
Gödel Logic: from Natural Deduction to Parallel
Computation

Federico Aschieri
Institute of Discrete Mathematics and Geometry

TU Wien, Austria

Agata Ciabattoni
Theory and Logic Group

TU Wien, Austria

Francesco A. Genco
Theory and Logic Group

TU Wien, Austria

Abstract—Propositional Gödel logic G extends intuition-
istic logic with the non-constructive principle of linearity
(A→ B) ∨ (B → A). We introduce a Curry–Howard correspon-
dence for G and show that a simple natural deduction calculus
can be used as a typing system. The resulting functional language
extends the simply typed λ-calculus via a synchronous commu-
nication mechanism between parallel processes, which increases
its expressive power. The normalization proof employs original
termination arguments and proof transformations implementing
forms of code mobility. Our results provide a computational
interpretation of G, thus proving A. Avron’s 1991 thesis.

I. INTRODUCTION

Logical proofs are static. Computations are dynamic. It is a
striking discovery that the two coincide: formulas correspond to
types in a programming language, logical proofs to programs of
the corresponding types and removing detours from proofs to
evaluation of programs. This correspondence, known as Curry–
Howard isomorphism, was first discovered for constructive
proofs, and in particular for intuitionistic natural deduction and
typed λ-calculus [20] and later extended to classical proofs,
despite their use of non-constructive principles, such as the
excluded middle [18], [2] or reductio ad absurdum [17], [30].

Nowadays various different logics (linear [8], modal [28] ...)
have been related to many different notions of computation;
the list is long, and we refer the reader to [34].

Gödel logic, Avron’s conjecture and previous attempts

Twenty-five years have gone by since Avron conjectured in
[3] that Gödel logic G [16] – one of the most useful and inter-
esting logics intermediate between intuitionistic and classical
logic – might provide a basis for parallel λ-calculi. Despite
the interest of the conjecture and despite various attempts,
no Curry–Howard correspondence has so far been provided
for G. The main obstacle has been the lack of an adequate
natural deduction calculus. Well designed natural deduction
inferences can indeed be naturally interpreted as program
instructions, in particular as typed λ-terms. Normalization [32],
which corresponds to the execution of the resulting programs,
can then be used to obtain proofs only containing formulas that
are subformulas of some of the hypotheses or of the conclusion.
However the problem of finding a natural deduction for G with
this property, called analyticity, looked hopeless for decades.

Supported by FWF: grants M 1930–N35, Y544-N2, and W1255-N23.

All approaches explored so far to provide a precise formal-
ization of G as a logic for parallelism, either sacrificed analyt-
icity [1] or tried to devise forms of natural deduction whose
structures mirror hypersequents – which are sequents operating
in parallel [4]. Hypersequents were indeed successfully used
in [3] to define an analytic calculus for G and were intuitively
connected to parallel computations: the key rule introduced by
Avron to capture the linearity axiom – called communication –
enables sequents to exchange their information and hence to
“communicate”. The first analytic natural deduction calculus
proposed for G [5] uses indeed parallel intuitionistic derivations
joined together by the hypersequent separator. Normalization
is obtained there only by translation into Avron’s calculus:
no reduction rules for deductions and no corresponding λ-
calculus were provided. The former task was carried out in
[6], that contains a propositional hyper natural deduction with
a normalization procedure. The definition of a corresponding
λ-calculus and Curry–Howard correspondence are left as an
open problem, which might have a complex solution due to
the elaborated structure of hyper deductions. Another attempt
along the “hyper line” has been made in [19]. However, not
only the proposed proof system is not shown to be analytic, but
the associated λ-calculus is not a Curry–Howard isomorphism:
the computation rules of the λ-calculus are not related to proof
transformations, i.e. Subject Reduction does not hold.

�G: Our Curry–Howard Interpretation of Gödel Logic
We introduce a natural deduction and a Curry–Howard

correspondence for propositional G. We add to the λ-calculus
an operator that, from the programming viewpoint, represents
parallel computations and communications between them; from
the logical viewpoint, the linearity axiom; and from the proof
theory viewpoint, the hypersequent separator among sequents.
We call the resulting calculus �G: parallel λ-calculus for G. �G
relates to the natural deduction NG for G as typed λ-calculus
relates to the natural deduction NJ for intuitionistic logic IL:

IL NJ λ

G NG �G

Soundness and
Completeness

Curry–Howard
correspondence

We prove: the perfect match between computation steps
and proof reductions in the Subject Reduction Theorem; the
Normalization Theorem, by providing a terminating reduction

strategy for �G; the Subformula Property, as corollary. The
expressive power of �G is illustrated through examples of
programs and connections with the π-calculus [26], [33].

The natural deduction calculus NG that we use as type sys-
tem for �G is particularly simple: it extends NJ with the (com)
rule (its typed version is displayed below), which was first
considered in [24] to define a natural deduction calculus for G,
but with no normalization procedure. The calculus NG follows
the basic principle of natural deduction that new axioms require
new computational reductions; this contrasts with the basic
principle of sequent calculus employed in the “hyper approach”,
that new axioms require new deduction structures. Hence we
keep the calculus simple and deal with the complexity of the
hypersequent structure at the operational side. Consequently, the
programs corresponding to NG proofs maintain the syntactical
simplicity of λ-calculus. The normalization procedure for NG
extends Prawitz’s method with ideas inspired by hypersequent
cut-elimination, by normalization in classical logic [2] and by
the embedding in [10] between hypersequents and systems of
rules [29]; the latter shows that (com) reformulates Avron’s
communication rule.

The inference rules of NG are decorated with �G-terms,
so that we can directly read proofs as typed programs. The
decoration of the NJ inferences is standard and the typed
version of (com) is

[aA→B : A→ B]....
u : C

[aB→A : B → A]....
v : C

u ‖a v : C
com

Inspired by [1], we use the variable a to represent a private
communication channel between the processes u and v. The
computational reductions associated to ‖a – cross reductions –
enjoy a natural interpretation in terms of higher-order process
passing, a feature which is not directly rendered through
communication by reference [31] and is also present in higher-
order π-calculus [33]. Nonetheless cross reductions handle
more subtle migration issues. In particular, a cross reduction
can be activated whenever a communication channel a is ready
to transfer information between two parallel processes:

C[a u] ‖a D[a v]

Here C is a process containing a fragment of code u, and D
is a process containing a fragment of code v. Moreover, C has
to send u through the channel a to D, which in turn needs
to send v through a to C. In general we cannot simply send
the programs u and v: some resources in the computational
environment that are used by u and v may become inaccessible
from the new locations [14]. Cross reductions solve the problem
by exchanging the location of u and v and creating a new
communication channel for their resources. Technically, the
channel takes care of closures – the contexts containing the
definitions of the variables used in a function’s body [23].
Several programming languages such as JavaScript, Ruby or
Swift provide mechanisms to support and handle closures. In
our case, they are the basis of a process migration mechanism

handling the bindings between code fragments and their
computational environments. Cross reductions also improve
the efficiency of programs by facilitating partial evaluation of
open processes (see Example VII.4).

II. PRELIMINARIES ON GÖDEL LOGIC

Also known as Gödel–Dummett logic [12], Gödel logic G
naturally turns up in a number of different contexts; among
them, due to the natural interpretation of its connectives as
functions over the real interval [0, 1], G is one of the best
known ‘fuzzy logics’, e.g. [25].

Although propositional G is obtained by adding the linearity
axiom (lin) (A → B) ∨ (B → A) to any proof calculus
for intuitionistic logic, analytic calculi for G have only been
defined in formalisms extending the sequent calculus. Among
them, arguably, the hypersequent calculus in [3] is the most
successful one, see, e.g., [25]. In general a hypersequent calcu-
lus is defined by incorporating a sequent calculus (Gentzen’s
LJ, in case of G) as a sub-calculus and allowing sequents to
live in the context of finite multisets of sequents.

Definition II.1. A hypersequent is a multiset of sequents,
written as Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn where, for all i =
1, . . . n, Γi ⇒ Πi is an ordinary sequent.

