maximal w.it. or it originates front7” and is thus
unique in the proof.

If, however an atomy appearing iy is not in the scope of a negation, it may
happen that two different truth values are contained in tlo®fpand the weaker
one is used. We then modify the proof to ensure updating. Assalt; the truth
values associated tg as well as the truth value associated to the rule’s conatusio
are enlarged. The claim follows by induction. O

Theorem 4.9. Let7 be an assumption-preserving consistent theorgaefiL. and
v be atomic. Assume that there is a sharp-first, regular prdofyot) from 7.
Then there is &' 3= t and a sharp-first, regular proof dfp,¢') from 7 which is
also updating.

Proof. If ¢t is sharp, by Lemma 4.4 there is a proof containing only shaspgsi-
tions. This proof is sharp-first, updating, and also regular

Let ¢t be fuzzy. A sharp-first proof fulfils (Upl’); so the assertifmllows from
Lemma 4.8. O

Let us summarise what we have established. By the resultiseofast section,
we know that a run of CADIAG-2 can be emulated by a proofCindL and an
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updating proof inCadL can be translated to a run of CADIAG-2. Theorem 4.9
permits to drop the “updating” condition under certain asgtions: Sharp-first
regular proofs from assumption-preserving, consistegbries are updating and
thus can be translated to a run of CADIAG-2. Recall that afptmbde sharp-first
means that there is a first part whose argumentation is likéassical logic and a
second part where comes everything properly fuzzy. In alaeguoof, moreover,
the rule introducing negation may be used only if the trutbhe@f the assumption
is known exactly.

5 A Gentzen-style proof system forCadL

In this section we formulate an alternative calculus reftgcthe reasoning of
CADIAG-2. In contrast toCadL it allows a semantical foundation: all rules are
sound with respect to the semantics mentioned in the pnegedtiapter. Further-
more, the new calculus is formulated as a Gentzen-stylemsysif. [Gen].

The introduced calculus, which we c&lkqCadL, does not coincide witlCadL;
however, when restricting to regular proofs@adL the two calculi do prove the
same.

As we will see,SeqCadLl allows a clear comparison with fuzzy logics in the sense
of [Haj].

Definition 5.1. Theatomic proposition®f SeqCadL are countably many symbols
©1, P2, - .. (to which we will sometimes refer to agriableg as well as constants
t for each rationat € [0, 1]. Thelattice propositionf SeqCadL consist of the ex-
pressions built up from the atomic propositions by meanh@binary connectives
A andV and the unary connectives andA (see [Baal).

Moreover, ac-sequents of one of the following forms:
t=a, a=t tANa=p0, t=A«

wheret is a rational truth constant and 3 are lattice propositions.

An evaluationof SeqCadL maps the lattice propositions {0, 1] such that (i)
v(t) = t for each rationat € [0, 1], (i) v(a A ) = v(a) Av(B), (i) v(aV 5) =
v(a)vo(f), (iv) v(~a) = ~v(a), (V) v(Aa) = Av(a), where

- 1 ift=1,
At =
0 else
fort € [0, 1].
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An evaluationv satisfieghe c-sequent: = (3 if v(a) < v(B).

A theory 7 of SeqCadl is a finite set of c-sequents. We say that a thebry
semantically implies c-sequentt = (3 if any evaluation satisfying every element
of 7 satisfiesoe = 3 as well.

We next define a proof system f6eqCadL. A SeqCadl rule is a pair consisting
of a finite set of assumptions, i.e. a finite (possibly empéf)as c-sequents, and a
conclusion. Rules with no assumptions are callgibms

Definition 5.2. The rules ofSeqCadl are, for anya, 8 € F1 ands,t,d € [0,1],

the following:
= < - (<1
0:>a( ) oz:>1(_)
5=« t= a=3 t
¢ 7= n It (h =)
sat=aAp ap = sit
a=0 (1 0) ﬁjo_(/\2:>0)

— — V

aV P = svt t=aVg t=aVp 2)
t= « a=>1 1= ~a a=0

Noz:>&_t( ) = ~a ) a=0 (~3) 1:>~a(4)

7i:>a (A) t:>a_d/\a:>ﬁ (Cut), wheret,d > 0
1= A

At= [0

A proof of a c-sequenty = 3 from a theory7 is a labelled tree whose root is
labelled bya = £, the leaves are labelled B9 <), (< 1) or by a c-sequent ifi”
and the inner nodes are labelled in accordance with inssaofdie rules.