The symbol “|” is a meta-level disjunction; this is reflected
by the presence in the calculus of the external structural rules
of weakening and contraction, operating on whole sequents,
rather than on formulas. The hypersequent design opens the
possibility of defining new rules that allow the “exchange of
information” between different sequents. It is this type of rules
which increases the expressive power of hypersequent calculi
compared to sequent calculi. The additional rule employed in
Avron’s calculus for G [3] is the so called communication rule,
below presented in a slightly reformulated version (as usual G
stands for a possibly empty hypersequent):

G | Γ1, B ⇒ C G | Γ2, A⇒ D

G | Γ1, A⇒ C | Γ2, B ⇒ D

III. NATURAL DEDUCTION

The very first step in the design of a Curry–Howard corre-
spondence is to lay a solid logical foundation. No architectural
mistake is allowed at this stage: the natural deduction must
be structurally simple and the reduction rules as elementary
as possible. We present such a natural deduction system NG
for Gödel logic. NG extends Gentzen’s propositional natural
deduction NJ (see [32]) with a rule accounting for axiom (lin).
We describe the reduction rules for transforming every NG
deduction into an analytic one and present the ideas behind
the Normalization Theorem, which is proved in the λ-calculus
framework in Section VI.
NG is the natural deduction version of the sequent calculus

with systems of rules in [29]; the latter embeds (into) Avron’s
hypersequent calculus for G. Indeed [10] introduces a mapping
from (and into) derivations in Avron’s calculus into (and from)

derivations in the LJ sequent calculus for intuitionistic logic
with the addition of the system of rules

B,Γ1 ⇒ C

A,Γ1 ⇒ C
(com1)

....
Γ ⇒ Π

A,Γ2 ⇒ D

B,Γ2 ⇒ D
(com2)

....
Γ ⇒ Π

Γ ⇒ Π
(comend)

where (com1), (com2) can only be applied (possibly many
times) above respectively the left and right premise of (comend).
The above system, that reformulates Avron’s communication
rule, immediately translates into the natural deduction rule
below, whose addition to NJ leads to a natural deduction
calculus for G

...
B
A

coml

....
C

...
A
B

comr

....
C

C
com

Not all the branches of a derivation containing the above rule
are NJ derivations. To avoid that, and to keep the proof of
the Subformula Property (Theorem V.4) as simple as possible,
we use the equivalent rule below, first considered in [24].

Definition III.1 (NG). The natural deduction calculus NG
extends NJ with the (com) rule:

[A→ B]....
C

[B → A]....
C

C
com

Let `NG and `G indicate the derivability relations in NG
and in NJ + (lin), respectively.

Theorem III.1 (Soundness and Completeness). For any set Π
of formulas and formula A, Π `NG A if and only if Π `G A.

Proof. (⇒) Applications of (com) can be simulated by ∨
eliminations having as major premiss an instance of (lin). (⇐)
Easily follows by the following derivation:

[A→ B]1

(A→ B) ∨ (B → A)

[B → A]1

(A→ B) ∨ (B → A)

(A→ B) ∨ (B → A)
com1

Notation. To shorten derivations henceforth we will use
A coml
B

B comr
A

as abbreviations for

[A→ B] A

B

[B → A] B

A

respectively, and call them communication inferences.
As usual, we will use ¬A and > as shorthand for A→ ⊥

and ⊥ → ⊥. Moreover, we exploit the equivalence of A ∨B
and ((A → B) → B) ∧ ((B → A) → A) in G (see [12])
and treat ∨ as a defined connective.

A. Reduction Rules and Normalization

A normal deduction in NG should have two essential
features: every intuitionistic Prawitz-style reduction should
have been carried out and the Subformula Property should
hold. Due to the (com) rule, the former is not always enough
to guarantee the latter. Here we present the main ideas behind
the normalization procedure for NG and the needed reduction
rules. The computational interpretation of the rules will be
carried out through the �G calculus in Section IV.

The main steps of the normalization procedure are as follows:
• We permute down all applications of (com).

The resulting deduction – we call it in parallel form –
consists of purely intuitionistic subderivations joined together
by consecutive (com) inferences occurring immediately above
the root. This transformation is a key tool in the embedding
between hypersequents and systems of rules [10]. The needed
reductions are instances of Prawitz-style permutations for ∨
elimination. Their list can be obtained by translating into natural
deduction the permutations in Fig. 1.

Once obtained a parallel form, we interleave the following
two steps.
• We apply the standard intuitionistic reductions ([32]) to

the parallel branches of the derivation.
This way we normalize each single intuitionistic derivation, and
this can be done in parallel. The resulting derivation, however,
need not satisfy yet the Subformula Property. Intuitively, the
problem is that communications may discharge hypotheses that
have nothing to do with their conclusion.
• We apply specific reductions to replace the (com) appli-

cations that violate the Subformula Property.
These reductions – called cross reductions – account for the
hypersequent cut-elimination. They allow to get rid of the new
detours that appear in configurations like the one below on
the left. To remove these detours, a first idea would be to
simultaneously move the deduction D1 to the right and D2 to
the left thus obtaining the derivation below right:

D1

A
B

coml

....
C

D2

B
A

comr

....
C

C
com

D2

B....
C

D1

A....
C

C

In fact, in the context of Krivine’s realizability, Danos and
Krivine [9] studied the linearity axiom as a theorem of
classical logic and discovered that its realizers implement a
restricted version of this transformation. Their transformation
does not lead however to the subformula property for NG. The
unrestricted transformation above, on the other hand, cannot
work; indeed D1 might contain the hypothesis A → B and
hence it cannot be moved on the right. Even worse, D1 may
depend on hypotheses that are locally opened, but discharged
below B but above C. Again, it is not possible to move D1 on
the right as naively thought, otherwise new global hypotheses
would be created.

We overcome these barriers by our cross reductions. Let
us highlight Γ and ∆, the hypotheses of D1 and D2 that
are respectively discharged below B and A but above the
application of (com). Assume moreover, that A → B does
not occur in D1 and B → A does not occur in D2 as
hypotheses discharged by (com). A cross reduction transforms
the deduction below left into the deduction below right (if
(com) in the original proof discharges in each branch exactly
one occurrence of the hypotheses, and Γ and ∆ are formulas)

Γ
D1

A
B

coml

....
C

∆
D2

B
A

comr

....
C

C
com

∆
Γ

coml

D1

A....
C

Γ
∆

comr

D2

B....
C

C
com

and into the following deduction, in the general case

Γ
D1

A
B

com1
l

....
C

∆

Γ
com3

l

D1

A....
C

C com1

Γ

∆
com3

r

D2

B....
C

∆
D2

B
A

com2
r

....
C

C com2

C com3

where the double bar notation stands for an application of
(com) between sets of hypotheses Γ and ∆, which means to
prove from Γ the conjunction of the formulas of Γ, then to
prove the conjunction of the formulas of ∆ by means of a
communication inference and finally obtain each formula of
∆ by a series of ∧ eliminations, and vice versa.

Mindless applications of the cross reductions might lead to
dangerous loops, see e.g. Example IV.2. To avoid them we will
allow cross reductions to be performed only when the proof is
not analytic. Thanks to this and to other restrictions, we will
prove termination and thus the Normalization Theorem.

IV. THE �G-CALCULUS

We introduce �G, our parallel λ-calculus for G. �G extends
the standard Curry–Howard correspondence [34] for intuition-
istic natural deduction with a parallel operator that interprets
the inference for the linearity axiom. We describe �G-terms
and their computational behavior, proving as main result of
the section the Subject Reduction Theorem, stating that the
reduction rules preserve the type.

Axioms xA : A

Conjunction
u : A t : B

〈u, t〉 : A ∧B
u : A ∧B
uπ0 : A

u : A ∧B
uπ1 : B

Implication

[xA : A]....
u : B

λxAu : A→ B

t : A→ B u : A
tu : B

Linearity Axiom

[aA→B : A→ B]....
u : C

[aB→A : B → A]....
v : C

u ‖a v : C

Ex Falso Quodlibet
Γ ` u : ⊥

Γ ` efqP (u) : P
with P atomic, P 6= ⊥.

The table above defines a type assignment for �G-terms,
called proof terms and denoted by t, u, v . . . , which is
isomorphic to NG. The typing rules for axioms, implication,
conjunction and ex-falso-quodlibet are standard and give rise
to the simply typed λ-calculus, while parallelism is introduced
by the rule for the linearity axiom.

Proof terms may contain variables xA0 , x
A
1 , x

A
2 , . . . of type

A for every formula A; these variables are denoted as xA, yA,
zA, . . . , aA, bA, cA and whenever the type is not important
simply as x, y, z, . . . , a, b. For clarity, the variables introduced
by the (com) rule will be often denoted with letters a, b, c, . . .,
but they are not in a syntactic category apart. A variable xA that
occurs in a term of the form λxAu is called λ-variable and a
variable a that occurs in a term u ‖a v is called communication
variable and represents a private communication channel
between the parallel processes u and v.

The free and bound variables of a proof term are defined as
usual and for the new term u ‖a v, all the free occurrences of
a in u and v are bound in u ‖a v. In the following we assume
the standard renaming rules and alpha equivalences that are
used to avoid capture of variables in the reduction rules.

Notation. The connective → associates to the right and by
〈t1, t2, . . . , tn〉 we denote the term 〈t1, 〈t2, . . . 〈tn−1, tn〉 . . .〉〉
and by πi, for i = 0, . . . , n, the sequence of projections
π1 . . . π1π0 selecting the (i + 1)th element of the sequence.
Therefore, for every formula sequence A1, . . . , An the expres-
sion A1 ∧ . . .∧An denotes (A1 ∧ (A2 ∧ . . . (An−1 ∧An) . . .))
or > if n = 0.

Often, when Γ = x1 : A1, . . . , xn : An and the list
x1, . . . , xn includes all the free variables of a proof term t : A,
we shall write Γ ` t : A. From the logical point of view,
t represents a natural deduction of A from the hypotheses
A1, . . . , An. We shall write G ` t : A whenever ` t : A, and
the notation means provability of A in propositional Gödel
logic. If the symbol ‖ does not occur in it, then t is a simply
typed λ-term representing an intuitionistic deduction.

We define as usual the notion of context C[] as the part
of a proof term that surrounds a hole, represented by some
fixed variable. In the expression C[u] we denote a particular
occurrence of a subterm u in the whole term C[u]. We shall
just need those particularly simple contexts which happen to
be simply typed λ-terms.

Definition IV.1 (Simple Contexts). A simple context C[] is
a simply typed λ-term with some fixed variable [] occurring
exactly once. For any proof term u of the same type of [], C[u]
denotes the term obtained replacing [] with u in C[], without
renaming of any bound variable.

As an example, the expression C[] := λx z ([]) is a simple
context and the term λx z (x z) can be written as C[xz].

We define below the notion of stack, corresponding to
Krivine stack [21] and known as continuation because it
embodies a series of tasks that wait to be carried out. A
stack represents, from the logical perspective, a series of
elimination rules; from the λ-calculus perspective, a series
of either operations or arguments.

Definition IV.2 (Stack). A stack is a sequence
σ = σ1σ2 . . . σn such that for every 1 ≤ i ≤ n, exactly one
of the following holds: either σi = t, with t proof term or
σi = πj , with j ∈ {0, 1}. We will denote the empty sequence
with ε and with ξ, ξ′, . . . the stacks of length 1. If t is a proof
term, as usual t σ denotes the term (((t σ1)σ2) . . . σn).

We define now the notion of strong subformula, which is
essential for defining the reduction rules of the �G-calculus
and for proving Normalization. The technical motivations will
become clear in Sections V and VI, but the intuition is that the
new types created by cross reductions must be always strong
subformulas of already existing types. To define the concept
of strong subformula we also need the following definition.

Definition IV.3 (Prime Formulas and Factors [22]). A formula
is said to be prime if it is not a conjunction. Every formula is
a conjunction of prime formulas, called prime factors.

Definition IV.4 (Strong Subformula). B is said to be a strong
subformula of a formula A, if B is a proper subformula of
some prime proper subformula of A.

Note that in the present context, prime formulas are either
atomic formulas or arrow formulas, so a strong subformula of
A must be actually a proper subformula of an arrow proper
subformula of A. The following characterization of the strong
subformula relation will be often used.

Proposition IV.1 (Characterization of Strong Subformulas).
Suppose B is any strong subformula of A. Then:
• If A = A1 ∧ . . . ∧ An, with n > 0 and A1, . . . , An are

prime, then B is a proper subformula of one among
A1, . . . , An.

• If A = C → D, then B is a proper subformula of a prime
factor of C or D.

Proof. Simple considerations on the structure of A.

Definition IV.5 (Multiple Substitution). Let u be a proof term,
x = xA0

0 , . . . , xAn
n a sequence of variables and v : A0∧. . .∧An.

The substitution uv/x := u[v π0/x
A0
0 . . . v πn/x

An
n] replaces

each variable xAi
i of any term u with the ith projection of v.

We now seek a measure for determining how complex the
communication channel a of a term u ‖a v is. Logic will be
our guide. First, it makes sense to consider the types B,C
such that a occurs with type B → C in u and thus with type
C → B in v. Moreover, assume u ‖a v has type A and its free
variables are xA1

1 , . . . , xAn
n . The Subformula Property tells us

that, no matter what our notion of computation will turn out
to be, when the computation is done, no object of type more
complex than the types of the inputs and the output should

appear. Hence, if the prime factors of the types B and C are
not subformulas of A1, . . . , An, A, then these prime factors
should be taken into account in the complexity measure we
are looking for. The actual definition is the following.

Definition IV.6 (Communication Complexity). Let u ‖a v : A
a proof term with free variables xA1

1 , . . . , xAn
n . Assume that

aB→C occurs in u and thus aC→B in v.
• The pair B,C is called the communication kind of a.
• The communication complexity of a is the maximum

among 0 and the numbers of symbols of the prime factors
of B or C that are neither proper subformulas of A nor
strong subformulas of one among A1, . . . , An.

We explain now the basic reduction rules for the proof terms
of �G, which are given in Figure 1. As usual, we also have the
reduction scheme: E [t] 7→ E [u], whenever t 7→ u and for any
context E . With 7→∗ we shall denote the reflexive and transitive
closure of the one-step reduction 7→.

Intuitionistic Reductions. These are the very familiar com-
putational rules for the simply typed λ-calculus, representing
the operations of applying a function and taking a component
of a pair [15]. From the logical point of view, they are the
standard Prawitz reductions [32] for NJ.

Cross Reductions. The reduction rules for (com) model
a communication mechanism between parallel processes. In
order to apply a cross reduction to a term

C[a u] ‖a D[a v]

several conditions have to be met. These conditions are both
natural and needed for the termination of computations.
First, we require the communication complexity of a to be
greater than 0; again, this is a warning that the Subformula
Property does not hold. Here we use a logical property as
a computational criterion for answering the question: when
should computation stop? An answer is crucial here, because,
as shown in Example IV.2, unrestricted cross reductions do
not always terminate. In λ-calculi the Subformula Property
fares pretty well as a stopping criterion. In a sense, it detects
all the essential operations that really have to be done. For
example, in simply typed λ-calculus, a closed term that has
the Subformula Property must be a value, that is, of the form
λxu, or 〈u, v〉. Indeed a closed term which is a not a value,
must be of the form hσ, for some stack σ (see Definition
IV.2), where h is a redex (λy u)t or 〈u, v〉πi; but (λy u) and
〈u, v〉 would have a more complex type than the type of the
whole term, contradicting the Subformula Property.
Second, we require C[a u],D[a v] to be normal simply typed λ-
terms. Simply typed λ-terms, because they are easier to execute
in parallel; normal, because we want their computations to go
on until they are really stuck and communication is unavoidable.
Third, we require the variable a to be as rightmost as possible
and that is needed for logical soundness: how could otherwise
the term u be moved to the right, e.g., if it contains a?