We immediately see th&eqCadL is sound, that is, if the assumption of a rule (if
present) is satisfied by some evaluation, then so is the usinal

Proposition 5.3. Let 7 be a theory ofSeqCadL and letaw = ( be a c-sequent
provable from7. Then7 semantically implies. = g.
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Let 7, be the theory ofCadL associated to the initial evaluationof CADIAG-2
(cf. Section 3). We denote ¥’ the theory ofSeqCadL obtained by translating
each element df, as follows:

(i) Toeach(y,t), we associaté = ¢ andy = t.
(i) To each implicationa— 3, d), whereg is atomic, we associateA o = 3.

(i) Toeach implication(a— ~ 3, 1), where3 is atomic, we associate\ Aa =

~B.

Note that in case (ii), the implication necessarily origésafrom a rule of type (c)
in the knowledge base of CADIAG-2, whereas in case (iii),ithplication either
originates from a rule of type (ao) or (me).

Theorem 5.4 (CadL vs. SeqCadl). Let 7 be the theory offadL associated to
some initial evaluation of CADIAG-2. If there is a regulaopf of («, t) from 7
in CadL, thenSeqCadL provest = aif t > 0 anda = 0if t = 0, from 7.

Proof. Let P be a regular proof i€adL from 7,. Translate each entry iR of the
form (3, s), wheres > 0, to 5 = (3; each entry inP of the form(3,0) to 8 = 0;
and each implication as shown above.

The result is not necessarily a proofSaqCadL; modifications might be necessary.
Fori > 1, assume that the firgt— 1 proof entries do form a proof ifeqCadL.

If the i-th proof entry is, in the originaladL proof, derived by an evaluation rule
different from ), there is a corresponding rule $eqCadL. If (~) is used with
sharp truth values, there are the corresponding (ule$ and(~3).

If (~) is used with non-sharp truth values, then, by regulardyefrery atomp in
the assumption(y, s) is contained inZ, if s is non-sharp, else in the preceding
part of the proof; hence both=- ¢ andy = 5 are available. We conclude that we
may extend the proof to prove the assumptiorrghfith antecedent and succedent
interchanged.

Finally, let one of the manipulation rules be used to defg=iith proof entry. (c)
corresponds to (Cut) iBeqCadL. The rule (ao) can be simulated $rrqCadL as

21



follows; note thatl A1 is 1:

a=0

- (~4)
1= ~a

- (&) _
1= A~a INA~a = ~[
1=~p

7,(N)
8=0 ’

(Cut)

The case of the rule (me) is similar. O

Theorem 5.5(SeqCadLvs.Cadl). Let7 be the theory o€adL associated to some
initial evaluation of CADIAG-2. If there is a proof ifieqCadlL of & = ¢ where
u > 0,0rd = 0, from7*, thenCadL proves(d, u) or (4,0), respectively, from¥ .

Proof. Let a proof ofSeqCadL be given. We first translate the proof steps as fol-
lows: c-sequents of the forh = ~a to («,0) andt = «a or o = t to («, t);
c-sequents of the formi A o« = 3 are translated to their original versions in accor-
dance to (ii)—(iii) above.

We consider successively each proof step and make modifisatthere necessary.
The rules(0 <), (< 1), (~3), (~4), and(A) are ignored. If a proof step is based
on a rule forA or v or on the rulg(~1) or (~2), we use the corresponding rules of
CadL.