Assuming that all the conditions above are satisfied, we can
now start to explain the cross reduction

C[a u] ‖a D[a v] 7→ (D[ub〈z〉/y] ‖a C[a u]) ‖b (C[vb〈y〉/z] ‖a D[a v])

Here, the communication channel a has been activated, because
the processes C and D are synchronized and ready to transfer
respectively u and v. The parallel operator ‖a let the two
occurrences of a communicate: the term u travels to the right
in order to replace a v and v travels to the left in order to
replace a u. If u and v were data, like numbers or constants,
everything would be simple and they could be sent as they
are; but in general, this is not possible. The problem is that
the free variables y of u which are bound in C[a u] by some λ
cannot be permitted to become free; otherwise, the connection
between the binders λy and the occurrences of the variables
y would be lost and they could be no more replaced by actual
values when the inputs for the λy are available. Symmetrically,
the variables z cannot become free. For example, we could
have u = u′ y and v = v′ z and

C[a u] = w1 (λy a (u′ y)) D[a v] = w2 (λz a (v′ z))

and the transformation w1 (λy a (u′ y)) ‖a w2 (λz a (v′ z)) 7→
w1 (λy v′ z) ‖a w2 (λz u′ y) would just be wrong: the term v′ z
will never get back actual values for the variables z when they
will become available.
These issues are typical of process migration, and can be
solved by the concepts of code mobility [14] and closure [23].
Informally, code mobility is defined as the capability to
dynamically change the bindings between code fragments and
the locations where they are executed. Indeed, in order to be
executed, a piece of code needs a computational environment
and its resources, like data, program counters or global variables.
In our case the contexts C[] and D[] are the computational
environments or closures of the processes u and v and the
variables y, z are the resources they need. Now, moving a
process outside its environment always requires extreme care:
the bindings between a process and the environment resources
must be preserved. This is the task of the migration mechanisms,
which allow a migrating process to resume correctly its
execution in the new location. Our migration mechanism creates
a new communication channel b between the programs that
have been exchanged. Here we see the code fragments u and
v, with their original bindings to the global variables y and z.

The change of variables ub〈z〉/y and vb〈y〉/z has the effect of
reconnecting u and v to their old inputs:

In this way, when they will become available, the data y will be
sent to u and the data z will be sent to v through the channel
b. Note that in the result of the cross reduction the processes

C[a u] and D[a v] are cloned, because their code fragments
can be needed again. Thus a behaves as a replicated input
and replicated output channel. E.g., in [8], replicated input is
coded by the bang operator of linear logic:

x〈y〉.Q | !x(z).P 7→ Q |P [y/z] | !x(z).P

With symmetrical message passing and a “!” also in front of
x〈y〉.Q, one would obtain a version of our cross reduction.
Finally, as detailed in Ex. VII.2, whenever u and v are closed
terms the cross reduction is simpler and only maintains the
first two of the four processes produced in the general case.

Example IV.1 (‖a in �G and | in the π-calculus). A private
channel u ‖a v is rendered in the π-calculus [26], [33] by the
restriction operator ν, as νa (u | v). Recall that the π-calculus
term u | v represents two processes that run in parallel. The
corresponding �G term 〈e, u〉 ‖e 〈e, v〉 is defined using a fresh
channel e with communication kind A,A. As no cross reduction
outside u and v can be applied, the whole term reduces neither
to 〈e, u〉 nor to 〈e, v〉, so that u and v can run in parallel.

Example IV.2. Let y and z be bound variables occurring in the
normal terms C[a y] and D[a z]. Without the condition on the
communication complexity c of a, a loop could be generated:

C[a y] ‖a D[a z] 7→ (D[yb〈z〉/y] ‖a C[a y]) ‖b (C[zb〈y〉/z] ‖a D[a z])

= (D[b z] ‖a C[a y]) ‖b (C[b y] ‖a D[a z]) 7→∗ D[b z] ‖b C[b y]

In Sec. VI we show that if c > 0, this reduction sequence would
terminate. What is then happening here? Intuitively, C[a y] and
D[a z] are normal simply typed λ-terms, which forces c = 0.

Permutation Reductions. They regulate the interaction be-
tween parallel operators and the other computational constructs.
The first four reductions are the Prawitz-style permutation rules
[32] between parallel operators and eliminations. We also add
two other groups of reductions: three permutations between
parallel operators and introductions, two permutations between
parallel operators themselves. The first group will be needed
to rewrite any proof term into a parallel composition of simply
typed λ-terms (Proposition V.3). The second group is needed
to address the scope extrusion issue of private channels [26].
We point out that a parallel operator ‖a is allowed to commute
with other parallel operators only when it is strictly necessary,
that is, when the communication complexity of a is greater than
0 and thus signaling a violation of the Subformula Property.

Example IV.3 (Scope extrusion (and π-calculus)). As exam-
ple of scope extrusion, let us consider the term

(v ‖a C[b a]) ‖b w

Here the process C[b a] wishes to send the channel a to w along
the channel b, but this is not possible being the channel a private.
This issue is solved in the π-calculus using the congruence
νa(P |Q) |R ≡ νa(P |Q |R), provided that a does not occur
in R, condition that can always be satisfied by α-conversion.
Gödel logic offers and actually forces a different solution,
which is not just permuting w inward but also duplicating it:

(v ‖a C[b a]) ‖b w 7→ (v ‖b w) ‖a (C[b a] ‖b w)

After this reduction C[b a] can send a to w. If a does not occur
in v, we have a further simplification step:

(v ‖b w) ‖a (C[b a] ‖b w) 7→ v ‖a (C[b a] ‖b w)

obtaining associativity of composition as in π-calculus. How-
ever, if b occurs in v, this last reduction step is not possible
and we keep both copies of w. It is indeed natural to allow
both v and C[b a] to communicate with w.

Everything works as expected: the reductions steps in
Fig. 1 preserve the type at the level of proof terms, i.e., they
correspond to logically sound proof transformations. Indeed

Theorem IV.2 (Subject Reduction). If t : A and t 7→ u, then
u : A and all the free variables of u appear among those of t.

Proof. It is enough to prove the theorem for basic reductions:
if t : A and t 7→ u, then u : A. The proof that the intuitionistic
reductions and the permutation rules preserve the type is
completely standard. Cross reductions require straightforward
considerations as well. Indeed suppose

C[aA→B u] ‖a D[aB→A v]

7→

(D[ub
D→C〈z〉/y] ‖a C[aA→B u]) ‖b (C[vb

C→D〈y〉/z] ‖a D[aB→A v])

Since 〈y〉 : C := C0 ∧ . . . ∧ Cn and 〈z〉 : D :=
D0 ∧ . . . ∧ Dm, bD→C〈z〉 and bC→D〈y〉 are correct terms.
Therefore ub

D→C〈z〉/y and vb
C→D〈y〉/z , by Definition IV.5,

are correct as well. The assumptions are that y = yC0
0 , . . . , yCn

n

is the sequence of the free variables of u which are bound
in C[aA→Bu], z = zD0

0 , . . . , zDm
m is the sequence of the free

variables of v which are bound in D[aB→Av], a does not occur
neither in u nor in v and b is fresh. Therefore, by construction
all the variables z are bound in D[ub

D→C〈z〉/y] and all the
variables y are bound in C[vbC→D〈y〉/z]. Hence, no new free
variable is created.

Definition IV.7 (Normal Forms and Normalizable Terms).
• A redex is a term u such that u 7→ v for some v and

basic reduction of Figure 1. A term t is called a normal
form or, simply, normal, if there is no t′ such that t 7→ t′.
We define NF to be the set of normal �G-terms.

• A sequence, finite or infinite, of proof terms
u1, u2, . . . , un, . . . is said to be a reduction of t,
if t = u1, and for all i, ui 7→ ui+1. A proof term u of
�G is normalizable if there is a finite reduction of u
whose last term is a normal form.

Definition IV.8 (Parallel Form). A term t is a parallel form
whenever, removing the parentheses, it can be written as

t = t1 ‖a1 t2 ‖a2 . . . ‖an tn+1

where each ti, for 1 ≤ i ≤ n+ 1, is a simply typed λ-term.

V. THE SUBFORMULA PROPERTY

We show that normal �G-terms satisfy the important Subfor-
mula Property (Theorem V.4). This, in turn, implies that our

Curry–Howard correspondence for �G is meaningful from the
logical perspective and produces analytic NG proofs.

We start by establishing an elementary property of simply
typed λ-terms, which will turn out to be crucial for our
normalization proof. It ensures that every bound hypothesis
appearing in a normal intuitionistic proof is a strong subformula
of one the premises or a proper subformula of the conclusion.
This property sheds light on the complexity of cross reductions,
because it implies that the new formulas introduced by these
operations are always smaller than the local premises.

Proposition V.1 (Bound Hypothesis Property). Suppose

xA1
1 , . . . , xAn

n ` t : A

t ∈ NF is a simply typed λ-term and z : B a variable occurring
bound in t. Then one of the following holds:

1) B is a proper subformula of a prime factor of A.
2) B is a strong subformula of one among A1, . . . , An.