Consider now an application of (Cut). Note that the righthpisee of (Cut) is nec-
essarily contained iff * because there is no way to derive a c-sequent of this form
from a rule; therefore the right premise is the translatibaroimplication from7 .

Two cases can arise. The first possibility, correspondirgase (ii) above,

I =« dha=f

translates to a rule (c). For the second possibility, cpording to case (iii) above,
note that a c-sequent of the forfm=- Acq, is always derived by means ahj, and
in particular we always havie= 1. Thus

1= Aa 1ANAa =3
1=~p

translates to the rule (me) or (ao0). O
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6 Fuzzy Logics andSeqCadL

In this section we compargeqCadL with the t-norm based logic closest to the
natural semantical framework f@adL. Not surprisingly, the logic which we have
in mind is an extension of Godel logic. More precisely we sidar a variant of
the logicRGL.., which was introduced in [EGHN] as Godel logic enriched y t
standard negation as well as rational truth constants.

First note that the objects &feqCadL, i.e. the c-sequents, have the form=-

8, wherea and 8 do not contain the implication symbol. Accordingly, we are
going to consider (a variant of) the fragmentR{EL . with no nested implications.
For the similarity to the proposal of Zadeh in [Zad], we chl tresulting logic
Godel-Zadeh logicGZL for short. Note however that we include BaaZsn the
language.

Definition 6.1. The atomic and lattice propositionsof GZL are defined like for
SeqCadL (see Definition 5.1). Acomparing propositiorof GZL is a pair of two
lattice propositiongy and 5, notated by — .

An evaluation ofGZL is defined like forSeqCadL. We say that an evaluation
satisfiesa comparing proposition — 3 if v(a) < v(3).

A theory of GZL is a set of comparing propositions. We say that a th&orse-
mantically impliesa propositione — 3 if any evaluation satisfying every element
of 7 satisfies — G as well.

A proof system foiGZL is formulated below using sequents-of-relations, a génera
isation of Gentzen sequents introduced in [BaFe] in whiehsquent arrow=-"

is splitted into the inequality symbols<” and “<”. Our calculus extends that for
Godel logic withA in [BCF] with suitable rules for negation and truth conssant

In our context, aequent-of-relationg is a multiset of ordered triples

O‘lqlﬂl ‘ ‘ O‘nqnﬂn;

whereq; and ; are formulas ofGZL and<«; € {<,<} fori = 1,...,n. Note
that the use of inequality symbolst” and “<” in the definition is purely syntactic
(although of course also suggestive of the intended meganing

g is satisfiedby some evaluation d8ZL v if v(«;) <; v(5;) for somei; G is valid
in GZL if satisfied by all evaluation o&ZL.

A literal is a lattice proposition of the form or ~ ¢ for some atomp. We call a
sequent-of-relationbasicif it contains only literals.
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Definition 6.2. Axioms and rules o5eqGZL are the following, whergj is an
arbitrary side sequent-of-relations and;, <, € {<, <}:

Axioms

a<a (A1) a7 (A2), wheres at

Logical Rules

G| agay | Bay G| yda G| y<ap

G| anBay (A9) G| yaang ()
G|l aay G| pay G| y<a | yap
G| avpBay (v<) G| ygavp ()
G| ~Baa N G| fa~a N G| Baa L
g|Na<]/3( <]) g|anﬁ(q) g|Nan/3( <])
g|a<1|1§[3(A§) g|a§0|1§ﬁ(§A)

G| Aa<p G|l a<Ap

Gla<l G |0<p Gla<l G |1<p

A A
Gl da<p &9 Gla<as =%
Rules for Constants
G| a<05 G| 05<a

1 g 1004a
G| ad~a (a3) G| ~a<a (29

G| a<0 G| 1«8

Gl add | a<16(<10) Gl aqd | aqﬁ(lq)
G | ~t<a G| aaxt
G| ~t<aa (~cq) g | QQNE(QNC)
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Structural Rules

G| aaB | axp Gla<p G |yud
Glaas 9D TGTraBlams
g Gla<B G| pB<a
m(EW) G (cut)

The definition ofproofin SeqGZL is as usual.
Lemma 6.3. In SeqGZL, the rule

Gla<p G| pB<y
G| a<y

(trans)

is derivable.
Proof.
G| <~y G| a<p
(com)
al~y | pB<p G| B<p
G| a<lny

(cut)

O

Remark 6.4. Note that although we deal with comparing propositionsgsulor
implication are not needed. Corollary 6.7 below shows howtthio arrows can
replace these rules.