Proof. By induction on t.

The next proposition says that each occurrence of any
hypothesis of a normal intuitionistic proof must be followed
by an elimination rule, whenever the hypothesis is neither ⊥
nor a subformula of the conclusion nor a proper subformula
of some other premise.

Proposition V.2. Let t ∈ NF be a simply typed λ-term and

xA1
1 , . . . , xAn

n , zB ` t : A

One of the following holds:
1) Every occurrence of zB in t is of the form zB ξ for some

proof term or projection ξ.
2) B = ⊥ or B is a subformula of A or a proper subformula

of one among the formulas A1, . . . , An.

Proof. Easy structural induction on the term.

Proposition V.3 (Parallel Normal Form Property). If t ∈ NF
is a �G-term, then it is in parallel form.

Proof. Easy structural induction on t using the permutation
reductions.

We finally prove the Subformula Property: a normal proof
does not contain concepts that do not already appear in the
premises or in the conclusion.

Theorem V.4 (Subformula Property). Suppose

xA1
1 , . . . , xAn

n ` t : A and t ∈ NF. Then :

1) For each communication variable a occurring bound in
t and with communication kind B,C, the prime factors
of B and C are proper subformulas of A1, . . . , An, A.

2) The type of any subterm of t which is not a bound commu-
nication variable is either a subformula or a conjunction
of subformulas of the formulas A1, . . . , An, A.

Proof. We proceed by induction on t. By Proposition V.3
t = t1 ‖a1 t2 ‖a2 . . . ‖an tn+1 and each ti, for 1 ≤ i ≤ n+ 1,

Intuitionistic Reductions (λxA u)t 7→ u[t/xA] and 〈u0, u1〉πi 7→ ui, for i = 0, 1

Permutation Reductions (u ‖a v)w 7→ uw ‖a vw, if a does not occur free in w

w(u ‖a v) 7→ wu ‖a wv, if a does not occur free in w

efqP (w1 ‖a w2) 7→ efqP (w1) ‖a efqP (w2)

(u ‖a v)πi 7→ uπi ‖a v πi

λxA (u ‖a v) 7→ λxA u ‖a λxA v

〈u ‖a v, w〉 7→ 〈u,w〉 ‖a 〈v, w〉, if a does not occur free in w

〈w, u ‖a v〉 7→ 〈w, u〉 ‖a 〈w, v〉, if a does not occur free in w

(u ‖a v) ‖b w 7→ (u ‖b w) ‖a (v ‖b w), if the communication complexity of b is greater than 0

w ‖b (u ‖a v) 7→ (w ‖b u) ‖a (w ‖b v), if the communication complexity of b is greater than 0

Cross Reductions u ‖a v 7→ u, if a does not occur in u and u ‖a v 7→ v, if a does not occur in v

C[aA→B u] ‖a D[aB→A v] 7→ (D[ub
C→D〈z〉/y] ‖a C[aA→B u]) ‖b (C[vb

D→C〈y〉/z] ‖a D[aB→A v])

where C[a u],D[a v] are normal simply typed λ-terms and C,D simple contexts; y is the sequence of the free variables of u which are bound in
C[a u]; z is the sequence of the free variables of v which are bound in D[a v]; C and D are the conjunctions of the types of the variables in z and
y, respectively; the displayed occurrences of a are the rightmost both in C[a u] and in D[a v]; b is fresh; and the communication complexity of a is
greater than 0

Fig. 1. Basic Reduction Rules for �G

is a simply typed λ-term. We only show the case t = u1 ‖b u2.
Let C,D be the communication kind of b, we first show that the
communication complexity of b is 0. We reason by contradiction
and assume that it is greater than 0. u1 and u2 are either simply
typed λ-terms or of the form v ‖c w. The second case is not
possible, otherwise a permutation reduction could be applied
to t ∈ NF. Thus u1 and u2 are simply typed λ-terms. Since
the communication complexity of b is greater than 0, the types
C → D and D → C are not subformulas of A1, . . . , An, A.
By Prop. V.2, every occurrence of bC→D in u1 is of the form
bC→Dv and every occurrence of bD→C in u2 is of the form
bD→Cw. Hence, we can write

u1 = C[bC→Dv] u2 = D[bD→Cw]

where C,D are simple contexts and b is rightmost. Hence
a cross reduction of t can be performed, which contradicts
the fact that t ∈ NF. Since we have established that the
communication complexity of b is 0, the prime factors of
C and D must be proper subformulas of A1, . . . , An, A. Now,
by induction hypothesis applied to u1 : A and u2 : A, for
each communication variable aF→G occurring bound in t,
the prime factors of F and G are proper subformulas of the
formulas A1, . . . , An, A,C → D,D → C and thus of the
formulas A1, . . . , An, A; moreover, the type of any subterm
of u1 or u2 which is not a communication variable is either a
subformula or a conjunction of subformulas of the formulas
A1, . . . , An, C → D,D → C and thus of A1, . . . , An, A.

Remark V.1. Our statement of the Subformula Property is
slightly different from the usual one. However the latter can
be easily recovered using the communication rule (comend)

of Section III and additional reduction rules. As the resulting
derivations would be isomorphic but more complicated, we
prefer the current statement.

VI. THE NORMALIZATION THEOREM

Our goal is to prove the Normalization Theorem for �G:
every proof term of �G reduces in a finite number of steps to
a normal form. By Subject Reduction, this implies that NG
proofs normalize. We shall define a reduction strategy for terms
of �G: a recipe for selecting, in any given term, the subterm
to which apply one of our basic reductions. We remark that
the permutations between communications have been adopted
to simplify the normalization proof, but at the same time,
they undermine strong normalization, because they enable
silly loops, like in cut-elimination for sequent calculi. Further
restrictions of the permutations might be enough to prove
strong normalization, but we leave this as an open problem.

The idea behind our normalization strategy is to employ a
suitable complexity measure for terms u ‖a v and, each time a
reduction has to be performed, to choose the term of maximal
complexity. Since cross reductions can be applied as long as
there is a violation of the Subformula Property, the natural
approach is to define the complexity measure as a function of
some fixed set of formulas, representing the formulas that can
be safely used without violating the Subformula Property.

Definition VI.1 (Complexity of Parallel Terms). Let A be a
finite set of formulas. The A-complexity of the term u ‖a v
is the sequence (c, d, l, o) of natural numbers, where:

1) if the communication kind of a is B,C, then c is the
maximum among 0 and the number of symbols of the

prime factors of B or C that are not subformulas of
some formula in A;

2) d is the number of occurrences of ‖ in u and v;
3) l is the sum of the lengths of the intuitionistic reductions

of u and v to reach intuitionistic normal form;
4) o is the number of occurrences of a in u and v.

For clarity, we define the recursive normalization algorithm
that represents the constructive content of the proofs of
Prop. VI.1 and VI.2, which are used to prove the Normalization
Theorem. Essentially, our master reduction strategy consists in
iterating the basic reduction relation � defined below, whose
goal is to permute the smallest redex u ‖a v of maximal
complexity until u and v are simply typed λ-terms, then
normalize them and finally apply the cross reductions.

Definition VI.2 (Side Reduction Strategy). Let t : A be a
term with free variables xA1

1 , . . . , xAn
n and A be the set of the

proper subformulas of A and the strong subformulas of the
formulas A1, . . . , An. Let u ‖a v the smallest subterm of t, if
any, among those of maximal A-complexity and let (c, d, l, o)
its A-complexity. We write

t � t′

whenever t′ has been obtained from t by applying to u ‖a v:
1) a permutation reduction

(u1 ‖b u2) ‖a v 7→ (u1 ‖a v) ‖b (u2 ‖a v)

u ‖a (v1 ‖b v2) 7→ (u ‖a v1) ‖b (u ‖a v2)

if d > 0 and u = u1 ‖b u2 or v = v1 ‖b v2;
2) a sequence of intuitionistic reductions normalizing both

u and v, if d = 0 and l > 0;
3) a cross reduction if d = l = 0 and c > 0, immediately

followed by intuitionistic reductions normalizing the
newly generated simply typed λ-terms and, if possible,
by applications of the cross reductions u1 ‖b v1 7→ u1
and u1 ‖b v1 7→ v1 to the whole term.

4) a cross reduction u ‖a v 7→ u and u ‖a v 7→ v if
d = l = c = 0.

Definition VI.3 (Master Reduction Strategy). We define a
normalization algorithm N (t) taking as input a typed term
t and producing a term t′ such that t 7→∗ t′. The algorithm
performs the following operations.

1) If t is not in parallel form, then, using permutation
reductions, t is reduced to a t′ which is in parallel form
and N (t′) is recursively executed.

2) If t is in parallel form, a sequence of terms is produced

t � t1 � t2 � . . . � tn

such that tn is not a redex.
3) If tn is a simply typed λ-term, it is normalized and

returned. If tn = u ‖a v, then let N (u) = u′ and
N (v) = v′. If u′ ‖a v′ is normal, it is returned.
Otherwise, N (u′ ‖a v′) is recursively executed.

We observe that in the step 3 of the algorithm N , by
construction u ‖a v is not a redex. After u and v are normalized
respectively to u′ and v′, it can still be the case that u′ ‖a v′
is not normal, because some free variables of u and v may
disappear during the normalization, causing a new violation of
the Subformula Property that transforms u′ ‖a v′ into a redex,
even though u ‖a v was not.

The first step of the normalization algorithm N consists in
showing that any term can be reduced to a parallel form.

Proposition VI.1. Let t : A be any term. Then t 7→∗ t′, where
t′ is a parallel form.

Proof. Easy structural induction on t.

We now prove that any term in parallel form can be
normalized with the help of the algorithm N .

Proposition VI.2. Let t : A be any term in parallel form. Then
t 7→∗ t′, where t′ is a normal parallel form.

Proof. Assume that the free variables of t are xA1
1 , . . . , xAn

n

and let A be the set of the proper subformulas of A and the
strong subformulas of the formulas A1, . . . , An. We prove the
theorem by lexicographic induction on the triple

(|A|, (k, r), s)

where (k, r) is in turn lexicographically ordered, |A| is the
cardinality of A, k is the number of subterms of t having
maximal A-complexity r and s is the size of t. If t is a simply
typed λ-term, it has a normal form [15] and we are done; so
we assume t is not. There are two main cases.

First case: t is not a redex. Let t = u ‖a v and let B,C be the
communication kind of a. Then, the communication complexity
of a is 0 and by Def. IV.6 every prime factor of B or C belongs
to A. Let A′ be the set of the proper subformulas of A and
the strong subformulas of the formulas A1, . . . , An, B → C;
let A′′ be the set of the proper subformulas of A and the
strong subformulas of the formulas A1, . . . , An, C → B. By
Prop. IV.1, every strong subformula of B → C or C → B
is a proper subformula of a prime factor of B or C, and this
prime factor is in A. Hence, A′ ⊆ A and A′′ ⊆ A.

If A′ = A, then the maximal A′-complexity of the terms
of u is less or equal to r and the number of terms having
maximal A′-complexity is less or equal to k; since the size
of u is strictly smaller than that of t, by induction hypothesis
u 7→∗ u′, where u′ is a normal parallel form.

If A′ ⊂ A, again by induction hypothesis u 7→∗ u′, where
u′ is a normal parallel form. The very same argument shows
that v 7→∗ v′, where v′ is a normal parallel form.

Let now t′ = u′ ‖a v′, so that t 7→∗ t′. If t′ is normal, we
are done. If t′ is not normal, since u′ and v′ are normal, the
only possible redex remaining in t′ is the whole term itself,
i.e., u′ ‖a v′: that happens only if the free variables of t′ are
fewer than those of t; w.l.o.g., assume they are xA1

1 , . . . , xAi
i ,

with i < n. Let B be the set of the proper subformulas of A

and the strong subformulas of the formulas A1, . . . , Ai. Since
t′ is a redex, the communication complexity of a is greater
than 0; by Definition IV.6, a prime factor of B or C is not
in B, so we have B ⊂ A. By induction hypothesis, t′ 7→∗ t′′,
where t′′ is a parallel normal form, QED.

Second case: t is a redex. We first show that t � t′, for a t′

satisfying Definition VI.2. Let u ‖a v be the smallest subterm
of t having A-complexity r. Four cases can occur.

(a) r = (c, d, l, o), with d > 0. First, we prove that u ‖a v
is a redex showing that the communication complexity of a
is greater than 0. Assume that the free variables of u ‖a v
are among xA1

1 , . . . , xAn
n , aB1→C1

1 , . . . , aBm→Cm
m and that the

communication kind of a is C,D. Suppose by contradiction
that all the prime factors of C and D are proper subformulas
of A or strong subformulas of one among A1, . . . , An, B1 →
C1, . . . , Bm → Cm. Given that c > 0 there is a prime factor
P of C or D such that P /∈ A; thus P is a strong subformula
of some formula Bi → Ci and, by Proposition IV.1, a proper
subformula of a prime factor of Bi or Ci. Since by hypothesis
ai is bound in t, we conclude that there is a subterm w1 ‖ai w2

of t having A-complexity greater than r, which is absurd.
Now, since d > 0, we may assume u = w1 ‖b w2 (the case

v = w1 ‖b w2 is symmetric). The term

(w1 ‖b w2) ‖a v

is then a redex of t and by replacing it with

(w1 ‖a v) ‖b (w2 ‖a v) (1)

we obtain from t a term t′ such that t � t′ according to
Def. VI.2. We must verify that we can apply to t′ the main
induction hypothesis. Indeed, the reduction t � t′ duplicates
all the subterms of v, but all of their A-complexities are
smaller than r, because u ‖a v by choice is the smallest
subterm of t having maximal A-complexity r. Moreover, the
two terms w1 ‖a v and w2 ‖a v have smaller A-complexity
than r, because they have numbers of occurrences of the
symbol ‖ strictly smaller than in u ‖a v. Finally, assuming
that the communication kind of b is F,G, the prime factors of
F and G that are not in A must have fewer symbols than the
prime factors of C and D that are not in A, again because
u ‖a v by choice is the smallest subterm of t having maximal
A-complexity r; hence, the A-complexity of (1) is smaller
than r. By induction hypothesis, t′ 7→∗ t′′, where t′′ is a
normal parallel form and we are done.

(b) r = (c, d, l, o), with d = 0 and l > 0. Since d = 0,
u and v are simply typed λ-terms – and thus strongly
normalizable [15] – so we may assume u 7→∗ u′ ∈ NF and
v 7→∗ v′ ∈ NF by a sequence intuitionistic reduction rules. By
replacing in t the subterm u ‖a v with u′ ‖a v′, we obtain
a term t′ such that t � t′ according to Definition VI.2. By
induction hypothesis, t′ 7→∗ t′′, where t′′ is a normal parallel
form and we are done.

(c) r = (c, d, l, o), with d = l = 0 and c > 0. Since
d = 0, u and v are simply typed λ-terms. Since l = 0,
u and v are in normal form and thus satisfy conditions 1.
and 2. of Proposition V.1. We need to check that u ‖a v
is a redex, in particular that the communication complexity
of a is greater than 0. Assume that the free variables of
u ‖a v are among xA1

1 , . . . , xAn
n , aB1→C1

1 , . . . , aBm→Cm
m and

that the communication kind of a is C,D. As we argued
above, we obtain that not all the prime factors of C and D
are proper subformulas of A or strong subformulas of one
among A1, . . . , An, B1 → C1, . . . , Bm → Cm. By Definition
IV.6, that is what we wanted to show.

We now prove that every occurrence of a in u and v is
of the form a ξ for some term or projection ξ. First of all,
a occurs with arrow type both in u and v. Moreover, u :
A and v : A, since t : A and t is a parallel form; hence,
the types C → D and D → C cannot be subformulas of
A, otherwise c = 0, and cannot be proper subformulas of
one among A1, . . . , An, B1 → C1, . . . , Bn → Cn, otherwise
the prime factors of C,D would be strong subformulas of
one among A1, . . . , An, B1 → C1, . . . , Bm → Cm. Thus by
Prop. V.2 we are done. Two cases can occur.

• a does not occur in u or v: to fix ideas, let us say it
does not occur in u. By performing a cross reduction,
we replace in t the term u ‖a v with u and obtain a
term t′ such that t � t′ according to Def. VI.2. After
the replacement, the number of subterms having maximal
A-complexity r in t′ is strictly smaller than the number
of such subterms in t. By induction hypothesis, t′ 7→∗ t′′,
where t′′ is a normal parallel form and we are done.