Remark 6.5. Note that the methodology introducedBaFe]to define a sequent-
of-relations calculus out of the semantic specification fgac does not work for
SeqGZL whose semantics, due to the presence of a classical (inv@jutegation,
is not projective.

As usual we will say that a rule soundin GZL if whenever all assumptions are
satisfied by some evaluatianof GZL, the conclusion is satisfied hyas well. A
rule isinvertible if whenever the conclusion is valid, then so are all assumpti

Theorem 6.6. A sequent-of-relation§ is valid in GZL if and only ifG is provable
in SeqGZL without use of the rul¢Cut).
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Proof. It is easy to see that the rules$¥qGZL are sound.

For completeness, observe that the axioms are valid andalogiles are invert-
ible. Moreover when not allowing the subsequent use of tlyatnen rules(~ <)
and (< ~), inverse (i.e. bottom up) applications of the logical rulesd to basic
sequents-of-relations in a finite number of steps.

It remains to show thaeqGZL derives all basic sequents-of-relations which are
valid. LetG be a valid basic sequent-of-relations. We proceed by inglucin the
number of variables ig. If there is no variable, we remove any appearance of the
~-connective by inverse application of c«) or (<~ c). The result must contain a
sequent of the form « ¢, wheres < ¢, and it is derivable by (A2) and (EW).

Let G contain at least one variable, say We show that; can be derived from a
valid sequent-of-relation§’ whose variables are those which already occuy,in
but nota.

By backwards application of the rules fer if necessary, in a basic sequents-of-
relations the possible relations involvimgare of one of the following forms: (i)
« < 3 for some literalg not containingy, or (ii) of the form~ < « for some literal

~ not containing, or (iii) o occurs on both sides ef

Case (iii) can be discarded. Indeedqif< o appears, theg is derivable by (A1)
and (EW). IfG = G'|a < «, theng is valid if and only if so isG’, andg is
derivable fromG’ by (EW). Furthermore-a <« anda < ~«a can be replaced by
0.5 < or a1 0.5, respectively, by means of therules.

Assume next that case (i) occursdnbut not (ii). Then we replace all occurrences
of a by 1; from the result, which is evidently still valid, we derigeby (1<). We
proceed similarly if only case (ii) occurs.

Assume finally that cases (i) and (ii) appear both at least. o assume that they
appear exactly twice; otherwise the argumentation is aimilet 5, < «, (2 < «,

a <471, o< Occur ing, where<« is chosen as< or < independently in the four
cases. Then we build by replacing these four relations By <1, 31 <2, B2<471,
B2 < v9, Where« is < only if the involved atoms both have-<a-relation with .
Theng is derivable fromg’ by (com) and (EC). Furthermorg; is valid; indeed,
if there is an evaluation making every relationghfail, we can extend it tex to
make every relation ig fail. O

Corollary 6.7. Let7 = {a; —f1,...,a, — (3, } be afinite theory o6ZL and let
o — [ be a comparing proposition diZL. 7 semantically impliesx — g if and
only if there is a proof irbeqGZL of o« < g from{a; < f1,...,a, < B}

Proof. By Theorem 6.6 there is a proof feqGZL of the sequent-of-relation$, <
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a1 | ... | Bn<a, | a<pB. The claim follows byn applications of (cut) with
premisesy; < G;, withi =1,... n. O

We next show thaGZL is stronger thaseqCadL and hence o€adL.