• a occurs in u and in v. Let u = C[aw1 σ] and v =
D[aw2 ρ] where the displayed occurrences of a are the
rightmost in u and v and σ, τ are the stacks of all terms or
projections a is applied to. By applying a cross reduction
to C[aw1 σ] ‖a D[aw2 ρ] we obtain the term (∗)

(D[w
b〈z〉/y
1 ρ] ‖a C[aw1]) ‖b (C[w

b〈y〉/z
2 σ] ‖a D[aw2])

By hypothesis, y is the sequence of the free variables of
w1 which are bound in C[aw1 σ] and z is the sequence of
the free variables of w2 which are bound in D[aw2 ρ] and
a does not occur neither in w1 nor in w2. Since u, v satisfy
conditions 1. and 2. of Proposition V.1 the types Y1, . . . , Yi
and Z1, . . . , Zj of respectively the variables y and z are
proper subformulas of A or strong subformulas of the
formulas A1, . . . , An, B1 → C1, . . . , Bm → Cm. Hence,
the types among Y1, . . . , Yi, Z1, . . . , Zj which are not in
A are strictly smaller than all the prime factors of the
formulas B1, C1, . . . , Bm, Cm. Since the communication
kind of b is Y1 ∧ . . . ∧ Yi, Z1 ∧ . . . ∧ Zj , by Definition
VI.1 either the A-complexity of the term (∗) above is
strictly smaller than the A-complexity r of u ‖a v, or the
communication kind of b is >. In the latter case we apply
a cross reduction u1 ‖b v1 7→ u1 or u1 ‖b v1 7→ v1 and
obtain a term with A-complexity strictly smaller than r.

In the former case, let w′1, w
′
2 be simply typed λ-terms

such that

w
b〈z〉/y
1 ρ 7→∗ w′1 ∈ NF and wb〈y〉/z2 σ 7→∗ w′2 ∈ NF

By hypothesis, a does not occur in w1, w2, σ, ρ and thus
neither in w′1 nor in w′2. Moreover, by the assumptions
on σ and ρ and since C[aw1 σ] and D[aw2 ρ] are normal
simply typed λ-terms, C[w′2] and D[w′1] are normal too
and contain respectively one fewer occurrence of a than
the former terms. Hence, the A-complexity of the terms

D[w′1] ‖a C[aw1] and C[w′2] ‖a D[aw2]

is strictly smaller than the A-complexity r of u ‖a v. Let
now t′ be the term obtained from t by replacing the term
C[aw1 σ] ‖a D[aw2 ρ] with

(D[w′1] ‖a C[aw1]) ‖b (C[w′2] ‖a D[aw2])

By construction t � t′. Hence, we can apply the main
induction hypothesis to t′ and obtain t′ 7→∗ t′′, where t′′

is a normal parallel form and we are done.
(d) r = (c, d, l, o), with d = l = c = 0. Since t is a redex,

then t = u1 ‖b v1 where b does not occur in u1 or v1: to fix
ideas, let us say it does not occur in u1. By performing a cross
reduction, we replace t with u1 so that t � u1 according to
Def. VI.2. Hence, we can apply the main induction hypothesis
to u1 and obtain u1 7→∗ t′′, where t′′ is a normal parallel form
and we are done.

The normalization for �G, and thus for NG, easily follows.

Theorem VI.3. Suppose that t : A is a proof term of G. Then
t 7→∗ t′ : A, where t′ is a normal parallel form.

VII. COMPUTING WITH �G

We illustrate the expressive power of �G by a few examples.
All the examples employ the normalization algorithm in
Definition VI.3; to limit its non-determinism, when we have
to reduce u ‖a v because a does not occur neither in u nor in
v, we always use the reduction u ‖a v 7→ u.

Henceforth we use the types N for natural numbers, Bool
for the Boolean values and String for strings.

We start by showing that �G is more expressive than simply
typed λ-calculus.

Example VII.1 (Parallel or). Berry’s sequentiality theorem
(see [15]) implies that there is no λ-term O : Bool→ Bool→
Bool such that OFF 7→ F, OuT 7→ T, OTu 7→ T, where u is
an arbitrary normal term, and thus possibly a variable. O can
instead be defined in Boudol’s parallel λ-calculus [7].

The �G term for such parallel or is (as usual the term
“if u then s else t” reduces to s if u = T, and to t if u = F):

O := λxBool λyBool (if x then (λz λk z) else (λz λk k))T(ax)

‖a (if y then (λz λk z) else (λz λk k))T(ay)

where the communication kind of a is Bool,Bool ∧ N. Now

OuT 7→∗(if u then (λz λk z) else (λz λk k))T(au)

‖a (if T then (λz λk z) else (λz λk k))T(aT)

7→∗(if u then (λz λk z) else (λz λk k))T(au) ‖a T 7→ T

And symmetrically OTu 7→∗ T. On the other hand

OFF 7→∗ (λz λk k)T(aF) ‖a (λz λk k)T(aF)

7→∗ (aF) ‖a (aF)

7→∗ (F ‖a (aF)) ‖b (F ‖a (aF)) 7→∗ F

Example VII.2 (Data passing). As in the previous example, if
the messages sent during a cross reduction are closed terms, for
example data, the outcome is a simple unidirectional message
passing. Indeed, the newly introduced communication is void
and is always removed:

C[a u] ‖a D[a v] 7→

(D[u] ‖a C[a u]) ‖b (C[v] ‖a D[a v]) 7→ D[u] ‖a C[a u]

If we want a process s to transmit a message m : B to a process
t without t passing anything back, we can use the following
term (a has communication kind (B → F)→ F, F → F):

(aλzA→F zm)s ‖a (aλyF y)(λxB t) 7→

((λz zm)(λx t) ‖a (aλz zm)s) ‖e ((λy y)s ‖a (aλy y)(λx t))

7→∗ (λz zm)(λx t) ‖e (λy y)s 7→∗ t[m/x] ‖e s

This reduction resembles indeed the unidirectional commu-
nication a〈m〉.P | a(x).Q 7→ P | Q[m/x] in the π-calculus
[26], [33], assuming a does not occur in P and Q.

In the following example, similar to that in [8], we simulates
the communication needed to conclude an online sale.

Example VII.3 (Buyer and vendor). We model the following
transaction: a buyer tells a vendor a product name prod : String,
the vendor computes the value price : N of prod and sends
it to the buyer, the buyer sends back the credit card number
card : String which is used to pay.

We introduce the following functions: cost : String → N
with input a product name prod and output its cost price;
pay for : N → String with input a price and output a credit
card number card; use : String→ N that obtains money using
as input a credit card number card : String. The buyer and the
vendor are the contexts B and V of type Bool. Notice that the
terms representing buyer and vendor exchange their position at
each cross reduction. For a of kind String,N, the program is:

B[a(pay for(a(prod)))] ‖a V[use(a(cost(a 0)))]

7→∗ V[use(a(cost(prod)))] ‖a B[a(pay for(a(prod)))]

7→ V[use(a(price))] ‖a B[a(pay for(a(prod)))]

7→∗ B[a(pay for(price))] ‖a V[use(a(price))]

7→ B[a(card)] ‖a V[use(a(price))] 7→∗ V[use(card)] ‖a B[a(card)]

Finally 7→ V[use(card)]: the buyer has performed its duty and
the vendor uses the card number to obtain the due payment.

We show that although more complicated than sending data,
sending open processes can enhance efficiency.

Example VII.4 (Efficiency via cross reductions). Given three
processes M ‖d (P ‖a Q). Assume that Q wants to send a
process to P , but one of the process’ parameters is not available
because M first needs many time-consuming steps to produce
it and only afterwards can send it to Q. Cross reductions make
it possible to fully exploit parallelism and improve the program
efficiency: Q does not need to wait that much and can send
the process directly to P , which can begin to partially evaluate
it with no further delay. After having computed the data, M
sends it to Q which in turn forwards it to P .