Lemma 6.8. Let 7 be a theory ofSeqCadL, 7’ be the corresponding theory of
SeqGZL anda = ( be a c-sequent &eqCadL. If a = [ is provable inSeqCadL
from7 thena < 3 is provable inSeqGZL from 7.

Proof. We have to show that every rule §8qCadL in which the symbol= is
replaced by< is derivable inSeqGZL. This is easy in case of all rules but (Cut).
To derive (Cut), we consider the two cases. d andd < t. If t < d, we may
derive inSeqGZL (we omit side sequents-of-relations):

t<d t<a
— p— (<A) _
t<dAa« dha <
— (trans)
t<p
If d <t,we have
d<t t<a«
= (trans) — —
d<a d<d
— — (£A) _
d<dANa«a dha <

In view of Theorem 5.4, we get as a corollary tBatGZL is able to reproduce all
inferences of CADIAG-2 modelled by regular proofsGadL.

Note that the converse of Lemma 6.8 does not hold. Indeedawe h

Lemma6.9.Let7 = {1 Aa = 3, 1 A~a = (3}, wherea and 3 are atoms, be
a theory ofSeqCadL. ThenSeqCadL does not prové.5 = 3 from 7.

Proof. If a proof of 0.5 = 3 from 7 exists, then by the soundnessSefjCadL
it must necessarily contain an element®©fsayl A a = (. A sequent of this
form appears only as the premise of the rule (Cut); the firstish=- o for some
t € [0,1]. Again by the soundness 8kqCadl, ¢ = « is derivable from7 in
SeqCadL only if ¢ = 0. But then the conclusion of (Cut) & = £, which is
derivable from the empty theory already. The assertiomysl O
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Corollary 6.10. SeqGZL is strictly stronger tharbeqCadL.

Proof. The assertion follows from the previous lemma and the fadtftoma < 3
and~a < 3 we can derivé.5 < 3in SeqGZL. Indeed, we have

Applying twice (com) and then (EC), we furthermore defiv@ < 3 | 8 < « |
6 < ~a. We finally apply twice (cut), and the assertion follows. O

ThereforeSeqGZL, and hence by Theorem 6&L, is not adequate to formalise
CADIAG-2. An informal question is whaGZL can do more. The crucial fact
responsible for the additional strengthSefGZL is the total order of the set of truth
constants. As a consequence, it is necessary to base a Gstiecalculus for
GZL on sequents-of-relations rather than on single relatibmthe above example,
it Is necessary to express in some way the alternativel*3 or 3 < «”, done in
SeqGZL by the provable sequent-of-relations

a<p| B<a

which has no counterpart BeqCadL.

So comparing the two calculieqGZL andSeqCadL, we may certainly observe a
number of technical differences between the two systemb®iotvest level. But
when abstracting from details and considering just theiatpoint of difference,
we have thabeqGZL is based on sequents-of-relations &adCadL just on single
relations. We may stat&SeqGZL andSeqCadL are based on the same semantics;
however, onlySeqGZL allows to consider alternatives concerning the relatignsh
between pairs of propositions. Referring to the examplergiabove SeqCadL
does not allow to argue: “Either property 1 holds strongemtiproperty 2, or
property 2 holds stronger than property $&qCadL does not support this kind of
case-based reasoning.

An explanation of this phenomenon can be rather easily foliwdCadL deals
with statements which either specify the strength of sorpgty explicitly “The
property ¢ holds at least to the degr@e9”, or it uses statements which express
causal or logical relationships: “Property 1 implies pmipe.” To speak about
a causal implication between two facts, however, is difiefeom speaking about
the strength of some property compared to another one.
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We conclude that the medical expert system CADIAG-2 is basggfinciples very
close to the basic principles known from t-norm based lQgissa consequence,
we may emulate the inference mechanism of the system by nuéangamiliar
fuzzy-logical calculus. But there remain differences orasiblevel that cannot be
easily overcome.
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