For a concrete example, assume that

M 7→∗ d (λkN→N→N k 7 0)

P = d 0 (λjN λxN (ax)5s)

Q = d 0 (λyN λlN a(λzN λiσ h〈g(z), y〉))

where h : N ∧ N→ N, g : N→ N, the communication kind of
d is (N→ N→ N)→ N,N, and the communication kind of
a is N,N→ σ → N with σ arbitrary type of high complexity.
Here Q wants to send λzN λiσ h〈g(z), y〉 to P , but the value
7 of the parameter y is computed and transmitted to Q by M
only later. On the other hand, P waits for the process from Q
in order to instantiate z with 5 and compute h〈g(5), 7〉.

Without a special mechanism for sending open terms, P
must wait for M to normalize. Afterwards M passes (λk k 7 0)
through d to P and Q with the following computation:

M ‖d (P ‖a Q) 7→∗(λk k 7 0)(λj λx (ax)5s) ‖a
(λk k 7 0)(λy λl a(λz λi h〈g(z), y〉)) 7→∗

(a 0)5s ‖a a(λz λi h〈g(z), 7〉) 7→∗ (λz λi h〈g(z), 7〉)5s 7→∗ h〈g(5), 7〉

Our normalization algorithm allows instead Q to directly send
λzN λiσ h〈g(z), y〉 to P by executing first a cross reduction:

M ‖d
(
d 0(λj λx (ax)5s) ‖a d 0(λy λl a(λz λi h〈g(z), y〉))

)
7→M ‖d

(
(d 0(λy λl by)||aP) ‖b

(
d 0(λj λx (λz λi h〈g(z), bx〉)5s) ‖a Q

))
7→∗M ‖d

(
d 0(λy λl by) ‖b d 0(λj λx (λz λi h〈g(z), bx〉)5s)

)
where the communication b (of kind N,N) redirects the data
x and y. Then P instantiates z with 5 and can compute for
example g(5) = 9 without having to evaluate h〈g(5), 7〉 all at
once. When M terminates the computation, sends 7 to the new
location of the partially evaluated processes P and Q via ‖b:

7→∗M ‖d
(
d 0(λy λl by) ‖b d 0(λj λxh〈g(5), bx〉)

)
7→∗

(
M ‖d d 0(λy λl by)

)
‖b

(
M ‖d d 0(λj λxh〈9, bx〉)

)
7→∗(λk k 7 0)(λy λl by) ‖b (λk k 7 0)(λj λxh〈9, bx〉)
7→∗ b7 ‖b h〈9, b 0〉 7→∗ h〈9, 7〉

Final Remark The Curry–Howard isomorphism for �G in-
terprets Gödel logic in terms of communication between
parallel processes. In addition to revealing this connection,
our results pave the way towards a more general compu-
tational interpretation of the intermediate logics formalized
by hypersequent calculi. These logics are characterized by
disjunctive axioms of a suitable form [9] – containing all the
disjunctive tautologies of [11] – and likely correspond to other
communication mechanisms between parallel processes.

REFERENCES

[1] F. Aschieri. On Natural Deduction for Herbrand Constructive Logics I:
Curry–Howard Correspondence for Dummett’s Logic LC. Log. Methods
Comput. Sci., vol. 12(3) n. 13, pp. 1–31, 2016.

[2] F. Aschieri, M. Zorzi. On Natural Deduction in Classical First-Order
Logic: Curry–Howard Correspondence, Strong Normalization and Her-
brand’s Theorem. Theoret. Comput. Sci., 625: 125–146, 2016.

[3] A. Avron. Hypersequents, logical consequence and intermediate logics
for concurrency. Ann. Math. Artif. Intell., 4: 225–248, 1991.

[4] A. Avron. The method of hypersequents in the proof theory of
propositional non-classical logic. In Logic: From Foundations to
Applications. Oxford University Press, pp. 1–32, 1996.

[5] M. Baaz, A. Ciabattoni, C. Fermüller. A Natural Deduction System for
Intuitionistic Fuzzy Logic. In Lectures on Soft Computing and Fuzzy
Logic, pp. 1–18, Physica-Verlag, 2000.

[6] A. Beckmann and N. Preining. Hyper natural deduction. In LICS 2015,
pp. 547–558, 2015.

[7] G. Boudol. Towards a lambda-calculus for concurrent and communicating
systems. TAPSOFT ’98, pp. 149-161, vol. 1, 1989.

[8] L. Caires and F. Pfenning. Session types as intuitionistic linear proposi-
tions. In CONCUR 2010 pages 222-236. LNCS 6269, 2010.

[9] A. Ciabattoni, N. Galatos and K. Terui. From axioms to analytic rules
in nonclassical logics. In LICS 2008, pp. 229–240, 2008.

[10] A. Ciabattoni and F. A. Genco. Embedding formalisms: hypersequents
and two-level systems of rules. In AIML 2016, pp. 197–216, 2016.

[11] V. Danos, J.-L. Krivine. Disjunctive Tautologies as Synchronisation
Schemes. In CSL 2000, 1862: 292–301, 2000.

[12] M. Dummett. A propositional calculus with denumerable matrix. J.
Symbolic Logic, 24: 97–106, 1959.

[13] D. Flanagan. JavaScript: the Definitive Guide, O’Reilly Media, 2011.
[14] A. Fuggetta, G.P. Picco and G. Vigna. Understanding Code Mobility.

IEEE Transactions on Software Engineering, 24: 342–361, 1998.
[15] J.-Y. Girard and Y. Lafont and P. Taylor, Proofs and Types. Cambridge

University Press, 1989.
[16] K. Gödel: Zum intuitionistischen Aussagenkalkül. Anzeiger

der Kaiserlichen Akademie der Wissenschaften, Mathematisch-
Naturwissenschaftliche Classe. Wien. 69: 65–66, 1932.

[17] T. Griffin. A Formulae-as-Type Notion of Control. In POPL 1990, 1990.
[18] P. de Groote, A Simple Calculus of Exception Handling, Proceedings of

TLCA 1995, LNCS, vol. 902 pp. 201–215, 1995.
[19] Y. Hirai. A lambda calculus for Gödel–Dummett logic capturing

waitfreedom. In FLOPS 2012, pp. 151–165, 2012.
[20] W. A. Howard. The formulae-as-types notion of construction. In To H. B.

Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism,
Academic Press, pp. 479–491. 1980.

[21] J.-L. Krivine. Classical Realizability. Interactive models of computation
and program behavior, Panoramas et synthèses, pp. 197–229, 2009.

[22] J.-L. Krivine. Lambda-calcul types et modèles. Studies in Logic and
Foundations of Mathematics. Masson, pp. 1–176. 1990.

[23] P. J. Landin. The Mechanical Evaluation of Expressions. The Computer
Journal, 6(4), pp. 308–320, 1964.

[24] E.G.K. Lopez-Escobar. Implicational logics in natural deduction systems.
J. Symbolic Logic, 47(1): 184–186, 1982.

[25] G. Metcalfe and N. Olivetti and D. Gabbay. Proof Theory for Fuzzy
Logics. Springer Series in Applied Logic vol. 36, 2008.

[26] R. Milner. Functions as Processes. Mathematical Structures in Computer
Science, vol. 2, n. 2, pp. 119–141,1992.

[27] D. Mostrous, N. Yoshida. Session typing and asynchronous subtyping for
the higher-order π-calculus. Inf. Comput., vol. 241, pp. 227–263, 2015.

[28] T. Murphy, K. Crary, R. Harper, F. Pfenning. A Symmetric Modal Lambda
Calculus for Distributed Computing. In LICS 2004, pp. 286–295, 2004.

[29] S. Negri. Proof analysis beyond geometric theories: from rule systems
to systems of rules. J. Logic Comput., vol. 27, pp. 513-537, 2016.

[30] M. Parigot. Proofs of Strong Normalization for Second-Order Classical
Natural Deduction. J. Symbolic Logic, 62(4): 1461–1479, 1997.

[31] J. A. Pérez. Higher-Order Concurrency: Expressiveness and Decidability
Results, PhD thesis, University of Bologna, 2010.

[32] D. Prawitz. Ideas and Results in Proof Theory. In Proceedings of the
Second Scandinavian Logic Symposium, 1971.

[33] D. Sangiorgi and D. Walker. The pi-calculus: a Theory of Mobile
Processes. 2003.

[34] P. Wadler. Propositions as Types. Communications of the ACM, 58(12):
75–84, 2015.

